]> git.proxmox.com Git - mirror_spl.git/blame - module/spl/spl-kmem.c
kmem-cache: Use taskqs for ageing
[mirror_spl.git] / module / spl / spl-kmem.c
CommitLineData
716154c5
BB
1/*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
715f6251 6 * UCRL-CODE-235197
7 *
716154c5
BB
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
715f6251 10 *
716154c5
BB
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
715f6251 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
716154c5
BB
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Kmem Implementation.
25\*****************************************************************************/
715f6251 26
f4b37741 27#include <sys/kmem.h>
55abb092 28#include <spl-debug.h>
f1ca4da6 29
b17edc10
BB
30#ifdef SS_DEBUG_SUBSYS
31#undef SS_DEBUG_SUBSYS
937879f1 32#endif
33
b17edc10 34#define SS_DEBUG_SUBSYS SS_KMEM
937879f1 35
36b313da
BB
36/*
37 * The minimum amount of memory measured in pages to be free at all
38 * times on the system. This is similar to Linux's zone->pages_min
ecc39810 39 * multiplied by the number of zones and is sized based on that.
36b313da
BB
40 */
41pgcnt_t minfree = 0;
42EXPORT_SYMBOL(minfree);
43
44/*
45 * The desired amount of memory measured in pages to be free at all
46 * times on the system. This is similar to Linux's zone->pages_low
ecc39810 47 * multiplied by the number of zones and is sized based on that.
36b313da 48 * Assuming all zones are being used roughly equally, when we drop
ecc39810 49 * below this threshold asynchronous page reclamation is triggered.
36b313da
BB
50 */
51pgcnt_t desfree = 0;
52EXPORT_SYMBOL(desfree);
53
54/*
55 * When above this amount of memory measures in pages the system is
56 * determined to have enough free memory. This is similar to Linux's
ecc39810 57 * zone->pages_high multiplied by the number of zones and is sized based
36b313da 58 * on that. Assuming all zones are being used roughly equally, when
ecc39810 59 * asynchronous page reclamation reaches this threshold it stops.
36b313da
BB
60 */
61pgcnt_t lotsfree = 0;
62EXPORT_SYMBOL(lotsfree);
63
64/* Unused always 0 in this implementation */
65pgcnt_t needfree = 0;
66EXPORT_SYMBOL(needfree);
67
36b313da
BB
68pgcnt_t swapfs_minfree = 0;
69EXPORT_SYMBOL(swapfs_minfree);
70
71pgcnt_t swapfs_reserve = 0;
72EXPORT_SYMBOL(swapfs_reserve);
73
36b313da
BB
74vmem_t *heap_arena = NULL;
75EXPORT_SYMBOL(heap_arena);
76
77vmem_t *zio_alloc_arena = NULL;
78EXPORT_SYMBOL(zio_alloc_arena);
79
80vmem_t *zio_arena = NULL;
81EXPORT_SYMBOL(zio_arena);
82
d1ff2312 83#ifndef HAVE_GET_VMALLOC_INFO
96dded38 84get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON;
d1ff2312
BB
85EXPORT_SYMBOL(get_vmalloc_info_fn);
86#endif /* HAVE_GET_VMALLOC_INFO */
87
5232d256
BB
88#ifdef HAVE_PGDAT_HELPERS
89# ifndef HAVE_FIRST_ONLINE_PGDAT
96dded38 90first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON;
d1ff2312 91EXPORT_SYMBOL(first_online_pgdat_fn);
5232d256 92# endif /* HAVE_FIRST_ONLINE_PGDAT */
36b313da 93
5232d256 94# ifndef HAVE_NEXT_ONLINE_PGDAT
96dded38 95next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON;
d1ff2312 96EXPORT_SYMBOL(next_online_pgdat_fn);
5232d256 97# endif /* HAVE_NEXT_ONLINE_PGDAT */
36b313da 98
5232d256 99# ifndef HAVE_NEXT_ZONE
96dded38 100next_zone_t next_zone_fn = SYMBOL_POISON;
d1ff2312 101EXPORT_SYMBOL(next_zone_fn);
5232d256
BB
102# endif /* HAVE_NEXT_ZONE */
103
104#else /* HAVE_PGDAT_HELPERS */
105
106# ifndef HAVE_PGDAT_LIST
107struct pglist_data *pgdat_list_addr = SYMBOL_POISON;
108EXPORT_SYMBOL(pgdat_list_addr);
109# endif /* HAVE_PGDAT_LIST */
110
111#endif /* HAVE_PGDAT_HELPERS */
36b313da 112
6ae7fef5 113#ifdef NEED_GET_ZONE_COUNTS
e11d6c5f 114# ifndef HAVE_GET_ZONE_COUNTS
96dded38 115get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON;
d1ff2312 116EXPORT_SYMBOL(get_zone_counts_fn);
96dded38 117# endif /* HAVE_GET_ZONE_COUNTS */
4ab13d3b 118
e11d6c5f 119unsigned long
6ae7fef5 120spl_global_page_state(spl_zone_stat_item_t item)
4ab13d3b
BB
121{
122 unsigned long active;
123 unsigned long inactive;
124 unsigned long free;
125
6ae7fef5
BB
126 get_zone_counts(&active, &inactive, &free);
127 switch (item) {
128 case SPL_NR_FREE_PAGES: return free;
129 case SPL_NR_INACTIVE: return inactive;
130 case SPL_NR_ACTIVE: return active;
131 default: ASSERT(0); /* Unsupported */
e11d6c5f
BB
132 }
133
6ae7fef5
BB
134 return 0;
135}
136#else
137# ifdef HAVE_GLOBAL_PAGE_STATE
138unsigned long
139spl_global_page_state(spl_zone_stat_item_t item)
140{
141 unsigned long pages = 0;
142
143 switch (item) {
144 case SPL_NR_FREE_PAGES:
145# ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES
146 pages += global_page_state(NR_FREE_PAGES);
147# endif
148 break;
149 case SPL_NR_INACTIVE:
150# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE
151 pages += global_page_state(NR_INACTIVE);
152# endif
153# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON
154 pages += global_page_state(NR_INACTIVE_ANON);
155# endif
156# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE
157 pages += global_page_state(NR_INACTIVE_FILE);
158# endif
159 break;
160 case SPL_NR_ACTIVE:
161# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE
162 pages += global_page_state(NR_ACTIVE);
163# endif
164# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON
165 pages += global_page_state(NR_ACTIVE_ANON);
166# endif
167# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE
168 pages += global_page_state(NR_ACTIVE_FILE);
169# endif
170 break;
171 default:
172 ASSERT(0); /* Unsupported */
e11d6c5f
BB
173 }
174
6ae7fef5
BB
175 return pages;
176}
96dded38 177# else
6ae7fef5 178# error "Both global_page_state() and get_zone_counts() unavailable"
96dded38 179# endif /* HAVE_GLOBAL_PAGE_STATE */
6ae7fef5 180#endif /* NEED_GET_ZONE_COUNTS */
e11d6c5f 181EXPORT_SYMBOL(spl_global_page_state);
4ab13d3b 182
5f6c14b1 183#if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
914b0631
BB
184invalidate_inodes_t invalidate_inodes_fn = SYMBOL_POISON;
185EXPORT_SYMBOL(invalidate_inodes_fn);
5f6c14b1 186#endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
914b0631 187
e76f4bf1
BB
188#ifndef HAVE_SHRINK_DCACHE_MEMORY
189shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON;
190EXPORT_SYMBOL(shrink_dcache_memory_fn);
191#endif /* HAVE_SHRINK_DCACHE_MEMORY */
192
193#ifndef HAVE_SHRINK_ICACHE_MEMORY
194shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON;
195EXPORT_SYMBOL(shrink_icache_memory_fn);
196#endif /* HAVE_SHRINK_ICACHE_MEMORY */
197
e11d6c5f
BB
198pgcnt_t
199spl_kmem_availrmem(void)
200{
4ab13d3b 201 /* The amount of easily available memory */
6ae7fef5
BB
202 return (spl_global_page_state(SPL_NR_FREE_PAGES) +
203 spl_global_page_state(SPL_NR_INACTIVE));
4ab13d3b
BB
204}
205EXPORT_SYMBOL(spl_kmem_availrmem);
206
207size_t
208vmem_size(vmem_t *vmp, int typemask)
209{
d1ff2312
BB
210 struct vmalloc_info vmi;
211 size_t size = 0;
212
4ab13d3b
BB
213 ASSERT(vmp == NULL);
214 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
215
d1ff2312
BB
216 get_vmalloc_info(&vmi);
217 if (typemask & VMEM_ALLOC)
218 size += (size_t)vmi.used;
219
220 if (typemask & VMEM_FREE)
221 size += (size_t)(VMALLOC_TOTAL - vmi.used);
222
223 return size;
4ab13d3b
BB
224}
225EXPORT_SYMBOL(vmem_size);
4ab13d3b 226
b868e22f
BB
227int
228kmem_debugging(void)
229{
230 return 0;
231}
232EXPORT_SYMBOL(kmem_debugging);
233
234#ifndef HAVE_KVASPRINTF
235/* Simplified asprintf. */
236char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
237{
238 unsigned int len;
239 char *p;
240 va_list aq;
241
242 va_copy(aq, ap);
243 len = vsnprintf(NULL, 0, fmt, aq);
244 va_end(aq);
245
246 p = kmalloc(len+1, gfp);
247 if (!p)
248 return NULL;
249
250 vsnprintf(p, len+1, fmt, ap);
251
252 return p;
253}
254EXPORT_SYMBOL(kvasprintf);
255#endif /* HAVE_KVASPRINTF */
256
e6de04b7
BB
257char *
258kmem_vasprintf(const char *fmt, va_list ap)
259{
260 va_list aq;
261 char *ptr;
262
e6de04b7 263 do {
2c762de8 264 va_copy(aq, ap);
e6de04b7 265 ptr = kvasprintf(GFP_KERNEL, fmt, aq);
2c762de8 266 va_end(aq);
e6de04b7 267 } while (ptr == NULL);
e6de04b7
BB
268
269 return ptr;
270}
271EXPORT_SYMBOL(kmem_vasprintf);
272
b868e22f
BB
273char *
274kmem_asprintf(const char *fmt, ...)
275{
e6de04b7 276 va_list ap;
b868e22f
BB
277 char *ptr;
278
b868e22f 279 do {
2c762de8 280 va_start(ap, fmt);
e6de04b7 281 ptr = kvasprintf(GFP_KERNEL, fmt, ap);
2c762de8 282 va_end(ap);
b868e22f 283 } while (ptr == NULL);
b868e22f
BB
284
285 return ptr;
286}
287EXPORT_SYMBOL(kmem_asprintf);
288
10129680
BB
289static char *
290__strdup(const char *str, int flags)
291{
292 char *ptr;
293 int n;
294
295 n = strlen(str);
296 ptr = kmalloc_nofail(n + 1, flags);
297 if (ptr)
298 memcpy(ptr, str, n + 1);
299
300 return ptr;
301}
302
303char *
304strdup(const char *str)
305{
306 return __strdup(str, KM_SLEEP);
307}
308EXPORT_SYMBOL(strdup);
309
310void
311strfree(char *str)
312{
41f84a8d 313 kfree(str);
10129680
BB
314}
315EXPORT_SYMBOL(strfree);
316
f1ca4da6 317/*
2fb9b26a 318 * Memory allocation interfaces and debugging for basic kmem_*
055ffd98
BB
319 * and vmem_* style memory allocation. When DEBUG_KMEM is enabled
320 * the SPL will keep track of the total memory allocated, and
321 * report any memory leaked when the module is unloaded.
f1ca4da6 322 */
323#ifdef DEBUG_KMEM
d04c8a56 324
f1ca4da6 325/* Shim layer memory accounting */
d04c8a56 326# ifdef HAVE_ATOMIC64_T
550f1705 327atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
a0f6da3d 328unsigned long long kmem_alloc_max = 0;
550f1705 329atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
a0f6da3d 330unsigned long long vmem_alloc_max = 0;
10129680 331# else /* HAVE_ATOMIC64_T */
d04c8a56
BB
332atomic_t kmem_alloc_used = ATOMIC_INIT(0);
333unsigned long long kmem_alloc_max = 0;
334atomic_t vmem_alloc_used = ATOMIC_INIT(0);
335unsigned long long vmem_alloc_max = 0;
10129680 336# endif /* HAVE_ATOMIC64_T */
79b31f36 337
ff449ac4 338EXPORT_SYMBOL(kmem_alloc_used);
339EXPORT_SYMBOL(kmem_alloc_max);
340EXPORT_SYMBOL(vmem_alloc_used);
341EXPORT_SYMBOL(vmem_alloc_max);
ff449ac4 342
055ffd98
BB
343/* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
344 * but also the location of every alloc and free. When the SPL module is
345 * unloaded a list of all leaked addresses and where they were allocated
346 * will be dumped to the console. Enabling this feature has a significant
347 * impact on performance but it makes finding memory leaks straight forward.
348 *
349 * Not surprisingly with debugging enabled the xmem_locks are very highly
350 * contended particularly on xfree(). If we want to run with this detailed
351 * debugging enabled for anything other than debugging we need to minimize
352 * the contention by moving to a lock per xmem_table entry model.
a0f6da3d 353 */
055ffd98 354# ifdef DEBUG_KMEM_TRACKING
a0f6da3d 355
356# define KMEM_HASH_BITS 10
357# define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
358
359# define VMEM_HASH_BITS 10
360# define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
361
362typedef struct kmem_debug {
363 struct hlist_node kd_hlist; /* Hash node linkage */
364 struct list_head kd_list; /* List of all allocations */
365 void *kd_addr; /* Allocation pointer */
366 size_t kd_size; /* Allocation size */
367 const char *kd_func; /* Allocation function */
368 int kd_line; /* Allocation line */
369} kmem_debug_t;
370
d6a26c6a 371spinlock_t kmem_lock;
372struct hlist_head kmem_table[KMEM_TABLE_SIZE];
373struct list_head kmem_list;
374
13cdca65 375spinlock_t vmem_lock;
376struct hlist_head vmem_table[VMEM_TABLE_SIZE];
377struct list_head vmem_list;
378
d6a26c6a 379EXPORT_SYMBOL(kmem_lock);
380EXPORT_SYMBOL(kmem_table);
381EXPORT_SYMBOL(kmem_list);
382
13cdca65 383EXPORT_SYMBOL(vmem_lock);
384EXPORT_SYMBOL(vmem_table);
385EXPORT_SYMBOL(vmem_list);
a0f6da3d 386
387static kmem_debug_t *
973e8269 388kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, const void *addr)
a0f6da3d 389{
390 struct hlist_head *head;
391 struct hlist_node *node;
392 struct kmem_debug *p;
393 unsigned long flags;
b17edc10 394 SENTRY;
a0f6da3d 395
396 spin_lock_irqsave(lock, flags);
397
398 head = &table[hash_ptr(addr, bits)];
399 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
400 if (p->kd_addr == addr) {
401 hlist_del_init(&p->kd_hlist);
402 list_del_init(&p->kd_list);
403 spin_unlock_irqrestore(lock, flags);
404 return p;
405 }
406 }
407
408 spin_unlock_irqrestore(lock, flags);
409
b17edc10 410 SRETURN(NULL);
a0f6da3d 411}
412
413void *
414kmem_alloc_track(size_t size, int flags, const char *func, int line,
415 int node_alloc, int node)
416{
417 void *ptr = NULL;
418 kmem_debug_t *dptr;
419 unsigned long irq_flags;
b17edc10 420 SENTRY;
a0f6da3d 421
10129680 422 /* Function may be called with KM_NOSLEEP so failure is possible */
c89fdee4 423 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
a0f6da3d 424 flags & ~__GFP_ZERO);
425
10129680 426 if (unlikely(dptr == NULL)) {
b17edc10 427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
3cb77549
BB
428 "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
429 sizeof(kmem_debug_t), flags, func, line,
430 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 431 } else {
10129680
BB
432 /*
433 * Marked unlikely because we should never be doing this,
434 * we tolerate to up 2 pages but a single page is best.
435 */
23d91792 436 if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
b17edc10 437 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large "
3cb77549
BB
438 "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
439 (unsigned long long) size, flags, func, line,
d04c8a56 440 kmem_alloc_used_read(), kmem_alloc_max);
5198ea0e
BB
441 spl_debug_dumpstack(NULL);
442 }
a0f6da3d 443
10129680
BB
444 /*
445 * We use __strdup() below because the string pointed to by
c8e60837 446 * __FUNCTION__ might not be available by the time we want
10129680
BB
447 * to print it since the module might have been unloaded.
448 * This can only fail in the KM_NOSLEEP case.
449 */
450 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
c8e60837 451 if (unlikely(dptr->kd_func == NULL)) {
452 kfree(dptr);
b17edc10 453 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
10129680 454 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
3cb77549 455 func, line, kmem_alloc_used_read(), kmem_alloc_max);
c8e60837 456 goto out;
457 }
458
a0f6da3d 459 /* Use the correct allocator */
460 if (node_alloc) {
461 ASSERT(!(flags & __GFP_ZERO));
c89fdee4 462 ptr = kmalloc_node_nofail(size, flags, node);
a0f6da3d 463 } else if (flags & __GFP_ZERO) {
c89fdee4 464 ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
a0f6da3d 465 } else {
c89fdee4 466 ptr = kmalloc_nofail(size, flags);
a0f6da3d 467 }
468
469 if (unlikely(ptr == NULL)) {
c8e60837 470 kfree(dptr->kd_func);
a0f6da3d 471 kfree(dptr);
b17edc10 472 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc"
3cb77549
BB
473 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
474 (unsigned long long) size, flags, func, line,
d04c8a56 475 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 476 goto out;
477 }
478
d04c8a56
BB
479 kmem_alloc_used_add(size);
480 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
481 kmem_alloc_max = kmem_alloc_used_read();
a0f6da3d 482
483 INIT_HLIST_NODE(&dptr->kd_hlist);
484 INIT_LIST_HEAD(&dptr->kd_list);
485
486 dptr->kd_addr = ptr;
487 dptr->kd_size = size;
a0f6da3d 488 dptr->kd_line = line;
489
490 spin_lock_irqsave(&kmem_lock, irq_flags);
491 hlist_add_head_rcu(&dptr->kd_hlist,
492 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
493 list_add_tail(&dptr->kd_list, &kmem_list);
494 spin_unlock_irqrestore(&kmem_lock, irq_flags);
495
b17edc10 496 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
497 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
498 (unsigned long long) size, flags, func, line, ptr,
499 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 500 }
501out:
b17edc10 502 SRETURN(ptr);
a0f6da3d 503}
504EXPORT_SYMBOL(kmem_alloc_track);
505
506void
973e8269 507kmem_free_track(const void *ptr, size_t size)
a0f6da3d 508{
509 kmem_debug_t *dptr;
b17edc10 510 SENTRY;
a0f6da3d 511
512 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
513 (unsigned long long) size);
514
515 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
516
10129680
BB
517 /* Must exist in hash due to kmem_alloc() */
518 ASSERT(dptr);
a0f6da3d 519
520 /* Size must match */
521 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
522 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
523 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
524
d04c8a56 525 kmem_alloc_used_sub(size);
b17edc10 526 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 527 (unsigned long long) size, kmem_alloc_used_read(),
a0f6da3d 528 kmem_alloc_max);
529
c8e60837 530 kfree(dptr->kd_func);
531
a0f6da3d 532 memset(dptr, 0x5a, sizeof(kmem_debug_t));
533 kfree(dptr);
534
535 memset(ptr, 0x5a, size);
536 kfree(ptr);
537
b17edc10 538 SEXIT;
a0f6da3d 539}
540EXPORT_SYMBOL(kmem_free_track);
541
542void *
543vmem_alloc_track(size_t size, int flags, const char *func, int line)
544{
545 void *ptr = NULL;
546 kmem_debug_t *dptr;
547 unsigned long irq_flags;
b17edc10 548 SENTRY;
a0f6da3d 549
550 ASSERT(flags & KM_SLEEP);
551
10129680 552 /* Function may be called with KM_NOSLEEP so failure is possible */
ef1c7a06
BB
553 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
554 flags & ~__GFP_ZERO);
10129680 555 if (unlikely(dptr == NULL)) {
b17edc10 556 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
3cb77549
BB
557 "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
558 sizeof(kmem_debug_t), flags, func, line,
559 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 560 } else {
10129680
BB
561 /*
562 * We use __strdup() below because the string pointed to by
c8e60837 563 * __FUNCTION__ might not be available by the time we want
10129680
BB
564 * to print it, since the module might have been unloaded.
565 * This can never fail because we have already asserted
566 * that flags is KM_SLEEP.
567 */
568 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
c8e60837 569 if (unlikely(dptr->kd_func == NULL)) {
570 kfree(dptr);
b17edc10 571 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
10129680 572 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
3cb77549 573 func, line, vmem_alloc_used_read(), vmem_alloc_max);
c8e60837 574 goto out;
575 }
576
10129680
BB
577 /* Use the correct allocator */
578 if (flags & __GFP_ZERO) {
579 ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
580 } else {
581 ptr = vmalloc_nofail(size, flags);
582 }
a0f6da3d 583
584 if (unlikely(ptr == NULL)) {
c8e60837 585 kfree(dptr->kd_func);
a0f6da3d 586 kfree(dptr);
b17edc10 587 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc"
3cb77549
BB
588 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
589 (unsigned long long) size, flags, func, line,
d04c8a56 590 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 591 goto out;
592 }
593
d04c8a56
BB
594 vmem_alloc_used_add(size);
595 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
596 vmem_alloc_max = vmem_alloc_used_read();
a0f6da3d 597
598 INIT_HLIST_NODE(&dptr->kd_hlist);
599 INIT_LIST_HEAD(&dptr->kd_list);
600
601 dptr->kd_addr = ptr;
602 dptr->kd_size = size;
a0f6da3d 603 dptr->kd_line = line;
604
605 spin_lock_irqsave(&vmem_lock, irq_flags);
606 hlist_add_head_rcu(&dptr->kd_hlist,
607 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
608 list_add_tail(&dptr->kd_list, &vmem_list);
609 spin_unlock_irqrestore(&vmem_lock, irq_flags);
610
b17edc10 611 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
612 "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
613 (unsigned long long) size, flags, func, line,
614 ptr, vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 615 }
616out:
b17edc10 617 SRETURN(ptr);
a0f6da3d 618}
619EXPORT_SYMBOL(vmem_alloc_track);
620
621void
973e8269 622vmem_free_track(const void *ptr, size_t size)
a0f6da3d 623{
624 kmem_debug_t *dptr;
b17edc10 625 SENTRY;
a0f6da3d 626
627 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
628 (unsigned long long) size);
629
630 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
10129680
BB
631
632 /* Must exist in hash due to vmem_alloc() */
633 ASSERT(dptr);
a0f6da3d 634
635 /* Size must match */
636 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
637 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
638 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
639
d04c8a56 640 vmem_alloc_used_sub(size);
b17edc10 641 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 642 (unsigned long long) size, vmem_alloc_used_read(),
a0f6da3d 643 vmem_alloc_max);
644
c8e60837 645 kfree(dptr->kd_func);
646
a0f6da3d 647 memset(dptr, 0x5a, sizeof(kmem_debug_t));
648 kfree(dptr);
649
650 memset(ptr, 0x5a, size);
651 vfree(ptr);
652
b17edc10 653 SEXIT;
a0f6da3d 654}
655EXPORT_SYMBOL(vmem_free_track);
656
657# else /* DEBUG_KMEM_TRACKING */
658
659void *
660kmem_alloc_debug(size_t size, int flags, const char *func, int line,
661 int node_alloc, int node)
662{
663 void *ptr;
b17edc10 664 SENTRY;
a0f6da3d 665
10129680
BB
666 /*
667 * Marked unlikely because we should never be doing this,
668 * we tolerate to up 2 pages but a single page is best.
669 */
23d91792 670 if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
b17edc10 671 SDEBUG(SD_CONSOLE | SD_WARNING,
10129680 672 "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
3cb77549 673 (unsigned long long) size, flags, func, line,
d04c8a56 674 kmem_alloc_used_read(), kmem_alloc_max);
4b2220f0 675 dump_stack();
5198ea0e 676 }
a0f6da3d 677
678 /* Use the correct allocator */
679 if (node_alloc) {
680 ASSERT(!(flags & __GFP_ZERO));
c89fdee4 681 ptr = kmalloc_node_nofail(size, flags, node);
a0f6da3d 682 } else if (flags & __GFP_ZERO) {
c89fdee4 683 ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
a0f6da3d 684 } else {
c89fdee4 685 ptr = kmalloc_nofail(size, flags);
a0f6da3d 686 }
687
10129680 688 if (unlikely(ptr == NULL)) {
b17edc10 689 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
690 "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
691 (unsigned long long) size, flags, func, line,
d04c8a56 692 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 693 } else {
d04c8a56
BB
694 kmem_alloc_used_add(size);
695 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
696 kmem_alloc_max = kmem_alloc_used_read();
a0f6da3d 697
b17edc10 698 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
699 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
700 (unsigned long long) size, flags, func, line, ptr,
10129680 701 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 702 }
10129680 703
b17edc10 704 SRETURN(ptr);
a0f6da3d 705}
706EXPORT_SYMBOL(kmem_alloc_debug);
707
708void
973e8269 709kmem_free_debug(const void *ptr, size_t size)
a0f6da3d 710{
b17edc10 711 SENTRY;
a0f6da3d 712
713 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
714 (unsigned long long) size);
715
d04c8a56 716 kmem_alloc_used_sub(size);
b17edc10 717 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 718 (unsigned long long) size, kmem_alloc_used_read(),
a0f6da3d 719 kmem_alloc_max);
a0f6da3d 720 kfree(ptr);
721
b17edc10 722 SEXIT;
a0f6da3d 723}
724EXPORT_SYMBOL(kmem_free_debug);
725
726void *
727vmem_alloc_debug(size_t size, int flags, const char *func, int line)
728{
729 void *ptr;
b17edc10 730 SENTRY;
a0f6da3d 731
732 ASSERT(flags & KM_SLEEP);
733
10129680
BB
734 /* Use the correct allocator */
735 if (flags & __GFP_ZERO) {
736 ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
737 } else {
738 ptr = vmalloc_nofail(size, flags);
739 }
740
741 if (unlikely(ptr == NULL)) {
b17edc10 742 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
743 "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
744 (unsigned long long) size, flags, func, line,
d04c8a56 745 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 746 } else {
d04c8a56
BB
747 vmem_alloc_used_add(size);
748 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
749 vmem_alloc_max = vmem_alloc_used_read();
a0f6da3d 750
b17edc10 751 SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p "
a0f6da3d 752 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
d04c8a56 753 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 754 }
755
b17edc10 756 SRETURN(ptr);
a0f6da3d 757}
758EXPORT_SYMBOL(vmem_alloc_debug);
759
760void
973e8269 761vmem_free_debug(const void *ptr, size_t size)
a0f6da3d 762{
b17edc10 763 SENTRY;
a0f6da3d 764
765 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
766 (unsigned long long) size);
767
d04c8a56 768 vmem_alloc_used_sub(size);
b17edc10 769 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 770 (unsigned long long) size, vmem_alloc_used_read(),
a0f6da3d 771 vmem_alloc_max);
a0f6da3d 772 vfree(ptr);
773
b17edc10 774 SEXIT;
a0f6da3d 775}
776EXPORT_SYMBOL(vmem_free_debug);
777
778# endif /* DEBUG_KMEM_TRACKING */
779#endif /* DEBUG_KMEM */
780
10129680
BB
781/*
782 * Slab allocation interfaces
783 *
784 * While the Linux slab implementation was inspired by the Solaris
ecc39810 785 * implementation I cannot use it to emulate the Solaris APIs. I
10129680
BB
786 * require two features which are not provided by the Linux slab.
787 *
788 * 1) Constructors AND destructors. Recent versions of the Linux
789 * kernel have removed support for destructors. This is a deal
790 * breaker for the SPL which contains particularly expensive
791 * initializers for mutex's, condition variables, etc. We also
792 * require a minimal level of cleanup for these data types unlike
793 * many Linux data type which do need to be explicitly destroyed.
794 *
795 * 2) Virtual address space backed slab. Callers of the Solaris slab
796 * expect it to work well for both small are very large allocations.
797 * Because of memory fragmentation the Linux slab which is backed
798 * by kmalloc'ed memory performs very badly when confronted with
799 * large numbers of large allocations. Basing the slab on the
ecc39810 800 * virtual address space removes the need for contiguous pages
10129680
BB
801 * and greatly improve performance for large allocations.
802 *
803 * For these reasons, the SPL has its own slab implementation with
804 * the needed features. It is not as highly optimized as either the
805 * Solaris or Linux slabs, but it should get me most of what is
806 * needed until it can be optimized or obsoleted by another approach.
807 *
808 * One serious concern I do have about this method is the relatively
809 * small virtual address space on 32bit arches. This will seriously
810 * constrain the size of the slab caches and their performance.
811 *
812 * XXX: Improve the partial slab list by carefully maintaining a
813 * strict ordering of fullest to emptiest slabs based on
ecc39810 814 * the slab reference count. This guarantees the when freeing
10129680
BB
815 * slabs back to the system we need only linearly traverse the
816 * last N slabs in the list to discover all the freeable slabs.
817 *
818 * XXX: NUMA awareness for optionally allocating memory close to a
ecc39810 819 * particular core. This can be advantageous if you know the slab
10129680
BB
820 * object will be short lived and primarily accessed from one core.
821 *
822 * XXX: Slab coloring may also yield performance improvements and would
823 * be desirable to implement.
824 */
825
826struct list_head spl_kmem_cache_list; /* List of caches */
827struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
a10287e0 828taskq_t *spl_kmem_cache_taskq; /* Task queue for ageing / reclaim */
10129680
BB
829
830static int spl_cache_flush(spl_kmem_cache_t *skc,
831 spl_kmem_magazine_t *skm, int flush);
832
a55bcaad 833SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
495bd532
BB
834SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
835 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
10129680 836
a1502d76 837static void *
838kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
fece7c99 839{
a1502d76 840 void *ptr;
f1ca4da6 841
8b45dda2
BB
842 ASSERT(ISP2(size));
843
500e95c8 844 if (skc->skc_flags & KMC_KMEM)
8b45dda2 845 ptr = (void *)__get_free_pages(flags, get_order(size));
500e95c8 846 else
617f79de
BB
847 ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
848
8b45dda2
BB
849 /* Resulting allocated memory will be page aligned */
850 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
fece7c99 851
a1502d76 852 return ptr;
853}
fece7c99 854
a1502d76 855static void
856kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
857{
8b45dda2
BB
858 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
859 ASSERT(ISP2(size));
860
06089b9e
BB
861 /*
862 * The Linux direct reclaim path uses this out of band value to
863 * determine if forward progress is being made. Normally this is
864 * incremented by kmem_freepages() which is part of the various
865 * Linux slab implementations. However, since we are using none
866 * of that infrastructure we are responsible for incrementing it.
867 */
868 if (current->reclaim_state)
869 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
870
8b45dda2
BB
871 if (skc->skc_flags & KMC_KMEM)
872 free_pages((unsigned long)ptr, get_order(size));
873 else
874 vfree(ptr);
875}
876
877/*
878 * Required space for each aligned sks.
879 */
880static inline uint32_t
881spl_sks_size(spl_kmem_cache_t *skc)
882{
883 return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
884 skc->skc_obj_align, uint32_t);
885}
886
887/*
888 * Required space for each aligned object.
889 */
890static inline uint32_t
891spl_obj_size(spl_kmem_cache_t *skc)
892{
893 uint32_t align = skc->skc_obj_align;
894
895 return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
896 P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
897}
898
899/*
900 * Lookup the spl_kmem_object_t for an object given that object.
901 */
902static inline spl_kmem_obj_t *
903spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
904{
905 return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
906 skc->skc_obj_align, uint32_t);
907}
908
909/*
910 * Required space for each offslab object taking in to account alignment
911 * restrictions and the power-of-two requirement of kv_alloc().
912 */
913static inline uint32_t
914spl_offslab_size(spl_kmem_cache_t *skc)
915{
916 return 1UL << (highbit(spl_obj_size(skc)) + 1);
fece7c99 917}
918
ea3e6ca9
BB
919/*
920 * It's important that we pack the spl_kmem_obj_t structure and the
48e0606a
BB
921 * actual objects in to one large address space to minimize the number
922 * of calls to the allocator. It is far better to do a few large
923 * allocations and then subdivide it ourselves. Now which allocator
924 * we use requires balancing a few trade offs.
925 *
926 * For small objects we use kmem_alloc() because as long as you are
927 * only requesting a small number of pages (ideally just one) its cheap.
928 * However, when you start requesting multiple pages with kmem_alloc()
ecc39810 929 * it gets increasingly expensive since it requires contiguous pages.
48e0606a 930 * For this reason we shift to vmem_alloc() for slabs of large objects
ecc39810 931 * which removes the need for contiguous pages. We do not use
48e0606a
BB
932 * vmem_alloc() in all cases because there is significant locking
933 * overhead in __get_vm_area_node(). This function takes a single
ecc39810 934 * global lock when acquiring an available virtual address range which
48e0606a
BB
935 * serializes all vmem_alloc()'s for all slab caches. Using slightly
936 * different allocation functions for small and large objects should
937 * give us the best of both worlds.
938 *
939 * KMC_ONSLAB KMC_OFFSLAB
940 *
941 * +------------------------+ +-----------------+
942 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
943 * | skc_obj_size <-+ | | +-----------------+ | |
944 * | spl_kmem_obj_t | | | |
945 * | skc_obj_size <---+ | +-----------------+ | |
946 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
947 * | ... v | | spl_kmem_obj_t | |
948 * +------------------------+ +-----------------+ v
949 */
fece7c99 950static spl_kmem_slab_t *
a1502d76 951spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
fece7c99 952{
953 spl_kmem_slab_t *sks;
a1502d76 954 spl_kmem_obj_t *sko, *n;
955 void *base, *obj;
8b45dda2
BB
956 uint32_t obj_size, offslab_size = 0;
957 int i, rc = 0;
48e0606a 958
a1502d76 959 base = kv_alloc(skc, skc->skc_slab_size, flags);
960 if (base == NULL)
b17edc10 961 SRETURN(NULL);
fece7c99 962
a1502d76 963 sks = (spl_kmem_slab_t *)base;
964 sks->sks_magic = SKS_MAGIC;
965 sks->sks_objs = skc->skc_slab_objs;
966 sks->sks_age = jiffies;
967 sks->sks_cache = skc;
968 INIT_LIST_HEAD(&sks->sks_list);
969 INIT_LIST_HEAD(&sks->sks_free_list);
970 sks->sks_ref = 0;
8b45dda2 971 obj_size = spl_obj_size(skc);
48e0606a 972
8d177c18 973 if (skc->skc_flags & KMC_OFFSLAB)
8b45dda2 974 offslab_size = spl_offslab_size(skc);
fece7c99 975
976 for (i = 0; i < sks->sks_objs; i++) {
a1502d76 977 if (skc->skc_flags & KMC_OFFSLAB) {
8b45dda2 978 obj = kv_alloc(skc, offslab_size, flags);
a1502d76 979 if (!obj)
b17edc10 980 SGOTO(out, rc = -ENOMEM);
a1502d76 981 } else {
8b45dda2 982 obj = base + spl_sks_size(skc) + (i * obj_size);
a1502d76 983 }
984
8b45dda2
BB
985 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
986 sko = spl_sko_from_obj(skc, obj);
fece7c99 987 sko->sko_addr = obj;
988 sko->sko_magic = SKO_MAGIC;
989 sko->sko_slab = sks;
990 INIT_LIST_HEAD(&sko->sko_list);
fece7c99 991 list_add_tail(&sko->sko_list, &sks->sks_free_list);
992 }
993
fece7c99 994 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
995 if (skc->skc_ctor)
996 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
2fb9b26a 997out:
a1502d76 998 if (rc) {
999 if (skc->skc_flags & KMC_OFFSLAB)
48e0606a
BB
1000 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
1001 sko_list)
8b45dda2 1002 kv_free(skc, sko->sko_addr, offslab_size);
fece7c99 1003
a1502d76 1004 kv_free(skc, base, skc->skc_slab_size);
1005 sks = NULL;
fece7c99 1006 }
1007
b17edc10 1008 SRETURN(sks);
fece7c99 1009}
1010
ea3e6ca9
BB
1011/*
1012 * Remove a slab from complete or partial list, it must be called with
1013 * the 'skc->skc_lock' held but the actual free must be performed
1014 * outside the lock to prevent deadlocking on vmem addresses.
fece7c99 1015 */
f1ca4da6 1016static void
ea3e6ca9
BB
1017spl_slab_free(spl_kmem_slab_t *sks,
1018 struct list_head *sks_list, struct list_head *sko_list)
1019{
2fb9b26a 1020 spl_kmem_cache_t *skc;
b17edc10 1021 SENTRY;
57d86234 1022
2fb9b26a 1023 ASSERT(sks->sks_magic == SKS_MAGIC);
4afaaefa 1024 ASSERT(sks->sks_ref == 0);
d6a26c6a 1025
fece7c99 1026 skc = sks->sks_cache;
1027 ASSERT(skc->skc_magic == SKC_MAGIC);
d46630e0 1028 ASSERT(spin_is_locked(&skc->skc_lock));
f1ca4da6 1029
1a944a7d
BB
1030 /*
1031 * Update slab/objects counters in the cache, then remove the
1032 * slab from the skc->skc_partial_list. Finally add the slab
1033 * and all its objects in to the private work lists where the
1034 * destructors will be called and the memory freed to the system.
1035 */
fece7c99 1036 skc->skc_obj_total -= sks->sks_objs;
1037 skc->skc_slab_total--;
1038 list_del(&sks->sks_list);
ea3e6ca9 1039 list_add(&sks->sks_list, sks_list);
1a944a7d
BB
1040 list_splice_init(&sks->sks_free_list, sko_list);
1041
b17edc10 1042 SEXIT;
2fb9b26a 1043}
d6a26c6a 1044
ea3e6ca9
BB
1045/*
1046 * Traverses all the partial slabs attached to a cache and free those
1047 * which which are currently empty, and have not been touched for
37db7d8c
BB
1048 * skc_delay seconds to avoid thrashing. The count argument is
1049 * passed to optionally cap the number of slabs reclaimed, a count
1050 * of zero means try and reclaim everything. When flag is set we
1051 * always free an available slab regardless of age.
ea3e6ca9
BB
1052 */
1053static void
37db7d8c 1054spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
2fb9b26a 1055{
1056 spl_kmem_slab_t *sks, *m;
ea3e6ca9
BB
1057 spl_kmem_obj_t *sko, *n;
1058 LIST_HEAD(sks_list);
1059 LIST_HEAD(sko_list);
8b45dda2
BB
1060 uint32_t size = 0;
1061 int i = 0;
b17edc10 1062 SENTRY;
2fb9b26a 1063
2fb9b26a 1064 /*
ea3e6ca9
BB
1065 * Move empty slabs and objects which have not been touched in
1066 * skc_delay seconds on to private lists to be freed outside
1a944a7d
BB
1067 * the spin lock. This delay time is important to avoid thrashing
1068 * however when flag is set the delay will not be used.
2fb9b26a 1069 */
ea3e6ca9 1070 spin_lock(&skc->skc_lock);
1a944a7d
BB
1071 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
1072 /*
1073 * All empty slabs are at the end of skc->skc_partial_list,
1074 * therefore once a non-empty slab is found we can stop
1075 * scanning. Additionally, stop when reaching the target
ecc39810 1076 * reclaim 'count' if a non-zero threshold is given.
1a944a7d 1077 */
cef7605c 1078 if ((sks->sks_ref > 0) || (count && i >= count))
37db7d8c
BB
1079 break;
1080
37db7d8c 1081 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
ea3e6ca9 1082 spl_slab_free(sks, &sks_list, &sko_list);
37db7d8c
BB
1083 i++;
1084 }
ea3e6ca9
BB
1085 }
1086 spin_unlock(&skc->skc_lock);
1087
1088 /*
1a944a7d
BB
1089 * The following two loops ensure all the object destructors are
1090 * run, any offslab objects are freed, and the slabs themselves
1091 * are freed. This is all done outside the skc->skc_lock since
1092 * this allows the destructor to sleep, and allows us to perform
1093 * a conditional reschedule when a freeing a large number of
1094 * objects and slabs back to the system.
ea3e6ca9 1095 */
1a944a7d 1096 if (skc->skc_flags & KMC_OFFSLAB)
8b45dda2 1097 size = spl_offslab_size(skc);
ea3e6ca9 1098
1a944a7d
BB
1099 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
1100 ASSERT(sko->sko_magic == SKO_MAGIC);
1101
1102 if (skc->skc_dtor)
1103 skc->skc_dtor(sko->sko_addr, skc->skc_private);
1104
1105 if (skc->skc_flags & KMC_OFFSLAB)
ea3e6ca9 1106 kv_free(skc, sko->sko_addr, size);
1a944a7d
BB
1107
1108 cond_resched();
2fb9b26a 1109 }
1110
37db7d8c 1111 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1a944a7d 1112 ASSERT(sks->sks_magic == SKS_MAGIC);
ea3e6ca9 1113 kv_free(skc, sks, skc->skc_slab_size);
37db7d8c
BB
1114 cond_resched();
1115 }
ea3e6ca9 1116
b17edc10 1117 SEXIT;
f1ca4da6 1118}
1119
ed316348
BB
1120static spl_kmem_emergency_t *
1121spl_emergency_search(struct rb_root *root, void *obj)
1122{
1123 struct rb_node *node = root->rb_node;
1124 spl_kmem_emergency_t *ske;
1125 unsigned long address = (unsigned long)obj;
1126
1127 while (node) {
1128 ske = container_of(node, spl_kmem_emergency_t, ske_node);
1129
1130 if (address < (unsigned long)ske->ske_obj)
1131 node = node->rb_left;
1132 else if (address > (unsigned long)ske->ske_obj)
1133 node = node->rb_right;
1134 else
1135 return ske;
1136 }
1137
1138 return NULL;
1139}
1140
1141static int
1142spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
1143{
1144 struct rb_node **new = &(root->rb_node), *parent = NULL;
1145 spl_kmem_emergency_t *ske_tmp;
1146 unsigned long address = (unsigned long)ske->ske_obj;
1147
1148 while (*new) {
1149 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
1150
1151 parent = *new;
1152 if (address < (unsigned long)ske_tmp->ske_obj)
1153 new = &((*new)->rb_left);
1154 else if (address > (unsigned long)ske_tmp->ske_obj)
1155 new = &((*new)->rb_right);
1156 else
1157 return 0;
1158 }
1159
1160 rb_link_node(&ske->ske_node, parent, new);
1161 rb_insert_color(&ske->ske_node, root);
1162
1163 return 1;
1164}
1165
e2dcc6e2 1166/*
ed316348 1167 * Allocate a single emergency object and track it in a red black tree.
e2dcc6e2
BB
1168 */
1169static int
1170spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
1171{
1172 spl_kmem_emergency_t *ske;
1173 int empty;
1174 SENTRY;
1175
1176 /* Last chance use a partial slab if one now exists */
1177 spin_lock(&skc->skc_lock);
1178 empty = list_empty(&skc->skc_partial_list);
1179 spin_unlock(&skc->skc_lock);
1180 if (!empty)
1181 SRETURN(-EEXIST);
1182
1183 ske = kmalloc(sizeof(*ske), flags);
1184 if (ske == NULL)
1185 SRETURN(-ENOMEM);
1186
1187 ske->ske_obj = kmalloc(skc->skc_obj_size, flags);
1188 if (ske->ske_obj == NULL) {
1189 kfree(ske);
1190 SRETURN(-ENOMEM);
1191 }
1192
e2dcc6e2 1193 spin_lock(&skc->skc_lock);
ed316348
BB
1194 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
1195 if (likely(empty)) {
1196 skc->skc_obj_total++;
1197 skc->skc_obj_emergency++;
1198 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
1199 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
1200 }
e2dcc6e2
BB
1201 spin_unlock(&skc->skc_lock);
1202
ed316348
BB
1203 if (unlikely(!empty)) {
1204 kfree(ske->ske_obj);
1205 kfree(ske);
1206 SRETURN(-EINVAL);
1207 }
1208
1209 if (skc->skc_ctor)
1210 skc->skc_ctor(ske->ske_obj, skc->skc_private, flags);
1211
e2dcc6e2
BB
1212 *obj = ske->ske_obj;
1213
1214 SRETURN(0);
1215}
1216
1217/*
ed316348 1218 * Locate the passed object in the red black tree and free it.
e2dcc6e2
BB
1219 */
1220static int
1221spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
1222{
ed316348 1223 spl_kmem_emergency_t *ske;
e2dcc6e2
BB
1224 SENTRY;
1225
1226 spin_lock(&skc->skc_lock);
ed316348
BB
1227 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
1228 if (likely(ske)) {
1229 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
1230 skc->skc_obj_emergency--;
1231 skc->skc_obj_total--;
e2dcc6e2
BB
1232 }
1233 spin_unlock(&skc->skc_lock);
1234
ed316348 1235 if (unlikely(ske == NULL))
e2dcc6e2
BB
1236 SRETURN(-ENOENT);
1237
1238 if (skc->skc_dtor)
1239 skc->skc_dtor(ske->ske_obj, skc->skc_private);
1240
1241 kfree(ske->ske_obj);
1242 kfree(ske);
1243
1244 SRETURN(0);
1245}
1246
ea3e6ca9
BB
1247static void
1248spl_magazine_age(void *data)
f1ca4da6 1249{
a10287e0
BB
1250 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
1251 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
9b1b8e4c
BB
1252
1253 ASSERT(skm->skm_magic == SKM_MAGIC);
a10287e0 1254 ASSERT(skm->skm_cpu == smp_processor_id());
f1ca4da6 1255
a10287e0
BB
1256 if (skm->skm_avail > 0)
1257 if (time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
1258 (void) spl_cache_flush(skc, skm, skm->skm_refill);
ea3e6ca9 1259}
4efd4118 1260
ea3e6ca9 1261/*
a10287e0
BB
1262 * Called regularly to keep a downward pressure on the cache.
1263 *
1264 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
1265 * be returned to the caches. This is done to prevent idle magazines from
1266 * holding memory which could be better used elsewhere. The delay is
1267 * present to prevent thrashing the magazine.
1268 *
1269 * The newly released objects may result in empty partial slabs. Those
1270 * slabs should be released to the system. Otherwise moving the objects
1271 * out of the magazines is just wasted work.
ea3e6ca9
BB
1272 */
1273static void
1274spl_cache_age(void *data)
1275{
a10287e0
BB
1276 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
1277 taskqid_t id = 0;
ea3e6ca9
BB
1278
1279 ASSERT(skc->skc_magic == SKC_MAGIC);
a10287e0
BB
1280
1281 atomic_inc(&skc->skc_ref);
1282 spl_on_each_cpu(spl_magazine_age, skc, 1);
37db7d8c 1283 spl_slab_reclaim(skc, skc->skc_reap, 0);
ea3e6ca9 1284
a10287e0
BB
1285 while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
1286 id = taskq_dispatch_delay(
1287 spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
1288 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
1289
1290 /* Destroy issued after dispatch immediately cancel it */
1291 if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
1292 taskq_cancel_id(spl_kmem_cache_taskq, id);
1293 }
1294
1295 spin_lock(&skc->skc_lock);
1296 skc->skc_taskqid = id;
1297 spin_unlock(&skc->skc_lock);
1298
1299 atomic_dec(&skc->skc_ref);
2fb9b26a 1300}
f1ca4da6 1301
ea3e6ca9 1302/*
8b45dda2 1303 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
ea3e6ca9
BB
1304 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
1305 * for very small objects we may end up with more than this so as not
1306 * to waste space in the minimal allocation of a single page. Also for
1307 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
1308 * lower than this and we will fail.
1309 */
48e0606a
BB
1310static int
1311spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
1312{
8b45dda2 1313 uint32_t sks_size, obj_size, max_size;
48e0606a
BB
1314
1315 if (skc->skc_flags & KMC_OFFSLAB) {
ea3e6ca9 1316 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
48e0606a
BB
1317 *size = sizeof(spl_kmem_slab_t);
1318 } else {
8b45dda2
BB
1319 sks_size = spl_sks_size(skc);
1320 obj_size = spl_obj_size(skc);
ea3e6ca9
BB
1321
1322 if (skc->skc_flags & KMC_KMEM)
aa600d8a 1323 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
ea3e6ca9
BB
1324 else
1325 max_size = (32 * 1024 * 1024);
48e0606a 1326
8b45dda2
BB
1327 /* Power of two sized slab */
1328 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
ea3e6ca9
BB
1329 *objs = (*size - sks_size) / obj_size;
1330 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
b17edc10 1331 SRETURN(0);
ea3e6ca9 1332 }
48e0606a 1333
ea3e6ca9 1334 /*
8b45dda2 1335 * Unable to satisfy target objects per slab, fall back to
ea3e6ca9
BB
1336 * allocating a maximally sized slab and assuming it can
1337 * contain the minimum objects count use it. If not fail.
1338 */
1339 *size = max_size;
1340 *objs = (*size - sks_size) / obj_size;
1341 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
b17edc10 1342 SRETURN(0);
48e0606a
BB
1343 }
1344
b17edc10 1345 SRETURN(-ENOSPC);
48e0606a
BB
1346}
1347
ea3e6ca9
BB
1348/*
1349 * Make a guess at reasonable per-cpu magazine size based on the size of
1350 * each object and the cost of caching N of them in each magazine. Long
1351 * term this should really adapt based on an observed usage heuristic.
1352 */
4afaaefa 1353static int
1354spl_magazine_size(spl_kmem_cache_t *skc)
1355{
8b45dda2
BB
1356 uint32_t obj_size = spl_obj_size(skc);
1357 int size;
b17edc10 1358 SENTRY;
4afaaefa 1359
ea3e6ca9 1360 /* Per-magazine sizes below assume a 4Kib page size */
8b45dda2 1361 if (obj_size > (PAGE_SIZE * 256))
ea3e6ca9 1362 size = 4; /* Minimum 4Mib per-magazine */
8b45dda2 1363 else if (obj_size > (PAGE_SIZE * 32))
ea3e6ca9 1364 size = 16; /* Minimum 2Mib per-magazine */
8b45dda2 1365 else if (obj_size > (PAGE_SIZE))
ea3e6ca9 1366 size = 64; /* Minimum 256Kib per-magazine */
8b45dda2 1367 else if (obj_size > (PAGE_SIZE / 4))
ea3e6ca9 1368 size = 128; /* Minimum 128Kib per-magazine */
4afaaefa 1369 else
ea3e6ca9 1370 size = 256;
4afaaefa 1371
b17edc10 1372 SRETURN(size);
4afaaefa 1373}
1374
ea3e6ca9 1375/*
ecc39810 1376 * Allocate a per-cpu magazine to associate with a specific core.
ea3e6ca9 1377 */
4afaaefa 1378static spl_kmem_magazine_t *
08850edd 1379spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
4afaaefa 1380{
1381 spl_kmem_magazine_t *skm;
1382 int size = sizeof(spl_kmem_magazine_t) +
1383 sizeof(void *) * skc->skc_mag_size;
b17edc10 1384 SENTRY;
4afaaefa 1385
08850edd 1386 skm = kmem_alloc_node(size, KM_SLEEP, cpu_to_node(cpu));
4afaaefa 1387 if (skm) {
1388 skm->skm_magic = SKM_MAGIC;
1389 skm->skm_avail = 0;
1390 skm->skm_size = skc->skc_mag_size;
1391 skm->skm_refill = skc->skc_mag_refill;
9b1b8e4c 1392 skm->skm_cache = skc;
ea3e6ca9 1393 skm->skm_age = jiffies;
08850edd 1394 skm->skm_cpu = cpu;
4afaaefa 1395 }
1396
b17edc10 1397 SRETURN(skm);
4afaaefa 1398}
1399
ea3e6ca9 1400/*
ecc39810 1401 * Free a per-cpu magazine associated with a specific core.
ea3e6ca9 1402 */
4afaaefa 1403static void
1404spl_magazine_free(spl_kmem_magazine_t *skm)
1405{
a0f6da3d 1406 int size = sizeof(spl_kmem_magazine_t) +
1407 sizeof(void *) * skm->skm_size;
1408
b17edc10 1409 SENTRY;
4afaaefa 1410 ASSERT(skm->skm_magic == SKM_MAGIC);
1411 ASSERT(skm->skm_avail == 0);
a0f6da3d 1412
1413 kmem_free(skm, size);
b17edc10 1414 SEXIT;
4afaaefa 1415}
1416
ea3e6ca9
BB
1417/*
1418 * Create all pre-cpu magazines of reasonable sizes.
1419 */
4afaaefa 1420static int
1421spl_magazine_create(spl_kmem_cache_t *skc)
1422{
37db7d8c 1423 int i;
b17edc10 1424 SENTRY;
4afaaefa 1425
1426 skc->skc_mag_size = spl_magazine_size(skc);
ea3e6ca9 1427 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
4afaaefa 1428
37db7d8c 1429 for_each_online_cpu(i) {
08850edd 1430 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
37db7d8c
BB
1431 if (!skc->skc_mag[i]) {
1432 for (i--; i >= 0; i--)
1433 spl_magazine_free(skc->skc_mag[i]);
4afaaefa 1434
b17edc10 1435 SRETURN(-ENOMEM);
37db7d8c
BB
1436 }
1437 }
4afaaefa 1438
b17edc10 1439 SRETURN(0);
4afaaefa 1440}
1441
ea3e6ca9
BB
1442/*
1443 * Destroy all pre-cpu magazines.
1444 */
4afaaefa 1445static void
1446spl_magazine_destroy(spl_kmem_cache_t *skc)
1447{
37db7d8c
BB
1448 spl_kmem_magazine_t *skm;
1449 int i;
b17edc10 1450 SENTRY;
37db7d8c
BB
1451
1452 for_each_online_cpu(i) {
1453 skm = skc->skc_mag[i];
1454 (void)spl_cache_flush(skc, skm, skm->skm_avail);
1455 spl_magazine_free(skm);
1456 }
1457
b17edc10 1458 SEXIT;
4afaaefa 1459}
1460
ea3e6ca9
BB
1461/*
1462 * Create a object cache based on the following arguments:
1463 * name cache name
1464 * size cache object size
1465 * align cache object alignment
1466 * ctor cache object constructor
1467 * dtor cache object destructor
1468 * reclaim cache object reclaim
1469 * priv cache private data for ctor/dtor/reclaim
1470 * vmp unused must be NULL
1471 * flags
1472 * KMC_NOTOUCH Disable cache object aging (unsupported)
1473 * KMC_NODEBUG Disable debugging (unsupported)
1474 * KMC_NOMAGAZINE Disable magazine (unsupported)
1475 * KMC_NOHASH Disable hashing (unsupported)
1476 * KMC_QCACHE Disable qcache (unsupported)
1477 * KMC_KMEM Force kmem backed cache
1478 * KMC_VMEM Force vmem backed cache
1479 * KMC_OFFSLAB Locate objects off the slab
1480 */
2fb9b26a 1481spl_kmem_cache_t *
1482spl_kmem_cache_create(char *name, size_t size, size_t align,
1483 spl_kmem_ctor_t ctor,
1484 spl_kmem_dtor_t dtor,
1485 spl_kmem_reclaim_t reclaim,
1486 void *priv, void *vmp, int flags)
1487{
1488 spl_kmem_cache_t *skc;
296a8e59 1489 int rc;
b17edc10 1490 SENTRY;
937879f1 1491
a1502d76 1492 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1493 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1494 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
48e0606a 1495 ASSERT(vmp == NULL);
a1502d76 1496
296a8e59 1497 might_sleep();
0a6fd143 1498
296a8e59
BB
1499 /*
1500 * Allocate memory for a new cache an initialize it. Unfortunately,
5198ea0e
BB
1501 * this usually ends up being a large allocation of ~32k because
1502 * we need to allocate enough memory for the worst case number of
1503 * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
296a8e59
BB
1504 * explicitly pass KM_NODEBUG to suppress the kmem warning
1505 */
1506 skc = kmem_zalloc(sizeof(*skc), KM_SLEEP| KM_NODEBUG);
e9d7a2be 1507 if (skc == NULL)
b17edc10 1508 SRETURN(NULL);
d61e12af 1509
2fb9b26a 1510 skc->skc_magic = SKC_MAGIC;
2fb9b26a 1511 skc->skc_name_size = strlen(name) + 1;
296a8e59 1512 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, KM_SLEEP);
2fb9b26a 1513 if (skc->skc_name == NULL) {
1514 kmem_free(skc, sizeof(*skc));
b17edc10 1515 SRETURN(NULL);
2fb9b26a 1516 }
1517 strncpy(skc->skc_name, name, skc->skc_name_size);
1518
e9d7a2be 1519 skc->skc_ctor = ctor;
1520 skc->skc_dtor = dtor;
1521 skc->skc_reclaim = reclaim;
2fb9b26a 1522 skc->skc_private = priv;
1523 skc->skc_vmp = vmp;
1524 skc->skc_flags = flags;
1525 skc->skc_obj_size = size;
48e0606a 1526 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
2fb9b26a 1527 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
37db7d8c 1528 skc->skc_reap = SPL_KMEM_CACHE_REAP;
ea3e6ca9 1529 atomic_set(&skc->skc_ref, 0);
2fb9b26a 1530
2fb9b26a 1531 INIT_LIST_HEAD(&skc->skc_list);
1532 INIT_LIST_HEAD(&skc->skc_complete_list);
1533 INIT_LIST_HEAD(&skc->skc_partial_list);
ed316348 1534 skc->skc_emergency_tree = RB_ROOT;
d46630e0 1535 spin_lock_init(&skc->skc_lock);
e2dcc6e2 1536 init_waitqueue_head(&skc->skc_waitq);
e9d7a2be 1537 skc->skc_slab_fail = 0;
1538 skc->skc_slab_create = 0;
1539 skc->skc_slab_destroy = 0;
2fb9b26a 1540 skc->skc_slab_total = 0;
1541 skc->skc_slab_alloc = 0;
1542 skc->skc_slab_max = 0;
1543 skc->skc_obj_total = 0;
1544 skc->skc_obj_alloc = 0;
1545 skc->skc_obj_max = 0;
165f13c3 1546 skc->skc_obj_deadlock = 0;
e2dcc6e2
BB
1547 skc->skc_obj_emergency = 0;
1548 skc->skc_obj_emergency_max = 0;
a1502d76 1549
48e0606a 1550 if (align) {
8b45dda2
BB
1551 VERIFY(ISP2(align));
1552 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */
1553 VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */
48e0606a
BB
1554 skc->skc_obj_align = align;
1555 }
1556
a1502d76 1557 /* If none passed select a cache type based on object size */
1558 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
8b45dda2 1559 if (spl_obj_size(skc) < (PAGE_SIZE / 8))
a1502d76 1560 skc->skc_flags |= KMC_KMEM;
8b45dda2 1561 else
a1502d76 1562 skc->skc_flags |= KMC_VMEM;
a1502d76 1563 }
1564
48e0606a
BB
1565 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1566 if (rc)
b17edc10 1567 SGOTO(out, rc);
4afaaefa 1568
1569 rc = spl_magazine_create(skc);
48e0606a 1570 if (rc)
b17edc10 1571 SGOTO(out, rc);
2fb9b26a 1572
a10287e0
BB
1573 skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
1574 spl_cache_age, skc, TQ_SLEEP,
1575 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
ea3e6ca9 1576
2fb9b26a 1577 down_write(&spl_kmem_cache_sem);
e9d7a2be 1578 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
2fb9b26a 1579 up_write(&spl_kmem_cache_sem);
1580
b17edc10 1581 SRETURN(skc);
48e0606a
BB
1582out:
1583 kmem_free(skc->skc_name, skc->skc_name_size);
1584 kmem_free(skc, sizeof(*skc));
b17edc10 1585 SRETURN(NULL);
f1ca4da6 1586}
2fb9b26a 1587EXPORT_SYMBOL(spl_kmem_cache_create);
f1ca4da6 1588
2b354302
BB
1589/*
1590 * Register a move callback to for cache defragmentation.
1591 * XXX: Unimplemented but harmless to stub out for now.
1592 */
1593void
6576a1a7 1594spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
2b354302
BB
1595 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1596{
1597 ASSERT(move != NULL);
1598}
1599EXPORT_SYMBOL(spl_kmem_cache_set_move);
1600
ea3e6ca9 1601/*
ecc39810 1602 * Destroy a cache and all objects associated with the cache.
ea3e6ca9 1603 */
2fb9b26a 1604void
1605spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
f1ca4da6 1606{
ea3e6ca9 1607 DECLARE_WAIT_QUEUE_HEAD(wq);
a10287e0 1608 taskqid_t id;
b17edc10 1609 SENTRY;
f1ca4da6 1610
e9d7a2be 1611 ASSERT(skc->skc_magic == SKC_MAGIC);
1612
1613 down_write(&spl_kmem_cache_sem);
1614 list_del_init(&skc->skc_list);
1615 up_write(&spl_kmem_cache_sem);
2fb9b26a 1616
a10287e0 1617 /* Cancel any and wait for any pending delayed tasks */
64c075c3 1618 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
9b1b8e4c 1619
a10287e0
BB
1620 spin_lock(&skc->skc_lock);
1621 id = skc->skc_taskqid;
1622 spin_unlock(&skc->skc_lock);
1623
1624 taskq_cancel_id(spl_kmem_cache_taskq, id);
ea3e6ca9
BB
1625
1626 /* Wait until all current callers complete, this is mainly
1627 * to catch the case where a low memory situation triggers a
1628 * cache reaping action which races with this destroy. */
1629 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1630
4afaaefa 1631 spl_magazine_destroy(skc);
37db7d8c 1632 spl_slab_reclaim(skc, 0, 1);
d46630e0 1633 spin_lock(&skc->skc_lock);
d6a26c6a 1634
2fb9b26a 1635 /* Validate there are no objects in use and free all the
4afaaefa 1636 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
ea3e6ca9
BB
1637 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1638 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1639 ASSERT3U(skc->skc_slab_total, ==, 0);
1640 ASSERT3U(skc->skc_obj_total, ==, 0);
e2dcc6e2 1641 ASSERT3U(skc->skc_obj_emergency, ==, 0);
2fb9b26a 1642 ASSERT(list_empty(&skc->skc_complete_list));
a1502d76 1643
2fb9b26a 1644 kmem_free(skc->skc_name, skc->skc_name_size);
d46630e0 1645 spin_unlock(&skc->skc_lock);
ff449ac4 1646
4afaaefa 1647 kmem_free(skc, sizeof(*skc));
2fb9b26a 1648
b17edc10 1649 SEXIT;
f1ca4da6 1650}
2fb9b26a 1651EXPORT_SYMBOL(spl_kmem_cache_destroy);
f1ca4da6 1652
ea3e6ca9
BB
1653/*
1654 * Allocate an object from a slab attached to the cache. This is used to
1655 * repopulate the per-cpu magazine caches in batches when they run low.
1656 */
4afaaefa 1657static void *
1658spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
f1ca4da6 1659{
2fb9b26a 1660 spl_kmem_obj_t *sko;
f1ca4da6 1661
e9d7a2be 1662 ASSERT(skc->skc_magic == SKC_MAGIC);
1663 ASSERT(sks->sks_magic == SKS_MAGIC);
4afaaefa 1664 ASSERT(spin_is_locked(&skc->skc_lock));
2fb9b26a 1665
a1502d76 1666 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
4afaaefa 1667 ASSERT(sko->sko_magic == SKO_MAGIC);
1668 ASSERT(sko->sko_addr != NULL);
2fb9b26a 1669
a1502d76 1670 /* Remove from sks_free_list */
4afaaefa 1671 list_del_init(&sko->sko_list);
2fb9b26a 1672
4afaaefa 1673 sks->sks_age = jiffies;
1674 sks->sks_ref++;
1675 skc->skc_obj_alloc++;
2fb9b26a 1676
4afaaefa 1677 /* Track max obj usage statistics */
1678 if (skc->skc_obj_alloc > skc->skc_obj_max)
1679 skc->skc_obj_max = skc->skc_obj_alloc;
2fb9b26a 1680
4afaaefa 1681 /* Track max slab usage statistics */
1682 if (sks->sks_ref == 1) {
1683 skc->skc_slab_alloc++;
f1ca4da6 1684
4afaaefa 1685 if (skc->skc_slab_alloc > skc->skc_slab_max)
1686 skc->skc_slab_max = skc->skc_slab_alloc;
2fb9b26a 1687 }
1688
4afaaefa 1689 return sko->sko_addr;
1690}
c30df9c8 1691
ea3e6ca9 1692/*
e2dcc6e2
BB
1693 * Generic slab allocation function to run by the global work queues.
1694 * It is responsible for allocating a new slab, linking it in to the list
1695 * of partial slabs, and then waking any waiters.
4afaaefa 1696 */
e2dcc6e2
BB
1697static void
1698spl_cache_grow_work(void *data)
4afaaefa 1699{
e2dcc6e2
BB
1700 spl_kmem_alloc_t *ska =
1701 spl_get_work_data(data, spl_kmem_alloc_t, ska_work.work);
1702 spl_kmem_cache_t *skc = ska->ska_cache;
e9d7a2be 1703 spl_kmem_slab_t *sks;
e2dcc6e2
BB
1704
1705 sks = spl_slab_alloc(skc, ska->ska_flags | __GFP_NORETRY | KM_NODEBUG);
1706 spin_lock(&skc->skc_lock);
1707 if (sks) {
1708 skc->skc_slab_total++;
1709 skc->skc_obj_total += sks->sks_objs;
1710 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1711 }
1712
1713 atomic_dec(&skc->skc_ref);
1714 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
165f13c3 1715 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
e2dcc6e2
BB
1716 wake_up_all(&skc->skc_waitq);
1717 spin_unlock(&skc->skc_lock);
1718
1719 kfree(ska);
1720}
1721
1722/*
1723 * Returns non-zero when a new slab should be available.
1724 */
1725static int
1726spl_cache_grow_wait(spl_kmem_cache_t *skc)
1727{
1728 return !test_bit(KMC_BIT_GROWING, &skc->skc_flags);
1729}
1730
dc1b3022
BB
1731static int
1732spl_cache_reclaim_wait(void *word)
1733{
1734 schedule();
1735 return 0;
1736}
1737
e2dcc6e2
BB
1738/*
1739 * No available objects on any slabs, create a new slab.
1740 */
1741static int
1742spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1743{
165f13c3 1744 int remaining, rc;
b17edc10 1745 SENTRY;
f1ca4da6 1746
e9d7a2be 1747 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9 1748 might_sleep();
e2dcc6e2 1749 *obj = NULL;
e9d7a2be 1750
ea3e6ca9 1751 /*
dc1b3022
BB
1752 * Before allocating a new slab wait for any reaping to complete and
1753 * then return so the local magazine can be rechecked for new objects.
ea3e6ca9 1754 */
dc1b3022
BB
1755 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1756 rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1757 spl_cache_reclaim_wait, TASK_UNINTERRUPTIBLE);
1758 SRETURN(rc ? rc : -EAGAIN);
1759 }
2fb9b26a 1760
e2dcc6e2
BB
1761 /*
1762 * This is handled by dispatching a work request to the global work
1763 * queue. This allows us to asynchronously allocate a new slab while
1764 * retaining the ability to safely fall back to a smaller synchronous
1765 * allocations to ensure forward progress is always maintained.
1766 */
1767 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1768 spl_kmem_alloc_t *ska;
4afaaefa 1769
e2dcc6e2
BB
1770 ska = kmalloc(sizeof(*ska), flags);
1771 if (ska == NULL) {
1772 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1773 wake_up_all(&skc->skc_waitq);
1774 SRETURN(-ENOMEM);
1775 }
4afaaefa 1776
e2dcc6e2
BB
1777 atomic_inc(&skc->skc_ref);
1778 ska->ska_cache = skc;
043f9b57 1779 ska->ska_flags = flags & ~__GFP_FS;
e2dcc6e2
BB
1780 spl_init_delayed_work(&ska->ska_work, spl_cache_grow_work, ska);
1781 schedule_delayed_work(&ska->ska_work, 0);
1782 }
1783
1784 /*
165f13c3
BB
1785 * The goal here is to only detect the rare case where a virtual slab
1786 * allocation has deadlocked. We must be careful to minimize the use
1787 * of emergency objects which are more expensive to track. Therefore,
1788 * we set a very long timeout for the asynchronous allocation and if
1789 * the timeout is reached the cache is flagged as deadlocked. From
1790 * this point only new emergency objects will be allocated until the
1791 * asynchronous allocation completes and clears the deadlocked flag.
e2dcc6e2 1792 */
165f13c3
BB
1793 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1794 rc = spl_emergency_alloc(skc, flags, obj);
1795 } else {
1796 remaining = wait_event_timeout(skc->skc_waitq,
1797 spl_cache_grow_wait(skc), HZ);
1798
1799 if (!remaining && test_bit(KMC_BIT_VMEM, &skc->skc_flags)) {
1800 spin_lock(&skc->skc_lock);
1801 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1802 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1803 skc->skc_obj_deadlock++;
1804 }
1805 spin_unlock(&skc->skc_lock);
1806 }
cb5c2ace 1807
165f13c3 1808 rc = -ENOMEM;
cb5c2ace 1809 }
e2dcc6e2
BB
1810
1811 SRETURN(rc);
f1ca4da6 1812}
1813
ea3e6ca9 1814/*
e2dcc6e2
BB
1815 * Refill a per-cpu magazine with objects from the slabs for this cache.
1816 * Ideally the magazine can be repopulated using existing objects which have
1817 * been released, however if we are unable to locate enough free objects new
1818 * slabs of objects will be created. On success NULL is returned, otherwise
1819 * the address of a single emergency object is returned for use by the caller.
ea3e6ca9 1820 */
e2dcc6e2 1821static void *
4afaaefa 1822spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
f1ca4da6 1823{
e9d7a2be 1824 spl_kmem_slab_t *sks;
e2dcc6e2
BB
1825 int count = 0, rc, refill;
1826 void *obj = NULL;
b17edc10 1827 SENTRY;
f1ca4da6 1828
e9d7a2be 1829 ASSERT(skc->skc_magic == SKC_MAGIC);
1830 ASSERT(skm->skm_magic == SKM_MAGIC);
1831
e9d7a2be 1832 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
d46630e0 1833 spin_lock(&skc->skc_lock);
ff449ac4 1834
4afaaefa 1835 while (refill > 0) {
ea3e6ca9 1836 /* No slabs available we may need to grow the cache */
4afaaefa 1837 if (list_empty(&skc->skc_partial_list)) {
1838 spin_unlock(&skc->skc_lock);
ff449ac4 1839
e2dcc6e2
BB
1840 local_irq_enable();
1841 rc = spl_cache_grow(skc, flags, &obj);
1842 local_irq_disable();
1843
1844 /* Emergency object for immediate use by caller */
1845 if (rc == 0 && obj != NULL)
1846 SRETURN(obj);
1847
1848 if (rc)
b17edc10 1849 SGOTO(out, rc);
4afaaefa 1850
1851 /* Rescheduled to different CPU skm is not local */
1852 if (skm != skc->skc_mag[smp_processor_id()])
b17edc10 1853 SGOTO(out, rc);
e9d7a2be 1854
1855 /* Potentially rescheduled to the same CPU but
ecc39810 1856 * allocations may have occurred from this CPU while
e9d7a2be 1857 * we were sleeping so recalculate max refill. */
1858 refill = MIN(refill, skm->skm_size - skm->skm_avail);
4afaaefa 1859
1860 spin_lock(&skc->skc_lock);
1861 continue;
1862 }
d46630e0 1863
4afaaefa 1864 /* Grab the next available slab */
1865 sks = list_entry((&skc->skc_partial_list)->next,
1866 spl_kmem_slab_t, sks_list);
1867 ASSERT(sks->sks_magic == SKS_MAGIC);
1868 ASSERT(sks->sks_ref < sks->sks_objs);
1869 ASSERT(!list_empty(&sks->sks_free_list));
d46630e0 1870
4afaaefa 1871 /* Consume as many objects as needed to refill the requested
e9d7a2be 1872 * cache. We must also be careful not to overfill it. */
e2dcc6e2 1873 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++count) {
e9d7a2be 1874 ASSERT(skm->skm_avail < skm->skm_size);
e2dcc6e2 1875 ASSERT(count < skm->skm_size);
4afaaefa 1876 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
e9d7a2be 1877 }
f1ca4da6 1878
4afaaefa 1879 /* Move slab to skc_complete_list when full */
1880 if (sks->sks_ref == sks->sks_objs) {
1881 list_del(&sks->sks_list);
1882 list_add(&sks->sks_list, &skc->skc_complete_list);
2fb9b26a 1883 }
1884 }
57d86234 1885
4afaaefa 1886 spin_unlock(&skc->skc_lock);
1887out:
e2dcc6e2 1888 SRETURN(NULL);
4afaaefa 1889}
1890
ea3e6ca9
BB
1891/*
1892 * Release an object back to the slab from which it came.
1893 */
4afaaefa 1894static void
1895spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1896{
e9d7a2be 1897 spl_kmem_slab_t *sks = NULL;
4afaaefa 1898 spl_kmem_obj_t *sko = NULL;
b17edc10 1899 SENTRY;
4afaaefa 1900
e9d7a2be 1901 ASSERT(skc->skc_magic == SKC_MAGIC);
4afaaefa 1902 ASSERT(spin_is_locked(&skc->skc_lock));
1903
8b45dda2 1904 sko = spl_sko_from_obj(skc, obj);
a1502d76 1905 ASSERT(sko->sko_magic == SKO_MAGIC);
4afaaefa 1906 sks = sko->sko_slab;
a1502d76 1907 ASSERT(sks->sks_magic == SKS_MAGIC);
2fb9b26a 1908 ASSERT(sks->sks_cache == skc);
2fb9b26a 1909 list_add(&sko->sko_list, &sks->sks_free_list);
d6a26c6a 1910
2fb9b26a 1911 sks->sks_age = jiffies;
4afaaefa 1912 sks->sks_ref--;
2fb9b26a 1913 skc->skc_obj_alloc--;
f1ca4da6 1914
2fb9b26a 1915 /* Move slab to skc_partial_list when no longer full. Slabs
4afaaefa 1916 * are added to the head to keep the partial list is quasi-full
1917 * sorted order. Fuller at the head, emptier at the tail. */
1918 if (sks->sks_ref == (sks->sks_objs - 1)) {
2fb9b26a 1919 list_del(&sks->sks_list);
1920 list_add(&sks->sks_list, &skc->skc_partial_list);
1921 }
f1ca4da6 1922
ecc39810 1923 /* Move empty slabs to the end of the partial list so
4afaaefa 1924 * they can be easily found and freed during reclamation. */
1925 if (sks->sks_ref == 0) {
2fb9b26a 1926 list_del(&sks->sks_list);
1927 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1928 skc->skc_slab_alloc--;
1929 }
1930
b17edc10 1931 SEXIT;
4afaaefa 1932}
1933
ea3e6ca9
BB
1934/*
1935 * Release a batch of objects from a per-cpu magazine back to their
1936 * respective slabs. This occurs when we exceed the magazine size,
1937 * are under memory pressure, when the cache is idle, or during
1938 * cache cleanup. The flush argument contains the number of entries
1939 * to remove from the magazine.
1940 */
4afaaefa 1941static int
1942spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1943{
1944 int i, count = MIN(flush, skm->skm_avail);
b17edc10 1945 SENTRY;
4afaaefa 1946
e9d7a2be 1947 ASSERT(skc->skc_magic == SKC_MAGIC);
1948 ASSERT(skm->skm_magic == SKM_MAGIC);
4afaaefa 1949
ea3e6ca9
BB
1950 /*
1951 * XXX: Currently we simply return objects from the magazine to
1952 * the slabs in fifo order. The ideal thing to do from a memory
1953 * fragmentation standpoint is to cheaply determine the set of
1954 * objects in the magazine which will result in the largest
1955 * number of free slabs if released from the magazine.
1956 */
4afaaefa 1957 spin_lock(&skc->skc_lock);
1958 for (i = 0; i < count; i++)
1959 spl_cache_shrink(skc, skm->skm_objs[i]);
1960
e9d7a2be 1961 skm->skm_avail -= count;
1962 memmove(skm->skm_objs, &(skm->skm_objs[count]),
4afaaefa 1963 sizeof(void *) * skm->skm_avail);
1964
d46630e0 1965 spin_unlock(&skc->skc_lock);
4afaaefa 1966
b17edc10 1967 SRETURN(count);
4afaaefa 1968}
1969
ea3e6ca9
BB
1970/*
1971 * Allocate an object from the per-cpu magazine, or if the magazine
1972 * is empty directly allocate from a slab and repopulate the magazine.
1973 */
4afaaefa 1974void *
1975spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1976{
1977 spl_kmem_magazine_t *skm;
1978 unsigned long irq_flags;
1979 void *obj = NULL;
b17edc10 1980 SENTRY;
4afaaefa 1981
e9d7a2be 1982 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
1983 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1984 ASSERT(flags & KM_SLEEP);
1985 atomic_inc(&skc->skc_ref);
4afaaefa 1986 local_irq_save(irq_flags);
1987
1988restart:
1989 /* Safe to update per-cpu structure without lock, but
ecc39810 1990 * in the restart case we must be careful to reacquire
4afaaefa 1991 * the local magazine since this may have changed
1992 * when we need to grow the cache. */
1993 skm = skc->skc_mag[smp_processor_id()];
e9d7a2be 1994 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
1995 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
1996 skm->skm_size, skm->skm_refill, skm->skm_avail);
4afaaefa 1997
1998 if (likely(skm->skm_avail)) {
1999 /* Object available in CPU cache, use it */
2000 obj = skm->skm_objs[--skm->skm_avail];
ea3e6ca9 2001 skm->skm_age = jiffies;
4afaaefa 2002 } else {
e2dcc6e2
BB
2003 obj = spl_cache_refill(skc, skm, flags);
2004 if (obj == NULL)
2005 SGOTO(restart, obj = NULL);
4afaaefa 2006 }
2007
2008 local_irq_restore(irq_flags);
fece7c99 2009 ASSERT(obj);
8b45dda2 2010 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
4afaaefa 2011
2012 /* Pre-emptively migrate object to CPU L1 cache */
2013 prefetchw(obj);
ea3e6ca9 2014 atomic_dec(&skc->skc_ref);
4afaaefa 2015
b17edc10 2016 SRETURN(obj);
4afaaefa 2017}
2018EXPORT_SYMBOL(spl_kmem_cache_alloc);
2019
ea3e6ca9
BB
2020/*
2021 * Free an object back to the local per-cpu magazine, there is no
2022 * guarantee that this is the same magazine the object was originally
2023 * allocated from. We may need to flush entire from the magazine
2024 * back to the slabs to make space.
2025 */
4afaaefa 2026void
2027spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
2028{
2029 spl_kmem_magazine_t *skm;
2030 unsigned long flags;
b17edc10 2031 SENTRY;
4afaaefa 2032
e9d7a2be 2033 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
2034 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2035 atomic_inc(&skc->skc_ref);
e2dcc6e2
BB
2036
2037 /*
a1af8fb1
BB
2038 * Only virtual slabs may have emergency objects and these objects
2039 * are guaranteed to have physical addresses. They must be removed
2040 * from the tree of emergency objects and the freed.
e2dcc6e2 2041 */
a1af8fb1
BB
2042 if ((skc->skc_flags & KMC_VMEM) && !kmem_virt(obj))
2043 SGOTO(out, spl_emergency_free(skc, obj));
e2dcc6e2 2044
4afaaefa 2045 local_irq_save(flags);
2046
2047 /* Safe to update per-cpu structure without lock, but
2048 * no remote memory allocation tracking is being performed
2049 * it is entirely possible to allocate an object from one
2050 * CPU cache and return it to another. */
2051 skm = skc->skc_mag[smp_processor_id()];
e9d7a2be 2052 ASSERT(skm->skm_magic == SKM_MAGIC);
4afaaefa 2053
2054 /* Per-CPU cache full, flush it to make space */
2055 if (unlikely(skm->skm_avail >= skm->skm_size))
2056 (void)spl_cache_flush(skc, skm, skm->skm_refill);
2057
2058 /* Available space in cache, use it */
2059 skm->skm_objs[skm->skm_avail++] = obj;
2060
2061 local_irq_restore(flags);
e2dcc6e2 2062out:
ea3e6ca9 2063 atomic_dec(&skc->skc_ref);
4afaaefa 2064
b17edc10 2065 SEXIT;
f1ca4da6 2066}
2fb9b26a 2067EXPORT_SYMBOL(spl_kmem_cache_free);
5c2bb9b2 2068
ea3e6ca9 2069/*
ecc39810
BB
2070 * The generic shrinker function for all caches. Under Linux a shrinker
2071 * may not be tightly coupled with a slab cache. In fact Linux always
2072 * systematically tries calling all registered shrinker callbacks which
ea3e6ca9
BB
2073 * report that they contain unused objects. Because of this we only
2074 * register one shrinker function in the shim layer for all slab caches.
2075 * We always attempt to shrink all caches when this generic shrinker
2076 * is called. The shrinker should return the number of free objects
2077 * in the cache when called with nr_to_scan == 0 but not attempt to
2078 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
cef7605c
PS
2079 * objects should be freed, which differs from Solaris semantics.
2080 * Solaris semantics are to free all available objects which may (and
2081 * probably will) be more objects than the requested nr_to_scan.
ea3e6ca9 2082 */
a55bcaad
BB
2083static int
2084__spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
2085 struct shrink_control *sc)
2fb9b26a 2086{
e9d7a2be 2087 spl_kmem_cache_t *skc;
ea3e6ca9 2088 int unused = 0;
5c2bb9b2 2089
e9d7a2be 2090 down_read(&spl_kmem_cache_sem);
ea3e6ca9 2091 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
a55bcaad 2092 if (sc->nr_to_scan)
cef7605c
PS
2093 spl_kmem_cache_reap_now(skc,
2094 MAX(sc->nr_to_scan >> fls64(skc->skc_slab_objs), 1));
ea3e6ca9
BB
2095
2096 /*
2097 * Presume everything alloc'ed in reclaimable, this ensures
2098 * we are called again with nr_to_scan > 0 so can try and
2099 * reclaim. The exact number is not important either so
2100 * we forgo taking this already highly contented lock.
2101 */
2102 unused += skc->skc_obj_alloc;
2103 }
e9d7a2be 2104 up_read(&spl_kmem_cache_sem);
2fb9b26a 2105
ea3e6ca9 2106 return (unused * sysctl_vfs_cache_pressure) / 100;
5c2bb9b2 2107}
5c2bb9b2 2108
a55bcaad
BB
2109SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
2110
ea3e6ca9
BB
2111/*
2112 * Call the registered reclaim function for a cache. Depending on how
2113 * many and which objects are released it may simply repopulate the
2114 * local magazine which will then need to age-out. Objects which cannot
2115 * fit in the magazine we will be released back to their slabs which will
2116 * also need to age out before being release. This is all just best
2117 * effort and we do not want to thrash creating and destroying slabs.
2118 */
57d86234 2119void
cef7605c 2120spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
57d86234 2121{
b17edc10 2122 SENTRY;
e9d7a2be 2123
2124 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9 2125 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2fb9b26a 2126
ea3e6ca9
BB
2127 /* Prevent concurrent cache reaping when contended */
2128 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
b17edc10 2129 SEXIT;
ea3e6ca9
BB
2130 return;
2131 }
2fb9b26a 2132
ea3e6ca9 2133 atomic_inc(&skc->skc_ref);
4afaaefa 2134
b78d4b9d
BB
2135 /*
2136 * When a reclaim function is available it may be invoked repeatedly
2137 * until at least a single slab can be freed. This ensures that we
2138 * do free memory back to the system. This helps minimize the chance
2139 * of an OOM event when the bulk of memory is used by the slab.
2140 *
2141 * When free slabs are already available the reclaim callback will be
2142 * skipped. Additionally, if no forward progress is detected despite
2143 * a reclaim function the cache will be skipped to avoid deadlock.
2144 *
2145 * Longer term this would be the correct place to add the code which
2146 * repacks the slabs in order minimize fragmentation.
2147 */
2148 if (skc->skc_reclaim) {
2149 uint64_t objects = UINT64_MAX;
2150 int do_reclaim;
2151
2152 do {
2153 spin_lock(&skc->skc_lock);
2154 do_reclaim =
2155 (skc->skc_slab_total > 0) &&
2156 ((skc->skc_slab_total - skc->skc_slab_alloc) == 0) &&
2157 (skc->skc_obj_alloc < objects);
2158
2159 objects = skc->skc_obj_alloc;
2160 spin_unlock(&skc->skc_lock);
2161
2162 if (do_reclaim)
2163 skc->skc_reclaim(skc->skc_private);
2164
2165 } while (do_reclaim);
2166 }
4afaaefa 2167
c0e0fc14
PS
2168 /* Reclaim from the cache, ignoring it's age and delay. */
2169 spl_slab_reclaim(skc, count, 1);
ea3e6ca9 2170 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
dc1b3022
BB
2171 smp_mb__after_clear_bit();
2172 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
2173
ea3e6ca9 2174 atomic_dec(&skc->skc_ref);
4afaaefa 2175
b17edc10 2176 SEXIT;
57d86234 2177}
2fb9b26a 2178EXPORT_SYMBOL(spl_kmem_cache_reap_now);
57d86234 2179
ea3e6ca9
BB
2180/*
2181 * Reap all free slabs from all registered caches.
2182 */
f1b59d26 2183void
2fb9b26a 2184spl_kmem_reap(void)
937879f1 2185{
a55bcaad
BB
2186 struct shrink_control sc;
2187
2188 sc.nr_to_scan = KMC_REAP_CHUNK;
2189 sc.gfp_mask = GFP_KERNEL;
2190
2191 __spl_kmem_cache_generic_shrinker(NULL, &sc);
f1ca4da6 2192}
2fb9b26a 2193EXPORT_SYMBOL(spl_kmem_reap);
5d86345d 2194
ff449ac4 2195#if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
c6dc93d6 2196static char *
4afaaefa 2197spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
d6a26c6a 2198{
e9d7a2be 2199 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
d6a26c6a 2200 int i, flag = 1;
2201
2202 ASSERT(str != NULL && len >= 17);
e9d7a2be 2203 memset(str, 0, len);
d6a26c6a 2204
2205 /* Check for a fully printable string, and while we are at
2206 * it place the printable characters in the passed buffer. */
2207 for (i = 0; i < size; i++) {
e9d7a2be 2208 str[i] = ((char *)(kd->kd_addr))[i];
2209 if (isprint(str[i])) {
2210 continue;
2211 } else {
2212 /* Minimum number of printable characters found
2213 * to make it worthwhile to print this as ascii. */
2214 if (i > min)
2215 break;
2216
2217 flag = 0;
2218 break;
2219 }
d6a26c6a 2220 }
2221
2222 if (!flag) {
2223 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
2224 *((uint8_t *)kd->kd_addr),
2225 *((uint8_t *)kd->kd_addr + 2),
2226 *((uint8_t *)kd->kd_addr + 4),
2227 *((uint8_t *)kd->kd_addr + 6),
2228 *((uint8_t *)kd->kd_addr + 8),
2229 *((uint8_t *)kd->kd_addr + 10),
2230 *((uint8_t *)kd->kd_addr + 12),
2231 *((uint8_t *)kd->kd_addr + 14));
2232 }
2233
2234 return str;
2235}
2236
a1502d76 2237static int
2238spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
2239{
2240 int i;
b17edc10 2241 SENTRY;
a1502d76 2242
2243 spin_lock_init(lock);
2244 INIT_LIST_HEAD(list);
2245
2246 for (i = 0; i < size; i++)
2247 INIT_HLIST_HEAD(&kmem_table[i]);
2248
b17edc10 2249 SRETURN(0);
a1502d76 2250}
2251
ff449ac4 2252static void
2253spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
5d86345d 2254{
2fb9b26a 2255 unsigned long flags;
2256 kmem_debug_t *kd;
2257 char str[17];
b17edc10 2258 SENTRY;
2fb9b26a 2259
ff449ac4 2260 spin_lock_irqsave(lock, flags);
2261 if (!list_empty(list))
a0f6da3d 2262 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
2263 "size", "data", "func", "line");
2fb9b26a 2264
ff449ac4 2265 list_for_each_entry(kd, list, kd_list)
a0f6da3d 2266 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
b6b2acc6 2267 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2fb9b26a 2268 kd->kd_func, kd->kd_line);
2269
ff449ac4 2270 spin_unlock_irqrestore(lock, flags);
b17edc10 2271 SEXIT;
ff449ac4 2272}
2273#else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
a1502d76 2274#define spl_kmem_init_tracking(list, lock, size)
ff449ac4 2275#define spl_kmem_fini_tracking(list, lock)
2276#endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2277
36b313da
BB
2278static void
2279spl_kmem_init_globals(void)
2280{
2281 struct zone *zone;
2282
2283 /* For now all zones are includes, it may be wise to restrict
2284 * this to normal and highmem zones if we see problems. */
2285 for_each_zone(zone) {
2286
2287 if (!populated_zone(zone))
2288 continue;
2289
baf2979e
BB
2290 minfree += min_wmark_pages(zone);
2291 desfree += low_wmark_pages(zone);
2292 lotsfree += high_wmark_pages(zone);
36b313da 2293 }
4ab13d3b
BB
2294
2295 /* Solaris default values */
96dded38
BB
2296 swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3);
2297 swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4);
36b313da
BB
2298}
2299
d1ff2312
BB
2300/*
2301 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
2302 */
2303int
2304spl_kmem_init_kallsyms_lookup(void)
2305{
2306#ifndef HAVE_GET_VMALLOC_INFO
2307 get_vmalloc_info_fn = (get_vmalloc_info_t)
2308 spl_kallsyms_lookup_name("get_vmalloc_info");
e11d6c5f
BB
2309 if (!get_vmalloc_info_fn) {
2310 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
d1ff2312 2311 return -EFAULT;
e11d6c5f 2312 }
d1ff2312
BB
2313#endif /* HAVE_GET_VMALLOC_INFO */
2314
5232d256
BB
2315#ifdef HAVE_PGDAT_HELPERS
2316# ifndef HAVE_FIRST_ONLINE_PGDAT
d1ff2312
BB
2317 first_online_pgdat_fn = (first_online_pgdat_t)
2318 spl_kallsyms_lookup_name("first_online_pgdat");
e11d6c5f
BB
2319 if (!first_online_pgdat_fn) {
2320 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
d1ff2312 2321 return -EFAULT;
e11d6c5f 2322 }
5232d256 2323# endif /* HAVE_FIRST_ONLINE_PGDAT */
d1ff2312 2324
5232d256 2325# ifndef HAVE_NEXT_ONLINE_PGDAT
d1ff2312
BB
2326 next_online_pgdat_fn = (next_online_pgdat_t)
2327 spl_kallsyms_lookup_name("next_online_pgdat");
e11d6c5f
BB
2328 if (!next_online_pgdat_fn) {
2329 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
d1ff2312 2330 return -EFAULT;
e11d6c5f 2331 }
5232d256 2332# endif /* HAVE_NEXT_ONLINE_PGDAT */
d1ff2312 2333
5232d256 2334# ifndef HAVE_NEXT_ZONE
d1ff2312
BB
2335 next_zone_fn = (next_zone_t)
2336 spl_kallsyms_lookup_name("next_zone");
e11d6c5f
BB
2337 if (!next_zone_fn) {
2338 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
d1ff2312 2339 return -EFAULT;
e11d6c5f 2340 }
5232d256
BB
2341# endif /* HAVE_NEXT_ZONE */
2342
2343#else /* HAVE_PGDAT_HELPERS */
2344
2345# ifndef HAVE_PGDAT_LIST
124ca8a5 2346 pgdat_list_addr = *(struct pglist_data **)
5232d256
BB
2347 spl_kallsyms_lookup_name("pgdat_list");
2348 if (!pgdat_list_addr) {
2349 printk(KERN_ERR "Error: Unknown symbol pgdat_list\n");
2350 return -EFAULT;
2351 }
2352# endif /* HAVE_PGDAT_LIST */
2353#endif /* HAVE_PGDAT_HELPERS */
d1ff2312 2354
6ae7fef5 2355#if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS)
d1ff2312
BB
2356 get_zone_counts_fn = (get_zone_counts_t)
2357 spl_kallsyms_lookup_name("get_zone_counts");
e11d6c5f
BB
2358 if (!get_zone_counts_fn) {
2359 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
d1ff2312 2360 return -EFAULT;
e11d6c5f 2361 }
6ae7fef5 2362#endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */
d1ff2312
BB
2363
2364 /*
2365 * It is now safe to initialize the global tunings which rely on
2366 * the use of the for_each_zone() macro. This macro in turns
2367 * depends on the *_pgdat symbols which are now available.
2368 */
2369 spl_kmem_init_globals();
2370
5f6c14b1 2371#if !defined(HAVE_INVALIDATE_INODES) && !defined(HAVE_INVALIDATE_INODES_CHECK)
914b0631 2372 invalidate_inodes_fn = (invalidate_inodes_t)
9b0f9079 2373 spl_kallsyms_lookup_name("invalidate_inodes");
914b0631
BB
2374 if (!invalidate_inodes_fn) {
2375 printk(KERN_ERR "Error: Unknown symbol invalidate_inodes\n");
2376 return -EFAULT;
2377 }
5f6c14b1 2378#endif /* !HAVE_INVALIDATE_INODES && !HAVE_INVALIDATE_INODES_CHECK */
914b0631 2379
e76f4bf1 2380#ifndef HAVE_SHRINK_DCACHE_MEMORY
fe71c0e5 2381 /* When shrink_dcache_memory_fn == NULL support is disabled */
e76f4bf1 2382 shrink_dcache_memory_fn = (shrink_dcache_memory_t)
fe71c0e5 2383 spl_kallsyms_lookup_name("shrink_dcache_memory");
e76f4bf1
BB
2384#endif /* HAVE_SHRINK_DCACHE_MEMORY */
2385
2386#ifndef HAVE_SHRINK_ICACHE_MEMORY
fe71c0e5 2387 /* When shrink_icache_memory_fn == NULL support is disabled */
e76f4bf1 2388 shrink_icache_memory_fn = (shrink_icache_memory_t)
fe71c0e5 2389 spl_kallsyms_lookup_name("shrink_icache_memory");
e76f4bf1
BB
2390#endif /* HAVE_SHRINK_ICACHE_MEMORY */
2391
d1ff2312
BB
2392 return 0;
2393}
2394
a1502d76 2395int
2396spl_kmem_init(void)
2397{
2398 int rc = 0;
b17edc10 2399 SENTRY;
a1502d76 2400
2401 init_rwsem(&spl_kmem_cache_sem);
2402 INIT_LIST_HEAD(&spl_kmem_cache_list);
a10287e0
BB
2403 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
2404 1, maxclsyspri, 1, 32, TASKQ_PREPOPULATE);
a1502d76 2405
495bd532 2406 spl_register_shrinker(&spl_kmem_cache_shrinker);
a1502d76 2407
2408#ifdef DEBUG_KMEM
d04c8a56
BB
2409 kmem_alloc_used_set(0);
2410 vmem_alloc_used_set(0);
a1502d76 2411
2412 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
2413 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
2414#endif
b17edc10 2415 SRETURN(rc);
a1502d76 2416}
2417
ff449ac4 2418void
2419spl_kmem_fini(void)
2420{
2421#ifdef DEBUG_KMEM
2422 /* Display all unreclaimed memory addresses, including the
2423 * allocation size and the first few bytes of what's located
2424 * at that address to aid in debugging. Performance is not
2425 * a serious concern here since it is module unload time. */
d04c8a56 2426 if (kmem_alloc_used_read() != 0)
b17edc10 2427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
2428 "kmem leaked %ld/%ld bytes\n",
2429 kmem_alloc_used_read(), kmem_alloc_max);
ff449ac4 2430
2fb9b26a 2431
d04c8a56 2432 if (vmem_alloc_used_read() != 0)
b17edc10 2433 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
2434 "vmem leaked %ld/%ld bytes\n",
2435 vmem_alloc_used_read(), vmem_alloc_max);
2fb9b26a 2436
ff449ac4 2437 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
2438 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
2439#endif /* DEBUG_KMEM */
b17edc10 2440 SENTRY;
2fb9b26a 2441
495bd532 2442 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
a10287e0 2443 taskq_destroy(spl_kmem_cache_taskq);
2fb9b26a 2444
b17edc10 2445 SEXIT;
5d86345d 2446}