]> git.proxmox.com Git - mirror_spl.git/blame - module/spl/spl-kmem.c
Linux 3.0: Shrinker compatibility
[mirror_spl.git] / module / spl / spl-kmem.c
CommitLineData
716154c5
BB
1/*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
715f6251 6 * UCRL-CODE-235197
7 *
716154c5
BB
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
715f6251 10 *
716154c5
BB
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
715f6251 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
716154c5
BB
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Kmem Implementation.
25\*****************************************************************************/
715f6251 26
f4b37741 27#include <sys/kmem.h>
55abb092 28#include <spl-debug.h>
f1ca4da6 29
b17edc10
BB
30#ifdef SS_DEBUG_SUBSYS
31#undef SS_DEBUG_SUBSYS
937879f1 32#endif
33
b17edc10 34#define SS_DEBUG_SUBSYS SS_KMEM
937879f1 35
36b313da
BB
36/*
37 * The minimum amount of memory measured in pages to be free at all
38 * times on the system. This is similar to Linux's zone->pages_min
39 * multipled by the number of zones and is sized based on that.
40 */
41pgcnt_t minfree = 0;
42EXPORT_SYMBOL(minfree);
43
44/*
45 * The desired amount of memory measured in pages to be free at all
46 * times on the system. This is similar to Linux's zone->pages_low
47 * multipled by the number of zones and is sized based on that.
48 * Assuming all zones are being used roughly equally, when we drop
49 * below this threshold async page reclamation is triggered.
50 */
51pgcnt_t desfree = 0;
52EXPORT_SYMBOL(desfree);
53
54/*
55 * When above this amount of memory measures in pages the system is
56 * determined to have enough free memory. This is similar to Linux's
57 * zone->pages_high multipled by the number of zones and is sized based
58 * on that. Assuming all zones are being used roughly equally, when
59 * async page reclamation reaches this threshold it stops.
60 */
61pgcnt_t lotsfree = 0;
62EXPORT_SYMBOL(lotsfree);
63
64/* Unused always 0 in this implementation */
65pgcnt_t needfree = 0;
66EXPORT_SYMBOL(needfree);
67
36b313da
BB
68pgcnt_t swapfs_minfree = 0;
69EXPORT_SYMBOL(swapfs_minfree);
70
71pgcnt_t swapfs_reserve = 0;
72EXPORT_SYMBOL(swapfs_reserve);
73
36b313da
BB
74vmem_t *heap_arena = NULL;
75EXPORT_SYMBOL(heap_arena);
76
77vmem_t *zio_alloc_arena = NULL;
78EXPORT_SYMBOL(zio_alloc_arena);
79
80vmem_t *zio_arena = NULL;
81EXPORT_SYMBOL(zio_arena);
82
d1ff2312 83#ifndef HAVE_GET_VMALLOC_INFO
96dded38 84get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON;
d1ff2312
BB
85EXPORT_SYMBOL(get_vmalloc_info_fn);
86#endif /* HAVE_GET_VMALLOC_INFO */
87
5232d256
BB
88#ifdef HAVE_PGDAT_HELPERS
89# ifndef HAVE_FIRST_ONLINE_PGDAT
96dded38 90first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON;
d1ff2312 91EXPORT_SYMBOL(first_online_pgdat_fn);
5232d256 92# endif /* HAVE_FIRST_ONLINE_PGDAT */
36b313da 93
5232d256 94# ifndef HAVE_NEXT_ONLINE_PGDAT
96dded38 95next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON;
d1ff2312 96EXPORT_SYMBOL(next_online_pgdat_fn);
5232d256 97# endif /* HAVE_NEXT_ONLINE_PGDAT */
36b313da 98
5232d256 99# ifndef HAVE_NEXT_ZONE
96dded38 100next_zone_t next_zone_fn = SYMBOL_POISON;
d1ff2312 101EXPORT_SYMBOL(next_zone_fn);
5232d256
BB
102# endif /* HAVE_NEXT_ZONE */
103
104#else /* HAVE_PGDAT_HELPERS */
105
106# ifndef HAVE_PGDAT_LIST
107struct pglist_data *pgdat_list_addr = SYMBOL_POISON;
108EXPORT_SYMBOL(pgdat_list_addr);
109# endif /* HAVE_PGDAT_LIST */
110
111#endif /* HAVE_PGDAT_HELPERS */
36b313da 112
6ae7fef5 113#ifdef NEED_GET_ZONE_COUNTS
e11d6c5f 114# ifndef HAVE_GET_ZONE_COUNTS
96dded38 115get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON;
d1ff2312 116EXPORT_SYMBOL(get_zone_counts_fn);
96dded38 117# endif /* HAVE_GET_ZONE_COUNTS */
4ab13d3b 118
e11d6c5f 119unsigned long
6ae7fef5 120spl_global_page_state(spl_zone_stat_item_t item)
4ab13d3b
BB
121{
122 unsigned long active;
123 unsigned long inactive;
124 unsigned long free;
125
6ae7fef5
BB
126 get_zone_counts(&active, &inactive, &free);
127 switch (item) {
128 case SPL_NR_FREE_PAGES: return free;
129 case SPL_NR_INACTIVE: return inactive;
130 case SPL_NR_ACTIVE: return active;
131 default: ASSERT(0); /* Unsupported */
e11d6c5f
BB
132 }
133
6ae7fef5
BB
134 return 0;
135}
136#else
137# ifdef HAVE_GLOBAL_PAGE_STATE
138unsigned long
139spl_global_page_state(spl_zone_stat_item_t item)
140{
141 unsigned long pages = 0;
142
143 switch (item) {
144 case SPL_NR_FREE_PAGES:
145# ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES
146 pages += global_page_state(NR_FREE_PAGES);
147# endif
148 break;
149 case SPL_NR_INACTIVE:
150# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE
151 pages += global_page_state(NR_INACTIVE);
152# endif
153# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON
154 pages += global_page_state(NR_INACTIVE_ANON);
155# endif
156# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE
157 pages += global_page_state(NR_INACTIVE_FILE);
158# endif
159 break;
160 case SPL_NR_ACTIVE:
161# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE
162 pages += global_page_state(NR_ACTIVE);
163# endif
164# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON
165 pages += global_page_state(NR_ACTIVE_ANON);
166# endif
167# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE
168 pages += global_page_state(NR_ACTIVE_FILE);
169# endif
170 break;
171 default:
172 ASSERT(0); /* Unsupported */
e11d6c5f
BB
173 }
174
6ae7fef5
BB
175 return pages;
176}
96dded38 177# else
6ae7fef5 178# error "Both global_page_state() and get_zone_counts() unavailable"
96dded38 179# endif /* HAVE_GLOBAL_PAGE_STATE */
6ae7fef5 180#endif /* NEED_GET_ZONE_COUNTS */
e11d6c5f 181EXPORT_SYMBOL(spl_global_page_state);
4ab13d3b 182
914b0631
BB
183#ifndef HAVE_INVALIDATE_INODES
184invalidate_inodes_t invalidate_inodes_fn = SYMBOL_POISON;
185EXPORT_SYMBOL(invalidate_inodes_fn);
186#endif /* HAVE_INVALIDATE_INODES */
187
e76f4bf1
BB
188#ifndef HAVE_SHRINK_DCACHE_MEMORY
189shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON;
190EXPORT_SYMBOL(shrink_dcache_memory_fn);
191#endif /* HAVE_SHRINK_DCACHE_MEMORY */
192
193#ifndef HAVE_SHRINK_ICACHE_MEMORY
194shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON;
195EXPORT_SYMBOL(shrink_icache_memory_fn);
196#endif /* HAVE_SHRINK_ICACHE_MEMORY */
197
e11d6c5f
BB
198pgcnt_t
199spl_kmem_availrmem(void)
200{
4ab13d3b 201 /* The amount of easily available memory */
6ae7fef5
BB
202 return (spl_global_page_state(SPL_NR_FREE_PAGES) +
203 spl_global_page_state(SPL_NR_INACTIVE));
4ab13d3b
BB
204}
205EXPORT_SYMBOL(spl_kmem_availrmem);
206
207size_t
208vmem_size(vmem_t *vmp, int typemask)
209{
d1ff2312
BB
210 struct vmalloc_info vmi;
211 size_t size = 0;
212
4ab13d3b
BB
213 ASSERT(vmp == NULL);
214 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
215
d1ff2312
BB
216 get_vmalloc_info(&vmi);
217 if (typemask & VMEM_ALLOC)
218 size += (size_t)vmi.used;
219
220 if (typemask & VMEM_FREE)
221 size += (size_t)(VMALLOC_TOTAL - vmi.used);
222
223 return size;
4ab13d3b
BB
224}
225EXPORT_SYMBOL(vmem_size);
4ab13d3b 226
b868e22f
BB
227int
228kmem_debugging(void)
229{
230 return 0;
231}
232EXPORT_SYMBOL(kmem_debugging);
233
234#ifndef HAVE_KVASPRINTF
235/* Simplified asprintf. */
236char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
237{
238 unsigned int len;
239 char *p;
240 va_list aq;
241
242 va_copy(aq, ap);
243 len = vsnprintf(NULL, 0, fmt, aq);
244 va_end(aq);
245
246 p = kmalloc(len+1, gfp);
247 if (!p)
248 return NULL;
249
250 vsnprintf(p, len+1, fmt, ap);
251
252 return p;
253}
254EXPORT_SYMBOL(kvasprintf);
255#endif /* HAVE_KVASPRINTF */
256
e6de04b7
BB
257char *
258kmem_vasprintf(const char *fmt, va_list ap)
259{
260 va_list aq;
261 char *ptr;
262
e6de04b7 263 do {
2c762de8 264 va_copy(aq, ap);
e6de04b7 265 ptr = kvasprintf(GFP_KERNEL, fmt, aq);
2c762de8 266 va_end(aq);
e6de04b7 267 } while (ptr == NULL);
e6de04b7
BB
268
269 return ptr;
270}
271EXPORT_SYMBOL(kmem_vasprintf);
272
b868e22f
BB
273char *
274kmem_asprintf(const char *fmt, ...)
275{
e6de04b7 276 va_list ap;
b868e22f
BB
277 char *ptr;
278
b868e22f 279 do {
2c762de8 280 va_start(ap, fmt);
e6de04b7 281 ptr = kvasprintf(GFP_KERNEL, fmt, ap);
2c762de8 282 va_end(ap);
b868e22f 283 } while (ptr == NULL);
b868e22f
BB
284
285 return ptr;
286}
287EXPORT_SYMBOL(kmem_asprintf);
288
10129680
BB
289static char *
290__strdup(const char *str, int flags)
291{
292 char *ptr;
293 int n;
294
295 n = strlen(str);
296 ptr = kmalloc_nofail(n + 1, flags);
297 if (ptr)
298 memcpy(ptr, str, n + 1);
299
300 return ptr;
301}
302
303char *
304strdup(const char *str)
305{
306 return __strdup(str, KM_SLEEP);
307}
308EXPORT_SYMBOL(strdup);
309
310void
311strfree(char *str)
312{
41f84a8d 313 kfree(str);
10129680
BB
314}
315EXPORT_SYMBOL(strfree);
316
f1ca4da6 317/*
2fb9b26a 318 * Memory allocation interfaces and debugging for basic kmem_*
055ffd98
BB
319 * and vmem_* style memory allocation. When DEBUG_KMEM is enabled
320 * the SPL will keep track of the total memory allocated, and
321 * report any memory leaked when the module is unloaded.
f1ca4da6 322 */
323#ifdef DEBUG_KMEM
d04c8a56 324
f1ca4da6 325/* Shim layer memory accounting */
d04c8a56 326# ifdef HAVE_ATOMIC64_T
550f1705 327atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
a0f6da3d 328unsigned long long kmem_alloc_max = 0;
550f1705 329atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
a0f6da3d 330unsigned long long vmem_alloc_max = 0;
10129680 331# else /* HAVE_ATOMIC64_T */
d04c8a56
BB
332atomic_t kmem_alloc_used = ATOMIC_INIT(0);
333unsigned long long kmem_alloc_max = 0;
334atomic_t vmem_alloc_used = ATOMIC_INIT(0);
335unsigned long long vmem_alloc_max = 0;
10129680 336# endif /* HAVE_ATOMIC64_T */
79b31f36 337
ff449ac4 338EXPORT_SYMBOL(kmem_alloc_used);
339EXPORT_SYMBOL(kmem_alloc_max);
340EXPORT_SYMBOL(vmem_alloc_used);
341EXPORT_SYMBOL(vmem_alloc_max);
ff449ac4 342
055ffd98
BB
343/* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
344 * but also the location of every alloc and free. When the SPL module is
345 * unloaded a list of all leaked addresses and where they were allocated
346 * will be dumped to the console. Enabling this feature has a significant
347 * impact on performance but it makes finding memory leaks straight forward.
348 *
349 * Not surprisingly with debugging enabled the xmem_locks are very highly
350 * contended particularly on xfree(). If we want to run with this detailed
351 * debugging enabled for anything other than debugging we need to minimize
352 * the contention by moving to a lock per xmem_table entry model.
a0f6da3d 353 */
055ffd98 354# ifdef DEBUG_KMEM_TRACKING
a0f6da3d 355
356# define KMEM_HASH_BITS 10
357# define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
358
359# define VMEM_HASH_BITS 10
360# define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
361
362typedef struct kmem_debug {
363 struct hlist_node kd_hlist; /* Hash node linkage */
364 struct list_head kd_list; /* List of all allocations */
365 void *kd_addr; /* Allocation pointer */
366 size_t kd_size; /* Allocation size */
367 const char *kd_func; /* Allocation function */
368 int kd_line; /* Allocation line */
369} kmem_debug_t;
370
d6a26c6a 371spinlock_t kmem_lock;
372struct hlist_head kmem_table[KMEM_TABLE_SIZE];
373struct list_head kmem_list;
374
13cdca65 375spinlock_t vmem_lock;
376struct hlist_head vmem_table[VMEM_TABLE_SIZE];
377struct list_head vmem_list;
378
d6a26c6a 379EXPORT_SYMBOL(kmem_lock);
380EXPORT_SYMBOL(kmem_table);
381EXPORT_SYMBOL(kmem_list);
382
13cdca65 383EXPORT_SYMBOL(vmem_lock);
384EXPORT_SYMBOL(vmem_table);
385EXPORT_SYMBOL(vmem_list);
a0f6da3d 386
387static kmem_debug_t *
10129680 388kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, void *addr)
a0f6da3d 389{
390 struct hlist_head *head;
391 struct hlist_node *node;
392 struct kmem_debug *p;
393 unsigned long flags;
b17edc10 394 SENTRY;
a0f6da3d 395
396 spin_lock_irqsave(lock, flags);
397
398 head = &table[hash_ptr(addr, bits)];
399 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
400 if (p->kd_addr == addr) {
401 hlist_del_init(&p->kd_hlist);
402 list_del_init(&p->kd_list);
403 spin_unlock_irqrestore(lock, flags);
404 return p;
405 }
406 }
407
408 spin_unlock_irqrestore(lock, flags);
409
b17edc10 410 SRETURN(NULL);
a0f6da3d 411}
412
413void *
414kmem_alloc_track(size_t size, int flags, const char *func, int line,
415 int node_alloc, int node)
416{
417 void *ptr = NULL;
418 kmem_debug_t *dptr;
419 unsigned long irq_flags;
b17edc10 420 SENTRY;
a0f6da3d 421
10129680 422 /* Function may be called with KM_NOSLEEP so failure is possible */
c89fdee4 423 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
a0f6da3d 424 flags & ~__GFP_ZERO);
425
10129680 426 if (unlikely(dptr == NULL)) {
b17edc10 427 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
3cb77549
BB
428 "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
429 sizeof(kmem_debug_t), flags, func, line,
430 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 431 } else {
10129680
BB
432 /*
433 * Marked unlikely because we should never be doing this,
434 * we tolerate to up 2 pages but a single page is best.
435 */
23d91792 436 if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
b17edc10 437 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large "
3cb77549
BB
438 "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
439 (unsigned long long) size, flags, func, line,
d04c8a56 440 kmem_alloc_used_read(), kmem_alloc_max);
5198ea0e
BB
441 spl_debug_dumpstack(NULL);
442 }
a0f6da3d 443
10129680
BB
444 /*
445 * We use __strdup() below because the string pointed to by
c8e60837 446 * __FUNCTION__ might not be available by the time we want
10129680
BB
447 * to print it since the module might have been unloaded.
448 * This can only fail in the KM_NOSLEEP case.
449 */
450 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
c8e60837 451 if (unlikely(dptr->kd_func == NULL)) {
452 kfree(dptr);
b17edc10 453 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
10129680 454 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
3cb77549 455 func, line, kmem_alloc_used_read(), kmem_alloc_max);
c8e60837 456 goto out;
457 }
458
a0f6da3d 459 /* Use the correct allocator */
460 if (node_alloc) {
461 ASSERT(!(flags & __GFP_ZERO));
c89fdee4 462 ptr = kmalloc_node_nofail(size, flags, node);
a0f6da3d 463 } else if (flags & __GFP_ZERO) {
c89fdee4 464 ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
a0f6da3d 465 } else {
c89fdee4 466 ptr = kmalloc_nofail(size, flags);
a0f6da3d 467 }
468
469 if (unlikely(ptr == NULL)) {
c8e60837 470 kfree(dptr->kd_func);
a0f6da3d 471 kfree(dptr);
b17edc10 472 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc"
3cb77549
BB
473 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
474 (unsigned long long) size, flags, func, line,
d04c8a56 475 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 476 goto out;
477 }
478
d04c8a56
BB
479 kmem_alloc_used_add(size);
480 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
481 kmem_alloc_max = kmem_alloc_used_read();
a0f6da3d 482
483 INIT_HLIST_NODE(&dptr->kd_hlist);
484 INIT_LIST_HEAD(&dptr->kd_list);
485
486 dptr->kd_addr = ptr;
487 dptr->kd_size = size;
a0f6da3d 488 dptr->kd_line = line;
489
490 spin_lock_irqsave(&kmem_lock, irq_flags);
491 hlist_add_head_rcu(&dptr->kd_hlist,
492 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
493 list_add_tail(&dptr->kd_list, &kmem_list);
494 spin_unlock_irqrestore(&kmem_lock, irq_flags);
495
b17edc10 496 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
497 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
498 (unsigned long long) size, flags, func, line, ptr,
499 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 500 }
501out:
b17edc10 502 SRETURN(ptr);
a0f6da3d 503}
504EXPORT_SYMBOL(kmem_alloc_track);
505
506void
507kmem_free_track(void *ptr, size_t size)
508{
509 kmem_debug_t *dptr;
b17edc10 510 SENTRY;
a0f6da3d 511
512 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
513 (unsigned long long) size);
514
515 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
516
10129680
BB
517 /* Must exist in hash due to kmem_alloc() */
518 ASSERT(dptr);
a0f6da3d 519
520 /* Size must match */
521 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
522 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
523 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
524
d04c8a56 525 kmem_alloc_used_sub(size);
b17edc10 526 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 527 (unsigned long long) size, kmem_alloc_used_read(),
a0f6da3d 528 kmem_alloc_max);
529
c8e60837 530 kfree(dptr->kd_func);
531
a0f6da3d 532 memset(dptr, 0x5a, sizeof(kmem_debug_t));
533 kfree(dptr);
534
535 memset(ptr, 0x5a, size);
536 kfree(ptr);
537
b17edc10 538 SEXIT;
a0f6da3d 539}
540EXPORT_SYMBOL(kmem_free_track);
541
542void *
543vmem_alloc_track(size_t size, int flags, const char *func, int line)
544{
545 void *ptr = NULL;
546 kmem_debug_t *dptr;
547 unsigned long irq_flags;
b17edc10 548 SENTRY;
a0f6da3d 549
550 ASSERT(flags & KM_SLEEP);
551
10129680 552 /* Function may be called with KM_NOSLEEP so failure is possible */
ef1c7a06
BB
553 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
554 flags & ~__GFP_ZERO);
10129680 555 if (unlikely(dptr == NULL)) {
b17edc10 556 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
3cb77549
BB
557 "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
558 sizeof(kmem_debug_t), flags, func, line,
559 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 560 } else {
10129680
BB
561 /*
562 * We use __strdup() below because the string pointed to by
c8e60837 563 * __FUNCTION__ might not be available by the time we want
10129680
BB
564 * to print it, since the module might have been unloaded.
565 * This can never fail because we have already asserted
566 * that flags is KM_SLEEP.
567 */
568 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
c8e60837 569 if (unlikely(dptr->kd_func == NULL)) {
570 kfree(dptr);
b17edc10 571 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
10129680 572 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
3cb77549 573 func, line, vmem_alloc_used_read(), vmem_alloc_max);
c8e60837 574 goto out;
575 }
576
10129680
BB
577 /* Use the correct allocator */
578 if (flags & __GFP_ZERO) {
579 ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
580 } else {
581 ptr = vmalloc_nofail(size, flags);
582 }
a0f6da3d 583
584 if (unlikely(ptr == NULL)) {
c8e60837 585 kfree(dptr->kd_func);
a0f6da3d 586 kfree(dptr);
b17edc10 587 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc"
3cb77549
BB
588 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
589 (unsigned long long) size, flags, func, line,
d04c8a56 590 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 591 goto out;
592 }
593
d04c8a56
BB
594 vmem_alloc_used_add(size);
595 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
596 vmem_alloc_max = vmem_alloc_used_read();
a0f6da3d 597
598 INIT_HLIST_NODE(&dptr->kd_hlist);
599 INIT_LIST_HEAD(&dptr->kd_list);
600
601 dptr->kd_addr = ptr;
602 dptr->kd_size = size;
a0f6da3d 603 dptr->kd_line = line;
604
605 spin_lock_irqsave(&vmem_lock, irq_flags);
606 hlist_add_head_rcu(&dptr->kd_hlist,
607 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
608 list_add_tail(&dptr->kd_list, &vmem_list);
609 spin_unlock_irqrestore(&vmem_lock, irq_flags);
610
b17edc10 611 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
612 "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
613 (unsigned long long) size, flags, func, line,
614 ptr, vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 615 }
616out:
b17edc10 617 SRETURN(ptr);
a0f6da3d 618}
619EXPORT_SYMBOL(vmem_alloc_track);
620
621void
622vmem_free_track(void *ptr, size_t size)
623{
624 kmem_debug_t *dptr;
b17edc10 625 SENTRY;
a0f6da3d 626
627 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
628 (unsigned long long) size);
629
630 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
10129680
BB
631
632 /* Must exist in hash due to vmem_alloc() */
633 ASSERT(dptr);
a0f6da3d 634
635 /* Size must match */
636 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
637 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
638 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
639
d04c8a56 640 vmem_alloc_used_sub(size);
b17edc10 641 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 642 (unsigned long long) size, vmem_alloc_used_read(),
a0f6da3d 643 vmem_alloc_max);
644
c8e60837 645 kfree(dptr->kd_func);
646
a0f6da3d 647 memset(dptr, 0x5a, sizeof(kmem_debug_t));
648 kfree(dptr);
649
650 memset(ptr, 0x5a, size);
651 vfree(ptr);
652
b17edc10 653 SEXIT;
a0f6da3d 654}
655EXPORT_SYMBOL(vmem_free_track);
656
657# else /* DEBUG_KMEM_TRACKING */
658
659void *
660kmem_alloc_debug(size_t size, int flags, const char *func, int line,
661 int node_alloc, int node)
662{
663 void *ptr;
b17edc10 664 SENTRY;
a0f6da3d 665
10129680
BB
666 /*
667 * Marked unlikely because we should never be doing this,
668 * we tolerate to up 2 pages but a single page is best.
669 */
23d91792 670 if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
b17edc10 671 SDEBUG(SD_CONSOLE | SD_WARNING,
10129680 672 "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
3cb77549 673 (unsigned long long) size, flags, func, line,
d04c8a56 674 kmem_alloc_used_read(), kmem_alloc_max);
5198ea0e
BB
675 spl_debug_dumpstack(NULL);
676 }
a0f6da3d 677
678 /* Use the correct allocator */
679 if (node_alloc) {
680 ASSERT(!(flags & __GFP_ZERO));
c89fdee4 681 ptr = kmalloc_node_nofail(size, flags, node);
a0f6da3d 682 } else if (flags & __GFP_ZERO) {
c89fdee4 683 ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
a0f6da3d 684 } else {
c89fdee4 685 ptr = kmalloc_nofail(size, flags);
a0f6da3d 686 }
687
10129680 688 if (unlikely(ptr == NULL)) {
b17edc10 689 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
690 "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
691 (unsigned long long) size, flags, func, line,
d04c8a56 692 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 693 } else {
d04c8a56
BB
694 kmem_alloc_used_add(size);
695 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
696 kmem_alloc_max = kmem_alloc_used_read();
a0f6da3d 697
b17edc10 698 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
699 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
700 (unsigned long long) size, flags, func, line, ptr,
10129680 701 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 702 }
10129680 703
b17edc10 704 SRETURN(ptr);
a0f6da3d 705}
706EXPORT_SYMBOL(kmem_alloc_debug);
707
708void
709kmem_free_debug(void *ptr, size_t size)
710{
b17edc10 711 SENTRY;
a0f6da3d 712
713 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
714 (unsigned long long) size);
715
d04c8a56 716 kmem_alloc_used_sub(size);
b17edc10 717 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 718 (unsigned long long) size, kmem_alloc_used_read(),
a0f6da3d 719 kmem_alloc_max);
a0f6da3d 720 kfree(ptr);
721
b17edc10 722 SEXIT;
a0f6da3d 723}
724EXPORT_SYMBOL(kmem_free_debug);
725
726void *
727vmem_alloc_debug(size_t size, int flags, const char *func, int line)
728{
729 void *ptr;
b17edc10 730 SENTRY;
a0f6da3d 731
732 ASSERT(flags & KM_SLEEP);
733
10129680
BB
734 /* Use the correct allocator */
735 if (flags & __GFP_ZERO) {
736 ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
737 } else {
738 ptr = vmalloc_nofail(size, flags);
739 }
740
741 if (unlikely(ptr == NULL)) {
b17edc10 742 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
743 "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
744 (unsigned long long) size, flags, func, line,
d04c8a56 745 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 746 } else {
d04c8a56
BB
747 vmem_alloc_used_add(size);
748 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
749 vmem_alloc_max = vmem_alloc_used_read();
a0f6da3d 750
b17edc10 751 SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p "
a0f6da3d 752 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
d04c8a56 753 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 754 }
755
b17edc10 756 SRETURN(ptr);
a0f6da3d 757}
758EXPORT_SYMBOL(vmem_alloc_debug);
759
760void
761vmem_free_debug(void *ptr, size_t size)
762{
b17edc10 763 SENTRY;
a0f6da3d 764
765 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
766 (unsigned long long) size);
767
d04c8a56 768 vmem_alloc_used_sub(size);
b17edc10 769 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 770 (unsigned long long) size, vmem_alloc_used_read(),
a0f6da3d 771 vmem_alloc_max);
a0f6da3d 772 vfree(ptr);
773
b17edc10 774 SEXIT;
a0f6da3d 775}
776EXPORT_SYMBOL(vmem_free_debug);
777
778# endif /* DEBUG_KMEM_TRACKING */
779#endif /* DEBUG_KMEM */
780
10129680
BB
781/*
782 * Slab allocation interfaces
783 *
784 * While the Linux slab implementation was inspired by the Solaris
785 * implemenation I cannot use it to emulate the Solaris APIs. I
786 * require two features which are not provided by the Linux slab.
787 *
788 * 1) Constructors AND destructors. Recent versions of the Linux
789 * kernel have removed support for destructors. This is a deal
790 * breaker for the SPL which contains particularly expensive
791 * initializers for mutex's, condition variables, etc. We also
792 * require a minimal level of cleanup for these data types unlike
793 * many Linux data type which do need to be explicitly destroyed.
794 *
795 * 2) Virtual address space backed slab. Callers of the Solaris slab
796 * expect it to work well for both small are very large allocations.
797 * Because of memory fragmentation the Linux slab which is backed
798 * by kmalloc'ed memory performs very badly when confronted with
799 * large numbers of large allocations. Basing the slab on the
800 * virtual address space removes the need for contigeous pages
801 * and greatly improve performance for large allocations.
802 *
803 * For these reasons, the SPL has its own slab implementation with
804 * the needed features. It is not as highly optimized as either the
805 * Solaris or Linux slabs, but it should get me most of what is
806 * needed until it can be optimized or obsoleted by another approach.
807 *
808 * One serious concern I do have about this method is the relatively
809 * small virtual address space on 32bit arches. This will seriously
810 * constrain the size of the slab caches and their performance.
811 *
812 * XXX: Improve the partial slab list by carefully maintaining a
813 * strict ordering of fullest to emptiest slabs based on
814 * the slab reference count. This gaurentees the when freeing
815 * slabs back to the system we need only linearly traverse the
816 * last N slabs in the list to discover all the freeable slabs.
817 *
818 * XXX: NUMA awareness for optionally allocating memory close to a
819 * particular core. This can be adventageous if you know the slab
820 * object will be short lived and primarily accessed from one core.
821 *
822 * XXX: Slab coloring may also yield performance improvements and would
823 * be desirable to implement.
824 */
825
826struct list_head spl_kmem_cache_list; /* List of caches */
827struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
828
829static int spl_cache_flush(spl_kmem_cache_t *skc,
830 spl_kmem_magazine_t *skm, int flush);
831
a55bcaad 832SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
495bd532
BB
833SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
834 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
10129680 835
a1502d76 836static void *
837kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
fece7c99 838{
a1502d76 839 void *ptr;
f1ca4da6 840
8b45dda2
BB
841 ASSERT(ISP2(size));
842
2092cf68 843 if (skc->skc_flags & KMC_KMEM) {
8b45dda2 844 ptr = (void *)__get_free_pages(flags, get_order(size));
2092cf68
BB
845 } else {
846 /*
847 * As part of vmalloc() an __pte_alloc_kernel() allocation
848 * may occur. This internal allocation does not honor the
849 * gfp flags passed to vmalloc(). This means even when
850 * vmalloc(GFP_NOFS) is called it is possible synchronous
851 * reclaim will occur. This reclaim can trigger file IO
852 * which can result in a deadlock. This issue can be avoided
853 * by explicitly setting PF_MEMALLOC on the process to
854 * subvert synchronous reclaim. The following bug has
855 * been filed at kernel.org to track the issue.
856 *
857 * https://bugzilla.kernel.org/show_bug.cgi?id=30702
858 */
859 if (!(flags & __GFP_FS))
860 current->flags |= PF_MEMALLOC;
861
8b45dda2
BB
862 ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
863
2092cf68
BB
864 if (!(flags & __GFP_FS))
865 current->flags &= ~PF_MEMALLOC;
866 }
867
8b45dda2
BB
868 /* Resulting allocated memory will be page aligned */
869 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
fece7c99 870
a1502d76 871 return ptr;
872}
fece7c99 873
a1502d76 874static void
875kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
876{
8b45dda2
BB
877 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
878 ASSERT(ISP2(size));
879
880 if (skc->skc_flags & KMC_KMEM)
881 free_pages((unsigned long)ptr, get_order(size));
882 else
883 vfree(ptr);
884}
885
886/*
887 * Required space for each aligned sks.
888 */
889static inline uint32_t
890spl_sks_size(spl_kmem_cache_t *skc)
891{
892 return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
893 skc->skc_obj_align, uint32_t);
894}
895
896/*
897 * Required space for each aligned object.
898 */
899static inline uint32_t
900spl_obj_size(spl_kmem_cache_t *skc)
901{
902 uint32_t align = skc->skc_obj_align;
903
904 return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
905 P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
906}
907
908/*
909 * Lookup the spl_kmem_object_t for an object given that object.
910 */
911static inline spl_kmem_obj_t *
912spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
913{
914 return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
915 skc->skc_obj_align, uint32_t);
916}
917
918/*
919 * Required space for each offslab object taking in to account alignment
920 * restrictions and the power-of-two requirement of kv_alloc().
921 */
922static inline uint32_t
923spl_offslab_size(spl_kmem_cache_t *skc)
924{
925 return 1UL << (highbit(spl_obj_size(skc)) + 1);
fece7c99 926}
927
ea3e6ca9
BB
928/*
929 * It's important that we pack the spl_kmem_obj_t structure and the
48e0606a
BB
930 * actual objects in to one large address space to minimize the number
931 * of calls to the allocator. It is far better to do a few large
932 * allocations and then subdivide it ourselves. Now which allocator
933 * we use requires balancing a few trade offs.
934 *
935 * For small objects we use kmem_alloc() because as long as you are
936 * only requesting a small number of pages (ideally just one) its cheap.
937 * However, when you start requesting multiple pages with kmem_alloc()
938 * it gets increasingly expensive since it requires contigeous pages.
939 * For this reason we shift to vmem_alloc() for slabs of large objects
940 * which removes the need for contigeous pages. We do not use
941 * vmem_alloc() in all cases because there is significant locking
942 * overhead in __get_vm_area_node(). This function takes a single
943 * global lock when aquiring an available virtual address range which
944 * serializes all vmem_alloc()'s for all slab caches. Using slightly
945 * different allocation functions for small and large objects should
946 * give us the best of both worlds.
947 *
948 * KMC_ONSLAB KMC_OFFSLAB
949 *
950 * +------------------------+ +-----------------+
951 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
952 * | skc_obj_size <-+ | | +-----------------+ | |
953 * | spl_kmem_obj_t | | | |
954 * | skc_obj_size <---+ | +-----------------+ | |
955 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
956 * | ... v | | spl_kmem_obj_t | |
957 * +------------------------+ +-----------------+ v
958 */
fece7c99 959static spl_kmem_slab_t *
a1502d76 960spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
fece7c99 961{
962 spl_kmem_slab_t *sks;
a1502d76 963 spl_kmem_obj_t *sko, *n;
964 void *base, *obj;
8b45dda2
BB
965 uint32_t obj_size, offslab_size = 0;
966 int i, rc = 0;
48e0606a 967
a1502d76 968 base = kv_alloc(skc, skc->skc_slab_size, flags);
969 if (base == NULL)
b17edc10 970 SRETURN(NULL);
fece7c99 971
a1502d76 972 sks = (spl_kmem_slab_t *)base;
973 sks->sks_magic = SKS_MAGIC;
974 sks->sks_objs = skc->skc_slab_objs;
975 sks->sks_age = jiffies;
976 sks->sks_cache = skc;
977 INIT_LIST_HEAD(&sks->sks_list);
978 INIT_LIST_HEAD(&sks->sks_free_list);
979 sks->sks_ref = 0;
8b45dda2 980 obj_size = spl_obj_size(skc);
48e0606a 981
8b45dda2
BB
982 if (skc->skc_flags * KMC_OFFSLAB)
983 offslab_size = spl_offslab_size(skc);
fece7c99 984
985 for (i = 0; i < sks->sks_objs; i++) {
a1502d76 986 if (skc->skc_flags & KMC_OFFSLAB) {
8b45dda2 987 obj = kv_alloc(skc, offslab_size, flags);
a1502d76 988 if (!obj)
b17edc10 989 SGOTO(out, rc = -ENOMEM);
a1502d76 990 } else {
8b45dda2 991 obj = base + spl_sks_size(skc) + (i * obj_size);
a1502d76 992 }
993
8b45dda2
BB
994 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
995 sko = spl_sko_from_obj(skc, obj);
fece7c99 996 sko->sko_addr = obj;
997 sko->sko_magic = SKO_MAGIC;
998 sko->sko_slab = sks;
999 INIT_LIST_HEAD(&sko->sko_list);
fece7c99 1000 list_add_tail(&sko->sko_list, &sks->sks_free_list);
1001 }
1002
fece7c99 1003 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
1004 if (skc->skc_ctor)
1005 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
2fb9b26a 1006out:
a1502d76 1007 if (rc) {
1008 if (skc->skc_flags & KMC_OFFSLAB)
48e0606a
BB
1009 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
1010 sko_list)
8b45dda2 1011 kv_free(skc, sko->sko_addr, offslab_size);
fece7c99 1012
a1502d76 1013 kv_free(skc, base, skc->skc_slab_size);
1014 sks = NULL;
fece7c99 1015 }
1016
b17edc10 1017 SRETURN(sks);
fece7c99 1018}
1019
ea3e6ca9
BB
1020/*
1021 * Remove a slab from complete or partial list, it must be called with
1022 * the 'skc->skc_lock' held but the actual free must be performed
1023 * outside the lock to prevent deadlocking on vmem addresses.
fece7c99 1024 */
f1ca4da6 1025static void
ea3e6ca9
BB
1026spl_slab_free(spl_kmem_slab_t *sks,
1027 struct list_head *sks_list, struct list_head *sko_list)
1028{
2fb9b26a 1029 spl_kmem_cache_t *skc;
b17edc10 1030 SENTRY;
57d86234 1031
2fb9b26a 1032 ASSERT(sks->sks_magic == SKS_MAGIC);
4afaaefa 1033 ASSERT(sks->sks_ref == 0);
d6a26c6a 1034
fece7c99 1035 skc = sks->sks_cache;
1036 ASSERT(skc->skc_magic == SKC_MAGIC);
d46630e0 1037 ASSERT(spin_is_locked(&skc->skc_lock));
f1ca4da6 1038
1a944a7d
BB
1039 /*
1040 * Update slab/objects counters in the cache, then remove the
1041 * slab from the skc->skc_partial_list. Finally add the slab
1042 * and all its objects in to the private work lists where the
1043 * destructors will be called and the memory freed to the system.
1044 */
fece7c99 1045 skc->skc_obj_total -= sks->sks_objs;
1046 skc->skc_slab_total--;
1047 list_del(&sks->sks_list);
ea3e6ca9 1048 list_add(&sks->sks_list, sks_list);
1a944a7d
BB
1049 list_splice_init(&sks->sks_free_list, sko_list);
1050
b17edc10 1051 SEXIT;
2fb9b26a 1052}
d6a26c6a 1053
ea3e6ca9
BB
1054/*
1055 * Traverses all the partial slabs attached to a cache and free those
1056 * which which are currently empty, and have not been touched for
37db7d8c
BB
1057 * skc_delay seconds to avoid thrashing. The count argument is
1058 * passed to optionally cap the number of slabs reclaimed, a count
1059 * of zero means try and reclaim everything. When flag is set we
1060 * always free an available slab regardless of age.
ea3e6ca9
BB
1061 */
1062static void
37db7d8c 1063spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
2fb9b26a 1064{
1065 spl_kmem_slab_t *sks, *m;
ea3e6ca9
BB
1066 spl_kmem_obj_t *sko, *n;
1067 LIST_HEAD(sks_list);
1068 LIST_HEAD(sko_list);
8b45dda2
BB
1069 uint32_t size = 0;
1070 int i = 0;
b17edc10 1071 SENTRY;
2fb9b26a 1072
2fb9b26a 1073 /*
ea3e6ca9
BB
1074 * Move empty slabs and objects which have not been touched in
1075 * skc_delay seconds on to private lists to be freed outside
1a944a7d
BB
1076 * the spin lock. This delay time is important to avoid thrashing
1077 * however when flag is set the delay will not be used.
2fb9b26a 1078 */
ea3e6ca9 1079 spin_lock(&skc->skc_lock);
1a944a7d
BB
1080 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
1081 /*
1082 * All empty slabs are at the end of skc->skc_partial_list,
1083 * therefore once a non-empty slab is found we can stop
1084 * scanning. Additionally, stop when reaching the target
1085 * reclaim 'count' if a non-zero threshhold is given.
1086 */
1087 if ((sks->sks_ref > 0) || (count && i > count))
37db7d8c
BB
1088 break;
1089
37db7d8c 1090 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
ea3e6ca9 1091 spl_slab_free(sks, &sks_list, &sko_list);
37db7d8c
BB
1092 i++;
1093 }
ea3e6ca9
BB
1094 }
1095 spin_unlock(&skc->skc_lock);
1096
1097 /*
1a944a7d
BB
1098 * The following two loops ensure all the object destructors are
1099 * run, any offslab objects are freed, and the slabs themselves
1100 * are freed. This is all done outside the skc->skc_lock since
1101 * this allows the destructor to sleep, and allows us to perform
1102 * a conditional reschedule when a freeing a large number of
1103 * objects and slabs back to the system.
ea3e6ca9 1104 */
1a944a7d 1105 if (skc->skc_flags & KMC_OFFSLAB)
8b45dda2 1106 size = spl_offslab_size(skc);
ea3e6ca9 1107
1a944a7d
BB
1108 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
1109 ASSERT(sko->sko_magic == SKO_MAGIC);
1110
1111 if (skc->skc_dtor)
1112 skc->skc_dtor(sko->sko_addr, skc->skc_private);
1113
1114 if (skc->skc_flags & KMC_OFFSLAB)
ea3e6ca9 1115 kv_free(skc, sko->sko_addr, size);
1a944a7d
BB
1116
1117 cond_resched();
2fb9b26a 1118 }
1119
37db7d8c 1120 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1a944a7d 1121 ASSERT(sks->sks_magic == SKS_MAGIC);
ea3e6ca9 1122 kv_free(skc, sks, skc->skc_slab_size);
37db7d8c
BB
1123 cond_resched();
1124 }
ea3e6ca9 1125
b17edc10 1126 SEXIT;
f1ca4da6 1127}
1128
ea3e6ca9
BB
1129/*
1130 * Called regularly on all caches to age objects out of the magazines
1131 * which have not been access in skc->skc_delay seconds. This prevents
1132 * idle magazines from holding memory which might be better used by
1133 * other caches or parts of the system. The delay is present to
1134 * prevent thrashing the magazine.
1135 */
1136static void
1137spl_magazine_age(void *data)
f1ca4da6 1138{
9b1b8e4c
BB
1139 spl_kmem_magazine_t *skm =
1140 spl_get_work_data(data, spl_kmem_magazine_t, skm_work.work);
1141 spl_kmem_cache_t *skc = skm->skm_cache;
1142 int i = smp_processor_id();
1143
1144 ASSERT(skm->skm_magic == SKM_MAGIC);
1145 ASSERT(skc->skc_magic == SKC_MAGIC);
1146 ASSERT(skc->skc_mag[i] == skm);
f1ca4da6 1147
ea3e6ca9
BB
1148 if (skm->skm_avail > 0 &&
1149 time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
1150 (void)spl_cache_flush(skc, skm, skm->skm_refill);
9b1b8e4c
BB
1151
1152 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
1153 schedule_delayed_work_on(i, &skm->skm_work,
1154 skc->skc_delay / 3 * HZ);
ea3e6ca9 1155}
4efd4118 1156
ea3e6ca9
BB
1157/*
1158 * Called regularly to keep a downward pressure on the size of idle
1159 * magazines and to release free slabs from the cache. This function
1160 * never calls the registered reclaim function, that only occures
1161 * under memory pressure or with a direct call to spl_kmem_reap().
1162 */
1163static void
1164spl_cache_age(void *data)
1165{
9b1b8e4c 1166 spl_kmem_cache_t *skc =
ea3e6ca9
BB
1167 spl_get_work_data(data, spl_kmem_cache_t, skc_work.work);
1168
1169 ASSERT(skc->skc_magic == SKC_MAGIC);
37db7d8c 1170 spl_slab_reclaim(skc, skc->skc_reap, 0);
ea3e6ca9
BB
1171
1172 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
37db7d8c 1173 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
2fb9b26a 1174}
f1ca4da6 1175
ea3e6ca9 1176/*
8b45dda2 1177 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
ea3e6ca9
BB
1178 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
1179 * for very small objects we may end up with more than this so as not
1180 * to waste space in the minimal allocation of a single page. Also for
1181 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
1182 * lower than this and we will fail.
1183 */
48e0606a
BB
1184static int
1185spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
1186{
8b45dda2 1187 uint32_t sks_size, obj_size, max_size;
48e0606a
BB
1188
1189 if (skc->skc_flags & KMC_OFFSLAB) {
ea3e6ca9 1190 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
48e0606a
BB
1191 *size = sizeof(spl_kmem_slab_t);
1192 } else {
8b45dda2
BB
1193 sks_size = spl_sks_size(skc);
1194 obj_size = spl_obj_size(skc);
ea3e6ca9
BB
1195
1196 if (skc->skc_flags & KMC_KMEM)
aa600d8a 1197 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
ea3e6ca9
BB
1198 else
1199 max_size = (32 * 1024 * 1024);
48e0606a 1200
8b45dda2
BB
1201 /* Power of two sized slab */
1202 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
ea3e6ca9
BB
1203 *objs = (*size - sks_size) / obj_size;
1204 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
b17edc10 1205 SRETURN(0);
ea3e6ca9 1206 }
48e0606a 1207
ea3e6ca9 1208 /*
8b45dda2 1209 * Unable to satisfy target objects per slab, fall back to
ea3e6ca9
BB
1210 * allocating a maximally sized slab and assuming it can
1211 * contain the minimum objects count use it. If not fail.
1212 */
1213 *size = max_size;
1214 *objs = (*size - sks_size) / obj_size;
1215 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
b17edc10 1216 SRETURN(0);
48e0606a
BB
1217 }
1218
b17edc10 1219 SRETURN(-ENOSPC);
48e0606a
BB
1220}
1221
ea3e6ca9
BB
1222/*
1223 * Make a guess at reasonable per-cpu magazine size based on the size of
1224 * each object and the cost of caching N of them in each magazine. Long
1225 * term this should really adapt based on an observed usage heuristic.
1226 */
4afaaefa 1227static int
1228spl_magazine_size(spl_kmem_cache_t *skc)
1229{
8b45dda2
BB
1230 uint32_t obj_size = spl_obj_size(skc);
1231 int size;
b17edc10 1232 SENTRY;
4afaaefa 1233
ea3e6ca9 1234 /* Per-magazine sizes below assume a 4Kib page size */
8b45dda2 1235 if (obj_size > (PAGE_SIZE * 256))
ea3e6ca9 1236 size = 4; /* Minimum 4Mib per-magazine */
8b45dda2 1237 else if (obj_size > (PAGE_SIZE * 32))
ea3e6ca9 1238 size = 16; /* Minimum 2Mib per-magazine */
8b45dda2 1239 else if (obj_size > (PAGE_SIZE))
ea3e6ca9 1240 size = 64; /* Minimum 256Kib per-magazine */
8b45dda2 1241 else if (obj_size > (PAGE_SIZE / 4))
ea3e6ca9 1242 size = 128; /* Minimum 128Kib per-magazine */
4afaaefa 1243 else
ea3e6ca9 1244 size = 256;
4afaaefa 1245
b17edc10 1246 SRETURN(size);
4afaaefa 1247}
1248
ea3e6ca9
BB
1249/*
1250 * Allocate a per-cpu magazine to assoicate with a specific core.
1251 */
4afaaefa 1252static spl_kmem_magazine_t *
1253spl_magazine_alloc(spl_kmem_cache_t *skc, int node)
1254{
1255 spl_kmem_magazine_t *skm;
1256 int size = sizeof(spl_kmem_magazine_t) +
1257 sizeof(void *) * skc->skc_mag_size;
b17edc10 1258 SENTRY;
4afaaefa 1259
c89fdee4 1260 skm = kmem_alloc_node(size, KM_SLEEP, node);
4afaaefa 1261 if (skm) {
1262 skm->skm_magic = SKM_MAGIC;
1263 skm->skm_avail = 0;
1264 skm->skm_size = skc->skc_mag_size;
1265 skm->skm_refill = skc->skc_mag_refill;
9b1b8e4c
BB
1266 skm->skm_cache = skc;
1267 spl_init_delayed_work(&skm->skm_work, spl_magazine_age, skm);
ea3e6ca9 1268 skm->skm_age = jiffies;
4afaaefa 1269 }
1270
b17edc10 1271 SRETURN(skm);
4afaaefa 1272}
1273
ea3e6ca9
BB
1274/*
1275 * Free a per-cpu magazine assoicated with a specific core.
1276 */
4afaaefa 1277static void
1278spl_magazine_free(spl_kmem_magazine_t *skm)
1279{
a0f6da3d 1280 int size = sizeof(spl_kmem_magazine_t) +
1281 sizeof(void *) * skm->skm_size;
1282
b17edc10 1283 SENTRY;
4afaaefa 1284 ASSERT(skm->skm_magic == SKM_MAGIC);
1285 ASSERT(skm->skm_avail == 0);
a0f6da3d 1286
1287 kmem_free(skm, size);
b17edc10 1288 SEXIT;
4afaaefa 1289}
1290
ea3e6ca9
BB
1291/*
1292 * Create all pre-cpu magazines of reasonable sizes.
1293 */
4afaaefa 1294static int
1295spl_magazine_create(spl_kmem_cache_t *skc)
1296{
37db7d8c 1297 int i;
b17edc10 1298 SENTRY;
4afaaefa 1299
1300 skc->skc_mag_size = spl_magazine_size(skc);
ea3e6ca9 1301 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
4afaaefa 1302
37db7d8c
BB
1303 for_each_online_cpu(i) {
1304 skc->skc_mag[i] = spl_magazine_alloc(skc, cpu_to_node(i));
1305 if (!skc->skc_mag[i]) {
1306 for (i--; i >= 0; i--)
1307 spl_magazine_free(skc->skc_mag[i]);
4afaaefa 1308
b17edc10 1309 SRETURN(-ENOMEM);
37db7d8c
BB
1310 }
1311 }
4afaaefa 1312
9b1b8e4c
BB
1313 /* Only after everything is allocated schedule magazine work */
1314 for_each_online_cpu(i)
1315 schedule_delayed_work_on(i, &skc->skc_mag[i]->skm_work,
1316 skc->skc_delay / 3 * HZ);
1317
b17edc10 1318 SRETURN(0);
4afaaefa 1319}
1320
ea3e6ca9
BB
1321/*
1322 * Destroy all pre-cpu magazines.
1323 */
4afaaefa 1324static void
1325spl_magazine_destroy(spl_kmem_cache_t *skc)
1326{
37db7d8c
BB
1327 spl_kmem_magazine_t *skm;
1328 int i;
b17edc10 1329 SENTRY;
37db7d8c
BB
1330
1331 for_each_online_cpu(i) {
1332 skm = skc->skc_mag[i];
1333 (void)spl_cache_flush(skc, skm, skm->skm_avail);
1334 spl_magazine_free(skm);
1335 }
1336
b17edc10 1337 SEXIT;
4afaaefa 1338}
1339
ea3e6ca9
BB
1340/*
1341 * Create a object cache based on the following arguments:
1342 * name cache name
1343 * size cache object size
1344 * align cache object alignment
1345 * ctor cache object constructor
1346 * dtor cache object destructor
1347 * reclaim cache object reclaim
1348 * priv cache private data for ctor/dtor/reclaim
1349 * vmp unused must be NULL
1350 * flags
1351 * KMC_NOTOUCH Disable cache object aging (unsupported)
1352 * KMC_NODEBUG Disable debugging (unsupported)
1353 * KMC_NOMAGAZINE Disable magazine (unsupported)
1354 * KMC_NOHASH Disable hashing (unsupported)
1355 * KMC_QCACHE Disable qcache (unsupported)
1356 * KMC_KMEM Force kmem backed cache
1357 * KMC_VMEM Force vmem backed cache
1358 * KMC_OFFSLAB Locate objects off the slab
1359 */
2fb9b26a 1360spl_kmem_cache_t *
1361spl_kmem_cache_create(char *name, size_t size, size_t align,
1362 spl_kmem_ctor_t ctor,
1363 spl_kmem_dtor_t dtor,
1364 spl_kmem_reclaim_t reclaim,
1365 void *priv, void *vmp, int flags)
1366{
1367 spl_kmem_cache_t *skc;
a1502d76 1368 int rc, kmem_flags = KM_SLEEP;
b17edc10 1369 SENTRY;
937879f1 1370
a1502d76 1371 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1372 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1373 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
48e0606a 1374 ASSERT(vmp == NULL);
a1502d76 1375
2fb9b26a 1376 /* We may be called when there is a non-zero preempt_count or
1377 * interrupts are disabled is which case we must not sleep.
1378 */
e9d7a2be 1379 if (current_thread_info()->preempt_count || irqs_disabled())
2fb9b26a 1380 kmem_flags = KM_NOSLEEP;
0a6fd143 1381
5198ea0e
BB
1382 /* Allocate memry for a new cache an initialize it. Unfortunately,
1383 * this usually ends up being a large allocation of ~32k because
1384 * we need to allocate enough memory for the worst case number of
1385 * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
23d91792 1386 * explicitly pass KM_NODEBUG to suppress the kmem warning */
5198ea0e 1387 skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc),
23d91792 1388 kmem_flags | KM_NODEBUG);
e9d7a2be 1389 if (skc == NULL)
b17edc10 1390 SRETURN(NULL);
d61e12af 1391
2fb9b26a 1392 skc->skc_magic = SKC_MAGIC;
2fb9b26a 1393 skc->skc_name_size = strlen(name) + 1;
1394 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
1395 if (skc->skc_name == NULL) {
1396 kmem_free(skc, sizeof(*skc));
b17edc10 1397 SRETURN(NULL);
2fb9b26a 1398 }
1399 strncpy(skc->skc_name, name, skc->skc_name_size);
1400
e9d7a2be 1401 skc->skc_ctor = ctor;
1402 skc->skc_dtor = dtor;
1403 skc->skc_reclaim = reclaim;
2fb9b26a 1404 skc->skc_private = priv;
1405 skc->skc_vmp = vmp;
1406 skc->skc_flags = flags;
1407 skc->skc_obj_size = size;
48e0606a 1408 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
2fb9b26a 1409 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
37db7d8c 1410 skc->skc_reap = SPL_KMEM_CACHE_REAP;
ea3e6ca9 1411 atomic_set(&skc->skc_ref, 0);
2fb9b26a 1412
2fb9b26a 1413 INIT_LIST_HEAD(&skc->skc_list);
1414 INIT_LIST_HEAD(&skc->skc_complete_list);
1415 INIT_LIST_HEAD(&skc->skc_partial_list);
d46630e0 1416 spin_lock_init(&skc->skc_lock);
e9d7a2be 1417 skc->skc_slab_fail = 0;
1418 skc->skc_slab_create = 0;
1419 skc->skc_slab_destroy = 0;
2fb9b26a 1420 skc->skc_slab_total = 0;
1421 skc->skc_slab_alloc = 0;
1422 skc->skc_slab_max = 0;
1423 skc->skc_obj_total = 0;
1424 skc->skc_obj_alloc = 0;
1425 skc->skc_obj_max = 0;
a1502d76 1426
48e0606a 1427 if (align) {
8b45dda2
BB
1428 VERIFY(ISP2(align));
1429 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */
1430 VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */
48e0606a
BB
1431 skc->skc_obj_align = align;
1432 }
1433
a1502d76 1434 /* If none passed select a cache type based on object size */
1435 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
8b45dda2 1436 if (spl_obj_size(skc) < (PAGE_SIZE / 8))
a1502d76 1437 skc->skc_flags |= KMC_KMEM;
8b45dda2 1438 else
a1502d76 1439 skc->skc_flags |= KMC_VMEM;
a1502d76 1440 }
1441
48e0606a
BB
1442 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1443 if (rc)
b17edc10 1444 SGOTO(out, rc);
4afaaefa 1445
1446 rc = spl_magazine_create(skc);
48e0606a 1447 if (rc)
b17edc10 1448 SGOTO(out, rc);
2fb9b26a 1449
ea3e6ca9 1450 spl_init_delayed_work(&skc->skc_work, spl_cache_age, skc);
37db7d8c 1451 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
ea3e6ca9 1452
2fb9b26a 1453 down_write(&spl_kmem_cache_sem);
e9d7a2be 1454 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
2fb9b26a 1455 up_write(&spl_kmem_cache_sem);
1456
b17edc10 1457 SRETURN(skc);
48e0606a
BB
1458out:
1459 kmem_free(skc->skc_name, skc->skc_name_size);
1460 kmem_free(skc, sizeof(*skc));
b17edc10 1461 SRETURN(NULL);
f1ca4da6 1462}
2fb9b26a 1463EXPORT_SYMBOL(spl_kmem_cache_create);
f1ca4da6 1464
2b354302
BB
1465/*
1466 * Register a move callback to for cache defragmentation.
1467 * XXX: Unimplemented but harmless to stub out for now.
1468 */
1469void
1470spl_kmem_cache_set_move(kmem_cache_t *skc,
1471 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1472{
1473 ASSERT(move != NULL);
1474}
1475EXPORT_SYMBOL(spl_kmem_cache_set_move);
1476
ea3e6ca9
BB
1477/*
1478 * Destroy a cache and all objects assoicated with the cache.
1479 */
2fb9b26a 1480void
1481spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
f1ca4da6 1482{
ea3e6ca9 1483 DECLARE_WAIT_QUEUE_HEAD(wq);
9b1b8e4c 1484 int i;
b17edc10 1485 SENTRY;
f1ca4da6 1486
e9d7a2be 1487 ASSERT(skc->skc_magic == SKC_MAGIC);
1488
1489 down_write(&spl_kmem_cache_sem);
1490 list_del_init(&skc->skc_list);
1491 up_write(&spl_kmem_cache_sem);
2fb9b26a 1492
ea3e6ca9
BB
1493 /* Cancel any and wait for any pending delayed work */
1494 ASSERT(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1495 cancel_delayed_work(&skc->skc_work);
9b1b8e4c
BB
1496 for_each_online_cpu(i)
1497 cancel_delayed_work(&skc->skc_mag[i]->skm_work);
1498
ea3e6ca9
BB
1499 flush_scheduled_work();
1500
1501 /* Wait until all current callers complete, this is mainly
1502 * to catch the case where a low memory situation triggers a
1503 * cache reaping action which races with this destroy. */
1504 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1505
4afaaefa 1506 spl_magazine_destroy(skc);
37db7d8c 1507 spl_slab_reclaim(skc, 0, 1);
d46630e0 1508 spin_lock(&skc->skc_lock);
d6a26c6a 1509
2fb9b26a 1510 /* Validate there are no objects in use and free all the
4afaaefa 1511 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
ea3e6ca9
BB
1512 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1513 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1514 ASSERT3U(skc->skc_slab_total, ==, 0);
1515 ASSERT3U(skc->skc_obj_total, ==, 0);
2fb9b26a 1516 ASSERT(list_empty(&skc->skc_complete_list));
a1502d76 1517
2fb9b26a 1518 kmem_free(skc->skc_name, skc->skc_name_size);
d46630e0 1519 spin_unlock(&skc->skc_lock);
ff449ac4 1520
4afaaefa 1521 kmem_free(skc, sizeof(*skc));
2fb9b26a 1522
b17edc10 1523 SEXIT;
f1ca4da6 1524}
2fb9b26a 1525EXPORT_SYMBOL(spl_kmem_cache_destroy);
f1ca4da6 1526
ea3e6ca9
BB
1527/*
1528 * Allocate an object from a slab attached to the cache. This is used to
1529 * repopulate the per-cpu magazine caches in batches when they run low.
1530 */
4afaaefa 1531static void *
1532spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
f1ca4da6 1533{
2fb9b26a 1534 spl_kmem_obj_t *sko;
f1ca4da6 1535
e9d7a2be 1536 ASSERT(skc->skc_magic == SKC_MAGIC);
1537 ASSERT(sks->sks_magic == SKS_MAGIC);
4afaaefa 1538 ASSERT(spin_is_locked(&skc->skc_lock));
2fb9b26a 1539
a1502d76 1540 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
4afaaefa 1541 ASSERT(sko->sko_magic == SKO_MAGIC);
1542 ASSERT(sko->sko_addr != NULL);
2fb9b26a 1543
a1502d76 1544 /* Remove from sks_free_list */
4afaaefa 1545 list_del_init(&sko->sko_list);
2fb9b26a 1546
4afaaefa 1547 sks->sks_age = jiffies;
1548 sks->sks_ref++;
1549 skc->skc_obj_alloc++;
2fb9b26a 1550
4afaaefa 1551 /* Track max obj usage statistics */
1552 if (skc->skc_obj_alloc > skc->skc_obj_max)
1553 skc->skc_obj_max = skc->skc_obj_alloc;
2fb9b26a 1554
4afaaefa 1555 /* Track max slab usage statistics */
1556 if (sks->sks_ref == 1) {
1557 skc->skc_slab_alloc++;
f1ca4da6 1558
4afaaefa 1559 if (skc->skc_slab_alloc > skc->skc_slab_max)
1560 skc->skc_slab_max = skc->skc_slab_alloc;
2fb9b26a 1561 }
1562
4afaaefa 1563 return sko->sko_addr;
1564}
c30df9c8 1565
ea3e6ca9
BB
1566/*
1567 * No available objects on any slabsi, create a new slab. Since this
1568 * is an expensive operation we do it without holding the spinlock and
1569 * only briefly aquire it when we link in the fully allocated and
1570 * constructed slab.
4afaaefa 1571 */
1572static spl_kmem_slab_t *
1573spl_cache_grow(spl_kmem_cache_t *skc, int flags)
1574{
e9d7a2be 1575 spl_kmem_slab_t *sks;
b17edc10 1576 SENTRY;
f1ca4da6 1577
e9d7a2be 1578 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
1579 local_irq_enable();
1580 might_sleep();
e9d7a2be 1581
ea3e6ca9
BB
1582 /*
1583 * Before allocating a new slab check if the slab is being reaped.
1584 * If it is there is a good chance we can wait until it finishes
1585 * and then use one of the newly freed but not aged-out slabs.
1586 */
1587 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1588 schedule();
b17edc10 1589 SGOTO(out, sks= NULL);
4afaaefa 1590 }
2fb9b26a 1591
ea3e6ca9 1592 /* Allocate a new slab for the cache */
23d91792 1593 sks = spl_slab_alloc(skc, flags | __GFP_NORETRY | KM_NODEBUG);
ea3e6ca9 1594 if (sks == NULL)
b17edc10 1595 SGOTO(out, sks = NULL);
4afaaefa 1596
ea3e6ca9 1597 /* Link the new empty slab in to the end of skc_partial_list. */
d46630e0 1598 spin_lock(&skc->skc_lock);
2fb9b26a 1599 skc->skc_slab_total++;
1600 skc->skc_obj_total += sks->sks_objs;
1601 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
d46630e0 1602 spin_unlock(&skc->skc_lock);
ea3e6ca9
BB
1603out:
1604 local_irq_disable();
4afaaefa 1605
b17edc10 1606 SRETURN(sks);
f1ca4da6 1607}
1608
ea3e6ca9
BB
1609/*
1610 * Refill a per-cpu magazine with objects from the slabs for this
1611 * cache. Ideally the magazine can be repopulated using existing
1612 * objects which have been released, however if we are unable to
1613 * locate enough free objects new slabs of objects will be created.
1614 */
4afaaefa 1615static int
1616spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
f1ca4da6 1617{
e9d7a2be 1618 spl_kmem_slab_t *sks;
1619 int rc = 0, refill;
b17edc10 1620 SENTRY;
f1ca4da6 1621
e9d7a2be 1622 ASSERT(skc->skc_magic == SKC_MAGIC);
1623 ASSERT(skm->skm_magic == SKM_MAGIC);
1624
e9d7a2be 1625 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
d46630e0 1626 spin_lock(&skc->skc_lock);
ff449ac4 1627
4afaaefa 1628 while (refill > 0) {
ea3e6ca9 1629 /* No slabs available we may need to grow the cache */
4afaaefa 1630 if (list_empty(&skc->skc_partial_list)) {
1631 spin_unlock(&skc->skc_lock);
ff449ac4 1632
4afaaefa 1633 sks = spl_cache_grow(skc, flags);
1634 if (!sks)
b17edc10 1635 SGOTO(out, rc);
4afaaefa 1636
1637 /* Rescheduled to different CPU skm is not local */
1638 if (skm != skc->skc_mag[smp_processor_id()])
b17edc10 1639 SGOTO(out, rc);
e9d7a2be 1640
1641 /* Potentially rescheduled to the same CPU but
1642 * allocations may have occured from this CPU while
1643 * we were sleeping so recalculate max refill. */
1644 refill = MIN(refill, skm->skm_size - skm->skm_avail);
4afaaefa 1645
1646 spin_lock(&skc->skc_lock);
1647 continue;
1648 }
d46630e0 1649
4afaaefa 1650 /* Grab the next available slab */
1651 sks = list_entry((&skc->skc_partial_list)->next,
1652 spl_kmem_slab_t, sks_list);
1653 ASSERT(sks->sks_magic == SKS_MAGIC);
1654 ASSERT(sks->sks_ref < sks->sks_objs);
1655 ASSERT(!list_empty(&sks->sks_free_list));
d46630e0 1656
4afaaefa 1657 /* Consume as many objects as needed to refill the requested
e9d7a2be 1658 * cache. We must also be careful not to overfill it. */
1659 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++rc) {
1660 ASSERT(skm->skm_avail < skm->skm_size);
1661 ASSERT(rc < skm->skm_size);
4afaaefa 1662 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
e9d7a2be 1663 }
f1ca4da6 1664
4afaaefa 1665 /* Move slab to skc_complete_list when full */
1666 if (sks->sks_ref == sks->sks_objs) {
1667 list_del(&sks->sks_list);
1668 list_add(&sks->sks_list, &skc->skc_complete_list);
2fb9b26a 1669 }
1670 }
57d86234 1671
4afaaefa 1672 spin_unlock(&skc->skc_lock);
1673out:
1674 /* Returns the number of entries added to cache */
b17edc10 1675 SRETURN(rc);
4afaaefa 1676}
1677
ea3e6ca9
BB
1678/*
1679 * Release an object back to the slab from which it came.
1680 */
4afaaefa 1681static void
1682spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1683{
e9d7a2be 1684 spl_kmem_slab_t *sks = NULL;
4afaaefa 1685 spl_kmem_obj_t *sko = NULL;
b17edc10 1686 SENTRY;
4afaaefa 1687
e9d7a2be 1688 ASSERT(skc->skc_magic == SKC_MAGIC);
4afaaefa 1689 ASSERT(spin_is_locked(&skc->skc_lock));
1690
8b45dda2 1691 sko = spl_sko_from_obj(skc, obj);
a1502d76 1692 ASSERT(sko->sko_magic == SKO_MAGIC);
4afaaefa 1693 sks = sko->sko_slab;
a1502d76 1694 ASSERT(sks->sks_magic == SKS_MAGIC);
2fb9b26a 1695 ASSERT(sks->sks_cache == skc);
2fb9b26a 1696 list_add(&sko->sko_list, &sks->sks_free_list);
d6a26c6a 1697
2fb9b26a 1698 sks->sks_age = jiffies;
4afaaefa 1699 sks->sks_ref--;
2fb9b26a 1700 skc->skc_obj_alloc--;
f1ca4da6 1701
2fb9b26a 1702 /* Move slab to skc_partial_list when no longer full. Slabs
4afaaefa 1703 * are added to the head to keep the partial list is quasi-full
1704 * sorted order. Fuller at the head, emptier at the tail. */
1705 if (sks->sks_ref == (sks->sks_objs - 1)) {
2fb9b26a 1706 list_del(&sks->sks_list);
1707 list_add(&sks->sks_list, &skc->skc_partial_list);
1708 }
f1ca4da6 1709
2fb9b26a 1710 /* Move emply slabs to the end of the partial list so
4afaaefa 1711 * they can be easily found and freed during reclamation. */
1712 if (sks->sks_ref == 0) {
2fb9b26a 1713 list_del(&sks->sks_list);
1714 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1715 skc->skc_slab_alloc--;
1716 }
1717
b17edc10 1718 SEXIT;
4afaaefa 1719}
1720
ea3e6ca9
BB
1721/*
1722 * Release a batch of objects from a per-cpu magazine back to their
1723 * respective slabs. This occurs when we exceed the magazine size,
1724 * are under memory pressure, when the cache is idle, or during
1725 * cache cleanup. The flush argument contains the number of entries
1726 * to remove from the magazine.
1727 */
4afaaefa 1728static int
1729spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1730{
1731 int i, count = MIN(flush, skm->skm_avail);
b17edc10 1732 SENTRY;
4afaaefa 1733
e9d7a2be 1734 ASSERT(skc->skc_magic == SKC_MAGIC);
1735 ASSERT(skm->skm_magic == SKM_MAGIC);
4afaaefa 1736
ea3e6ca9
BB
1737 /*
1738 * XXX: Currently we simply return objects from the magazine to
1739 * the slabs in fifo order. The ideal thing to do from a memory
1740 * fragmentation standpoint is to cheaply determine the set of
1741 * objects in the magazine which will result in the largest
1742 * number of free slabs if released from the magazine.
1743 */
4afaaefa 1744 spin_lock(&skc->skc_lock);
1745 for (i = 0; i < count; i++)
1746 spl_cache_shrink(skc, skm->skm_objs[i]);
1747
e9d7a2be 1748 skm->skm_avail -= count;
1749 memmove(skm->skm_objs, &(skm->skm_objs[count]),
4afaaefa 1750 sizeof(void *) * skm->skm_avail);
1751
d46630e0 1752 spin_unlock(&skc->skc_lock);
4afaaefa 1753
b17edc10 1754 SRETURN(count);
4afaaefa 1755}
1756
ea3e6ca9
BB
1757/*
1758 * Allocate an object from the per-cpu magazine, or if the magazine
1759 * is empty directly allocate from a slab and repopulate the magazine.
1760 */
4afaaefa 1761void *
1762spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1763{
1764 spl_kmem_magazine_t *skm;
1765 unsigned long irq_flags;
1766 void *obj = NULL;
b17edc10 1767 SENTRY;
4afaaefa 1768
e9d7a2be 1769 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
1770 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1771 ASSERT(flags & KM_SLEEP);
1772 atomic_inc(&skc->skc_ref);
4afaaefa 1773 local_irq_save(irq_flags);
1774
1775restart:
1776 /* Safe to update per-cpu structure without lock, but
1777 * in the restart case we must be careful to reaquire
1778 * the local magazine since this may have changed
1779 * when we need to grow the cache. */
1780 skm = skc->skc_mag[smp_processor_id()];
e9d7a2be 1781 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
1782 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
1783 skm->skm_size, skm->skm_refill, skm->skm_avail);
4afaaefa 1784
1785 if (likely(skm->skm_avail)) {
1786 /* Object available in CPU cache, use it */
1787 obj = skm->skm_objs[--skm->skm_avail];
ea3e6ca9 1788 skm->skm_age = jiffies;
4afaaefa 1789 } else {
1790 /* Per-CPU cache empty, directly allocate from
1791 * the slab and refill the per-CPU cache. */
1792 (void)spl_cache_refill(skc, skm, flags);
b17edc10 1793 SGOTO(restart, obj = NULL);
4afaaefa 1794 }
1795
1796 local_irq_restore(irq_flags);
fece7c99 1797 ASSERT(obj);
8b45dda2 1798 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
4afaaefa 1799
1800 /* Pre-emptively migrate object to CPU L1 cache */
1801 prefetchw(obj);
ea3e6ca9 1802 atomic_dec(&skc->skc_ref);
4afaaefa 1803
b17edc10 1804 SRETURN(obj);
4afaaefa 1805}
1806EXPORT_SYMBOL(spl_kmem_cache_alloc);
1807
ea3e6ca9
BB
1808/*
1809 * Free an object back to the local per-cpu magazine, there is no
1810 * guarantee that this is the same magazine the object was originally
1811 * allocated from. We may need to flush entire from the magazine
1812 * back to the slabs to make space.
1813 */
4afaaefa 1814void
1815spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1816{
1817 spl_kmem_magazine_t *skm;
1818 unsigned long flags;
b17edc10 1819 SENTRY;
4afaaefa 1820
e9d7a2be 1821 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
1822 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1823 atomic_inc(&skc->skc_ref);
4afaaefa 1824 local_irq_save(flags);
1825
1826 /* Safe to update per-cpu structure without lock, but
1827 * no remote memory allocation tracking is being performed
1828 * it is entirely possible to allocate an object from one
1829 * CPU cache and return it to another. */
1830 skm = skc->skc_mag[smp_processor_id()];
e9d7a2be 1831 ASSERT(skm->skm_magic == SKM_MAGIC);
4afaaefa 1832
1833 /* Per-CPU cache full, flush it to make space */
1834 if (unlikely(skm->skm_avail >= skm->skm_size))
1835 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1836
1837 /* Available space in cache, use it */
1838 skm->skm_objs[skm->skm_avail++] = obj;
1839
1840 local_irq_restore(flags);
ea3e6ca9 1841 atomic_dec(&skc->skc_ref);
4afaaefa 1842
b17edc10 1843 SEXIT;
f1ca4da6 1844}
2fb9b26a 1845EXPORT_SYMBOL(spl_kmem_cache_free);
5c2bb9b2 1846
ea3e6ca9
BB
1847/*
1848 * The generic shrinker function for all caches. Under linux a shrinker
1849 * may not be tightly coupled with a slab cache. In fact linux always
1850 * systematically trys calling all registered shrinker callbacks which
1851 * report that they contain unused objects. Because of this we only
1852 * register one shrinker function in the shim layer for all slab caches.
1853 * We always attempt to shrink all caches when this generic shrinker
1854 * is called. The shrinker should return the number of free objects
1855 * in the cache when called with nr_to_scan == 0 but not attempt to
1856 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
1857 * objects should be freed, because Solaris semantics are to free
1858 * all available objects we may free more objects than requested.
1859 */
a55bcaad
BB
1860static int
1861__spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
1862 struct shrink_control *sc)
2fb9b26a 1863{
e9d7a2be 1864 spl_kmem_cache_t *skc;
ea3e6ca9 1865 int unused = 0;
5c2bb9b2 1866
e9d7a2be 1867 down_read(&spl_kmem_cache_sem);
ea3e6ca9 1868 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
a55bcaad 1869 if (sc->nr_to_scan)
ea3e6ca9
BB
1870 spl_kmem_cache_reap_now(skc);
1871
1872 /*
1873 * Presume everything alloc'ed in reclaimable, this ensures
1874 * we are called again with nr_to_scan > 0 so can try and
1875 * reclaim. The exact number is not important either so
1876 * we forgo taking this already highly contented lock.
1877 */
1878 unused += skc->skc_obj_alloc;
1879 }
e9d7a2be 1880 up_read(&spl_kmem_cache_sem);
2fb9b26a 1881
ea3e6ca9 1882 return (unused * sysctl_vfs_cache_pressure) / 100;
5c2bb9b2 1883}
5c2bb9b2 1884
a55bcaad
BB
1885SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
1886
ea3e6ca9
BB
1887/*
1888 * Call the registered reclaim function for a cache. Depending on how
1889 * many and which objects are released it may simply repopulate the
1890 * local magazine which will then need to age-out. Objects which cannot
1891 * fit in the magazine we will be released back to their slabs which will
1892 * also need to age out before being release. This is all just best
1893 * effort and we do not want to thrash creating and destroying slabs.
1894 */
57d86234 1895void
2fb9b26a 1896spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
57d86234 1897{
b17edc10 1898 SENTRY;
e9d7a2be 1899
1900 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9 1901 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2fb9b26a 1902
ea3e6ca9
BB
1903 /* Prevent concurrent cache reaping when contended */
1904 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
b17edc10 1905 SEXIT;
ea3e6ca9
BB
1906 return;
1907 }
2fb9b26a 1908
ea3e6ca9 1909 atomic_inc(&skc->skc_ref);
4afaaefa 1910
ea3e6ca9
BB
1911 if (skc->skc_reclaim)
1912 skc->skc_reclaim(skc->skc_private);
4afaaefa 1913
37db7d8c 1914 spl_slab_reclaim(skc, skc->skc_reap, 0);
ea3e6ca9
BB
1915 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
1916 atomic_dec(&skc->skc_ref);
4afaaefa 1917
b17edc10 1918 SEXIT;
57d86234 1919}
2fb9b26a 1920EXPORT_SYMBOL(spl_kmem_cache_reap_now);
57d86234 1921
ea3e6ca9
BB
1922/*
1923 * Reap all free slabs from all registered caches.
1924 */
f1b59d26 1925void
2fb9b26a 1926spl_kmem_reap(void)
937879f1 1927{
a55bcaad
BB
1928 struct shrink_control sc;
1929
1930 sc.nr_to_scan = KMC_REAP_CHUNK;
1931 sc.gfp_mask = GFP_KERNEL;
1932
1933 __spl_kmem_cache_generic_shrinker(NULL, &sc);
f1ca4da6 1934}
2fb9b26a 1935EXPORT_SYMBOL(spl_kmem_reap);
5d86345d 1936
ff449ac4 1937#if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
c6dc93d6 1938static char *
4afaaefa 1939spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
d6a26c6a 1940{
e9d7a2be 1941 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
d6a26c6a 1942 int i, flag = 1;
1943
1944 ASSERT(str != NULL && len >= 17);
e9d7a2be 1945 memset(str, 0, len);
d6a26c6a 1946
1947 /* Check for a fully printable string, and while we are at
1948 * it place the printable characters in the passed buffer. */
1949 for (i = 0; i < size; i++) {
e9d7a2be 1950 str[i] = ((char *)(kd->kd_addr))[i];
1951 if (isprint(str[i])) {
1952 continue;
1953 } else {
1954 /* Minimum number of printable characters found
1955 * to make it worthwhile to print this as ascii. */
1956 if (i > min)
1957 break;
1958
1959 flag = 0;
1960 break;
1961 }
d6a26c6a 1962 }
1963
1964 if (!flag) {
1965 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
1966 *((uint8_t *)kd->kd_addr),
1967 *((uint8_t *)kd->kd_addr + 2),
1968 *((uint8_t *)kd->kd_addr + 4),
1969 *((uint8_t *)kd->kd_addr + 6),
1970 *((uint8_t *)kd->kd_addr + 8),
1971 *((uint8_t *)kd->kd_addr + 10),
1972 *((uint8_t *)kd->kd_addr + 12),
1973 *((uint8_t *)kd->kd_addr + 14));
1974 }
1975
1976 return str;
1977}
1978
a1502d76 1979static int
1980spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
1981{
1982 int i;
b17edc10 1983 SENTRY;
a1502d76 1984
1985 spin_lock_init(lock);
1986 INIT_LIST_HEAD(list);
1987
1988 for (i = 0; i < size; i++)
1989 INIT_HLIST_HEAD(&kmem_table[i]);
1990
b17edc10 1991 SRETURN(0);
a1502d76 1992}
1993
ff449ac4 1994static void
1995spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
5d86345d 1996{
2fb9b26a 1997 unsigned long flags;
1998 kmem_debug_t *kd;
1999 char str[17];
b17edc10 2000 SENTRY;
2fb9b26a 2001
ff449ac4 2002 spin_lock_irqsave(lock, flags);
2003 if (!list_empty(list))
a0f6da3d 2004 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
2005 "size", "data", "func", "line");
2fb9b26a 2006
ff449ac4 2007 list_for_each_entry(kd, list, kd_list)
a0f6da3d 2008 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
b6b2acc6 2009 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2fb9b26a 2010 kd->kd_func, kd->kd_line);
2011
ff449ac4 2012 spin_unlock_irqrestore(lock, flags);
b17edc10 2013 SEXIT;
ff449ac4 2014}
2015#else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
a1502d76 2016#define spl_kmem_init_tracking(list, lock, size)
ff449ac4 2017#define spl_kmem_fini_tracking(list, lock)
2018#endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2019
36b313da
BB
2020static void
2021spl_kmem_init_globals(void)
2022{
2023 struct zone *zone;
2024
2025 /* For now all zones are includes, it may be wise to restrict
2026 * this to normal and highmem zones if we see problems. */
2027 for_each_zone(zone) {
2028
2029 if (!populated_zone(zone))
2030 continue;
2031
baf2979e
BB
2032 minfree += min_wmark_pages(zone);
2033 desfree += low_wmark_pages(zone);
2034 lotsfree += high_wmark_pages(zone);
36b313da 2035 }
4ab13d3b
BB
2036
2037 /* Solaris default values */
96dded38
BB
2038 swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3);
2039 swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4);
36b313da
BB
2040}
2041
d1ff2312
BB
2042/*
2043 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
2044 */
2045int
2046spl_kmem_init_kallsyms_lookup(void)
2047{
2048#ifndef HAVE_GET_VMALLOC_INFO
2049 get_vmalloc_info_fn = (get_vmalloc_info_t)
2050 spl_kallsyms_lookup_name("get_vmalloc_info");
e11d6c5f
BB
2051 if (!get_vmalloc_info_fn) {
2052 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
d1ff2312 2053 return -EFAULT;
e11d6c5f 2054 }
d1ff2312
BB
2055#endif /* HAVE_GET_VMALLOC_INFO */
2056
5232d256
BB
2057#ifdef HAVE_PGDAT_HELPERS
2058# ifndef HAVE_FIRST_ONLINE_PGDAT
d1ff2312
BB
2059 first_online_pgdat_fn = (first_online_pgdat_t)
2060 spl_kallsyms_lookup_name("first_online_pgdat");
e11d6c5f
BB
2061 if (!first_online_pgdat_fn) {
2062 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
d1ff2312 2063 return -EFAULT;
e11d6c5f 2064 }
5232d256 2065# endif /* HAVE_FIRST_ONLINE_PGDAT */
d1ff2312 2066
5232d256 2067# ifndef HAVE_NEXT_ONLINE_PGDAT
d1ff2312
BB
2068 next_online_pgdat_fn = (next_online_pgdat_t)
2069 spl_kallsyms_lookup_name("next_online_pgdat");
e11d6c5f
BB
2070 if (!next_online_pgdat_fn) {
2071 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
d1ff2312 2072 return -EFAULT;
e11d6c5f 2073 }
5232d256 2074# endif /* HAVE_NEXT_ONLINE_PGDAT */
d1ff2312 2075
5232d256 2076# ifndef HAVE_NEXT_ZONE
d1ff2312
BB
2077 next_zone_fn = (next_zone_t)
2078 spl_kallsyms_lookup_name("next_zone");
e11d6c5f
BB
2079 if (!next_zone_fn) {
2080 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
d1ff2312 2081 return -EFAULT;
e11d6c5f 2082 }
5232d256
BB
2083# endif /* HAVE_NEXT_ZONE */
2084
2085#else /* HAVE_PGDAT_HELPERS */
2086
2087# ifndef HAVE_PGDAT_LIST
124ca8a5 2088 pgdat_list_addr = *(struct pglist_data **)
5232d256
BB
2089 spl_kallsyms_lookup_name("pgdat_list");
2090 if (!pgdat_list_addr) {
2091 printk(KERN_ERR "Error: Unknown symbol pgdat_list\n");
2092 return -EFAULT;
2093 }
2094# endif /* HAVE_PGDAT_LIST */
2095#endif /* HAVE_PGDAT_HELPERS */
d1ff2312 2096
6ae7fef5 2097#if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS)
d1ff2312
BB
2098 get_zone_counts_fn = (get_zone_counts_t)
2099 spl_kallsyms_lookup_name("get_zone_counts");
e11d6c5f
BB
2100 if (!get_zone_counts_fn) {
2101 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
d1ff2312 2102 return -EFAULT;
e11d6c5f 2103 }
6ae7fef5 2104#endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */
d1ff2312
BB
2105
2106 /*
2107 * It is now safe to initialize the global tunings which rely on
2108 * the use of the for_each_zone() macro. This macro in turns
2109 * depends on the *_pgdat symbols which are now available.
2110 */
2111 spl_kmem_init_globals();
2112
914b0631
BB
2113#ifndef HAVE_INVALIDATE_INODES
2114 invalidate_inodes_fn = (invalidate_inodes_t)
9b0f9079 2115 spl_kallsyms_lookup_name("invalidate_inodes");
914b0631
BB
2116 if (!invalidate_inodes_fn) {
2117 printk(KERN_ERR "Error: Unknown symbol invalidate_inodes\n");
2118 return -EFAULT;
2119 }
2120#endif /* HAVE_INVALIDATE_INODES */
2121
e76f4bf1
BB
2122#ifndef HAVE_SHRINK_DCACHE_MEMORY
2123 shrink_dcache_memory_fn = (shrink_dcache_memory_t)
2124 spl_kallsyms_lookup_name("shrink_dcache_memory");
2125 if (!shrink_dcache_memory_fn) {
2126 printk(KERN_ERR "Error: Unknown symbol shrink_dcache_memory\n");
2127 return -EFAULT;
2128 }
2129#endif /* HAVE_SHRINK_DCACHE_MEMORY */
2130
2131#ifndef HAVE_SHRINK_ICACHE_MEMORY
2132 shrink_icache_memory_fn = (shrink_icache_memory_t)
2133 spl_kallsyms_lookup_name("shrink_icache_memory");
2134 if (!shrink_icache_memory_fn) {
2135 printk(KERN_ERR "Error: Unknown symbol shrink_icache_memory\n");
2136 return -EFAULT;
2137 }
2138#endif /* HAVE_SHRINK_ICACHE_MEMORY */
2139
d1ff2312
BB
2140 return 0;
2141}
2142
a1502d76 2143int
2144spl_kmem_init(void)
2145{
2146 int rc = 0;
b17edc10 2147 SENTRY;
a1502d76 2148
2149 init_rwsem(&spl_kmem_cache_sem);
2150 INIT_LIST_HEAD(&spl_kmem_cache_list);
2151
495bd532 2152 spl_register_shrinker(&spl_kmem_cache_shrinker);
a1502d76 2153
2154#ifdef DEBUG_KMEM
d04c8a56
BB
2155 kmem_alloc_used_set(0);
2156 vmem_alloc_used_set(0);
a1502d76 2157
2158 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
2159 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
2160#endif
b17edc10 2161 SRETURN(rc);
a1502d76 2162}
2163
ff449ac4 2164void
2165spl_kmem_fini(void)
2166{
2167#ifdef DEBUG_KMEM
2168 /* Display all unreclaimed memory addresses, including the
2169 * allocation size and the first few bytes of what's located
2170 * at that address to aid in debugging. Performance is not
2171 * a serious concern here since it is module unload time. */
d04c8a56 2172 if (kmem_alloc_used_read() != 0)
b17edc10 2173 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
2174 "kmem leaked %ld/%ld bytes\n",
2175 kmem_alloc_used_read(), kmem_alloc_max);
ff449ac4 2176
2fb9b26a 2177
d04c8a56 2178 if (vmem_alloc_used_read() != 0)
b17edc10 2179 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
2180 "vmem leaked %ld/%ld bytes\n",
2181 vmem_alloc_used_read(), vmem_alloc_max);
2fb9b26a 2182
ff449ac4 2183 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
2184 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
2185#endif /* DEBUG_KMEM */
b17edc10 2186 SENTRY;
2fb9b26a 2187
495bd532 2188 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
2fb9b26a 2189
b17edc10 2190 SEXIT;
5d86345d 2191}