]> git.proxmox.com Git - mirror_spl.git/blame - module/spl/spl-kmem.c
Fix bogus kmem leak warning
[mirror_spl.git] / module / spl / spl-kmem.c
CommitLineData
716154c5
BB
1/*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
715f6251 6 * UCRL-CODE-235197
7 *
716154c5 8 * This file is part of the SPL, Solaris Porting Layer.
3d6af2dd 9 * For details, see <http://zfsonlinux.org/>.
715f6251 10 *
716154c5
BB
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
715f6251 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
716154c5
BB
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Kmem Implementation.
25\*****************************************************************************/
715f6251 26
f4b37741 27#include <sys/kmem.h>
55abb092 28#include <spl-debug.h>
f1ca4da6 29
b17edc10
BB
30#ifdef SS_DEBUG_SUBSYS
31#undef SS_DEBUG_SUBSYS
937879f1 32#endif
33
b17edc10 34#define SS_DEBUG_SUBSYS SS_KMEM
937879f1 35
0936c344
BB
36/*
37 * Cache expiration was implemented because it was part of the default Solaris
38 * kmem_cache behavior. The idea is that per-cpu objects which haven't been
39 * accessed in several seconds should be returned to the cache. On the other
40 * hand Linux slabs never move objects back to the slabs unless there is
41 * memory pressure on the system. By default both methods are disabled, but
42 * may be enabled by setting KMC_EXPIRE_AGE or KMC_EXPIRE_MEM.
43 */
44unsigned int spl_kmem_cache_expire = 0;
45EXPORT_SYMBOL(spl_kmem_cache_expire);
46module_param(spl_kmem_cache_expire, uint, 0644);
47MODULE_PARM_DESC(spl_kmem_cache_expire, "By age (0x1) or low memory (0x2)");
48
36b313da
BB
49/*
50 * The minimum amount of memory measured in pages to be free at all
51 * times on the system. This is similar to Linux's zone->pages_min
ecc39810 52 * multiplied by the number of zones and is sized based on that.
36b313da
BB
53 */
54pgcnt_t minfree = 0;
55EXPORT_SYMBOL(minfree);
56
57/*
58 * The desired amount of memory measured in pages to be free at all
59 * times on the system. This is similar to Linux's zone->pages_low
ecc39810 60 * multiplied by the number of zones and is sized based on that.
36b313da 61 * Assuming all zones are being used roughly equally, when we drop
ecc39810 62 * below this threshold asynchronous page reclamation is triggered.
36b313da
BB
63 */
64pgcnt_t desfree = 0;
65EXPORT_SYMBOL(desfree);
66
67/*
68 * When above this amount of memory measures in pages the system is
69 * determined to have enough free memory. This is similar to Linux's
ecc39810 70 * zone->pages_high multiplied by the number of zones and is sized based
36b313da 71 * on that. Assuming all zones are being used roughly equally, when
ecc39810 72 * asynchronous page reclamation reaches this threshold it stops.
36b313da
BB
73 */
74pgcnt_t lotsfree = 0;
75EXPORT_SYMBOL(lotsfree);
76
77/* Unused always 0 in this implementation */
78pgcnt_t needfree = 0;
79EXPORT_SYMBOL(needfree);
80
36b313da
BB
81pgcnt_t swapfs_minfree = 0;
82EXPORT_SYMBOL(swapfs_minfree);
83
84pgcnt_t swapfs_reserve = 0;
85EXPORT_SYMBOL(swapfs_reserve);
86
36b313da
BB
87vmem_t *heap_arena = NULL;
88EXPORT_SYMBOL(heap_arena);
89
90vmem_t *zio_alloc_arena = NULL;
91EXPORT_SYMBOL(zio_alloc_arena);
92
93vmem_t *zio_arena = NULL;
94EXPORT_SYMBOL(zio_arena);
95
d1ff2312 96#ifndef HAVE_GET_VMALLOC_INFO
96dded38 97get_vmalloc_info_t get_vmalloc_info_fn = SYMBOL_POISON;
d1ff2312
BB
98EXPORT_SYMBOL(get_vmalloc_info_fn);
99#endif /* HAVE_GET_VMALLOC_INFO */
100
5232d256
BB
101#ifdef HAVE_PGDAT_HELPERS
102# ifndef HAVE_FIRST_ONLINE_PGDAT
96dded38 103first_online_pgdat_t first_online_pgdat_fn = SYMBOL_POISON;
d1ff2312 104EXPORT_SYMBOL(first_online_pgdat_fn);
5232d256 105# endif /* HAVE_FIRST_ONLINE_PGDAT */
36b313da 106
5232d256 107# ifndef HAVE_NEXT_ONLINE_PGDAT
96dded38 108next_online_pgdat_t next_online_pgdat_fn = SYMBOL_POISON;
d1ff2312 109EXPORT_SYMBOL(next_online_pgdat_fn);
5232d256 110# endif /* HAVE_NEXT_ONLINE_PGDAT */
36b313da 111
5232d256 112# ifndef HAVE_NEXT_ZONE
96dded38 113next_zone_t next_zone_fn = SYMBOL_POISON;
d1ff2312 114EXPORT_SYMBOL(next_zone_fn);
5232d256
BB
115# endif /* HAVE_NEXT_ZONE */
116
117#else /* HAVE_PGDAT_HELPERS */
118
119# ifndef HAVE_PGDAT_LIST
120struct pglist_data *pgdat_list_addr = SYMBOL_POISON;
121EXPORT_SYMBOL(pgdat_list_addr);
122# endif /* HAVE_PGDAT_LIST */
123
124#endif /* HAVE_PGDAT_HELPERS */
36b313da 125
6ae7fef5 126#ifdef NEED_GET_ZONE_COUNTS
e11d6c5f 127# ifndef HAVE_GET_ZONE_COUNTS
96dded38 128get_zone_counts_t get_zone_counts_fn = SYMBOL_POISON;
d1ff2312 129EXPORT_SYMBOL(get_zone_counts_fn);
96dded38 130# endif /* HAVE_GET_ZONE_COUNTS */
4ab13d3b 131
e11d6c5f 132unsigned long
6ae7fef5 133spl_global_page_state(spl_zone_stat_item_t item)
4ab13d3b
BB
134{
135 unsigned long active;
136 unsigned long inactive;
137 unsigned long free;
138
6ae7fef5
BB
139 get_zone_counts(&active, &inactive, &free);
140 switch (item) {
141 case SPL_NR_FREE_PAGES: return free;
142 case SPL_NR_INACTIVE: return inactive;
143 case SPL_NR_ACTIVE: return active;
144 default: ASSERT(0); /* Unsupported */
e11d6c5f
BB
145 }
146
6ae7fef5
BB
147 return 0;
148}
149#else
150# ifdef HAVE_GLOBAL_PAGE_STATE
151unsigned long
152spl_global_page_state(spl_zone_stat_item_t item)
153{
154 unsigned long pages = 0;
155
156 switch (item) {
157 case SPL_NR_FREE_PAGES:
158# ifdef HAVE_ZONE_STAT_ITEM_NR_FREE_PAGES
159 pages += global_page_state(NR_FREE_PAGES);
160# endif
161 break;
162 case SPL_NR_INACTIVE:
163# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE
164 pages += global_page_state(NR_INACTIVE);
165# endif
166# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_ANON
167 pages += global_page_state(NR_INACTIVE_ANON);
168# endif
169# ifdef HAVE_ZONE_STAT_ITEM_NR_INACTIVE_FILE
170 pages += global_page_state(NR_INACTIVE_FILE);
171# endif
172 break;
173 case SPL_NR_ACTIVE:
174# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE
175 pages += global_page_state(NR_ACTIVE);
176# endif
177# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_ANON
178 pages += global_page_state(NR_ACTIVE_ANON);
179# endif
180# ifdef HAVE_ZONE_STAT_ITEM_NR_ACTIVE_FILE
181 pages += global_page_state(NR_ACTIVE_FILE);
182# endif
183 break;
184 default:
185 ASSERT(0); /* Unsupported */
e11d6c5f
BB
186 }
187
6ae7fef5
BB
188 return pages;
189}
96dded38 190# else
6ae7fef5 191# error "Both global_page_state() and get_zone_counts() unavailable"
96dded38 192# endif /* HAVE_GLOBAL_PAGE_STATE */
6ae7fef5 193#endif /* NEED_GET_ZONE_COUNTS */
e11d6c5f 194EXPORT_SYMBOL(spl_global_page_state);
4ab13d3b 195
e76f4bf1
BB
196#ifndef HAVE_SHRINK_DCACHE_MEMORY
197shrink_dcache_memory_t shrink_dcache_memory_fn = SYMBOL_POISON;
198EXPORT_SYMBOL(shrink_dcache_memory_fn);
199#endif /* HAVE_SHRINK_DCACHE_MEMORY */
200
201#ifndef HAVE_SHRINK_ICACHE_MEMORY
202shrink_icache_memory_t shrink_icache_memory_fn = SYMBOL_POISON;
203EXPORT_SYMBOL(shrink_icache_memory_fn);
204#endif /* HAVE_SHRINK_ICACHE_MEMORY */
205
e11d6c5f
BB
206pgcnt_t
207spl_kmem_availrmem(void)
208{
4ab13d3b 209 /* The amount of easily available memory */
6ae7fef5
BB
210 return (spl_global_page_state(SPL_NR_FREE_PAGES) +
211 spl_global_page_state(SPL_NR_INACTIVE));
4ab13d3b
BB
212}
213EXPORT_SYMBOL(spl_kmem_availrmem);
214
215size_t
216vmem_size(vmem_t *vmp, int typemask)
217{
d1ff2312
BB
218 struct vmalloc_info vmi;
219 size_t size = 0;
220
4ab13d3b
BB
221 ASSERT(vmp == NULL);
222 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
223
d1ff2312
BB
224 get_vmalloc_info(&vmi);
225 if (typemask & VMEM_ALLOC)
226 size += (size_t)vmi.used;
227
228 if (typemask & VMEM_FREE)
229 size += (size_t)(VMALLOC_TOTAL - vmi.used);
230
231 return size;
4ab13d3b
BB
232}
233EXPORT_SYMBOL(vmem_size);
4ab13d3b 234
b868e22f
BB
235int
236kmem_debugging(void)
237{
238 return 0;
239}
240EXPORT_SYMBOL(kmem_debugging);
241
242#ifndef HAVE_KVASPRINTF
243/* Simplified asprintf. */
244char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
245{
246 unsigned int len;
247 char *p;
248 va_list aq;
249
250 va_copy(aq, ap);
251 len = vsnprintf(NULL, 0, fmt, aq);
252 va_end(aq);
253
254 p = kmalloc(len+1, gfp);
255 if (!p)
256 return NULL;
257
258 vsnprintf(p, len+1, fmt, ap);
259
260 return p;
261}
262EXPORT_SYMBOL(kvasprintf);
263#endif /* HAVE_KVASPRINTF */
264
e6de04b7
BB
265char *
266kmem_vasprintf(const char *fmt, va_list ap)
267{
268 va_list aq;
269 char *ptr;
270
e6de04b7 271 do {
2c762de8 272 va_copy(aq, ap);
e6de04b7 273 ptr = kvasprintf(GFP_KERNEL, fmt, aq);
2c762de8 274 va_end(aq);
e6de04b7 275 } while (ptr == NULL);
e6de04b7
BB
276
277 return ptr;
278}
279EXPORT_SYMBOL(kmem_vasprintf);
280
b868e22f
BB
281char *
282kmem_asprintf(const char *fmt, ...)
283{
e6de04b7 284 va_list ap;
b868e22f
BB
285 char *ptr;
286
b868e22f 287 do {
2c762de8 288 va_start(ap, fmt);
e6de04b7 289 ptr = kvasprintf(GFP_KERNEL, fmt, ap);
2c762de8 290 va_end(ap);
b868e22f 291 } while (ptr == NULL);
b868e22f
BB
292
293 return ptr;
294}
295EXPORT_SYMBOL(kmem_asprintf);
296
10129680
BB
297static char *
298__strdup(const char *str, int flags)
299{
300 char *ptr;
301 int n;
302
303 n = strlen(str);
304 ptr = kmalloc_nofail(n + 1, flags);
305 if (ptr)
306 memcpy(ptr, str, n + 1);
307
308 return ptr;
309}
310
311char *
312strdup(const char *str)
313{
314 return __strdup(str, KM_SLEEP);
315}
316EXPORT_SYMBOL(strdup);
317
318void
319strfree(char *str)
320{
41f84a8d 321 kfree(str);
10129680
BB
322}
323EXPORT_SYMBOL(strfree);
324
f1ca4da6 325/*
2fb9b26a 326 * Memory allocation interfaces and debugging for basic kmem_*
055ffd98
BB
327 * and vmem_* style memory allocation. When DEBUG_KMEM is enabled
328 * the SPL will keep track of the total memory allocated, and
329 * report any memory leaked when the module is unloaded.
f1ca4da6 330 */
331#ifdef DEBUG_KMEM
d04c8a56 332
f1ca4da6 333/* Shim layer memory accounting */
d04c8a56 334# ifdef HAVE_ATOMIC64_T
550f1705 335atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
a0f6da3d 336unsigned long long kmem_alloc_max = 0;
550f1705 337atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
a0f6da3d 338unsigned long long vmem_alloc_max = 0;
10129680 339# else /* HAVE_ATOMIC64_T */
d04c8a56
BB
340atomic_t kmem_alloc_used = ATOMIC_INIT(0);
341unsigned long long kmem_alloc_max = 0;
342atomic_t vmem_alloc_used = ATOMIC_INIT(0);
343unsigned long long vmem_alloc_max = 0;
10129680 344# endif /* HAVE_ATOMIC64_T */
79b31f36 345
ff449ac4 346EXPORT_SYMBOL(kmem_alloc_used);
347EXPORT_SYMBOL(kmem_alloc_max);
348EXPORT_SYMBOL(vmem_alloc_used);
349EXPORT_SYMBOL(vmem_alloc_max);
ff449ac4 350
055ffd98
BB
351/* When DEBUG_KMEM_TRACKING is enabled not only will total bytes be tracked
352 * but also the location of every alloc and free. When the SPL module is
353 * unloaded a list of all leaked addresses and where they were allocated
354 * will be dumped to the console. Enabling this feature has a significant
355 * impact on performance but it makes finding memory leaks straight forward.
356 *
357 * Not surprisingly with debugging enabled the xmem_locks are very highly
358 * contended particularly on xfree(). If we want to run with this detailed
359 * debugging enabled for anything other than debugging we need to minimize
360 * the contention by moving to a lock per xmem_table entry model.
a0f6da3d 361 */
055ffd98 362# ifdef DEBUG_KMEM_TRACKING
a0f6da3d 363
364# define KMEM_HASH_BITS 10
365# define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
366
367# define VMEM_HASH_BITS 10
368# define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
369
370typedef struct kmem_debug {
371 struct hlist_node kd_hlist; /* Hash node linkage */
372 struct list_head kd_list; /* List of all allocations */
373 void *kd_addr; /* Allocation pointer */
374 size_t kd_size; /* Allocation size */
375 const char *kd_func; /* Allocation function */
376 int kd_line; /* Allocation line */
377} kmem_debug_t;
378
d6a26c6a 379spinlock_t kmem_lock;
380struct hlist_head kmem_table[KMEM_TABLE_SIZE];
381struct list_head kmem_list;
382
13cdca65 383spinlock_t vmem_lock;
384struct hlist_head vmem_table[VMEM_TABLE_SIZE];
385struct list_head vmem_list;
386
d6a26c6a 387EXPORT_SYMBOL(kmem_lock);
388EXPORT_SYMBOL(kmem_table);
389EXPORT_SYMBOL(kmem_list);
390
13cdca65 391EXPORT_SYMBOL(vmem_lock);
392EXPORT_SYMBOL(vmem_table);
393EXPORT_SYMBOL(vmem_list);
a0f6da3d 394
395static kmem_debug_t *
973e8269 396kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits, const void *addr)
a0f6da3d 397{
398 struct hlist_head *head;
399 struct hlist_node *node;
400 struct kmem_debug *p;
401 unsigned long flags;
b17edc10 402 SENTRY;
a0f6da3d 403
404 spin_lock_irqsave(lock, flags);
405
b1424add
BB
406 head = &table[hash_ptr((void *)addr, bits)];
407 hlist_for_each(node, head) {
408 p = list_entry(node, struct kmem_debug, kd_hlist);
a0f6da3d 409 if (p->kd_addr == addr) {
410 hlist_del_init(&p->kd_hlist);
411 list_del_init(&p->kd_list);
412 spin_unlock_irqrestore(lock, flags);
413 return p;
414 }
415 }
416
417 spin_unlock_irqrestore(lock, flags);
418
b17edc10 419 SRETURN(NULL);
a0f6da3d 420}
421
422void *
423kmem_alloc_track(size_t size, int flags, const char *func, int line,
424 int node_alloc, int node)
425{
426 void *ptr = NULL;
427 kmem_debug_t *dptr;
428 unsigned long irq_flags;
b17edc10 429 SENTRY;
a0f6da3d 430
10129680 431 /* Function may be called with KM_NOSLEEP so failure is possible */
c89fdee4 432 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
a0f6da3d 433 flags & ~__GFP_ZERO);
434
10129680 435 if (unlikely(dptr == NULL)) {
b17edc10 436 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
3cb77549
BB
437 "kmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
438 sizeof(kmem_debug_t), flags, func, line,
439 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 440 } else {
10129680
BB
441 /*
442 * Marked unlikely because we should never be doing this,
443 * we tolerate to up 2 pages but a single page is best.
444 */
23d91792 445 if (unlikely((size > PAGE_SIZE*2) && !(flags & KM_NODEBUG))) {
b17edc10 446 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "large "
3cb77549
BB
447 "kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
448 (unsigned long long) size, flags, func, line,
d04c8a56 449 kmem_alloc_used_read(), kmem_alloc_max);
5198ea0e
BB
450 spl_debug_dumpstack(NULL);
451 }
a0f6da3d 452
10129680
BB
453 /*
454 * We use __strdup() below because the string pointed to by
c8e60837 455 * __FUNCTION__ might not be available by the time we want
10129680
BB
456 * to print it since the module might have been unloaded.
457 * This can only fail in the KM_NOSLEEP case.
458 */
459 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
c8e60837 460 if (unlikely(dptr->kd_func == NULL)) {
461 kfree(dptr);
b17edc10 462 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
10129680 463 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
3cb77549 464 func, line, kmem_alloc_used_read(), kmem_alloc_max);
c8e60837 465 goto out;
466 }
467
a0f6da3d 468 /* Use the correct allocator */
469 if (node_alloc) {
470 ASSERT(!(flags & __GFP_ZERO));
c89fdee4 471 ptr = kmalloc_node_nofail(size, flags, node);
a0f6da3d 472 } else if (flags & __GFP_ZERO) {
c89fdee4 473 ptr = kzalloc_nofail(size, flags & ~__GFP_ZERO);
a0f6da3d 474 } else {
c89fdee4 475 ptr = kmalloc_nofail(size, flags);
a0f6da3d 476 }
477
478 if (unlikely(ptr == NULL)) {
c8e60837 479 kfree(dptr->kd_func);
a0f6da3d 480 kfree(dptr);
b17edc10 481 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "kmem_alloc"
3cb77549
BB
482 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
483 (unsigned long long) size, flags, func, line,
d04c8a56 484 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 485 goto out;
486 }
487
d04c8a56
BB
488 kmem_alloc_used_add(size);
489 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
490 kmem_alloc_max = kmem_alloc_used_read();
a0f6da3d 491
492 INIT_HLIST_NODE(&dptr->kd_hlist);
493 INIT_LIST_HEAD(&dptr->kd_list);
494
495 dptr->kd_addr = ptr;
496 dptr->kd_size = size;
a0f6da3d 497 dptr->kd_line = line;
498
499 spin_lock_irqsave(&kmem_lock, irq_flags);
b1424add 500 hlist_add_head(&dptr->kd_hlist,
a0f6da3d 501 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
502 list_add_tail(&dptr->kd_list, &kmem_list);
503 spin_unlock_irqrestore(&kmem_lock, irq_flags);
504
b17edc10 505 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
506 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
507 (unsigned long long) size, flags, func, line, ptr,
508 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 509 }
510out:
b17edc10 511 SRETURN(ptr);
a0f6da3d 512}
513EXPORT_SYMBOL(kmem_alloc_track);
514
515void
973e8269 516kmem_free_track(const void *ptr, size_t size)
a0f6da3d 517{
518 kmem_debug_t *dptr;
b17edc10 519 SENTRY;
a0f6da3d 520
521 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
522 (unsigned long long) size);
523
524 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
525
10129680
BB
526 /* Must exist in hash due to kmem_alloc() */
527 ASSERT(dptr);
a0f6da3d 528
529 /* Size must match */
530 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
531 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
532 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
533
d04c8a56 534 kmem_alloc_used_sub(size);
b17edc10 535 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 536 (unsigned long long) size, kmem_alloc_used_read(),
a0f6da3d 537 kmem_alloc_max);
538
c8e60837 539 kfree(dptr->kd_func);
540
b1424add 541 memset((void *)dptr, 0x5a, sizeof(kmem_debug_t));
a0f6da3d 542 kfree(dptr);
543
b1424add 544 memset((void *)ptr, 0x5a, size);
a0f6da3d 545 kfree(ptr);
546
b17edc10 547 SEXIT;
a0f6da3d 548}
549EXPORT_SYMBOL(kmem_free_track);
550
551void *
552vmem_alloc_track(size_t size, int flags, const char *func, int line)
553{
554 void *ptr = NULL;
555 kmem_debug_t *dptr;
556 unsigned long irq_flags;
b17edc10 557 SENTRY;
a0f6da3d 558
559 ASSERT(flags & KM_SLEEP);
560
10129680 561 /* Function may be called with KM_NOSLEEP so failure is possible */
ef1c7a06
BB
562 dptr = (kmem_debug_t *) kmalloc_nofail(sizeof(kmem_debug_t),
563 flags & ~__GFP_ZERO);
10129680 564 if (unlikely(dptr == NULL)) {
b17edc10 565 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "debug "
3cb77549
BB
566 "vmem_alloc(%ld, 0x%x) at %s:%d failed (%lld/%llu)\n",
567 sizeof(kmem_debug_t), flags, func, line,
568 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 569 } else {
10129680
BB
570 /*
571 * We use __strdup() below because the string pointed to by
c8e60837 572 * __FUNCTION__ might not be available by the time we want
10129680
BB
573 * to print it, since the module might have been unloaded.
574 * This can never fail because we have already asserted
575 * that flags is KM_SLEEP.
576 */
577 dptr->kd_func = __strdup(func, flags & ~__GFP_ZERO);
c8e60837 578 if (unlikely(dptr->kd_func == NULL)) {
579 kfree(dptr);
b17edc10 580 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
10129680 581 "debug __strdup() at %s:%d failed (%lld/%llu)\n",
3cb77549 582 func, line, vmem_alloc_used_read(), vmem_alloc_max);
c8e60837 583 goto out;
584 }
585
10129680
BB
586 /* Use the correct allocator */
587 if (flags & __GFP_ZERO) {
588 ptr = vzalloc_nofail(size, flags & ~__GFP_ZERO);
589 } else {
590 ptr = vmalloc_nofail(size, flags);
591 }
a0f6da3d 592
593 if (unlikely(ptr == NULL)) {
c8e60837 594 kfree(dptr->kd_func);
a0f6da3d 595 kfree(dptr);
b17edc10 596 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING, "vmem_alloc"
3cb77549
BB
597 "(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
598 (unsigned long long) size, flags, func, line,
d04c8a56 599 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 600 goto out;
601 }
602
d04c8a56
BB
603 vmem_alloc_used_add(size);
604 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
605 vmem_alloc_max = vmem_alloc_used_read();
a0f6da3d 606
607 INIT_HLIST_NODE(&dptr->kd_hlist);
608 INIT_LIST_HEAD(&dptr->kd_list);
609
610 dptr->kd_addr = ptr;
611 dptr->kd_size = size;
a0f6da3d 612 dptr->kd_line = line;
613
614 spin_lock_irqsave(&vmem_lock, irq_flags);
b1424add 615 hlist_add_head(&dptr->kd_hlist,
a0f6da3d 616 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
617 list_add_tail(&dptr->kd_list, &vmem_list);
618 spin_unlock_irqrestore(&vmem_lock, irq_flags);
619
b17edc10 620 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
621 "vmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
622 (unsigned long long) size, flags, func, line,
623 ptr, vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 624 }
625out:
b17edc10 626 SRETURN(ptr);
a0f6da3d 627}
628EXPORT_SYMBOL(vmem_alloc_track);
629
630void
973e8269 631vmem_free_track(const void *ptr, size_t size)
a0f6da3d 632{
633 kmem_debug_t *dptr;
b17edc10 634 SENTRY;
a0f6da3d 635
636 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
637 (unsigned long long) size);
638
639 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
10129680
BB
640
641 /* Must exist in hash due to vmem_alloc() */
642 ASSERT(dptr);
a0f6da3d 643
644 /* Size must match */
645 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
646 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
647 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
648
d04c8a56 649 vmem_alloc_used_sub(size);
b17edc10 650 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 651 (unsigned long long) size, vmem_alloc_used_read(),
a0f6da3d 652 vmem_alloc_max);
653
c8e60837 654 kfree(dptr->kd_func);
655
b1424add 656 memset((void *)dptr, 0x5a, sizeof(kmem_debug_t));
a0f6da3d 657 kfree(dptr);
658
b1424add 659 memset((void *)ptr, 0x5a, size);
a0f6da3d 660 vfree(ptr);
661
b17edc10 662 SEXIT;
a0f6da3d 663}
664EXPORT_SYMBOL(vmem_free_track);
665
666# else /* DEBUG_KMEM_TRACKING */
667
668void *
669kmem_alloc_debug(size_t size, int flags, const char *func, int line,
670 int node_alloc, int node)
671{
672 void *ptr;
b17edc10 673 SENTRY;
a0f6da3d 674
10129680
BB
675 /*
676 * Marked unlikely because we should never be doing this,
677 * we tolerate to up 2 pages but a single page is best.
678 */
23d91792 679 if (unlikely((size > PAGE_SIZE * 2) && !(flags & KM_NODEBUG))) {
b17edc10 680 SDEBUG(SD_CONSOLE | SD_WARNING,
10129680 681 "large kmem_alloc(%llu, 0x%x) at %s:%d (%lld/%llu)\n",
3cb77549 682 (unsigned long long) size, flags, func, line,
d04c8a56 683 kmem_alloc_used_read(), kmem_alloc_max);
4b2220f0 684 dump_stack();
5198ea0e 685 }
a0f6da3d 686
687 /* Use the correct allocator */
688 if (node_alloc) {
689 ASSERT(!(flags & __GFP_ZERO));
c89fdee4 690 ptr = kmalloc_node_nofail(size, flags, node);
a0f6da3d 691 } else if (flags & __GFP_ZERO) {
c89fdee4 692 ptr = kzalloc_nofail(size, flags & (~__GFP_ZERO));
a0f6da3d 693 } else {
c89fdee4 694 ptr = kmalloc_nofail(size, flags);
a0f6da3d 695 }
696
10129680 697 if (unlikely(ptr == NULL)) {
b17edc10 698 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
699 "kmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
700 (unsigned long long) size, flags, func, line,
d04c8a56 701 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 702 } else {
d04c8a56
BB
703 kmem_alloc_used_add(size);
704 if (unlikely(kmem_alloc_used_read() > kmem_alloc_max))
705 kmem_alloc_max = kmem_alloc_used_read();
a0f6da3d 706
b17edc10 707 SDEBUG_LIMIT(SD_INFO,
3cb77549
BB
708 "kmem_alloc(%llu, 0x%x) at %s:%d = %p (%lld/%llu)\n",
709 (unsigned long long) size, flags, func, line, ptr,
10129680 710 kmem_alloc_used_read(), kmem_alloc_max);
a0f6da3d 711 }
10129680 712
b17edc10 713 SRETURN(ptr);
a0f6da3d 714}
715EXPORT_SYMBOL(kmem_alloc_debug);
716
717void
973e8269 718kmem_free_debug(const void *ptr, size_t size)
a0f6da3d 719{
b17edc10 720 SENTRY;
a0f6da3d 721
722 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
723 (unsigned long long) size);
724
d04c8a56 725 kmem_alloc_used_sub(size);
b17edc10 726 SDEBUG_LIMIT(SD_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 727 (unsigned long long) size, kmem_alloc_used_read(),
a0f6da3d 728 kmem_alloc_max);
a0f6da3d 729 kfree(ptr);
730
b17edc10 731 SEXIT;
a0f6da3d 732}
733EXPORT_SYMBOL(kmem_free_debug);
734
735void *
736vmem_alloc_debug(size_t size, int flags, const char *func, int line)
737{
738 void *ptr;
b17edc10 739 SENTRY;
a0f6da3d 740
741 ASSERT(flags & KM_SLEEP);
742
10129680
BB
743 /* Use the correct allocator */
744 if (flags & __GFP_ZERO) {
745 ptr = vzalloc_nofail(size, flags & (~__GFP_ZERO));
746 } else {
747 ptr = vmalloc_nofail(size, flags);
748 }
749
750 if (unlikely(ptr == NULL)) {
b17edc10 751 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
752 "vmem_alloc(%llu, 0x%x) at %s:%d failed (%lld/%llu)\n",
753 (unsigned long long) size, flags, func, line,
d04c8a56 754 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 755 } else {
d04c8a56
BB
756 vmem_alloc_used_add(size);
757 if (unlikely(vmem_alloc_used_read() > vmem_alloc_max))
758 vmem_alloc_max = vmem_alloc_used_read();
a0f6da3d 759
b17edc10 760 SDEBUG_LIMIT(SD_INFO, "vmem_alloc(%llu, 0x%x) = %p "
a0f6da3d 761 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
d04c8a56 762 vmem_alloc_used_read(), vmem_alloc_max);
a0f6da3d 763 }
764
b17edc10 765 SRETURN(ptr);
a0f6da3d 766}
767EXPORT_SYMBOL(vmem_alloc_debug);
768
769void
973e8269 770vmem_free_debug(const void *ptr, size_t size)
a0f6da3d 771{
b17edc10 772 SENTRY;
a0f6da3d 773
774 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
775 (unsigned long long) size);
776
d04c8a56 777 vmem_alloc_used_sub(size);
b17edc10 778 SDEBUG_LIMIT(SD_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
d04c8a56 779 (unsigned long long) size, vmem_alloc_used_read(),
a0f6da3d 780 vmem_alloc_max);
a0f6da3d 781 vfree(ptr);
782
b17edc10 783 SEXIT;
a0f6da3d 784}
785EXPORT_SYMBOL(vmem_free_debug);
786
787# endif /* DEBUG_KMEM_TRACKING */
788#endif /* DEBUG_KMEM */
789
10129680
BB
790/*
791 * Slab allocation interfaces
792 *
793 * While the Linux slab implementation was inspired by the Solaris
ecc39810 794 * implementation I cannot use it to emulate the Solaris APIs. I
10129680
BB
795 * require two features which are not provided by the Linux slab.
796 *
797 * 1) Constructors AND destructors. Recent versions of the Linux
798 * kernel have removed support for destructors. This is a deal
799 * breaker for the SPL which contains particularly expensive
800 * initializers for mutex's, condition variables, etc. We also
801 * require a minimal level of cleanup for these data types unlike
802 * many Linux data type which do need to be explicitly destroyed.
803 *
804 * 2) Virtual address space backed slab. Callers of the Solaris slab
805 * expect it to work well for both small are very large allocations.
806 * Because of memory fragmentation the Linux slab which is backed
807 * by kmalloc'ed memory performs very badly when confronted with
808 * large numbers of large allocations. Basing the slab on the
ecc39810 809 * virtual address space removes the need for contiguous pages
10129680
BB
810 * and greatly improve performance for large allocations.
811 *
812 * For these reasons, the SPL has its own slab implementation with
813 * the needed features. It is not as highly optimized as either the
814 * Solaris or Linux slabs, but it should get me most of what is
815 * needed until it can be optimized or obsoleted by another approach.
816 *
817 * One serious concern I do have about this method is the relatively
818 * small virtual address space on 32bit arches. This will seriously
819 * constrain the size of the slab caches and their performance.
820 *
821 * XXX: Improve the partial slab list by carefully maintaining a
822 * strict ordering of fullest to emptiest slabs based on
ecc39810 823 * the slab reference count. This guarantees the when freeing
10129680
BB
824 * slabs back to the system we need only linearly traverse the
825 * last N slabs in the list to discover all the freeable slabs.
826 *
827 * XXX: NUMA awareness for optionally allocating memory close to a
ecc39810 828 * particular core. This can be advantageous if you know the slab
10129680
BB
829 * object will be short lived and primarily accessed from one core.
830 *
831 * XXX: Slab coloring may also yield performance improvements and would
832 * be desirable to implement.
833 */
834
835struct list_head spl_kmem_cache_list; /* List of caches */
836struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
a10287e0 837taskq_t *spl_kmem_cache_taskq; /* Task queue for ageing / reclaim */
10129680 838
d4899f47 839static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
10129680 840
a55bcaad 841SPL_SHRINKER_CALLBACK_FWD_DECLARE(spl_kmem_cache_generic_shrinker);
495bd532
BB
842SPL_SHRINKER_DECLARE(spl_kmem_cache_shrinker,
843 spl_kmem_cache_generic_shrinker, KMC_DEFAULT_SEEKS);
10129680 844
a1502d76 845static void *
846kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
fece7c99 847{
a1502d76 848 void *ptr;
f1ca4da6 849
8b45dda2
BB
850 ASSERT(ISP2(size));
851
500e95c8 852 if (skc->skc_flags & KMC_KMEM)
8b45dda2 853 ptr = (void *)__get_free_pages(flags, get_order(size));
500e95c8 854 else
617f79de
BB
855 ptr = __vmalloc(size, flags | __GFP_HIGHMEM, PAGE_KERNEL);
856
8b45dda2
BB
857 /* Resulting allocated memory will be page aligned */
858 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
fece7c99 859
a1502d76 860 return ptr;
861}
fece7c99 862
a1502d76 863static void
864kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
865{
8b45dda2
BB
866 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
867 ASSERT(ISP2(size));
868
06089b9e
BB
869 /*
870 * The Linux direct reclaim path uses this out of band value to
871 * determine if forward progress is being made. Normally this is
872 * incremented by kmem_freepages() which is part of the various
873 * Linux slab implementations. However, since we are using none
874 * of that infrastructure we are responsible for incrementing it.
875 */
876 if (current->reclaim_state)
877 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
878
8b45dda2
BB
879 if (skc->skc_flags & KMC_KMEM)
880 free_pages((unsigned long)ptr, get_order(size));
881 else
882 vfree(ptr);
883}
884
885/*
886 * Required space for each aligned sks.
887 */
888static inline uint32_t
889spl_sks_size(spl_kmem_cache_t *skc)
890{
891 return P2ROUNDUP_TYPED(sizeof(spl_kmem_slab_t),
892 skc->skc_obj_align, uint32_t);
893}
894
895/*
896 * Required space for each aligned object.
897 */
898static inline uint32_t
899spl_obj_size(spl_kmem_cache_t *skc)
900{
901 uint32_t align = skc->skc_obj_align;
902
903 return P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
904 P2ROUNDUP_TYPED(sizeof(spl_kmem_obj_t), align, uint32_t);
905}
906
907/*
908 * Lookup the spl_kmem_object_t for an object given that object.
909 */
910static inline spl_kmem_obj_t *
911spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
912{
913 return obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
914 skc->skc_obj_align, uint32_t);
915}
916
917/*
918 * Required space for each offslab object taking in to account alignment
919 * restrictions and the power-of-two requirement of kv_alloc().
920 */
921static inline uint32_t
922spl_offslab_size(spl_kmem_cache_t *skc)
923{
924 return 1UL << (highbit(spl_obj_size(skc)) + 1);
fece7c99 925}
926
ea3e6ca9
BB
927/*
928 * It's important that we pack the spl_kmem_obj_t structure and the
48e0606a
BB
929 * actual objects in to one large address space to minimize the number
930 * of calls to the allocator. It is far better to do a few large
931 * allocations and then subdivide it ourselves. Now which allocator
932 * we use requires balancing a few trade offs.
933 *
934 * For small objects we use kmem_alloc() because as long as you are
935 * only requesting a small number of pages (ideally just one) its cheap.
936 * However, when you start requesting multiple pages with kmem_alloc()
ecc39810 937 * it gets increasingly expensive since it requires contiguous pages.
48e0606a 938 * For this reason we shift to vmem_alloc() for slabs of large objects
ecc39810 939 * which removes the need for contiguous pages. We do not use
48e0606a
BB
940 * vmem_alloc() in all cases because there is significant locking
941 * overhead in __get_vm_area_node(). This function takes a single
ecc39810 942 * global lock when acquiring an available virtual address range which
48e0606a
BB
943 * serializes all vmem_alloc()'s for all slab caches. Using slightly
944 * different allocation functions for small and large objects should
945 * give us the best of both worlds.
946 *
947 * KMC_ONSLAB KMC_OFFSLAB
948 *
949 * +------------------------+ +-----------------+
950 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
951 * | skc_obj_size <-+ | | +-----------------+ | |
952 * | spl_kmem_obj_t | | | |
953 * | skc_obj_size <---+ | +-----------------+ | |
954 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
955 * | ... v | | spl_kmem_obj_t | |
956 * +------------------------+ +-----------------+ v
957 */
fece7c99 958static spl_kmem_slab_t *
a1502d76 959spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
fece7c99 960{
961 spl_kmem_slab_t *sks;
a1502d76 962 spl_kmem_obj_t *sko, *n;
963 void *base, *obj;
8b45dda2
BB
964 uint32_t obj_size, offslab_size = 0;
965 int i, rc = 0;
48e0606a 966
a1502d76 967 base = kv_alloc(skc, skc->skc_slab_size, flags);
968 if (base == NULL)
b17edc10 969 SRETURN(NULL);
fece7c99 970
a1502d76 971 sks = (spl_kmem_slab_t *)base;
972 sks->sks_magic = SKS_MAGIC;
973 sks->sks_objs = skc->skc_slab_objs;
974 sks->sks_age = jiffies;
975 sks->sks_cache = skc;
976 INIT_LIST_HEAD(&sks->sks_list);
977 INIT_LIST_HEAD(&sks->sks_free_list);
978 sks->sks_ref = 0;
8b45dda2 979 obj_size = spl_obj_size(skc);
48e0606a 980
8d177c18 981 if (skc->skc_flags & KMC_OFFSLAB)
8b45dda2 982 offslab_size = spl_offslab_size(skc);
fece7c99 983
984 for (i = 0; i < sks->sks_objs; i++) {
a1502d76 985 if (skc->skc_flags & KMC_OFFSLAB) {
8b45dda2 986 obj = kv_alloc(skc, offslab_size, flags);
a1502d76 987 if (!obj)
b17edc10 988 SGOTO(out, rc = -ENOMEM);
a1502d76 989 } else {
8b45dda2 990 obj = base + spl_sks_size(skc) + (i * obj_size);
a1502d76 991 }
992
8b45dda2
BB
993 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
994 sko = spl_sko_from_obj(skc, obj);
fece7c99 995 sko->sko_addr = obj;
996 sko->sko_magic = SKO_MAGIC;
997 sko->sko_slab = sks;
998 INIT_LIST_HEAD(&sko->sko_list);
fece7c99 999 list_add_tail(&sko->sko_list, &sks->sks_free_list);
1000 }
1001
fece7c99 1002 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
1003 if (skc->skc_ctor)
1004 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
2fb9b26a 1005out:
a1502d76 1006 if (rc) {
1007 if (skc->skc_flags & KMC_OFFSLAB)
48e0606a
BB
1008 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
1009 sko_list)
8b45dda2 1010 kv_free(skc, sko->sko_addr, offslab_size);
fece7c99 1011
a1502d76 1012 kv_free(skc, base, skc->skc_slab_size);
1013 sks = NULL;
fece7c99 1014 }
1015
b17edc10 1016 SRETURN(sks);
fece7c99 1017}
1018
ea3e6ca9
BB
1019/*
1020 * Remove a slab from complete or partial list, it must be called with
1021 * the 'skc->skc_lock' held but the actual free must be performed
1022 * outside the lock to prevent deadlocking on vmem addresses.
fece7c99 1023 */
f1ca4da6 1024static void
ea3e6ca9
BB
1025spl_slab_free(spl_kmem_slab_t *sks,
1026 struct list_head *sks_list, struct list_head *sko_list)
1027{
2fb9b26a 1028 spl_kmem_cache_t *skc;
b17edc10 1029 SENTRY;
57d86234 1030
2fb9b26a 1031 ASSERT(sks->sks_magic == SKS_MAGIC);
4afaaefa 1032 ASSERT(sks->sks_ref == 0);
d6a26c6a 1033
fece7c99 1034 skc = sks->sks_cache;
1035 ASSERT(skc->skc_magic == SKC_MAGIC);
d46630e0 1036 ASSERT(spin_is_locked(&skc->skc_lock));
f1ca4da6 1037
1a944a7d
BB
1038 /*
1039 * Update slab/objects counters in the cache, then remove the
1040 * slab from the skc->skc_partial_list. Finally add the slab
1041 * and all its objects in to the private work lists where the
1042 * destructors will be called and the memory freed to the system.
1043 */
fece7c99 1044 skc->skc_obj_total -= sks->sks_objs;
1045 skc->skc_slab_total--;
1046 list_del(&sks->sks_list);
ea3e6ca9 1047 list_add(&sks->sks_list, sks_list);
1a944a7d
BB
1048 list_splice_init(&sks->sks_free_list, sko_list);
1049
b17edc10 1050 SEXIT;
2fb9b26a 1051}
d6a26c6a 1052
ea3e6ca9
BB
1053/*
1054 * Traverses all the partial slabs attached to a cache and free those
1055 * which which are currently empty, and have not been touched for
37db7d8c
BB
1056 * skc_delay seconds to avoid thrashing. The count argument is
1057 * passed to optionally cap the number of slabs reclaimed, a count
1058 * of zero means try and reclaim everything. When flag is set we
1059 * always free an available slab regardless of age.
ea3e6ca9
BB
1060 */
1061static void
37db7d8c 1062spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
2fb9b26a 1063{
1064 spl_kmem_slab_t *sks, *m;
ea3e6ca9
BB
1065 spl_kmem_obj_t *sko, *n;
1066 LIST_HEAD(sks_list);
1067 LIST_HEAD(sko_list);
8b45dda2
BB
1068 uint32_t size = 0;
1069 int i = 0;
b17edc10 1070 SENTRY;
2fb9b26a 1071
2fb9b26a 1072 /*
ea3e6ca9
BB
1073 * Move empty slabs and objects which have not been touched in
1074 * skc_delay seconds on to private lists to be freed outside
1a944a7d
BB
1075 * the spin lock. This delay time is important to avoid thrashing
1076 * however when flag is set the delay will not be used.
2fb9b26a 1077 */
ea3e6ca9 1078 spin_lock(&skc->skc_lock);
1a944a7d
BB
1079 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
1080 /*
1081 * All empty slabs are at the end of skc->skc_partial_list,
1082 * therefore once a non-empty slab is found we can stop
1083 * scanning. Additionally, stop when reaching the target
ecc39810 1084 * reclaim 'count' if a non-zero threshold is given.
1a944a7d 1085 */
cef7605c 1086 if ((sks->sks_ref > 0) || (count && i >= count))
37db7d8c
BB
1087 break;
1088
37db7d8c 1089 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
ea3e6ca9 1090 spl_slab_free(sks, &sks_list, &sko_list);
37db7d8c
BB
1091 i++;
1092 }
ea3e6ca9
BB
1093 }
1094 spin_unlock(&skc->skc_lock);
1095
1096 /*
1a944a7d
BB
1097 * The following two loops ensure all the object destructors are
1098 * run, any offslab objects are freed, and the slabs themselves
1099 * are freed. This is all done outside the skc->skc_lock since
1100 * this allows the destructor to sleep, and allows us to perform
1101 * a conditional reschedule when a freeing a large number of
1102 * objects and slabs back to the system.
ea3e6ca9 1103 */
1a944a7d 1104 if (skc->skc_flags & KMC_OFFSLAB)
8b45dda2 1105 size = spl_offslab_size(skc);
ea3e6ca9 1106
1a944a7d
BB
1107 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
1108 ASSERT(sko->sko_magic == SKO_MAGIC);
1109
1110 if (skc->skc_dtor)
1111 skc->skc_dtor(sko->sko_addr, skc->skc_private);
1112
1113 if (skc->skc_flags & KMC_OFFSLAB)
ea3e6ca9 1114 kv_free(skc, sko->sko_addr, size);
2fb9b26a 1115 }
1116
37db7d8c 1117 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1a944a7d 1118 ASSERT(sks->sks_magic == SKS_MAGIC);
ea3e6ca9 1119 kv_free(skc, sks, skc->skc_slab_size);
37db7d8c 1120 }
ea3e6ca9 1121
b17edc10 1122 SEXIT;
f1ca4da6 1123}
1124
ed316348
BB
1125static spl_kmem_emergency_t *
1126spl_emergency_search(struct rb_root *root, void *obj)
1127{
1128 struct rb_node *node = root->rb_node;
1129 spl_kmem_emergency_t *ske;
1130 unsigned long address = (unsigned long)obj;
1131
1132 while (node) {
1133 ske = container_of(node, spl_kmem_emergency_t, ske_node);
1134
1135 if (address < (unsigned long)ske->ske_obj)
1136 node = node->rb_left;
1137 else if (address > (unsigned long)ske->ske_obj)
1138 node = node->rb_right;
1139 else
1140 return ske;
1141 }
1142
1143 return NULL;
1144}
1145
1146static int
1147spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
1148{
1149 struct rb_node **new = &(root->rb_node), *parent = NULL;
1150 spl_kmem_emergency_t *ske_tmp;
1151 unsigned long address = (unsigned long)ske->ske_obj;
1152
1153 while (*new) {
1154 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
1155
1156 parent = *new;
1157 if (address < (unsigned long)ske_tmp->ske_obj)
1158 new = &((*new)->rb_left);
1159 else if (address > (unsigned long)ske_tmp->ske_obj)
1160 new = &((*new)->rb_right);
1161 else
1162 return 0;
1163 }
1164
1165 rb_link_node(&ske->ske_node, parent, new);
1166 rb_insert_color(&ske->ske_node, root);
1167
1168 return 1;
1169}
1170
e2dcc6e2 1171/*
ed316348 1172 * Allocate a single emergency object and track it in a red black tree.
e2dcc6e2
BB
1173 */
1174static int
1175spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
1176{
1177 spl_kmem_emergency_t *ske;
1178 int empty;
1179 SENTRY;
1180
1181 /* Last chance use a partial slab if one now exists */
1182 spin_lock(&skc->skc_lock);
1183 empty = list_empty(&skc->skc_partial_list);
1184 spin_unlock(&skc->skc_lock);
1185 if (!empty)
1186 SRETURN(-EEXIST);
1187
1188 ske = kmalloc(sizeof(*ske), flags);
1189 if (ske == NULL)
1190 SRETURN(-ENOMEM);
1191
1192 ske->ske_obj = kmalloc(skc->skc_obj_size, flags);
1193 if (ske->ske_obj == NULL) {
1194 kfree(ske);
1195 SRETURN(-ENOMEM);
1196 }
1197
e2dcc6e2 1198 spin_lock(&skc->skc_lock);
ed316348
BB
1199 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
1200 if (likely(empty)) {
1201 skc->skc_obj_total++;
1202 skc->skc_obj_emergency++;
1203 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
1204 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
1205 }
e2dcc6e2
BB
1206 spin_unlock(&skc->skc_lock);
1207
ed316348
BB
1208 if (unlikely(!empty)) {
1209 kfree(ske->ske_obj);
1210 kfree(ske);
1211 SRETURN(-EINVAL);
1212 }
1213
1214 if (skc->skc_ctor)
1215 skc->skc_ctor(ske->ske_obj, skc->skc_private, flags);
1216
e2dcc6e2
BB
1217 *obj = ske->ske_obj;
1218
1219 SRETURN(0);
1220}
1221
1222/*
ed316348 1223 * Locate the passed object in the red black tree and free it.
e2dcc6e2
BB
1224 */
1225static int
1226spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
1227{
ed316348 1228 spl_kmem_emergency_t *ske;
e2dcc6e2
BB
1229 SENTRY;
1230
1231 spin_lock(&skc->skc_lock);
ed316348
BB
1232 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
1233 if (likely(ske)) {
1234 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
1235 skc->skc_obj_emergency--;
1236 skc->skc_obj_total--;
e2dcc6e2
BB
1237 }
1238 spin_unlock(&skc->skc_lock);
1239
ed316348 1240 if (unlikely(ske == NULL))
e2dcc6e2
BB
1241 SRETURN(-ENOENT);
1242
1243 if (skc->skc_dtor)
1244 skc->skc_dtor(ske->ske_obj, skc->skc_private);
1245
1246 kfree(ske->ske_obj);
1247 kfree(ske);
1248
1249 SRETURN(0);
1250}
1251
d4899f47
BB
1252/*
1253 * Release objects from the per-cpu magazine back to their slab. The flush
1254 * argument contains the max number of entries to remove from the magazine.
1255 */
1256static void
1257__spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1258{
1259 int i, count = MIN(flush, skm->skm_avail);
1260 SENTRY;
1261
1262 ASSERT(skc->skc_magic == SKC_MAGIC);
1263 ASSERT(skm->skm_magic == SKM_MAGIC);
1264 ASSERT(spin_is_locked(&skc->skc_lock));
1265
1266 for (i = 0; i < count; i++)
1267 spl_cache_shrink(skc, skm->skm_objs[i]);
1268
1269 skm->skm_avail -= count;
1270 memmove(skm->skm_objs, &(skm->skm_objs[count]),
1271 sizeof(void *) * skm->skm_avail);
1272
1273 SEXIT;
1274}
1275
1276static void
1277spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1278{
1279 spin_lock(&skc->skc_lock);
1280 __spl_cache_flush(skc, skm, flush);
1281 spin_unlock(&skc->skc_lock);
1282}
1283
ea3e6ca9
BB
1284static void
1285spl_magazine_age(void *data)
f1ca4da6 1286{
a10287e0
BB
1287 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
1288 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
9b1b8e4c
BB
1289
1290 ASSERT(skm->skm_magic == SKM_MAGIC);
a10287e0 1291 ASSERT(skm->skm_cpu == smp_processor_id());
d4899f47
BB
1292 ASSERT(irqs_disabled());
1293
1294 /* There are no available objects or they are too young to age out */
1295 if ((skm->skm_avail == 0) ||
1296 time_before(jiffies, skm->skm_age + skc->skc_delay * HZ))
1297 return;
f1ca4da6 1298
d4899f47
BB
1299 /*
1300 * Because we're executing in interrupt context we may have
1301 * interrupted the holder of this lock. To avoid a potential
1302 * deadlock return if the lock is contended.
1303 */
1304 if (!spin_trylock(&skc->skc_lock))
1305 return;
1306
1307 __spl_cache_flush(skc, skm, skm->skm_refill);
1308 spin_unlock(&skc->skc_lock);
ea3e6ca9 1309}
4efd4118 1310
ea3e6ca9 1311/*
a10287e0
BB
1312 * Called regularly to keep a downward pressure on the cache.
1313 *
1314 * Objects older than skc->skc_delay seconds in the per-cpu magazines will
1315 * be returned to the caches. This is done to prevent idle magazines from
1316 * holding memory which could be better used elsewhere. The delay is
1317 * present to prevent thrashing the magazine.
1318 *
1319 * The newly released objects may result in empty partial slabs. Those
1320 * slabs should be released to the system. Otherwise moving the objects
1321 * out of the magazines is just wasted work.
ea3e6ca9
BB
1322 */
1323static void
1324spl_cache_age(void *data)
1325{
a10287e0
BB
1326 spl_kmem_cache_t *skc = (spl_kmem_cache_t *)data;
1327 taskqid_t id = 0;
ea3e6ca9
BB
1328
1329 ASSERT(skc->skc_magic == SKC_MAGIC);
a10287e0 1330
0936c344
BB
1331 /* Dynamically disabled at run time */
1332 if (!(spl_kmem_cache_expire & KMC_EXPIRE_AGE))
1333 return;
1334
a10287e0
BB
1335 atomic_inc(&skc->skc_ref);
1336 spl_on_each_cpu(spl_magazine_age, skc, 1);
37db7d8c 1337 spl_slab_reclaim(skc, skc->skc_reap, 0);
ea3e6ca9 1338
a10287e0
BB
1339 while (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && !id) {
1340 id = taskq_dispatch_delay(
1341 spl_kmem_cache_taskq, spl_cache_age, skc, TQ_SLEEP,
1342 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
1343
1344 /* Destroy issued after dispatch immediately cancel it */
1345 if (test_bit(KMC_BIT_DESTROY, &skc->skc_flags) && id)
1346 taskq_cancel_id(spl_kmem_cache_taskq, id);
1347 }
1348
1349 spin_lock(&skc->skc_lock);
1350 skc->skc_taskqid = id;
1351 spin_unlock(&skc->skc_lock);
1352
1353 atomic_dec(&skc->skc_ref);
2fb9b26a 1354}
f1ca4da6 1355
ea3e6ca9 1356/*
8b45dda2 1357 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
ea3e6ca9
BB
1358 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
1359 * for very small objects we may end up with more than this so as not
1360 * to waste space in the minimal allocation of a single page. Also for
1361 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
1362 * lower than this and we will fail.
1363 */
48e0606a
BB
1364static int
1365spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
1366{
8b45dda2 1367 uint32_t sks_size, obj_size, max_size;
48e0606a
BB
1368
1369 if (skc->skc_flags & KMC_OFFSLAB) {
ea3e6ca9 1370 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
48e0606a
BB
1371 *size = sizeof(spl_kmem_slab_t);
1372 } else {
8b45dda2
BB
1373 sks_size = spl_sks_size(skc);
1374 obj_size = spl_obj_size(skc);
ea3e6ca9
BB
1375
1376 if (skc->skc_flags & KMC_KMEM)
aa600d8a 1377 max_size = ((uint32_t)1 << (MAX_ORDER-3)) * PAGE_SIZE;
ea3e6ca9
BB
1378 else
1379 max_size = (32 * 1024 * 1024);
48e0606a 1380
8b45dda2
BB
1381 /* Power of two sized slab */
1382 for (*size = PAGE_SIZE; *size <= max_size; *size *= 2) {
ea3e6ca9
BB
1383 *objs = (*size - sks_size) / obj_size;
1384 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
b17edc10 1385 SRETURN(0);
ea3e6ca9 1386 }
48e0606a 1387
ea3e6ca9 1388 /*
8b45dda2 1389 * Unable to satisfy target objects per slab, fall back to
ea3e6ca9
BB
1390 * allocating a maximally sized slab and assuming it can
1391 * contain the minimum objects count use it. If not fail.
1392 */
1393 *size = max_size;
1394 *objs = (*size - sks_size) / obj_size;
1395 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
b17edc10 1396 SRETURN(0);
48e0606a
BB
1397 }
1398
b17edc10 1399 SRETURN(-ENOSPC);
48e0606a
BB
1400}
1401
ea3e6ca9
BB
1402/*
1403 * Make a guess at reasonable per-cpu magazine size based on the size of
1404 * each object and the cost of caching N of them in each magazine. Long
1405 * term this should really adapt based on an observed usage heuristic.
1406 */
4afaaefa 1407static int
1408spl_magazine_size(spl_kmem_cache_t *skc)
1409{
8b45dda2
BB
1410 uint32_t obj_size = spl_obj_size(skc);
1411 int size;
b17edc10 1412 SENTRY;
4afaaefa 1413
ea3e6ca9 1414 /* Per-magazine sizes below assume a 4Kib page size */
8b45dda2 1415 if (obj_size > (PAGE_SIZE * 256))
ea3e6ca9 1416 size = 4; /* Minimum 4Mib per-magazine */
8b45dda2 1417 else if (obj_size > (PAGE_SIZE * 32))
ea3e6ca9 1418 size = 16; /* Minimum 2Mib per-magazine */
8b45dda2 1419 else if (obj_size > (PAGE_SIZE))
ea3e6ca9 1420 size = 64; /* Minimum 256Kib per-magazine */
8b45dda2 1421 else if (obj_size > (PAGE_SIZE / 4))
ea3e6ca9 1422 size = 128; /* Minimum 128Kib per-magazine */
4afaaefa 1423 else
ea3e6ca9 1424 size = 256;
4afaaefa 1425
b17edc10 1426 SRETURN(size);
4afaaefa 1427}
1428
ea3e6ca9 1429/*
ecc39810 1430 * Allocate a per-cpu magazine to associate with a specific core.
ea3e6ca9 1431 */
4afaaefa 1432static spl_kmem_magazine_t *
08850edd 1433spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
4afaaefa 1434{
1435 spl_kmem_magazine_t *skm;
1436 int size = sizeof(spl_kmem_magazine_t) +
1437 sizeof(void *) * skc->skc_mag_size;
b17edc10 1438 SENTRY;
4afaaefa 1439
08850edd 1440 skm = kmem_alloc_node(size, KM_SLEEP, cpu_to_node(cpu));
4afaaefa 1441 if (skm) {
1442 skm->skm_magic = SKM_MAGIC;
1443 skm->skm_avail = 0;
1444 skm->skm_size = skc->skc_mag_size;
1445 skm->skm_refill = skc->skc_mag_refill;
9b1b8e4c 1446 skm->skm_cache = skc;
ea3e6ca9 1447 skm->skm_age = jiffies;
08850edd 1448 skm->skm_cpu = cpu;
4afaaefa 1449 }
1450
b17edc10 1451 SRETURN(skm);
4afaaefa 1452}
1453
ea3e6ca9 1454/*
ecc39810 1455 * Free a per-cpu magazine associated with a specific core.
ea3e6ca9 1456 */
4afaaefa 1457static void
1458spl_magazine_free(spl_kmem_magazine_t *skm)
1459{
a0f6da3d 1460 int size = sizeof(spl_kmem_magazine_t) +
1461 sizeof(void *) * skm->skm_size;
1462
b17edc10 1463 SENTRY;
4afaaefa 1464 ASSERT(skm->skm_magic == SKM_MAGIC);
1465 ASSERT(skm->skm_avail == 0);
a0f6da3d 1466
1467 kmem_free(skm, size);
b17edc10 1468 SEXIT;
4afaaefa 1469}
1470
ea3e6ca9
BB
1471/*
1472 * Create all pre-cpu magazines of reasonable sizes.
1473 */
4afaaefa 1474static int
1475spl_magazine_create(spl_kmem_cache_t *skc)
1476{
37db7d8c 1477 int i;
b17edc10 1478 SENTRY;
4afaaefa 1479
1480 skc->skc_mag_size = spl_magazine_size(skc);
ea3e6ca9 1481 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
4afaaefa 1482
37db7d8c 1483 for_each_online_cpu(i) {
08850edd 1484 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
37db7d8c
BB
1485 if (!skc->skc_mag[i]) {
1486 for (i--; i >= 0; i--)
1487 spl_magazine_free(skc->skc_mag[i]);
4afaaefa 1488
b17edc10 1489 SRETURN(-ENOMEM);
37db7d8c
BB
1490 }
1491 }
4afaaefa 1492
b17edc10 1493 SRETURN(0);
4afaaefa 1494}
1495
ea3e6ca9
BB
1496/*
1497 * Destroy all pre-cpu magazines.
1498 */
4afaaefa 1499static void
1500spl_magazine_destroy(spl_kmem_cache_t *skc)
1501{
37db7d8c
BB
1502 spl_kmem_magazine_t *skm;
1503 int i;
b17edc10 1504 SENTRY;
37db7d8c
BB
1505
1506 for_each_online_cpu(i) {
1507 skm = skc->skc_mag[i];
d4899f47 1508 spl_cache_flush(skc, skm, skm->skm_avail);
37db7d8c
BB
1509 spl_magazine_free(skm);
1510 }
1511
b17edc10 1512 SEXIT;
4afaaefa 1513}
1514
ea3e6ca9
BB
1515/*
1516 * Create a object cache based on the following arguments:
1517 * name cache name
1518 * size cache object size
1519 * align cache object alignment
1520 * ctor cache object constructor
1521 * dtor cache object destructor
1522 * reclaim cache object reclaim
1523 * priv cache private data for ctor/dtor/reclaim
1524 * vmp unused must be NULL
1525 * flags
1526 * KMC_NOTOUCH Disable cache object aging (unsupported)
1527 * KMC_NODEBUG Disable debugging (unsupported)
1528 * KMC_NOMAGAZINE Disable magazine (unsupported)
1529 * KMC_NOHASH Disable hashing (unsupported)
1530 * KMC_QCACHE Disable qcache (unsupported)
1531 * KMC_KMEM Force kmem backed cache
1532 * KMC_VMEM Force vmem backed cache
1533 * KMC_OFFSLAB Locate objects off the slab
1534 */
2fb9b26a 1535spl_kmem_cache_t *
1536spl_kmem_cache_create(char *name, size_t size, size_t align,
1537 spl_kmem_ctor_t ctor,
1538 spl_kmem_dtor_t dtor,
1539 spl_kmem_reclaim_t reclaim,
1540 void *priv, void *vmp, int flags)
1541{
1542 spl_kmem_cache_t *skc;
296a8e59 1543 int rc;
b17edc10 1544 SENTRY;
937879f1 1545
a1502d76 1546 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1547 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1548 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
48e0606a 1549 ASSERT(vmp == NULL);
a1502d76 1550
296a8e59 1551 might_sleep();
0a6fd143 1552
296a8e59
BB
1553 /*
1554 * Allocate memory for a new cache an initialize it. Unfortunately,
5198ea0e
BB
1555 * this usually ends up being a large allocation of ~32k because
1556 * we need to allocate enough memory for the worst case number of
1557 * cpus in the magazine, skc_mag[NR_CPUS]. Because of this we
296a8e59
BB
1558 * explicitly pass KM_NODEBUG to suppress the kmem warning
1559 */
1560 skc = kmem_zalloc(sizeof(*skc), KM_SLEEP| KM_NODEBUG);
e9d7a2be 1561 if (skc == NULL)
b17edc10 1562 SRETURN(NULL);
d61e12af 1563
2fb9b26a 1564 skc->skc_magic = SKC_MAGIC;
2fb9b26a 1565 skc->skc_name_size = strlen(name) + 1;
296a8e59 1566 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, KM_SLEEP);
2fb9b26a 1567 if (skc->skc_name == NULL) {
1568 kmem_free(skc, sizeof(*skc));
b17edc10 1569 SRETURN(NULL);
2fb9b26a 1570 }
1571 strncpy(skc->skc_name, name, skc->skc_name_size);
1572
e9d7a2be 1573 skc->skc_ctor = ctor;
1574 skc->skc_dtor = dtor;
1575 skc->skc_reclaim = reclaim;
2fb9b26a 1576 skc->skc_private = priv;
1577 skc->skc_vmp = vmp;
1578 skc->skc_flags = flags;
1579 skc->skc_obj_size = size;
48e0606a 1580 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
2fb9b26a 1581 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
37db7d8c 1582 skc->skc_reap = SPL_KMEM_CACHE_REAP;
ea3e6ca9 1583 atomic_set(&skc->skc_ref, 0);
2fb9b26a 1584
2fb9b26a 1585 INIT_LIST_HEAD(&skc->skc_list);
1586 INIT_LIST_HEAD(&skc->skc_complete_list);
1587 INIT_LIST_HEAD(&skc->skc_partial_list);
ed316348 1588 skc->skc_emergency_tree = RB_ROOT;
d46630e0 1589 spin_lock_init(&skc->skc_lock);
e2dcc6e2 1590 init_waitqueue_head(&skc->skc_waitq);
e9d7a2be 1591 skc->skc_slab_fail = 0;
1592 skc->skc_slab_create = 0;
1593 skc->skc_slab_destroy = 0;
2fb9b26a 1594 skc->skc_slab_total = 0;
1595 skc->skc_slab_alloc = 0;
1596 skc->skc_slab_max = 0;
1597 skc->skc_obj_total = 0;
1598 skc->skc_obj_alloc = 0;
1599 skc->skc_obj_max = 0;
165f13c3 1600 skc->skc_obj_deadlock = 0;
e2dcc6e2
BB
1601 skc->skc_obj_emergency = 0;
1602 skc->skc_obj_emergency_max = 0;
a1502d76 1603
48e0606a 1604 if (align) {
8b45dda2
BB
1605 VERIFY(ISP2(align));
1606 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); /* Min alignment */
1607 VERIFY3U(align, <=, PAGE_SIZE); /* Max alignment */
48e0606a
BB
1608 skc->skc_obj_align = align;
1609 }
1610
a1502d76 1611 /* If none passed select a cache type based on object size */
1612 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
8b45dda2 1613 if (spl_obj_size(skc) < (PAGE_SIZE / 8))
a1502d76 1614 skc->skc_flags |= KMC_KMEM;
8b45dda2 1615 else
a1502d76 1616 skc->skc_flags |= KMC_VMEM;
a1502d76 1617 }
1618
48e0606a
BB
1619 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1620 if (rc)
b17edc10 1621 SGOTO(out, rc);
4afaaefa 1622
1623 rc = spl_magazine_create(skc);
48e0606a 1624 if (rc)
b17edc10 1625 SGOTO(out, rc);
2fb9b26a 1626
0936c344
BB
1627 if (spl_kmem_cache_expire & KMC_EXPIRE_AGE)
1628 skc->skc_taskqid = taskq_dispatch_delay(spl_kmem_cache_taskq,
1629 spl_cache_age, skc, TQ_SLEEP,
1630 ddi_get_lbolt() + skc->skc_delay / 3 * HZ);
ea3e6ca9 1631
2fb9b26a 1632 down_write(&spl_kmem_cache_sem);
e9d7a2be 1633 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
2fb9b26a 1634 up_write(&spl_kmem_cache_sem);
1635
b17edc10 1636 SRETURN(skc);
48e0606a
BB
1637out:
1638 kmem_free(skc->skc_name, skc->skc_name_size);
1639 kmem_free(skc, sizeof(*skc));
b17edc10 1640 SRETURN(NULL);
f1ca4da6 1641}
2fb9b26a 1642EXPORT_SYMBOL(spl_kmem_cache_create);
f1ca4da6 1643
2b354302
BB
1644/*
1645 * Register a move callback to for cache defragmentation.
1646 * XXX: Unimplemented but harmless to stub out for now.
1647 */
1648void
6576a1a7 1649spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
2b354302
BB
1650 kmem_cbrc_t (move)(void *, void *, size_t, void *))
1651{
1652 ASSERT(move != NULL);
1653}
1654EXPORT_SYMBOL(spl_kmem_cache_set_move);
1655
ea3e6ca9 1656/*
ecc39810 1657 * Destroy a cache and all objects associated with the cache.
ea3e6ca9 1658 */
2fb9b26a 1659void
1660spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
f1ca4da6 1661{
ea3e6ca9 1662 DECLARE_WAIT_QUEUE_HEAD(wq);
a10287e0 1663 taskqid_t id;
b17edc10 1664 SENTRY;
f1ca4da6 1665
e9d7a2be 1666 ASSERT(skc->skc_magic == SKC_MAGIC);
1667
1668 down_write(&spl_kmem_cache_sem);
1669 list_del_init(&skc->skc_list);
1670 up_write(&spl_kmem_cache_sem);
2fb9b26a 1671
a10287e0 1672 /* Cancel any and wait for any pending delayed tasks */
64c075c3 1673 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
9b1b8e4c 1674
a10287e0
BB
1675 spin_lock(&skc->skc_lock);
1676 id = skc->skc_taskqid;
1677 spin_unlock(&skc->skc_lock);
1678
1679 taskq_cancel_id(spl_kmem_cache_taskq, id);
ea3e6ca9
BB
1680
1681 /* Wait until all current callers complete, this is mainly
1682 * to catch the case where a low memory situation triggers a
1683 * cache reaping action which races with this destroy. */
1684 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1685
4afaaefa 1686 spl_magazine_destroy(skc);
37db7d8c 1687 spl_slab_reclaim(skc, 0, 1);
d46630e0 1688 spin_lock(&skc->skc_lock);
d6a26c6a 1689
2fb9b26a 1690 /* Validate there are no objects in use and free all the
4afaaefa 1691 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
ea3e6ca9
BB
1692 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1693 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1694 ASSERT3U(skc->skc_slab_total, ==, 0);
1695 ASSERT3U(skc->skc_obj_total, ==, 0);
e2dcc6e2 1696 ASSERT3U(skc->skc_obj_emergency, ==, 0);
2fb9b26a 1697 ASSERT(list_empty(&skc->skc_complete_list));
a1502d76 1698
2fb9b26a 1699 kmem_free(skc->skc_name, skc->skc_name_size);
d46630e0 1700 spin_unlock(&skc->skc_lock);
ff449ac4 1701
4afaaefa 1702 kmem_free(skc, sizeof(*skc));
2fb9b26a 1703
b17edc10 1704 SEXIT;
f1ca4da6 1705}
2fb9b26a 1706EXPORT_SYMBOL(spl_kmem_cache_destroy);
f1ca4da6 1707
ea3e6ca9
BB
1708/*
1709 * Allocate an object from a slab attached to the cache. This is used to
1710 * repopulate the per-cpu magazine caches in batches when they run low.
1711 */
4afaaefa 1712static void *
1713spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
f1ca4da6 1714{
2fb9b26a 1715 spl_kmem_obj_t *sko;
f1ca4da6 1716
e9d7a2be 1717 ASSERT(skc->skc_magic == SKC_MAGIC);
1718 ASSERT(sks->sks_magic == SKS_MAGIC);
4afaaefa 1719 ASSERT(spin_is_locked(&skc->skc_lock));
2fb9b26a 1720
a1502d76 1721 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
4afaaefa 1722 ASSERT(sko->sko_magic == SKO_MAGIC);
1723 ASSERT(sko->sko_addr != NULL);
2fb9b26a 1724
a1502d76 1725 /* Remove from sks_free_list */
4afaaefa 1726 list_del_init(&sko->sko_list);
2fb9b26a 1727
4afaaefa 1728 sks->sks_age = jiffies;
1729 sks->sks_ref++;
1730 skc->skc_obj_alloc++;
2fb9b26a 1731
4afaaefa 1732 /* Track max obj usage statistics */
1733 if (skc->skc_obj_alloc > skc->skc_obj_max)
1734 skc->skc_obj_max = skc->skc_obj_alloc;
2fb9b26a 1735
4afaaefa 1736 /* Track max slab usage statistics */
1737 if (sks->sks_ref == 1) {
1738 skc->skc_slab_alloc++;
f1ca4da6 1739
4afaaefa 1740 if (skc->skc_slab_alloc > skc->skc_slab_max)
1741 skc->skc_slab_max = skc->skc_slab_alloc;
2fb9b26a 1742 }
1743
4afaaefa 1744 return sko->sko_addr;
1745}
c30df9c8 1746
ea3e6ca9 1747/*
e2dcc6e2
BB
1748 * Generic slab allocation function to run by the global work queues.
1749 * It is responsible for allocating a new slab, linking it in to the list
1750 * of partial slabs, and then waking any waiters.
4afaaefa 1751 */
e2dcc6e2
BB
1752static void
1753spl_cache_grow_work(void *data)
4afaaefa 1754{
33e94ef1 1755 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
e2dcc6e2 1756 spl_kmem_cache_t *skc = ska->ska_cache;
e9d7a2be 1757 spl_kmem_slab_t *sks;
e2dcc6e2
BB
1758
1759 sks = spl_slab_alloc(skc, ska->ska_flags | __GFP_NORETRY | KM_NODEBUG);
1760 spin_lock(&skc->skc_lock);
1761 if (sks) {
1762 skc->skc_slab_total++;
1763 skc->skc_obj_total += sks->sks_objs;
1764 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1765 }
1766
1767 atomic_dec(&skc->skc_ref);
1768 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
165f13c3 1769 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
e2dcc6e2
BB
1770 wake_up_all(&skc->skc_waitq);
1771 spin_unlock(&skc->skc_lock);
1772
1773 kfree(ska);
1774}
1775
1776/*
1777 * Returns non-zero when a new slab should be available.
1778 */
1779static int
1780spl_cache_grow_wait(spl_kmem_cache_t *skc)
1781{
1782 return !test_bit(KMC_BIT_GROWING, &skc->skc_flags);
1783}
1784
dc1b3022
BB
1785static int
1786spl_cache_reclaim_wait(void *word)
1787{
1788 schedule();
1789 return 0;
1790}
1791
e2dcc6e2
BB
1792/*
1793 * No available objects on any slabs, create a new slab.
1794 */
1795static int
1796spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1797{
165f13c3 1798 int remaining, rc;
b17edc10 1799 SENTRY;
f1ca4da6 1800
e9d7a2be 1801 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9 1802 might_sleep();
e2dcc6e2 1803 *obj = NULL;
e9d7a2be 1804
ea3e6ca9 1805 /*
dc1b3022
BB
1806 * Before allocating a new slab wait for any reaping to complete and
1807 * then return so the local magazine can be rechecked for new objects.
ea3e6ca9 1808 */
dc1b3022
BB
1809 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1810 rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1811 spl_cache_reclaim_wait, TASK_UNINTERRUPTIBLE);
1812 SRETURN(rc ? rc : -EAGAIN);
1813 }
2fb9b26a 1814
e2dcc6e2
BB
1815 /*
1816 * This is handled by dispatching a work request to the global work
1817 * queue. This allows us to asynchronously allocate a new slab while
1818 * retaining the ability to safely fall back to a smaller synchronous
1819 * allocations to ensure forward progress is always maintained.
1820 */
1821 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1822 spl_kmem_alloc_t *ska;
4afaaefa 1823
e2dcc6e2
BB
1824 ska = kmalloc(sizeof(*ska), flags);
1825 if (ska == NULL) {
1826 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
1827 wake_up_all(&skc->skc_waitq);
1828 SRETURN(-ENOMEM);
1829 }
4afaaefa 1830
e2dcc6e2
BB
1831 atomic_inc(&skc->skc_ref);
1832 ska->ska_cache = skc;
043f9b57 1833 ska->ska_flags = flags & ~__GFP_FS;
33e94ef1
BB
1834 taskq_init_ent(&ska->ska_tqe);
1835 taskq_dispatch_ent(spl_kmem_cache_taskq,
1836 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
e2dcc6e2
BB
1837 }
1838
1839 /*
165f13c3
BB
1840 * The goal here is to only detect the rare case where a virtual slab
1841 * allocation has deadlocked. We must be careful to minimize the use
1842 * of emergency objects which are more expensive to track. Therefore,
1843 * we set a very long timeout for the asynchronous allocation and if
1844 * the timeout is reached the cache is flagged as deadlocked. From
1845 * this point only new emergency objects will be allocated until the
1846 * asynchronous allocation completes and clears the deadlocked flag.
e2dcc6e2 1847 */
165f13c3
BB
1848 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1849 rc = spl_emergency_alloc(skc, flags, obj);
1850 } else {
1851 remaining = wait_event_timeout(skc->skc_waitq,
1852 spl_cache_grow_wait(skc), HZ);
1853
1854 if (!remaining && test_bit(KMC_BIT_VMEM, &skc->skc_flags)) {
1855 spin_lock(&skc->skc_lock);
1856 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1857 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1858 skc->skc_obj_deadlock++;
1859 }
1860 spin_unlock(&skc->skc_lock);
1861 }
cb5c2ace 1862
165f13c3 1863 rc = -ENOMEM;
cb5c2ace 1864 }
e2dcc6e2
BB
1865
1866 SRETURN(rc);
f1ca4da6 1867}
1868
ea3e6ca9 1869/*
e2dcc6e2
BB
1870 * Refill a per-cpu magazine with objects from the slabs for this cache.
1871 * Ideally the magazine can be repopulated using existing objects which have
1872 * been released, however if we are unable to locate enough free objects new
1873 * slabs of objects will be created. On success NULL is returned, otherwise
1874 * the address of a single emergency object is returned for use by the caller.
ea3e6ca9 1875 */
e2dcc6e2 1876static void *
4afaaefa 1877spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
f1ca4da6 1878{
e9d7a2be 1879 spl_kmem_slab_t *sks;
e2dcc6e2
BB
1880 int count = 0, rc, refill;
1881 void *obj = NULL;
b17edc10 1882 SENTRY;
f1ca4da6 1883
e9d7a2be 1884 ASSERT(skc->skc_magic == SKC_MAGIC);
1885 ASSERT(skm->skm_magic == SKM_MAGIC);
1886
e9d7a2be 1887 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
d46630e0 1888 spin_lock(&skc->skc_lock);
ff449ac4 1889
4afaaefa 1890 while (refill > 0) {
ea3e6ca9 1891 /* No slabs available we may need to grow the cache */
4afaaefa 1892 if (list_empty(&skc->skc_partial_list)) {
1893 spin_unlock(&skc->skc_lock);
ff449ac4 1894
e2dcc6e2
BB
1895 local_irq_enable();
1896 rc = spl_cache_grow(skc, flags, &obj);
1897 local_irq_disable();
1898
1899 /* Emergency object for immediate use by caller */
1900 if (rc == 0 && obj != NULL)
1901 SRETURN(obj);
1902
1903 if (rc)
b17edc10 1904 SGOTO(out, rc);
4afaaefa 1905
1906 /* Rescheduled to different CPU skm is not local */
1907 if (skm != skc->skc_mag[smp_processor_id()])
b17edc10 1908 SGOTO(out, rc);
e9d7a2be 1909
1910 /* Potentially rescheduled to the same CPU but
ecc39810 1911 * allocations may have occurred from this CPU while
e9d7a2be 1912 * we were sleeping so recalculate max refill. */
1913 refill = MIN(refill, skm->skm_size - skm->skm_avail);
4afaaefa 1914
1915 spin_lock(&skc->skc_lock);
1916 continue;
1917 }
d46630e0 1918
4afaaefa 1919 /* Grab the next available slab */
1920 sks = list_entry((&skc->skc_partial_list)->next,
1921 spl_kmem_slab_t, sks_list);
1922 ASSERT(sks->sks_magic == SKS_MAGIC);
1923 ASSERT(sks->sks_ref < sks->sks_objs);
1924 ASSERT(!list_empty(&sks->sks_free_list));
d46630e0 1925
4afaaefa 1926 /* Consume as many objects as needed to refill the requested
e9d7a2be 1927 * cache. We must also be careful not to overfill it. */
e2dcc6e2 1928 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++count) {
e9d7a2be 1929 ASSERT(skm->skm_avail < skm->skm_size);
e2dcc6e2 1930 ASSERT(count < skm->skm_size);
4afaaefa 1931 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
e9d7a2be 1932 }
f1ca4da6 1933
4afaaefa 1934 /* Move slab to skc_complete_list when full */
1935 if (sks->sks_ref == sks->sks_objs) {
1936 list_del(&sks->sks_list);
1937 list_add(&sks->sks_list, &skc->skc_complete_list);
2fb9b26a 1938 }
1939 }
57d86234 1940
4afaaefa 1941 spin_unlock(&skc->skc_lock);
1942out:
e2dcc6e2 1943 SRETURN(NULL);
4afaaefa 1944}
1945
ea3e6ca9
BB
1946/*
1947 * Release an object back to the slab from which it came.
1948 */
4afaaefa 1949static void
1950spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1951{
e9d7a2be 1952 spl_kmem_slab_t *sks = NULL;
4afaaefa 1953 spl_kmem_obj_t *sko = NULL;
b17edc10 1954 SENTRY;
4afaaefa 1955
e9d7a2be 1956 ASSERT(skc->skc_magic == SKC_MAGIC);
4afaaefa 1957 ASSERT(spin_is_locked(&skc->skc_lock));
1958
8b45dda2 1959 sko = spl_sko_from_obj(skc, obj);
a1502d76 1960 ASSERT(sko->sko_magic == SKO_MAGIC);
4afaaefa 1961 sks = sko->sko_slab;
a1502d76 1962 ASSERT(sks->sks_magic == SKS_MAGIC);
2fb9b26a 1963 ASSERT(sks->sks_cache == skc);
2fb9b26a 1964 list_add(&sko->sko_list, &sks->sks_free_list);
d6a26c6a 1965
2fb9b26a 1966 sks->sks_age = jiffies;
4afaaefa 1967 sks->sks_ref--;
2fb9b26a 1968 skc->skc_obj_alloc--;
f1ca4da6 1969
2fb9b26a 1970 /* Move slab to skc_partial_list when no longer full. Slabs
4afaaefa 1971 * are added to the head to keep the partial list is quasi-full
1972 * sorted order. Fuller at the head, emptier at the tail. */
1973 if (sks->sks_ref == (sks->sks_objs - 1)) {
2fb9b26a 1974 list_del(&sks->sks_list);
1975 list_add(&sks->sks_list, &skc->skc_partial_list);
1976 }
f1ca4da6 1977
ecc39810 1978 /* Move empty slabs to the end of the partial list so
4afaaefa 1979 * they can be easily found and freed during reclamation. */
1980 if (sks->sks_ref == 0) {
2fb9b26a 1981 list_del(&sks->sks_list);
1982 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1983 skc->skc_slab_alloc--;
1984 }
1985
b17edc10 1986 SEXIT;
4afaaefa 1987}
1988
ea3e6ca9
BB
1989/*
1990 * Allocate an object from the per-cpu magazine, or if the magazine
1991 * is empty directly allocate from a slab and repopulate the magazine.
1992 */
4afaaefa 1993void *
1994spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1995{
1996 spl_kmem_magazine_t *skm;
1997 unsigned long irq_flags;
1998 void *obj = NULL;
b17edc10 1999 SENTRY;
4afaaefa 2000
e9d7a2be 2001 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
2002 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2003 ASSERT(flags & KM_SLEEP);
2004 atomic_inc(&skc->skc_ref);
4afaaefa 2005 local_irq_save(irq_flags);
2006
2007restart:
2008 /* Safe to update per-cpu structure without lock, but
ecc39810 2009 * in the restart case we must be careful to reacquire
4afaaefa 2010 * the local magazine since this may have changed
2011 * when we need to grow the cache. */
2012 skm = skc->skc_mag[smp_processor_id()];
e9d7a2be 2013 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
2014 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
2015 skm->skm_size, skm->skm_refill, skm->skm_avail);
4afaaefa 2016
2017 if (likely(skm->skm_avail)) {
2018 /* Object available in CPU cache, use it */
2019 obj = skm->skm_objs[--skm->skm_avail];
ea3e6ca9 2020 skm->skm_age = jiffies;
4afaaefa 2021 } else {
e2dcc6e2
BB
2022 obj = spl_cache_refill(skc, skm, flags);
2023 if (obj == NULL)
2024 SGOTO(restart, obj = NULL);
4afaaefa 2025 }
2026
2027 local_irq_restore(irq_flags);
fece7c99 2028 ASSERT(obj);
8b45dda2 2029 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
4afaaefa 2030
2031 /* Pre-emptively migrate object to CPU L1 cache */
2032 prefetchw(obj);
ea3e6ca9 2033 atomic_dec(&skc->skc_ref);
4afaaefa 2034
b17edc10 2035 SRETURN(obj);
4afaaefa 2036}
2037EXPORT_SYMBOL(spl_kmem_cache_alloc);
2038
ea3e6ca9
BB
2039/*
2040 * Free an object back to the local per-cpu magazine, there is no
2041 * guarantee that this is the same magazine the object was originally
2042 * allocated from. We may need to flush entire from the magazine
2043 * back to the slabs to make space.
2044 */
4afaaefa 2045void
2046spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
2047{
2048 spl_kmem_magazine_t *skm;
2049 unsigned long flags;
b17edc10 2050 SENTRY;
4afaaefa 2051
e9d7a2be 2052 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
2053 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2054 atomic_inc(&skc->skc_ref);
e2dcc6e2
BB
2055
2056 /*
a1af8fb1
BB
2057 * Only virtual slabs may have emergency objects and these objects
2058 * are guaranteed to have physical addresses. They must be removed
2059 * from the tree of emergency objects and the freed.
e2dcc6e2 2060 */
a1af8fb1
BB
2061 if ((skc->skc_flags & KMC_VMEM) && !kmem_virt(obj))
2062 SGOTO(out, spl_emergency_free(skc, obj));
e2dcc6e2 2063
4afaaefa 2064 local_irq_save(flags);
2065
2066 /* Safe to update per-cpu structure without lock, but
2067 * no remote memory allocation tracking is being performed
2068 * it is entirely possible to allocate an object from one
2069 * CPU cache and return it to another. */
2070 skm = skc->skc_mag[smp_processor_id()];
e9d7a2be 2071 ASSERT(skm->skm_magic == SKM_MAGIC);
4afaaefa 2072
2073 /* Per-CPU cache full, flush it to make space */
2074 if (unlikely(skm->skm_avail >= skm->skm_size))
d4899f47 2075 spl_cache_flush(skc, skm, skm->skm_refill);
4afaaefa 2076
2077 /* Available space in cache, use it */
2078 skm->skm_objs[skm->skm_avail++] = obj;
2079
2080 local_irq_restore(flags);
e2dcc6e2 2081out:
ea3e6ca9 2082 atomic_dec(&skc->skc_ref);
4afaaefa 2083
b17edc10 2084 SEXIT;
f1ca4da6 2085}
2fb9b26a 2086EXPORT_SYMBOL(spl_kmem_cache_free);
5c2bb9b2 2087
ea3e6ca9 2088/*
ecc39810
BB
2089 * The generic shrinker function for all caches. Under Linux a shrinker
2090 * may not be tightly coupled with a slab cache. In fact Linux always
2091 * systematically tries calling all registered shrinker callbacks which
ea3e6ca9
BB
2092 * report that they contain unused objects. Because of this we only
2093 * register one shrinker function in the shim layer for all slab caches.
2094 * We always attempt to shrink all caches when this generic shrinker
2095 * is called. The shrinker should return the number of free objects
2096 * in the cache when called with nr_to_scan == 0 but not attempt to
2097 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
cef7605c
PS
2098 * objects should be freed, which differs from Solaris semantics.
2099 * Solaris semantics are to free all available objects which may (and
2100 * probably will) be more objects than the requested nr_to_scan.
ea3e6ca9 2101 */
a55bcaad
BB
2102static int
2103__spl_kmem_cache_generic_shrinker(struct shrinker *shrink,
2104 struct shrink_control *sc)
2fb9b26a 2105{
e9d7a2be 2106 spl_kmem_cache_t *skc;
ea3e6ca9 2107 int unused = 0;
5c2bb9b2 2108
e9d7a2be 2109 down_read(&spl_kmem_cache_sem);
ea3e6ca9 2110 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
a55bcaad 2111 if (sc->nr_to_scan)
cef7605c
PS
2112 spl_kmem_cache_reap_now(skc,
2113 MAX(sc->nr_to_scan >> fls64(skc->skc_slab_objs), 1));
ea3e6ca9
BB
2114
2115 /*
2116 * Presume everything alloc'ed in reclaimable, this ensures
2117 * we are called again with nr_to_scan > 0 so can try and
2118 * reclaim. The exact number is not important either so
2119 * we forgo taking this already highly contented lock.
2120 */
2121 unused += skc->skc_obj_alloc;
2122 }
e9d7a2be 2123 up_read(&spl_kmem_cache_sem);
2fb9b26a 2124
ea3e6ca9 2125 return (unused * sysctl_vfs_cache_pressure) / 100;
5c2bb9b2 2126}
5c2bb9b2 2127
a55bcaad
BB
2128SPL_SHRINKER_CALLBACK_WRAPPER(spl_kmem_cache_generic_shrinker);
2129
ea3e6ca9
BB
2130/*
2131 * Call the registered reclaim function for a cache. Depending on how
2132 * many and which objects are released it may simply repopulate the
2133 * local magazine which will then need to age-out. Objects which cannot
2134 * fit in the magazine we will be released back to their slabs which will
2135 * also need to age out before being release. This is all just best
2136 * effort and we do not want to thrash creating and destroying slabs.
2137 */
57d86234 2138void
cef7605c 2139spl_kmem_cache_reap_now(spl_kmem_cache_t *skc, int count)
57d86234 2140{
b17edc10 2141 SENTRY;
e9d7a2be 2142
2143 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9 2144 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2fb9b26a 2145
ea3e6ca9
BB
2146 /* Prevent concurrent cache reaping when contended */
2147 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
b17edc10 2148 SEXIT;
ea3e6ca9
BB
2149 return;
2150 }
2fb9b26a 2151
ea3e6ca9 2152 atomic_inc(&skc->skc_ref);
4afaaefa 2153
b78d4b9d
BB
2154 /*
2155 * When a reclaim function is available it may be invoked repeatedly
2156 * until at least a single slab can be freed. This ensures that we
2157 * do free memory back to the system. This helps minimize the chance
2158 * of an OOM event when the bulk of memory is used by the slab.
2159 *
2160 * When free slabs are already available the reclaim callback will be
2161 * skipped. Additionally, if no forward progress is detected despite
2162 * a reclaim function the cache will be skipped to avoid deadlock.
2163 *
2164 * Longer term this would be the correct place to add the code which
2165 * repacks the slabs in order minimize fragmentation.
2166 */
2167 if (skc->skc_reclaim) {
2168 uint64_t objects = UINT64_MAX;
2169 int do_reclaim;
2170
2171 do {
2172 spin_lock(&skc->skc_lock);
2173 do_reclaim =
2174 (skc->skc_slab_total > 0) &&
2175 ((skc->skc_slab_total - skc->skc_slab_alloc) == 0) &&
2176 (skc->skc_obj_alloc < objects);
2177
2178 objects = skc->skc_obj_alloc;
2179 spin_unlock(&skc->skc_lock);
2180
2181 if (do_reclaim)
2182 skc->skc_reclaim(skc->skc_private);
2183
2184 } while (do_reclaim);
2185 }
4afaaefa 2186
0936c344
BB
2187 /* Reclaim from the magazine then the slabs ignoring age and delay. */
2188 if (spl_kmem_cache_expire & KMC_EXPIRE_MEM) {
2189 spl_kmem_magazine_t *skm;
2190 int i;
2191
2192 for_each_online_cpu(i) {
2193 skm = skc->skc_mag[i];
2194 spl_cache_flush(skc, skm, skm->skm_avail);
2195 }
2196 }
2197
c0e0fc14 2198 spl_slab_reclaim(skc, count, 1);
ea3e6ca9 2199 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
dc1b3022
BB
2200 smp_mb__after_clear_bit();
2201 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
2202
ea3e6ca9 2203 atomic_dec(&skc->skc_ref);
4afaaefa 2204
b17edc10 2205 SEXIT;
57d86234 2206}
2fb9b26a 2207EXPORT_SYMBOL(spl_kmem_cache_reap_now);
57d86234 2208
ea3e6ca9
BB
2209/*
2210 * Reap all free slabs from all registered caches.
2211 */
f1b59d26 2212void
2fb9b26a 2213spl_kmem_reap(void)
937879f1 2214{
a55bcaad
BB
2215 struct shrink_control sc;
2216
2217 sc.nr_to_scan = KMC_REAP_CHUNK;
2218 sc.gfp_mask = GFP_KERNEL;
2219
2220 __spl_kmem_cache_generic_shrinker(NULL, &sc);
f1ca4da6 2221}
2fb9b26a 2222EXPORT_SYMBOL(spl_kmem_reap);
5d86345d 2223
ff449ac4 2224#if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
c6dc93d6 2225static char *
4afaaefa 2226spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
d6a26c6a 2227{
e9d7a2be 2228 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
d6a26c6a 2229 int i, flag = 1;
2230
2231 ASSERT(str != NULL && len >= 17);
e9d7a2be 2232 memset(str, 0, len);
d6a26c6a 2233
2234 /* Check for a fully printable string, and while we are at
2235 * it place the printable characters in the passed buffer. */
2236 for (i = 0; i < size; i++) {
e9d7a2be 2237 str[i] = ((char *)(kd->kd_addr))[i];
2238 if (isprint(str[i])) {
2239 continue;
2240 } else {
2241 /* Minimum number of printable characters found
2242 * to make it worthwhile to print this as ascii. */
2243 if (i > min)
2244 break;
2245
2246 flag = 0;
2247 break;
2248 }
d6a26c6a 2249 }
2250
2251 if (!flag) {
2252 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
2253 *((uint8_t *)kd->kd_addr),
2254 *((uint8_t *)kd->kd_addr + 2),
2255 *((uint8_t *)kd->kd_addr + 4),
2256 *((uint8_t *)kd->kd_addr + 6),
2257 *((uint8_t *)kd->kd_addr + 8),
2258 *((uint8_t *)kd->kd_addr + 10),
2259 *((uint8_t *)kd->kd_addr + 12),
2260 *((uint8_t *)kd->kd_addr + 14));
2261 }
2262
2263 return str;
2264}
2265
a1502d76 2266static int
2267spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
2268{
2269 int i;
b17edc10 2270 SENTRY;
a1502d76 2271
2272 spin_lock_init(lock);
2273 INIT_LIST_HEAD(list);
2274
2275 for (i = 0; i < size; i++)
2276 INIT_HLIST_HEAD(&kmem_table[i]);
2277
b17edc10 2278 SRETURN(0);
a1502d76 2279}
2280
ff449ac4 2281static void
2282spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
5d86345d 2283{
2fb9b26a 2284 unsigned long flags;
2285 kmem_debug_t *kd;
2286 char str[17];
b17edc10 2287 SENTRY;
2fb9b26a 2288
ff449ac4 2289 spin_lock_irqsave(lock, flags);
2290 if (!list_empty(list))
a0f6da3d 2291 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
2292 "size", "data", "func", "line");
2fb9b26a 2293
ff449ac4 2294 list_for_each_entry(kd, list, kd_list)
a0f6da3d 2295 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
b6b2acc6 2296 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2fb9b26a 2297 kd->kd_func, kd->kd_line);
2298
ff449ac4 2299 spin_unlock_irqrestore(lock, flags);
b17edc10 2300 SEXIT;
ff449ac4 2301}
2302#else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
a1502d76 2303#define spl_kmem_init_tracking(list, lock, size)
ff449ac4 2304#define spl_kmem_fini_tracking(list, lock)
2305#endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
2306
36b313da
BB
2307static void
2308spl_kmem_init_globals(void)
2309{
2310 struct zone *zone;
2311
2312 /* For now all zones are includes, it may be wise to restrict
2313 * this to normal and highmem zones if we see problems. */
2314 for_each_zone(zone) {
2315
2316 if (!populated_zone(zone))
2317 continue;
2318
baf2979e
BB
2319 minfree += min_wmark_pages(zone);
2320 desfree += low_wmark_pages(zone);
2321 lotsfree += high_wmark_pages(zone);
36b313da 2322 }
4ab13d3b
BB
2323
2324 /* Solaris default values */
96dded38
BB
2325 swapfs_minfree = MAX(2*1024*1024 >> PAGE_SHIFT, physmem >> 3);
2326 swapfs_reserve = MIN(4*1024*1024 >> PAGE_SHIFT, physmem >> 4);
36b313da
BB
2327}
2328
d1ff2312
BB
2329/*
2330 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
2331 */
2332int
2333spl_kmem_init_kallsyms_lookup(void)
2334{
2335#ifndef HAVE_GET_VMALLOC_INFO
2336 get_vmalloc_info_fn = (get_vmalloc_info_t)
2337 spl_kallsyms_lookup_name("get_vmalloc_info");
e11d6c5f
BB
2338 if (!get_vmalloc_info_fn) {
2339 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
d1ff2312 2340 return -EFAULT;
e11d6c5f 2341 }
d1ff2312
BB
2342#endif /* HAVE_GET_VMALLOC_INFO */
2343
5232d256
BB
2344#ifdef HAVE_PGDAT_HELPERS
2345# ifndef HAVE_FIRST_ONLINE_PGDAT
d1ff2312
BB
2346 first_online_pgdat_fn = (first_online_pgdat_t)
2347 spl_kallsyms_lookup_name("first_online_pgdat");
e11d6c5f
BB
2348 if (!first_online_pgdat_fn) {
2349 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
d1ff2312 2350 return -EFAULT;
e11d6c5f 2351 }
5232d256 2352# endif /* HAVE_FIRST_ONLINE_PGDAT */
d1ff2312 2353
5232d256 2354# ifndef HAVE_NEXT_ONLINE_PGDAT
d1ff2312
BB
2355 next_online_pgdat_fn = (next_online_pgdat_t)
2356 spl_kallsyms_lookup_name("next_online_pgdat");
e11d6c5f
BB
2357 if (!next_online_pgdat_fn) {
2358 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
d1ff2312 2359 return -EFAULT;
e11d6c5f 2360 }
5232d256 2361# endif /* HAVE_NEXT_ONLINE_PGDAT */
d1ff2312 2362
5232d256 2363# ifndef HAVE_NEXT_ZONE
d1ff2312
BB
2364 next_zone_fn = (next_zone_t)
2365 spl_kallsyms_lookup_name("next_zone");
e11d6c5f
BB
2366 if (!next_zone_fn) {
2367 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
d1ff2312 2368 return -EFAULT;
e11d6c5f 2369 }
5232d256
BB
2370# endif /* HAVE_NEXT_ZONE */
2371
2372#else /* HAVE_PGDAT_HELPERS */
2373
2374# ifndef HAVE_PGDAT_LIST
124ca8a5 2375 pgdat_list_addr = *(struct pglist_data **)
5232d256
BB
2376 spl_kallsyms_lookup_name("pgdat_list");
2377 if (!pgdat_list_addr) {
2378 printk(KERN_ERR "Error: Unknown symbol pgdat_list\n");
2379 return -EFAULT;
2380 }
2381# endif /* HAVE_PGDAT_LIST */
2382#endif /* HAVE_PGDAT_HELPERS */
d1ff2312 2383
6ae7fef5 2384#if defined(NEED_GET_ZONE_COUNTS) && !defined(HAVE_GET_ZONE_COUNTS)
d1ff2312
BB
2385 get_zone_counts_fn = (get_zone_counts_t)
2386 spl_kallsyms_lookup_name("get_zone_counts");
e11d6c5f
BB
2387 if (!get_zone_counts_fn) {
2388 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
d1ff2312 2389 return -EFAULT;
e11d6c5f 2390 }
6ae7fef5 2391#endif /* NEED_GET_ZONE_COUNTS && !HAVE_GET_ZONE_COUNTS */
d1ff2312
BB
2392
2393 /*
2394 * It is now safe to initialize the global tunings which rely on
2395 * the use of the for_each_zone() macro. This macro in turns
2396 * depends on the *_pgdat symbols which are now available.
2397 */
2398 spl_kmem_init_globals();
2399
e76f4bf1 2400#ifndef HAVE_SHRINK_DCACHE_MEMORY
fe71c0e5 2401 /* When shrink_dcache_memory_fn == NULL support is disabled */
e76f4bf1 2402 shrink_dcache_memory_fn = (shrink_dcache_memory_t)
fe71c0e5 2403 spl_kallsyms_lookup_name("shrink_dcache_memory");
e76f4bf1
BB
2404#endif /* HAVE_SHRINK_DCACHE_MEMORY */
2405
2406#ifndef HAVE_SHRINK_ICACHE_MEMORY
fe71c0e5 2407 /* When shrink_icache_memory_fn == NULL support is disabled */
e76f4bf1 2408 shrink_icache_memory_fn = (shrink_icache_memory_t)
fe71c0e5 2409 spl_kallsyms_lookup_name("shrink_icache_memory");
e76f4bf1
BB
2410#endif /* HAVE_SHRINK_ICACHE_MEMORY */
2411
d1ff2312
BB
2412 return 0;
2413}
2414
a1502d76 2415int
2416spl_kmem_init(void)
2417{
2418 int rc = 0;
b17edc10 2419 SENTRY;
a1502d76 2420
a1502d76 2421#ifdef DEBUG_KMEM
d04c8a56
BB
2422 kmem_alloc_used_set(0);
2423 vmem_alloc_used_set(0);
a1502d76 2424
2425 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
2426 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
2427#endif
5c7a0369
TC
2428
2429 init_rwsem(&spl_kmem_cache_sem);
2430 INIT_LIST_HEAD(&spl_kmem_cache_list);
2431 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
2432 1, maxclsyspri, 1, 32, TASKQ_PREPOPULATE);
2433
2434 spl_register_shrinker(&spl_kmem_cache_shrinker);
2435
b17edc10 2436 SRETURN(rc);
a1502d76 2437}
2438
ff449ac4 2439void
2440spl_kmem_fini(void)
2441{
ab4e74cc
BB
2442 SENTRY;
2443
2444 spl_unregister_shrinker(&spl_kmem_cache_shrinker);
2445 taskq_destroy(spl_kmem_cache_taskq);
2446
ff449ac4 2447#ifdef DEBUG_KMEM
2448 /* Display all unreclaimed memory addresses, including the
2449 * allocation size and the first few bytes of what's located
2450 * at that address to aid in debugging. Performance is not
2451 * a serious concern here since it is module unload time. */
d04c8a56 2452 if (kmem_alloc_used_read() != 0)
b17edc10 2453 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
2454 "kmem leaked %ld/%ld bytes\n",
2455 kmem_alloc_used_read(), kmem_alloc_max);
ff449ac4 2456
2fb9b26a 2457
d04c8a56 2458 if (vmem_alloc_used_read() != 0)
b17edc10 2459 SDEBUG_LIMIT(SD_CONSOLE | SD_WARNING,
3cb77549
BB
2460 "vmem leaked %ld/%ld bytes\n",
2461 vmem_alloc_used_read(), vmem_alloc_max);
2fb9b26a 2462
ff449ac4 2463 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
2464 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
2465#endif /* DEBUG_KMEM */
2fb9b26a 2466
b17edc10 2467 SEXIT;
5d86345d 2468}