]> git.proxmox.com Git - mirror_spl-debian.git/blame - module/spl/spl-kmem.c
FC10/i686 Compatibility Update (2.6.27.19-170.2.35.fc10.i686)
[mirror_spl-debian.git] / module / spl / spl-kmem.c
CommitLineData
715f6251 1/*
2 * This file is part of the SPL: Solaris Porting Layer.
3 *
4 * Copyright (c) 2008 Lawrence Livermore National Security, LLC.
5 * Produced at Lawrence Livermore National Laboratory
6 * Written by:
7 * Brian Behlendorf <behlendorf1@llnl.gov>,
8 * Herb Wartens <wartens2@llnl.gov>,
9 * Jim Garlick <garlick@llnl.gov>
10 * UCRL-CODE-235197
11 *
12 * This is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This is distributed in the hope that it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * for more details.
21 *
22 * You should have received a copy of the GNU General Public License along
23 * with this program; if not, write to the Free Software Foundation, Inc.,
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
25 */
26
f4b37741 27#include <sys/kmem.h>
f1ca4da6 28
937879f1 29#ifdef DEBUG_SUBSYSTEM
a0f6da3d 30# undef DEBUG_SUBSYSTEM
937879f1 31#endif
32
33#define DEBUG_SUBSYSTEM S_KMEM
34
36b313da
BB
35/*
36 * The minimum amount of memory measured in pages to be free at all
37 * times on the system. This is similar to Linux's zone->pages_min
38 * multipled by the number of zones and is sized based on that.
39 */
40pgcnt_t minfree = 0;
41EXPORT_SYMBOL(minfree);
42
43/*
44 * The desired amount of memory measured in pages to be free at all
45 * times on the system. This is similar to Linux's zone->pages_low
46 * multipled by the number of zones and is sized based on that.
47 * Assuming all zones are being used roughly equally, when we drop
48 * below this threshold async page reclamation is triggered.
49 */
50pgcnt_t desfree = 0;
51EXPORT_SYMBOL(desfree);
52
53/*
54 * When above this amount of memory measures in pages the system is
55 * determined to have enough free memory. This is similar to Linux's
56 * zone->pages_high multipled by the number of zones and is sized based
57 * on that. Assuming all zones are being used roughly equally, when
58 * async page reclamation reaches this threshold it stops.
59 */
60pgcnt_t lotsfree = 0;
61EXPORT_SYMBOL(lotsfree);
62
63/* Unused always 0 in this implementation */
64pgcnt_t needfree = 0;
65EXPORT_SYMBOL(needfree);
66
36b313da
BB
67pgcnt_t swapfs_minfree = 0;
68EXPORT_SYMBOL(swapfs_minfree);
69
70pgcnt_t swapfs_reserve = 0;
71EXPORT_SYMBOL(swapfs_reserve);
72
36b313da
BB
73vmem_t *heap_arena = NULL;
74EXPORT_SYMBOL(heap_arena);
75
76vmem_t *zio_alloc_arena = NULL;
77EXPORT_SYMBOL(zio_alloc_arena);
78
79vmem_t *zio_arena = NULL;
80EXPORT_SYMBOL(zio_arena);
81
d1ff2312
BB
82#ifndef HAVE_GET_VMALLOC_INFO
83get_vmalloc_info_t get_vmalloc_info_fn = NULL;
84EXPORT_SYMBOL(get_vmalloc_info_fn);
85#endif /* HAVE_GET_VMALLOC_INFO */
86
36b313da 87#ifndef HAVE_FIRST_ONLINE_PGDAT
d1ff2312
BB
88first_online_pgdat_t first_online_pgdat_fn = NULL;
89EXPORT_SYMBOL(first_online_pgdat_fn);
36b313da
BB
90#endif /* HAVE_FIRST_ONLINE_PGDAT */
91
92#ifndef HAVE_NEXT_ONLINE_PGDAT
d1ff2312
BB
93next_online_pgdat_t next_online_pgdat_fn = NULL;
94EXPORT_SYMBOL(next_online_pgdat_fn);
36b313da
BB
95#endif /* HAVE_NEXT_ONLINE_PGDAT */
96
97#ifndef HAVE_NEXT_ZONE
d1ff2312
BB
98next_zone_t next_zone_fn = NULL;
99EXPORT_SYMBOL(next_zone_fn);
36b313da
BB
100#endif /* HAVE_NEXT_ZONE */
101
e11d6c5f
BB
102#ifndef HAVE_ZONE_STAT_ITEM_FIA
103# ifndef HAVE_GET_ZONE_COUNTS
d1ff2312
BB
104get_zone_counts_t get_zone_counts_fn = NULL;
105EXPORT_SYMBOL(get_zone_counts_fn);
4ab13d3b 106
e11d6c5f
BB
107unsigned long
108spl_global_page_state(int item)
4ab13d3b
BB
109{
110 unsigned long active;
111 unsigned long inactive;
112 unsigned long free;
113
e11d6c5f
BB
114 if (item == NR_FREE_PAGES) {
115 get_zone_counts(&active, &inactive, &free);
116 return free;
117 }
118
119 if (item == NR_INACTIVE) {
120 get_zone_counts(&active, &inactive, &free);
121 return inactive;
122 }
123
124 if (item == NR_ACTIVE) {
125 get_zone_counts(&active, &inactive, &free);
126 return active;
127 }
128
129 return global_page_state((enum zone_stat_item)item);
130}
131EXPORT_SYMBOL(spl_global_page_state);
132# else
133# error "HAVE_ZONE_STAT_ITEM_FIA and HAVE_GET_ZONE_COUNTS unavailable"
134# endif /* HAVE_GET_ZONE_COUNTS */
135#endif /* HAVE_ZONE_STAT_ITEM_FIA */
4ab13d3b 136
e11d6c5f
BB
137pgcnt_t
138spl_kmem_availrmem(void)
139{
4ab13d3b 140 /* The amount of easily available memory */
e11d6c5f
BB
141 return (spl_global_page_state(NR_FREE_PAGES) +
142 spl_global_page_state(NR_INACTIVE));
4ab13d3b
BB
143}
144EXPORT_SYMBOL(spl_kmem_availrmem);
145
146size_t
147vmem_size(vmem_t *vmp, int typemask)
148{
d1ff2312
BB
149 struct vmalloc_info vmi;
150 size_t size = 0;
151
4ab13d3b
BB
152 ASSERT(vmp == NULL);
153 ASSERT(typemask & (VMEM_ALLOC | VMEM_FREE));
154
d1ff2312
BB
155 get_vmalloc_info(&vmi);
156 if (typemask & VMEM_ALLOC)
157 size += (size_t)vmi.used;
158
159 if (typemask & VMEM_FREE)
160 size += (size_t)(VMALLOC_TOTAL - vmi.used);
161
162 return size;
4ab13d3b
BB
163}
164EXPORT_SYMBOL(vmem_size);
4ab13d3b 165
f1ca4da6 166/*
2fb9b26a 167 * Memory allocation interfaces and debugging for basic kmem_*
168 * and vmem_* style memory allocation. When DEBUG_KMEM is enable
169 * all allocations will be tracked when they are allocated and
170 * freed. When the SPL module is unload a list of all leaked
171 * addresses and where they were allocated will be dumped to the
172 * console. Enabling this feature has a significant impant on
173 * performance but it makes finding memory leaks staight forward.
f1ca4da6 174 */
175#ifdef DEBUG_KMEM
176/* Shim layer memory accounting */
550f1705 177atomic64_t kmem_alloc_used = ATOMIC64_INIT(0);
a0f6da3d 178unsigned long long kmem_alloc_max = 0;
550f1705 179atomic64_t vmem_alloc_used = ATOMIC64_INIT(0);
a0f6da3d 180unsigned long long vmem_alloc_max = 0;
c19c06f3 181int kmem_warning_flag = 1;
79b31f36 182
ff449ac4 183EXPORT_SYMBOL(kmem_alloc_used);
184EXPORT_SYMBOL(kmem_alloc_max);
185EXPORT_SYMBOL(vmem_alloc_used);
186EXPORT_SYMBOL(vmem_alloc_max);
187EXPORT_SYMBOL(kmem_warning_flag);
188
a0f6da3d 189# ifdef DEBUG_KMEM_TRACKING
190
191/* XXX - Not to surprisingly with debugging enabled the xmem_locks are very
192 * highly contended particularly on xfree(). If we want to run with this
193 * detailed debugging enabled for anything other than debugging we need to
194 * minimize the contention by moving to a lock per xmem_table entry model.
195 */
196
197# define KMEM_HASH_BITS 10
198# define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS)
199
200# define VMEM_HASH_BITS 10
201# define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS)
202
203typedef struct kmem_debug {
204 struct hlist_node kd_hlist; /* Hash node linkage */
205 struct list_head kd_list; /* List of all allocations */
206 void *kd_addr; /* Allocation pointer */
207 size_t kd_size; /* Allocation size */
208 const char *kd_func; /* Allocation function */
209 int kd_line; /* Allocation line */
210} kmem_debug_t;
211
d6a26c6a 212spinlock_t kmem_lock;
213struct hlist_head kmem_table[KMEM_TABLE_SIZE];
214struct list_head kmem_list;
215
13cdca65 216spinlock_t vmem_lock;
217struct hlist_head vmem_table[VMEM_TABLE_SIZE];
218struct list_head vmem_list;
219
d6a26c6a 220EXPORT_SYMBOL(kmem_lock);
221EXPORT_SYMBOL(kmem_table);
222EXPORT_SYMBOL(kmem_list);
223
13cdca65 224EXPORT_SYMBOL(vmem_lock);
225EXPORT_SYMBOL(vmem_table);
226EXPORT_SYMBOL(vmem_list);
a0f6da3d 227# endif
13cdca65 228
c19c06f3 229int kmem_set_warning(int flag) { return (kmem_warning_flag = !!flag); }
230#else
231int kmem_set_warning(int flag) { return 0; }
f1ca4da6 232#endif
c19c06f3 233EXPORT_SYMBOL(kmem_set_warning);
f1ca4da6 234
235/*
236 * Slab allocation interfaces
237 *
2fb9b26a 238 * While the Linux slab implementation was inspired by the Solaris
239 * implemenation I cannot use it to emulate the Solaris APIs. I
240 * require two features which are not provided by the Linux slab.
241 *
242 * 1) Constructors AND destructors. Recent versions of the Linux
243 * kernel have removed support for destructors. This is a deal
244 * breaker for the SPL which contains particularly expensive
245 * initializers for mutex's, condition variables, etc. We also
a0f6da3d 246 * require a minimal level of cleanup for these data types unlike
247 * many Linux data type which do need to be explicitly destroyed.
2fb9b26a 248 *
a0f6da3d 249 * 2) Virtual address space backed slab. Callers of the Solaris slab
2fb9b26a 250 * expect it to work well for both small are very large allocations.
251 * Because of memory fragmentation the Linux slab which is backed
252 * by kmalloc'ed memory performs very badly when confronted with
253 * large numbers of large allocations. Basing the slab on the
254 * virtual address space removes the need for contigeous pages
255 * and greatly improve performance for large allocations.
256 *
257 * For these reasons, the SPL has its own slab implementation with
258 * the needed features. It is not as highly optimized as either the
259 * Solaris or Linux slabs, but it should get me most of what is
260 * needed until it can be optimized or obsoleted by another approach.
261 *
262 * One serious concern I do have about this method is the relatively
263 * small virtual address space on 32bit arches. This will seriously
264 * constrain the size of the slab caches and their performance.
265 *
2fb9b26a 266 * XXX: Improve the partial slab list by carefully maintaining a
267 * strict ordering of fullest to emptiest slabs based on
268 * the slab reference count. This gaurentees the when freeing
269 * slabs back to the system we need only linearly traverse the
270 * last N slabs in the list to discover all the freeable slabs.
271 *
272 * XXX: NUMA awareness for optionally allocating memory close to a
273 * particular core. This can be adventageous if you know the slab
274 * object will be short lived and primarily accessed from one core.
275 *
276 * XXX: Slab coloring may also yield performance improvements and would
277 * be desirable to implement.
f1ca4da6 278 */
2fb9b26a 279
a0f6da3d 280struct list_head spl_kmem_cache_list; /* List of caches */
281struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
c30df9c8 282
4afaaefa 283static int spl_cache_flush(spl_kmem_cache_t *skc,
a0f6da3d 284 spl_kmem_magazine_t *skm, int flush);
4afaaefa 285
57d86234 286#ifdef HAVE_SET_SHRINKER
2fb9b26a 287static struct shrinker *spl_kmem_cache_shrinker;
57d86234 288#else
4afaaefa 289static int spl_kmem_cache_generic_shrinker(int nr_to_scan,
a0f6da3d 290 unsigned int gfp_mask);
2fb9b26a 291static struct shrinker spl_kmem_cache_shrinker = {
4afaaefa 292 .shrink = spl_kmem_cache_generic_shrinker,
57d86234 293 .seeks = KMC_DEFAULT_SEEKS,
294};
295#endif
f1ca4da6 296
a0f6da3d 297#ifdef DEBUG_KMEM
298# ifdef DEBUG_KMEM_TRACKING
299
300static kmem_debug_t *
301kmem_del_init(spinlock_t *lock, struct hlist_head *table, int bits,
302 void *addr)
303{
304 struct hlist_head *head;
305 struct hlist_node *node;
306 struct kmem_debug *p;
307 unsigned long flags;
308 ENTRY;
309
310 spin_lock_irqsave(lock, flags);
311
312 head = &table[hash_ptr(addr, bits)];
313 hlist_for_each_entry_rcu(p, node, head, kd_hlist) {
314 if (p->kd_addr == addr) {
315 hlist_del_init(&p->kd_hlist);
316 list_del_init(&p->kd_list);
317 spin_unlock_irqrestore(lock, flags);
318 return p;
319 }
320 }
321
322 spin_unlock_irqrestore(lock, flags);
323
324 RETURN(NULL);
325}
326
327void *
328kmem_alloc_track(size_t size, int flags, const char *func, int line,
329 int node_alloc, int node)
330{
331 void *ptr = NULL;
332 kmem_debug_t *dptr;
333 unsigned long irq_flags;
334 ENTRY;
335
336 dptr = (kmem_debug_t *) kmalloc(sizeof(kmem_debug_t),
337 flags & ~__GFP_ZERO);
338
339 if (dptr == NULL) {
340 CWARN("kmem_alloc(%ld, 0x%x) debug failed\n",
341 sizeof(kmem_debug_t), flags);
342 } else {
343 /* Marked unlikely because we should never be doing this,
344 * we tolerate to up 2 pages but a single page is best. */
345 if (unlikely((size) > (PAGE_SIZE * 2)) && kmem_warning_flag)
346 CWARN("Large kmem_alloc(%llu, 0x%x) (%lld/%llu)\n",
347 (unsigned long long) size, flags,
348 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
349
c8e60837 350 /* We use kstrdup() below because the string pointed to by
351 * __FUNCTION__ might not be available by the time we want
352 * to print it since the module might have been unloaded. */
353 dptr->kd_func = kstrdup(func, flags & ~__GFP_ZERO);
354 if (unlikely(dptr->kd_func == NULL)) {
355 kfree(dptr);
356 CWARN("kstrdup() failed in kmem_alloc(%llu, 0x%x) "
357 "(%lld/%llu)\n", (unsigned long long) size, flags,
358 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
359 goto out;
360 }
361
a0f6da3d 362 /* Use the correct allocator */
363 if (node_alloc) {
364 ASSERT(!(flags & __GFP_ZERO));
365 ptr = kmalloc_node(size, flags, node);
366 } else if (flags & __GFP_ZERO) {
367 ptr = kzalloc(size, flags & ~__GFP_ZERO);
368 } else {
369 ptr = kmalloc(size, flags);
370 }
371
372 if (unlikely(ptr == NULL)) {
c8e60837 373 kfree(dptr->kd_func);
a0f6da3d 374 kfree(dptr);
375 CWARN("kmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
376 (unsigned long long) size, flags,
377 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
378 goto out;
379 }
380
381 atomic64_add(size, &kmem_alloc_used);
382 if (unlikely(atomic64_read(&kmem_alloc_used) >
383 kmem_alloc_max))
384 kmem_alloc_max =
385 atomic64_read(&kmem_alloc_used);
386
387 INIT_HLIST_NODE(&dptr->kd_hlist);
388 INIT_LIST_HEAD(&dptr->kd_list);
389
390 dptr->kd_addr = ptr;
391 dptr->kd_size = size;
a0f6da3d 392 dptr->kd_line = line;
393
394 spin_lock_irqsave(&kmem_lock, irq_flags);
395 hlist_add_head_rcu(&dptr->kd_hlist,
396 &kmem_table[hash_ptr(ptr, KMEM_HASH_BITS)]);
397 list_add_tail(&dptr->kd_list, &kmem_list);
398 spin_unlock_irqrestore(&kmem_lock, irq_flags);
399
400 CDEBUG_LIMIT(D_INFO, "kmem_alloc(%llu, 0x%x) = %p "
401 "(%lld/%llu)\n", (unsigned long long) size, flags,
402 ptr, atomic64_read(&kmem_alloc_used),
403 kmem_alloc_max);
404 }
405out:
406 RETURN(ptr);
407}
408EXPORT_SYMBOL(kmem_alloc_track);
409
410void
411kmem_free_track(void *ptr, size_t size)
412{
413 kmem_debug_t *dptr;
414 ENTRY;
415
416 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
417 (unsigned long long) size);
418
419 dptr = kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);
420
421 ASSERT(dptr); /* Must exist in hash due to kmem_alloc() */
422
423 /* Size must match */
424 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
425 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
426 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
427
428 atomic64_sub(size, &kmem_alloc_used);
429
430 CDEBUG_LIMIT(D_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
431 (unsigned long long) size, atomic64_read(&kmem_alloc_used),
432 kmem_alloc_max);
433
c8e60837 434 kfree(dptr->kd_func);
435
a0f6da3d 436 memset(dptr, 0x5a, sizeof(kmem_debug_t));
437 kfree(dptr);
438
439 memset(ptr, 0x5a, size);
440 kfree(ptr);
441
442 EXIT;
443}
444EXPORT_SYMBOL(kmem_free_track);
445
446void *
447vmem_alloc_track(size_t size, int flags, const char *func, int line)
448{
449 void *ptr = NULL;
450 kmem_debug_t *dptr;
451 unsigned long irq_flags;
452 ENTRY;
453
454 ASSERT(flags & KM_SLEEP);
455
456 dptr = (kmem_debug_t *) kmalloc(sizeof(kmem_debug_t), flags);
457 if (dptr == NULL) {
458 CWARN("vmem_alloc(%ld, 0x%x) debug failed\n",
459 sizeof(kmem_debug_t), flags);
460 } else {
c8e60837 461 /* We use kstrdup() below because the string pointed to by
462 * __FUNCTION__ might not be available by the time we want
463 * to print it, since the module might have been unloaded. */
464 dptr->kd_func = kstrdup(func, flags & ~__GFP_ZERO);
465 if (unlikely(dptr->kd_func == NULL)) {
466 kfree(dptr);
467 CWARN("kstrdup() failed in vmem_alloc(%llu, 0x%x) "
468 "(%lld/%llu)\n", (unsigned long long) size, flags,
469 atomic64_read(&vmem_alloc_used), vmem_alloc_max);
470 goto out;
471 }
472
a0f6da3d 473 ptr = __vmalloc(size, (flags | __GFP_HIGHMEM) & ~__GFP_ZERO,
474 PAGE_KERNEL);
475
476 if (unlikely(ptr == NULL)) {
c8e60837 477 kfree(dptr->kd_func);
a0f6da3d 478 kfree(dptr);
479 CWARN("vmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
480 (unsigned long long) size, flags,
481 atomic64_read(&vmem_alloc_used), vmem_alloc_max);
482 goto out;
483 }
484
485 if (flags & __GFP_ZERO)
486 memset(ptr, 0, size);
487
488 atomic64_add(size, &vmem_alloc_used);
489 if (unlikely(atomic64_read(&vmem_alloc_used) >
490 vmem_alloc_max))
491 vmem_alloc_max =
492 atomic64_read(&vmem_alloc_used);
493
494 INIT_HLIST_NODE(&dptr->kd_hlist);
495 INIT_LIST_HEAD(&dptr->kd_list);
496
497 dptr->kd_addr = ptr;
498 dptr->kd_size = size;
a0f6da3d 499 dptr->kd_line = line;
500
501 spin_lock_irqsave(&vmem_lock, irq_flags);
502 hlist_add_head_rcu(&dptr->kd_hlist,
503 &vmem_table[hash_ptr(ptr, VMEM_HASH_BITS)]);
504 list_add_tail(&dptr->kd_list, &vmem_list);
505 spin_unlock_irqrestore(&vmem_lock, irq_flags);
506
507 CDEBUG_LIMIT(D_INFO, "vmem_alloc(%llu, 0x%x) = %p "
508 "(%lld/%llu)\n", (unsigned long long) size, flags,
509 ptr, atomic64_read(&vmem_alloc_used),
510 vmem_alloc_max);
511 }
512out:
513 RETURN(ptr);
514}
515EXPORT_SYMBOL(vmem_alloc_track);
516
517void
518vmem_free_track(void *ptr, size_t size)
519{
520 kmem_debug_t *dptr;
521 ENTRY;
522
523 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
524 (unsigned long long) size);
525
526 dptr = kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);
527 ASSERT(dptr); /* Must exist in hash due to vmem_alloc() */
528
529 /* Size must match */
530 ASSERTF(dptr->kd_size == size, "kd_size (%llu) != size (%llu), "
531 "kd_func = %s, kd_line = %d\n", (unsigned long long) dptr->kd_size,
532 (unsigned long long) size, dptr->kd_func, dptr->kd_line);
533
534 atomic64_sub(size, &vmem_alloc_used);
535 CDEBUG_LIMIT(D_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
536 (unsigned long long) size, atomic64_read(&vmem_alloc_used),
537 vmem_alloc_max);
538
c8e60837 539 kfree(dptr->kd_func);
540
a0f6da3d 541 memset(dptr, 0x5a, sizeof(kmem_debug_t));
542 kfree(dptr);
543
544 memset(ptr, 0x5a, size);
545 vfree(ptr);
546
547 EXIT;
548}
549EXPORT_SYMBOL(vmem_free_track);
550
551# else /* DEBUG_KMEM_TRACKING */
552
553void *
554kmem_alloc_debug(size_t size, int flags, const char *func, int line,
555 int node_alloc, int node)
556{
557 void *ptr;
558 ENTRY;
559
560 /* Marked unlikely because we should never be doing this,
561 * we tolerate to up 2 pages but a single page is best. */
562 if (unlikely(size > (PAGE_SIZE * 2)) && kmem_warning_flag)
563 CWARN("Large kmem_alloc(%llu, 0x%x) (%lld/%llu)\n",
564 (unsigned long long) size, flags,
565 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
566
567 /* Use the correct allocator */
568 if (node_alloc) {
569 ASSERT(!(flags & __GFP_ZERO));
570 ptr = kmalloc_node(size, flags, node);
571 } else if (flags & __GFP_ZERO) {
572 ptr = kzalloc(size, flags & (~__GFP_ZERO));
573 } else {
574 ptr = kmalloc(size, flags);
575 }
576
577 if (ptr == NULL) {
578 CWARN("kmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
579 (unsigned long long) size, flags,
580 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
581 } else {
582 atomic64_add(size, &kmem_alloc_used);
583 if (unlikely(atomic64_read(&kmem_alloc_used) > kmem_alloc_max))
584 kmem_alloc_max = atomic64_read(&kmem_alloc_used);
585
586 CDEBUG_LIMIT(D_INFO, "kmem_alloc(%llu, 0x%x) = %p "
587 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
588 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
589 }
590 RETURN(ptr);
591}
592EXPORT_SYMBOL(kmem_alloc_debug);
593
594void
595kmem_free_debug(void *ptr, size_t size)
596{
597 ENTRY;
598
599 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
600 (unsigned long long) size);
601
602 atomic64_sub(size, &kmem_alloc_used);
603
604 CDEBUG_LIMIT(D_INFO, "kmem_free(%p, %llu) (%lld/%llu)\n", ptr,
605 (unsigned long long) size, atomic64_read(&kmem_alloc_used),
606 kmem_alloc_max);
607
608 memset(ptr, 0x5a, size);
609 kfree(ptr);
610
611 EXIT;
612}
613EXPORT_SYMBOL(kmem_free_debug);
614
615void *
616vmem_alloc_debug(size_t size, int flags, const char *func, int line)
617{
618 void *ptr;
619 ENTRY;
620
621 ASSERT(flags & KM_SLEEP);
622
623 ptr = __vmalloc(size, (flags | __GFP_HIGHMEM) & ~__GFP_ZERO,
624 PAGE_KERNEL);
625 if (ptr == NULL) {
626 CWARN("vmem_alloc(%llu, 0x%x) failed (%lld/%llu)\n",
627 (unsigned long long) size, flags,
628 atomic64_read(&vmem_alloc_used), vmem_alloc_max);
629 } else {
630 if (flags & __GFP_ZERO)
631 memset(ptr, 0, size);
632
633 atomic64_add(size, &vmem_alloc_used);
634
635 if (unlikely(atomic64_read(&vmem_alloc_used) > vmem_alloc_max))
636 vmem_alloc_max = atomic64_read(&vmem_alloc_used);
637
638 CDEBUG_LIMIT(D_INFO, "vmem_alloc(%llu, 0x%x) = %p "
639 "(%lld/%llu)\n", (unsigned long long) size, flags, ptr,
640 atomic64_read(&vmem_alloc_used), vmem_alloc_max);
641 }
642
643 RETURN(ptr);
644}
645EXPORT_SYMBOL(vmem_alloc_debug);
646
647void
648vmem_free_debug(void *ptr, size_t size)
649{
650 ENTRY;
651
652 ASSERTF(ptr || size > 0, "ptr: %p, size: %llu", ptr,
653 (unsigned long long) size);
654
655 atomic64_sub(size, &vmem_alloc_used);
656
657 CDEBUG_LIMIT(D_INFO, "vmem_free(%p, %llu) (%lld/%llu)\n", ptr,
658 (unsigned long long) size, atomic64_read(&vmem_alloc_used),
659 vmem_alloc_max);
660
661 memset(ptr, 0x5a, size);
662 vfree(ptr);
663
664 EXIT;
665}
666EXPORT_SYMBOL(vmem_free_debug);
667
668# endif /* DEBUG_KMEM_TRACKING */
669#endif /* DEBUG_KMEM */
670
a1502d76 671static void *
672kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
fece7c99 673{
a1502d76 674 void *ptr;
f1ca4da6 675
a1502d76 676 if (skc->skc_flags & KMC_KMEM) {
677 if (size > (2 * PAGE_SIZE)) {
678 ptr = (void *)__get_free_pages(flags, get_order(size));
679 } else
680 ptr = kmem_alloc(size, flags);
681 } else {
682 ptr = vmem_alloc(size, flags);
d6a26c6a 683 }
fece7c99 684
a1502d76 685 return ptr;
686}
fece7c99 687
a1502d76 688static void
689kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
690{
691 if (skc->skc_flags & KMC_KMEM) {
692 if (size > (2 * PAGE_SIZE))
693 free_pages((unsigned long)ptr, get_order(size));
694 else
695 kmem_free(ptr, size);
696 } else {
697 vmem_free(ptr, size);
698 }
fece7c99 699}
700
ea3e6ca9
BB
701/*
702 * It's important that we pack the spl_kmem_obj_t structure and the
48e0606a
BB
703 * actual objects in to one large address space to minimize the number
704 * of calls to the allocator. It is far better to do a few large
705 * allocations and then subdivide it ourselves. Now which allocator
706 * we use requires balancing a few trade offs.
707 *
708 * For small objects we use kmem_alloc() because as long as you are
709 * only requesting a small number of pages (ideally just one) its cheap.
710 * However, when you start requesting multiple pages with kmem_alloc()
711 * it gets increasingly expensive since it requires contigeous pages.
712 * For this reason we shift to vmem_alloc() for slabs of large objects
713 * which removes the need for contigeous pages. We do not use
714 * vmem_alloc() in all cases because there is significant locking
715 * overhead in __get_vm_area_node(). This function takes a single
716 * global lock when aquiring an available virtual address range which
717 * serializes all vmem_alloc()'s for all slab caches. Using slightly
718 * different allocation functions for small and large objects should
719 * give us the best of both worlds.
720 *
721 * KMC_ONSLAB KMC_OFFSLAB
722 *
723 * +------------------------+ +-----------------+
724 * | spl_kmem_slab_t --+-+ | | spl_kmem_slab_t |---+-+
725 * | skc_obj_size <-+ | | +-----------------+ | |
726 * | spl_kmem_obj_t | | | |
727 * | skc_obj_size <---+ | +-----------------+ | |
728 * | spl_kmem_obj_t | | | skc_obj_size | <-+ |
729 * | ... v | | spl_kmem_obj_t | |
730 * +------------------------+ +-----------------+ v
731 */
fece7c99 732static spl_kmem_slab_t *
a1502d76 733spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
fece7c99 734{
735 spl_kmem_slab_t *sks;
a1502d76 736 spl_kmem_obj_t *sko, *n;
737 void *base, *obj;
48e0606a
BB
738 int i, align, size, rc = 0;
739
a1502d76 740 base = kv_alloc(skc, skc->skc_slab_size, flags);
741 if (base == NULL)
fece7c99 742 RETURN(NULL);
743
a1502d76 744 sks = (spl_kmem_slab_t *)base;
745 sks->sks_magic = SKS_MAGIC;
746 sks->sks_objs = skc->skc_slab_objs;
747 sks->sks_age = jiffies;
748 sks->sks_cache = skc;
749 INIT_LIST_HEAD(&sks->sks_list);
750 INIT_LIST_HEAD(&sks->sks_free_list);
751 sks->sks_ref = 0;
48e0606a
BB
752
753 align = skc->skc_obj_align;
754 size = P2ROUNDUP(skc->skc_obj_size, align) +
755 P2ROUNDUP(sizeof(spl_kmem_obj_t), align);
fece7c99 756
757 for (i = 0; i < sks->sks_objs; i++) {
a1502d76 758 if (skc->skc_flags & KMC_OFFSLAB) {
759 obj = kv_alloc(skc, size, flags);
760 if (!obj)
761 GOTO(out, rc = -ENOMEM);
762 } else {
48e0606a
BB
763 obj = base +
764 P2ROUNDUP(sizeof(spl_kmem_slab_t), align) +
765 (i * size);
a1502d76 766 }
767
48e0606a 768 sko = obj + P2ROUNDUP(skc->skc_obj_size, align);
fece7c99 769 sko->sko_addr = obj;
770 sko->sko_magic = SKO_MAGIC;
771 sko->sko_slab = sks;
772 INIT_LIST_HEAD(&sko->sko_list);
fece7c99 773 list_add_tail(&sko->sko_list, &sks->sks_free_list);
774 }
775
fece7c99 776 list_for_each_entry(sko, &sks->sks_free_list, sko_list)
777 if (skc->skc_ctor)
778 skc->skc_ctor(sko->sko_addr, skc->skc_private, flags);
2fb9b26a 779out:
a1502d76 780 if (rc) {
781 if (skc->skc_flags & KMC_OFFSLAB)
48e0606a
BB
782 list_for_each_entry_safe(sko, n, &sks->sks_free_list,
783 sko_list)
a1502d76 784 kv_free(skc, sko->sko_addr, size);
fece7c99 785
a1502d76 786 kv_free(skc, base, skc->skc_slab_size);
787 sks = NULL;
fece7c99 788 }
789
a1502d76 790 RETURN(sks);
fece7c99 791}
792
ea3e6ca9
BB
793/*
794 * Remove a slab from complete or partial list, it must be called with
795 * the 'skc->skc_lock' held but the actual free must be performed
796 * outside the lock to prevent deadlocking on vmem addresses.
fece7c99 797 */
f1ca4da6 798static void
ea3e6ca9
BB
799spl_slab_free(spl_kmem_slab_t *sks,
800 struct list_head *sks_list, struct list_head *sko_list)
801{
2fb9b26a 802 spl_kmem_cache_t *skc;
2fb9b26a 803 ENTRY;
57d86234 804
2fb9b26a 805 ASSERT(sks->sks_magic == SKS_MAGIC);
4afaaefa 806 ASSERT(sks->sks_ref == 0);
d6a26c6a 807
fece7c99 808 skc = sks->sks_cache;
809 ASSERT(skc->skc_magic == SKC_MAGIC);
d46630e0 810 ASSERT(spin_is_locked(&skc->skc_lock));
f1ca4da6 811
1a944a7d
BB
812 /*
813 * Update slab/objects counters in the cache, then remove the
814 * slab from the skc->skc_partial_list. Finally add the slab
815 * and all its objects in to the private work lists where the
816 * destructors will be called and the memory freed to the system.
817 */
fece7c99 818 skc->skc_obj_total -= sks->sks_objs;
819 skc->skc_slab_total--;
820 list_del(&sks->sks_list);
ea3e6ca9 821 list_add(&sks->sks_list, sks_list);
1a944a7d
BB
822 list_splice_init(&sks->sks_free_list, sko_list);
823
2fb9b26a 824 EXIT;
825}
d6a26c6a 826
ea3e6ca9
BB
827/*
828 * Traverses all the partial slabs attached to a cache and free those
829 * which which are currently empty, and have not been touched for
37db7d8c
BB
830 * skc_delay seconds to avoid thrashing. The count argument is
831 * passed to optionally cap the number of slabs reclaimed, a count
832 * of zero means try and reclaim everything. When flag is set we
833 * always free an available slab regardless of age.
ea3e6ca9
BB
834 */
835static void
37db7d8c 836spl_slab_reclaim(spl_kmem_cache_t *skc, int count, int flag)
2fb9b26a 837{
838 spl_kmem_slab_t *sks, *m;
ea3e6ca9
BB
839 spl_kmem_obj_t *sko, *n;
840 LIST_HEAD(sks_list);
841 LIST_HEAD(sko_list);
1a944a7d 842 int size = 0, i = 0;
2fb9b26a 843 ENTRY;
844
2fb9b26a 845 /*
ea3e6ca9
BB
846 * Move empty slabs and objects which have not been touched in
847 * skc_delay seconds on to private lists to be freed outside
1a944a7d
BB
848 * the spin lock. This delay time is important to avoid thrashing
849 * however when flag is set the delay will not be used.
2fb9b26a 850 */
ea3e6ca9 851 spin_lock(&skc->skc_lock);
1a944a7d
BB
852 list_for_each_entry_safe_reverse(sks,m,&skc->skc_partial_list,sks_list){
853 /*
854 * All empty slabs are at the end of skc->skc_partial_list,
855 * therefore once a non-empty slab is found we can stop
856 * scanning. Additionally, stop when reaching the target
857 * reclaim 'count' if a non-zero threshhold is given.
858 */
859 if ((sks->sks_ref > 0) || (count && i > count))
37db7d8c
BB
860 break;
861
37db7d8c 862 if (time_after(jiffies,sks->sks_age+skc->skc_delay*HZ)||flag) {
ea3e6ca9 863 spl_slab_free(sks, &sks_list, &sko_list);
37db7d8c
BB
864 i++;
865 }
ea3e6ca9
BB
866 }
867 spin_unlock(&skc->skc_lock);
868
869 /*
1a944a7d
BB
870 * The following two loops ensure all the object destructors are
871 * run, any offslab objects are freed, and the slabs themselves
872 * are freed. This is all done outside the skc->skc_lock since
873 * this allows the destructor to sleep, and allows us to perform
874 * a conditional reschedule when a freeing a large number of
875 * objects and slabs back to the system.
ea3e6ca9 876 */
1a944a7d 877 if (skc->skc_flags & KMC_OFFSLAB)
ea3e6ca9
BB
878 size = P2ROUNDUP(skc->skc_obj_size, skc->skc_obj_align) +
879 P2ROUNDUP(sizeof(spl_kmem_obj_t), skc->skc_obj_align);
880
1a944a7d
BB
881 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
882 ASSERT(sko->sko_magic == SKO_MAGIC);
883
884 if (skc->skc_dtor)
885 skc->skc_dtor(sko->sko_addr, skc->skc_private);
886
887 if (skc->skc_flags & KMC_OFFSLAB)
ea3e6ca9 888 kv_free(skc, sko->sko_addr, size);
1a944a7d
BB
889
890 cond_resched();
2fb9b26a 891 }
892
37db7d8c 893 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
1a944a7d 894 ASSERT(sks->sks_magic == SKS_MAGIC);
ea3e6ca9 895 kv_free(skc, sks, skc->skc_slab_size);
37db7d8c
BB
896 cond_resched();
897 }
ea3e6ca9
BB
898
899 EXIT;
f1ca4da6 900}
901
ea3e6ca9
BB
902/*
903 * Called regularly on all caches to age objects out of the magazines
904 * which have not been access in skc->skc_delay seconds. This prevents
905 * idle magazines from holding memory which might be better used by
906 * other caches or parts of the system. The delay is present to
907 * prevent thrashing the magazine.
908 */
909static void
910spl_magazine_age(void *data)
f1ca4da6 911{
9b1b8e4c
BB
912 spl_kmem_magazine_t *skm =
913 spl_get_work_data(data, spl_kmem_magazine_t, skm_work.work);
914 spl_kmem_cache_t *skc = skm->skm_cache;
915 int i = smp_processor_id();
916
917 ASSERT(skm->skm_magic == SKM_MAGIC);
918 ASSERT(skc->skc_magic == SKC_MAGIC);
919 ASSERT(skc->skc_mag[i] == skm);
f1ca4da6 920
ea3e6ca9
BB
921 if (skm->skm_avail > 0 &&
922 time_after(jiffies, skm->skm_age + skc->skc_delay * HZ))
923 (void)spl_cache_flush(skc, skm, skm->skm_refill);
9b1b8e4c
BB
924
925 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
926 schedule_delayed_work_on(i, &skm->skm_work,
927 skc->skc_delay / 3 * HZ);
ea3e6ca9 928}
4efd4118 929
ea3e6ca9
BB
930/*
931 * Called regularly to keep a downward pressure on the size of idle
932 * magazines and to release free slabs from the cache. This function
933 * never calls the registered reclaim function, that only occures
934 * under memory pressure or with a direct call to spl_kmem_reap().
935 */
936static void
937spl_cache_age(void *data)
938{
9b1b8e4c 939 spl_kmem_cache_t *skc =
ea3e6ca9
BB
940 spl_get_work_data(data, spl_kmem_cache_t, skc_work.work);
941
942 ASSERT(skc->skc_magic == SKC_MAGIC);
37db7d8c 943 spl_slab_reclaim(skc, skc->skc_reap, 0);
ea3e6ca9
BB
944
945 if (!test_bit(KMC_BIT_DESTROY, &skc->skc_flags))
37db7d8c 946 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
2fb9b26a 947}
f1ca4da6 948
ea3e6ca9
BB
949/*
950 * Size a slab based on the size of each aliged object plus spl_kmem_obj_t.
951 * When on-slab we want to target SPL_KMEM_CACHE_OBJ_PER_SLAB. However,
952 * for very small objects we may end up with more than this so as not
953 * to waste space in the minimal allocation of a single page. Also for
954 * very large objects we may use as few as SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN,
955 * lower than this and we will fail.
956 */
48e0606a
BB
957static int
958spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
959{
ea3e6ca9 960 int sks_size, obj_size, max_size, align;
48e0606a
BB
961
962 if (skc->skc_flags & KMC_OFFSLAB) {
ea3e6ca9 963 *objs = SPL_KMEM_CACHE_OBJ_PER_SLAB;
48e0606a
BB
964 *size = sizeof(spl_kmem_slab_t);
965 } else {
ea3e6ca9
BB
966 align = skc->skc_obj_align;
967 sks_size = P2ROUNDUP(sizeof(spl_kmem_slab_t), align);
968 obj_size = P2ROUNDUP(skc->skc_obj_size, align) +
969 P2ROUNDUP(sizeof(spl_kmem_obj_t), align);
970
971 if (skc->skc_flags & KMC_KMEM)
972 max_size = ((uint64_t)1 << (MAX_ORDER-1)) * PAGE_SIZE;
973 else
974 max_size = (32 * 1024 * 1024);
48e0606a 975
ea3e6ca9
BB
976 for (*size = PAGE_SIZE; *size <= max_size; *size += PAGE_SIZE) {
977 *objs = (*size - sks_size) / obj_size;
978 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB)
979 RETURN(0);
980 }
48e0606a 981
ea3e6ca9
BB
982 /*
983 * Unable to satisfy target objets per slab, fallback to
984 * allocating a maximally sized slab and assuming it can
985 * contain the minimum objects count use it. If not fail.
986 */
987 *size = max_size;
988 *objs = (*size - sks_size) / obj_size;
989 if (*objs >= SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN)
990 RETURN(0);
48e0606a
BB
991 }
992
ea3e6ca9 993 RETURN(-ENOSPC);
48e0606a
BB
994}
995
ea3e6ca9
BB
996/*
997 * Make a guess at reasonable per-cpu magazine size based on the size of
998 * each object and the cost of caching N of them in each magazine. Long
999 * term this should really adapt based on an observed usage heuristic.
1000 */
4afaaefa 1001static int
1002spl_magazine_size(spl_kmem_cache_t *skc)
1003{
48e0606a 1004 int size, align = skc->skc_obj_align;
4afaaefa 1005 ENTRY;
1006
ea3e6ca9 1007 /* Per-magazine sizes below assume a 4Kib page size */
48e0606a 1008 if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE * 256))
ea3e6ca9 1009 size = 4; /* Minimum 4Mib per-magazine */
48e0606a 1010 else if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE * 32))
ea3e6ca9 1011 size = 16; /* Minimum 2Mib per-magazine */
48e0606a 1012 else if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE))
ea3e6ca9 1013 size = 64; /* Minimum 256Kib per-magazine */
48e0606a 1014 else if (P2ROUNDUP(skc->skc_obj_size, align) > (PAGE_SIZE / 4))
ea3e6ca9 1015 size = 128; /* Minimum 128Kib per-magazine */
4afaaefa 1016 else
ea3e6ca9 1017 size = 256;
4afaaefa 1018
1019 RETURN(size);
1020}
1021
ea3e6ca9
BB
1022/*
1023 * Allocate a per-cpu magazine to assoicate with a specific core.
1024 */
4afaaefa 1025static spl_kmem_magazine_t *
1026spl_magazine_alloc(spl_kmem_cache_t *skc, int node)
1027{
1028 spl_kmem_magazine_t *skm;
1029 int size = sizeof(spl_kmem_magazine_t) +
1030 sizeof(void *) * skc->skc_mag_size;
1031 ENTRY;
1032
ea3e6ca9 1033 skm = kmem_alloc_node(size, GFP_KERNEL | __GFP_NOFAIL, node);
4afaaefa 1034 if (skm) {
1035 skm->skm_magic = SKM_MAGIC;
1036 skm->skm_avail = 0;
1037 skm->skm_size = skc->skc_mag_size;
1038 skm->skm_refill = skc->skc_mag_refill;
9b1b8e4c
BB
1039 skm->skm_cache = skc;
1040 spl_init_delayed_work(&skm->skm_work, spl_magazine_age, skm);
ea3e6ca9 1041 skm->skm_age = jiffies;
4afaaefa 1042 }
1043
1044 RETURN(skm);
1045}
1046
ea3e6ca9
BB
1047/*
1048 * Free a per-cpu magazine assoicated with a specific core.
1049 */
4afaaefa 1050static void
1051spl_magazine_free(spl_kmem_magazine_t *skm)
1052{
a0f6da3d 1053 int size = sizeof(spl_kmem_magazine_t) +
1054 sizeof(void *) * skm->skm_size;
1055
4afaaefa 1056 ENTRY;
1057 ASSERT(skm->skm_magic == SKM_MAGIC);
1058 ASSERT(skm->skm_avail == 0);
a0f6da3d 1059
1060 kmem_free(skm, size);
4afaaefa 1061 EXIT;
1062}
1063
ea3e6ca9
BB
1064/*
1065 * Create all pre-cpu magazines of reasonable sizes.
1066 */
4afaaefa 1067static int
1068spl_magazine_create(spl_kmem_cache_t *skc)
1069{
37db7d8c 1070 int i;
4afaaefa 1071 ENTRY;
1072
1073 skc->skc_mag_size = spl_magazine_size(skc);
ea3e6ca9 1074 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
4afaaefa 1075
37db7d8c
BB
1076 for_each_online_cpu(i) {
1077 skc->skc_mag[i] = spl_magazine_alloc(skc, cpu_to_node(i));
1078 if (!skc->skc_mag[i]) {
1079 for (i--; i >= 0; i--)
1080 spl_magazine_free(skc->skc_mag[i]);
4afaaefa 1081
37db7d8c
BB
1082 RETURN(-ENOMEM);
1083 }
1084 }
4afaaefa 1085
9b1b8e4c
BB
1086 /* Only after everything is allocated schedule magazine work */
1087 for_each_online_cpu(i)
1088 schedule_delayed_work_on(i, &skc->skc_mag[i]->skm_work,
1089 skc->skc_delay / 3 * HZ);
1090
37db7d8c 1091 RETURN(0);
4afaaefa 1092}
1093
ea3e6ca9
BB
1094/*
1095 * Destroy all pre-cpu magazines.
1096 */
4afaaefa 1097static void
1098spl_magazine_destroy(spl_kmem_cache_t *skc)
1099{
37db7d8c
BB
1100 spl_kmem_magazine_t *skm;
1101 int i;
4afaaefa 1102 ENTRY;
37db7d8c
BB
1103
1104 for_each_online_cpu(i) {
1105 skm = skc->skc_mag[i];
1106 (void)spl_cache_flush(skc, skm, skm->skm_avail);
1107 spl_magazine_free(skm);
1108 }
1109
4afaaefa 1110 EXIT;
1111}
1112
ea3e6ca9
BB
1113/*
1114 * Create a object cache based on the following arguments:
1115 * name cache name
1116 * size cache object size
1117 * align cache object alignment
1118 * ctor cache object constructor
1119 * dtor cache object destructor
1120 * reclaim cache object reclaim
1121 * priv cache private data for ctor/dtor/reclaim
1122 * vmp unused must be NULL
1123 * flags
1124 * KMC_NOTOUCH Disable cache object aging (unsupported)
1125 * KMC_NODEBUG Disable debugging (unsupported)
1126 * KMC_NOMAGAZINE Disable magazine (unsupported)
1127 * KMC_NOHASH Disable hashing (unsupported)
1128 * KMC_QCACHE Disable qcache (unsupported)
1129 * KMC_KMEM Force kmem backed cache
1130 * KMC_VMEM Force vmem backed cache
1131 * KMC_OFFSLAB Locate objects off the slab
1132 */
2fb9b26a 1133spl_kmem_cache_t *
1134spl_kmem_cache_create(char *name, size_t size, size_t align,
1135 spl_kmem_ctor_t ctor,
1136 spl_kmem_dtor_t dtor,
1137 spl_kmem_reclaim_t reclaim,
1138 void *priv, void *vmp, int flags)
1139{
1140 spl_kmem_cache_t *skc;
a1502d76 1141 int rc, kmem_flags = KM_SLEEP;
2fb9b26a 1142 ENTRY;
937879f1 1143
a1502d76 1144 ASSERTF(!(flags & KMC_NOMAGAZINE), "Bad KMC_NOMAGAZINE (%x)\n", flags);
1145 ASSERTF(!(flags & KMC_NOHASH), "Bad KMC_NOHASH (%x)\n", flags);
1146 ASSERTF(!(flags & KMC_QCACHE), "Bad KMC_QCACHE (%x)\n", flags);
48e0606a 1147 ASSERT(vmp == NULL);
a1502d76 1148
2fb9b26a 1149 /* We may be called when there is a non-zero preempt_count or
1150 * interrupts are disabled is which case we must not sleep.
1151 */
e9d7a2be 1152 if (current_thread_info()->preempt_count || irqs_disabled())
2fb9b26a 1153 kmem_flags = KM_NOSLEEP;
0a6fd143 1154
2fb9b26a 1155 /* Allocate new cache memory and initialize. */
ff449ac4 1156 skc = (spl_kmem_cache_t *)kmem_zalloc(sizeof(*skc), kmem_flags);
e9d7a2be 1157 if (skc == NULL)
2fb9b26a 1158 RETURN(NULL);
d61e12af 1159
2fb9b26a 1160 skc->skc_magic = SKC_MAGIC;
2fb9b26a 1161 skc->skc_name_size = strlen(name) + 1;
1162 skc->skc_name = (char *)kmem_alloc(skc->skc_name_size, kmem_flags);
1163 if (skc->skc_name == NULL) {
1164 kmem_free(skc, sizeof(*skc));
1165 RETURN(NULL);
1166 }
1167 strncpy(skc->skc_name, name, skc->skc_name_size);
1168
e9d7a2be 1169 skc->skc_ctor = ctor;
1170 skc->skc_dtor = dtor;
1171 skc->skc_reclaim = reclaim;
2fb9b26a 1172 skc->skc_private = priv;
1173 skc->skc_vmp = vmp;
1174 skc->skc_flags = flags;
1175 skc->skc_obj_size = size;
48e0606a 1176 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
2fb9b26a 1177 skc->skc_delay = SPL_KMEM_CACHE_DELAY;
37db7d8c 1178 skc->skc_reap = SPL_KMEM_CACHE_REAP;
ea3e6ca9 1179 atomic_set(&skc->skc_ref, 0);
2fb9b26a 1180
2fb9b26a 1181 INIT_LIST_HEAD(&skc->skc_list);
1182 INIT_LIST_HEAD(&skc->skc_complete_list);
1183 INIT_LIST_HEAD(&skc->skc_partial_list);
d46630e0 1184 spin_lock_init(&skc->skc_lock);
e9d7a2be 1185 skc->skc_slab_fail = 0;
1186 skc->skc_slab_create = 0;
1187 skc->skc_slab_destroy = 0;
2fb9b26a 1188 skc->skc_slab_total = 0;
1189 skc->skc_slab_alloc = 0;
1190 skc->skc_slab_max = 0;
1191 skc->skc_obj_total = 0;
1192 skc->skc_obj_alloc = 0;
1193 skc->skc_obj_max = 0;
a1502d76 1194
48e0606a
BB
1195 if (align) {
1196 ASSERT((align & (align - 1)) == 0); /* Power of two */
1197 ASSERT(align >= SPL_KMEM_CACHE_ALIGN); /* Minimum size */
1198 skc->skc_obj_align = align;
1199 }
1200
a1502d76 1201 /* If none passed select a cache type based on object size */
1202 if (!(skc->skc_flags & (KMC_KMEM | KMC_VMEM))) {
48e0606a
BB
1203 if (P2ROUNDUP(skc->skc_obj_size, skc->skc_obj_align) <
1204 (PAGE_SIZE / 8)) {
a1502d76 1205 skc->skc_flags |= KMC_KMEM;
1206 } else {
1207 skc->skc_flags |= KMC_VMEM;
1208 }
1209 }
1210
48e0606a
BB
1211 rc = spl_slab_size(skc, &skc->skc_slab_objs, &skc->skc_slab_size);
1212 if (rc)
1213 GOTO(out, rc);
4afaaefa 1214
1215 rc = spl_magazine_create(skc);
48e0606a
BB
1216 if (rc)
1217 GOTO(out, rc);
2fb9b26a 1218
ea3e6ca9 1219 spl_init_delayed_work(&skc->skc_work, spl_cache_age, skc);
37db7d8c 1220 schedule_delayed_work(&skc->skc_work, skc->skc_delay / 3 * HZ);
ea3e6ca9 1221
2fb9b26a 1222 down_write(&spl_kmem_cache_sem);
e9d7a2be 1223 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
2fb9b26a 1224 up_write(&spl_kmem_cache_sem);
1225
e9d7a2be 1226 RETURN(skc);
48e0606a
BB
1227out:
1228 kmem_free(skc->skc_name, skc->skc_name_size);
1229 kmem_free(skc, sizeof(*skc));
1230 RETURN(NULL);
f1ca4da6 1231}
2fb9b26a 1232EXPORT_SYMBOL(spl_kmem_cache_create);
f1ca4da6 1233
ea3e6ca9
BB
1234/*
1235 * Destroy a cache and all objects assoicated with the cache.
1236 */
2fb9b26a 1237void
1238spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
f1ca4da6 1239{
ea3e6ca9 1240 DECLARE_WAIT_QUEUE_HEAD(wq);
9b1b8e4c 1241 int i;
2fb9b26a 1242 ENTRY;
f1ca4da6 1243
e9d7a2be 1244 ASSERT(skc->skc_magic == SKC_MAGIC);
1245
1246 down_write(&spl_kmem_cache_sem);
1247 list_del_init(&skc->skc_list);
1248 up_write(&spl_kmem_cache_sem);
2fb9b26a 1249
ea3e6ca9
BB
1250 /* Cancel any and wait for any pending delayed work */
1251 ASSERT(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1252 cancel_delayed_work(&skc->skc_work);
9b1b8e4c
BB
1253 for_each_online_cpu(i)
1254 cancel_delayed_work(&skc->skc_mag[i]->skm_work);
1255
ea3e6ca9
BB
1256 flush_scheduled_work();
1257
1258 /* Wait until all current callers complete, this is mainly
1259 * to catch the case where a low memory situation triggers a
1260 * cache reaping action which races with this destroy. */
1261 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
1262
4afaaefa 1263 spl_magazine_destroy(skc);
37db7d8c 1264 spl_slab_reclaim(skc, 0, 1);
d46630e0 1265 spin_lock(&skc->skc_lock);
d6a26c6a 1266
2fb9b26a 1267 /* Validate there are no objects in use and free all the
4afaaefa 1268 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. */
ea3e6ca9
BB
1269 ASSERT3U(skc->skc_slab_alloc, ==, 0);
1270 ASSERT3U(skc->skc_obj_alloc, ==, 0);
1271 ASSERT3U(skc->skc_slab_total, ==, 0);
1272 ASSERT3U(skc->skc_obj_total, ==, 0);
2fb9b26a 1273 ASSERT(list_empty(&skc->skc_complete_list));
a1502d76 1274
2fb9b26a 1275 kmem_free(skc->skc_name, skc->skc_name_size);
d46630e0 1276 spin_unlock(&skc->skc_lock);
ff449ac4 1277
4afaaefa 1278 kmem_free(skc, sizeof(*skc));
2fb9b26a 1279
1280 EXIT;
f1ca4da6 1281}
2fb9b26a 1282EXPORT_SYMBOL(spl_kmem_cache_destroy);
f1ca4da6 1283
ea3e6ca9
BB
1284/*
1285 * Allocate an object from a slab attached to the cache. This is used to
1286 * repopulate the per-cpu magazine caches in batches when they run low.
1287 */
4afaaefa 1288static void *
1289spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
f1ca4da6 1290{
2fb9b26a 1291 spl_kmem_obj_t *sko;
f1ca4da6 1292
e9d7a2be 1293 ASSERT(skc->skc_magic == SKC_MAGIC);
1294 ASSERT(sks->sks_magic == SKS_MAGIC);
4afaaefa 1295 ASSERT(spin_is_locked(&skc->skc_lock));
2fb9b26a 1296
a1502d76 1297 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
4afaaefa 1298 ASSERT(sko->sko_magic == SKO_MAGIC);
1299 ASSERT(sko->sko_addr != NULL);
2fb9b26a 1300
a1502d76 1301 /* Remove from sks_free_list */
4afaaefa 1302 list_del_init(&sko->sko_list);
2fb9b26a 1303
4afaaefa 1304 sks->sks_age = jiffies;
1305 sks->sks_ref++;
1306 skc->skc_obj_alloc++;
2fb9b26a 1307
4afaaefa 1308 /* Track max obj usage statistics */
1309 if (skc->skc_obj_alloc > skc->skc_obj_max)
1310 skc->skc_obj_max = skc->skc_obj_alloc;
2fb9b26a 1311
4afaaefa 1312 /* Track max slab usage statistics */
1313 if (sks->sks_ref == 1) {
1314 skc->skc_slab_alloc++;
f1ca4da6 1315
4afaaefa 1316 if (skc->skc_slab_alloc > skc->skc_slab_max)
1317 skc->skc_slab_max = skc->skc_slab_alloc;
2fb9b26a 1318 }
1319
4afaaefa 1320 return sko->sko_addr;
1321}
c30df9c8 1322
ea3e6ca9
BB
1323/*
1324 * No available objects on any slabsi, create a new slab. Since this
1325 * is an expensive operation we do it without holding the spinlock and
1326 * only briefly aquire it when we link in the fully allocated and
1327 * constructed slab.
4afaaefa 1328 */
1329static spl_kmem_slab_t *
1330spl_cache_grow(spl_kmem_cache_t *skc, int flags)
1331{
e9d7a2be 1332 spl_kmem_slab_t *sks;
4afaaefa 1333 ENTRY;
f1ca4da6 1334
e9d7a2be 1335 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
1336 local_irq_enable();
1337 might_sleep();
e9d7a2be 1338
ea3e6ca9
BB
1339 /*
1340 * Before allocating a new slab check if the slab is being reaped.
1341 * If it is there is a good chance we can wait until it finishes
1342 * and then use one of the newly freed but not aged-out slabs.
1343 */
1344 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1345 schedule();
1346 GOTO(out, sks= NULL);
4afaaefa 1347 }
2fb9b26a 1348
ea3e6ca9
BB
1349 /* Allocate a new slab for the cache */
1350 sks = spl_slab_alloc(skc, flags | __GFP_NORETRY | __GFP_NOWARN);
1351 if (sks == NULL)
1352 GOTO(out, sks = NULL);
4afaaefa 1353
ea3e6ca9 1354 /* Link the new empty slab in to the end of skc_partial_list. */
d46630e0 1355 spin_lock(&skc->skc_lock);
2fb9b26a 1356 skc->skc_slab_total++;
1357 skc->skc_obj_total += sks->sks_objs;
1358 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
d46630e0 1359 spin_unlock(&skc->skc_lock);
ea3e6ca9
BB
1360out:
1361 local_irq_disable();
4afaaefa 1362
1363 RETURN(sks);
f1ca4da6 1364}
1365
ea3e6ca9
BB
1366/*
1367 * Refill a per-cpu magazine with objects from the slabs for this
1368 * cache. Ideally the magazine can be repopulated using existing
1369 * objects which have been released, however if we are unable to
1370 * locate enough free objects new slabs of objects will be created.
1371 */
4afaaefa 1372static int
1373spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
f1ca4da6 1374{
e9d7a2be 1375 spl_kmem_slab_t *sks;
1376 int rc = 0, refill;
937879f1 1377 ENTRY;
f1ca4da6 1378
e9d7a2be 1379 ASSERT(skc->skc_magic == SKC_MAGIC);
1380 ASSERT(skm->skm_magic == SKM_MAGIC);
1381
e9d7a2be 1382 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
d46630e0 1383 spin_lock(&skc->skc_lock);
ff449ac4 1384
4afaaefa 1385 while (refill > 0) {
ea3e6ca9 1386 /* No slabs available we may need to grow the cache */
4afaaefa 1387 if (list_empty(&skc->skc_partial_list)) {
1388 spin_unlock(&skc->skc_lock);
ff449ac4 1389
4afaaefa 1390 sks = spl_cache_grow(skc, flags);
1391 if (!sks)
e9d7a2be 1392 GOTO(out, rc);
4afaaefa 1393
1394 /* Rescheduled to different CPU skm is not local */
1395 if (skm != skc->skc_mag[smp_processor_id()])
e9d7a2be 1396 GOTO(out, rc);
1397
1398 /* Potentially rescheduled to the same CPU but
1399 * allocations may have occured from this CPU while
1400 * we were sleeping so recalculate max refill. */
1401 refill = MIN(refill, skm->skm_size - skm->skm_avail);
4afaaefa 1402
1403 spin_lock(&skc->skc_lock);
1404 continue;
1405 }
d46630e0 1406
4afaaefa 1407 /* Grab the next available slab */
1408 sks = list_entry((&skc->skc_partial_list)->next,
1409 spl_kmem_slab_t, sks_list);
1410 ASSERT(sks->sks_magic == SKS_MAGIC);
1411 ASSERT(sks->sks_ref < sks->sks_objs);
1412 ASSERT(!list_empty(&sks->sks_free_list));
d46630e0 1413
4afaaefa 1414 /* Consume as many objects as needed to refill the requested
e9d7a2be 1415 * cache. We must also be careful not to overfill it. */
1416 while (sks->sks_ref < sks->sks_objs && refill-- > 0 && ++rc) {
1417 ASSERT(skm->skm_avail < skm->skm_size);
1418 ASSERT(rc < skm->skm_size);
4afaaefa 1419 skm->skm_objs[skm->skm_avail++]=spl_cache_obj(skc,sks);
e9d7a2be 1420 }
f1ca4da6 1421
4afaaefa 1422 /* Move slab to skc_complete_list when full */
1423 if (sks->sks_ref == sks->sks_objs) {
1424 list_del(&sks->sks_list);
1425 list_add(&sks->sks_list, &skc->skc_complete_list);
2fb9b26a 1426 }
1427 }
57d86234 1428
4afaaefa 1429 spin_unlock(&skc->skc_lock);
1430out:
1431 /* Returns the number of entries added to cache */
e9d7a2be 1432 RETURN(rc);
4afaaefa 1433}
1434
ea3e6ca9
BB
1435/*
1436 * Release an object back to the slab from which it came.
1437 */
4afaaefa 1438static void
1439spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1440{
e9d7a2be 1441 spl_kmem_slab_t *sks = NULL;
4afaaefa 1442 spl_kmem_obj_t *sko = NULL;
1443 ENTRY;
1444
e9d7a2be 1445 ASSERT(skc->skc_magic == SKC_MAGIC);
4afaaefa 1446 ASSERT(spin_is_locked(&skc->skc_lock));
1447
48e0606a 1448 sko = obj + P2ROUNDUP(skc->skc_obj_size, skc->skc_obj_align);
a1502d76 1449 ASSERT(sko->sko_magic == SKO_MAGIC);
4afaaefa 1450
1451 sks = sko->sko_slab;
a1502d76 1452 ASSERT(sks->sks_magic == SKS_MAGIC);
2fb9b26a 1453 ASSERT(sks->sks_cache == skc);
2fb9b26a 1454 list_add(&sko->sko_list, &sks->sks_free_list);
d6a26c6a 1455
2fb9b26a 1456 sks->sks_age = jiffies;
4afaaefa 1457 sks->sks_ref--;
2fb9b26a 1458 skc->skc_obj_alloc--;
f1ca4da6 1459
2fb9b26a 1460 /* Move slab to skc_partial_list when no longer full. Slabs
4afaaefa 1461 * are added to the head to keep the partial list is quasi-full
1462 * sorted order. Fuller at the head, emptier at the tail. */
1463 if (sks->sks_ref == (sks->sks_objs - 1)) {
2fb9b26a 1464 list_del(&sks->sks_list);
1465 list_add(&sks->sks_list, &skc->skc_partial_list);
1466 }
f1ca4da6 1467
2fb9b26a 1468 /* Move emply slabs to the end of the partial list so
4afaaefa 1469 * they can be easily found and freed during reclamation. */
1470 if (sks->sks_ref == 0) {
2fb9b26a 1471 list_del(&sks->sks_list);
1472 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1473 skc->skc_slab_alloc--;
1474 }
1475
4afaaefa 1476 EXIT;
1477}
1478
ea3e6ca9
BB
1479/*
1480 * Release a batch of objects from a per-cpu magazine back to their
1481 * respective slabs. This occurs when we exceed the magazine size,
1482 * are under memory pressure, when the cache is idle, or during
1483 * cache cleanup. The flush argument contains the number of entries
1484 * to remove from the magazine.
1485 */
4afaaefa 1486static int
1487spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
1488{
1489 int i, count = MIN(flush, skm->skm_avail);
1490 ENTRY;
1491
e9d7a2be 1492 ASSERT(skc->skc_magic == SKC_MAGIC);
1493 ASSERT(skm->skm_magic == SKM_MAGIC);
4afaaefa 1494
ea3e6ca9
BB
1495 /*
1496 * XXX: Currently we simply return objects from the magazine to
1497 * the slabs in fifo order. The ideal thing to do from a memory
1498 * fragmentation standpoint is to cheaply determine the set of
1499 * objects in the magazine which will result in the largest
1500 * number of free slabs if released from the magazine.
1501 */
4afaaefa 1502 spin_lock(&skc->skc_lock);
1503 for (i = 0; i < count; i++)
1504 spl_cache_shrink(skc, skm->skm_objs[i]);
1505
e9d7a2be 1506 skm->skm_avail -= count;
1507 memmove(skm->skm_objs, &(skm->skm_objs[count]),
4afaaefa 1508 sizeof(void *) * skm->skm_avail);
1509
d46630e0 1510 spin_unlock(&skc->skc_lock);
4afaaefa 1511
1512 RETURN(count);
1513}
1514
ea3e6ca9
BB
1515/*
1516 * Allocate an object from the per-cpu magazine, or if the magazine
1517 * is empty directly allocate from a slab and repopulate the magazine.
1518 */
4afaaefa 1519void *
1520spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1521{
1522 spl_kmem_magazine_t *skm;
1523 unsigned long irq_flags;
1524 void *obj = NULL;
1525 ENTRY;
1526
e9d7a2be 1527 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
1528 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1529 ASSERT(flags & KM_SLEEP);
1530 atomic_inc(&skc->skc_ref);
4afaaefa 1531 local_irq_save(irq_flags);
1532
1533restart:
1534 /* Safe to update per-cpu structure without lock, but
1535 * in the restart case we must be careful to reaquire
1536 * the local magazine since this may have changed
1537 * when we need to grow the cache. */
1538 skm = skc->skc_mag[smp_processor_id()];
e9d7a2be 1539 ASSERTF(skm->skm_magic == SKM_MAGIC, "%x != %x: %s/%p/%p %x/%x/%x\n",
1540 skm->skm_magic, SKM_MAGIC, skc->skc_name, skc, skm,
1541 skm->skm_size, skm->skm_refill, skm->skm_avail);
4afaaefa 1542
1543 if (likely(skm->skm_avail)) {
1544 /* Object available in CPU cache, use it */
1545 obj = skm->skm_objs[--skm->skm_avail];
ea3e6ca9 1546 skm->skm_age = jiffies;
4afaaefa 1547 } else {
1548 /* Per-CPU cache empty, directly allocate from
1549 * the slab and refill the per-CPU cache. */
1550 (void)spl_cache_refill(skc, skm, flags);
1551 GOTO(restart, obj = NULL);
1552 }
1553
1554 local_irq_restore(irq_flags);
fece7c99 1555 ASSERT(obj);
48e0606a 1556 ASSERT(((unsigned long)(obj) % skc->skc_obj_align) == 0);
4afaaefa 1557
1558 /* Pre-emptively migrate object to CPU L1 cache */
1559 prefetchw(obj);
ea3e6ca9 1560 atomic_dec(&skc->skc_ref);
4afaaefa 1561
1562 RETURN(obj);
1563}
1564EXPORT_SYMBOL(spl_kmem_cache_alloc);
1565
ea3e6ca9
BB
1566/*
1567 * Free an object back to the local per-cpu magazine, there is no
1568 * guarantee that this is the same magazine the object was originally
1569 * allocated from. We may need to flush entire from the magazine
1570 * back to the slabs to make space.
1571 */
4afaaefa 1572void
1573spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1574{
1575 spl_kmem_magazine_t *skm;
1576 unsigned long flags;
1577 ENTRY;
1578
e9d7a2be 1579 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9
BB
1580 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1581 atomic_inc(&skc->skc_ref);
4afaaefa 1582 local_irq_save(flags);
1583
1584 /* Safe to update per-cpu structure without lock, but
1585 * no remote memory allocation tracking is being performed
1586 * it is entirely possible to allocate an object from one
1587 * CPU cache and return it to another. */
1588 skm = skc->skc_mag[smp_processor_id()];
e9d7a2be 1589 ASSERT(skm->skm_magic == SKM_MAGIC);
4afaaefa 1590
1591 /* Per-CPU cache full, flush it to make space */
1592 if (unlikely(skm->skm_avail >= skm->skm_size))
1593 (void)spl_cache_flush(skc, skm, skm->skm_refill);
1594
1595 /* Available space in cache, use it */
1596 skm->skm_objs[skm->skm_avail++] = obj;
1597
1598 local_irq_restore(flags);
ea3e6ca9 1599 atomic_dec(&skc->skc_ref);
4afaaefa 1600
1601 EXIT;
f1ca4da6 1602}
2fb9b26a 1603EXPORT_SYMBOL(spl_kmem_cache_free);
5c2bb9b2 1604
ea3e6ca9
BB
1605/*
1606 * The generic shrinker function for all caches. Under linux a shrinker
1607 * may not be tightly coupled with a slab cache. In fact linux always
1608 * systematically trys calling all registered shrinker callbacks which
1609 * report that they contain unused objects. Because of this we only
1610 * register one shrinker function in the shim layer for all slab caches.
1611 * We always attempt to shrink all caches when this generic shrinker
1612 * is called. The shrinker should return the number of free objects
1613 * in the cache when called with nr_to_scan == 0 but not attempt to
1614 * free any objects. When nr_to_scan > 0 it is a request that nr_to_scan
1615 * objects should be freed, because Solaris semantics are to free
1616 * all available objects we may free more objects than requested.
1617 */
2fb9b26a 1618static int
4afaaefa 1619spl_kmem_cache_generic_shrinker(int nr_to_scan, unsigned int gfp_mask)
2fb9b26a 1620{
e9d7a2be 1621 spl_kmem_cache_t *skc;
ea3e6ca9 1622 int unused = 0;
5c2bb9b2 1623
e9d7a2be 1624 down_read(&spl_kmem_cache_sem);
ea3e6ca9
BB
1625 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1626 if (nr_to_scan)
1627 spl_kmem_cache_reap_now(skc);
1628
1629 /*
1630 * Presume everything alloc'ed in reclaimable, this ensures
1631 * we are called again with nr_to_scan > 0 so can try and
1632 * reclaim. The exact number is not important either so
1633 * we forgo taking this already highly contented lock.
1634 */
1635 unused += skc->skc_obj_alloc;
1636 }
e9d7a2be 1637 up_read(&spl_kmem_cache_sem);
2fb9b26a 1638
ea3e6ca9 1639 return (unused * sysctl_vfs_cache_pressure) / 100;
5c2bb9b2 1640}
5c2bb9b2 1641
ea3e6ca9
BB
1642/*
1643 * Call the registered reclaim function for a cache. Depending on how
1644 * many and which objects are released it may simply repopulate the
1645 * local magazine which will then need to age-out. Objects which cannot
1646 * fit in the magazine we will be released back to their slabs which will
1647 * also need to age out before being release. This is all just best
1648 * effort and we do not want to thrash creating and destroying slabs.
1649 */
57d86234 1650void
2fb9b26a 1651spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
57d86234 1652{
2fb9b26a 1653 ENTRY;
e9d7a2be 1654
1655 ASSERT(skc->skc_magic == SKC_MAGIC);
ea3e6ca9 1656 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
2fb9b26a 1657
ea3e6ca9
BB
1658 /* Prevent concurrent cache reaping when contended */
1659 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1660 EXIT;
1661 return;
1662 }
2fb9b26a 1663
ea3e6ca9 1664 atomic_inc(&skc->skc_ref);
4afaaefa 1665
ea3e6ca9
BB
1666 if (skc->skc_reclaim)
1667 skc->skc_reclaim(skc->skc_private);
4afaaefa 1668
37db7d8c 1669 spl_slab_reclaim(skc, skc->skc_reap, 0);
ea3e6ca9
BB
1670 clear_bit(KMC_BIT_REAPING, &skc->skc_flags);
1671 atomic_dec(&skc->skc_ref);
4afaaefa 1672
2fb9b26a 1673 EXIT;
57d86234 1674}
2fb9b26a 1675EXPORT_SYMBOL(spl_kmem_cache_reap_now);
57d86234 1676
ea3e6ca9
BB
1677/*
1678 * Reap all free slabs from all registered caches.
1679 */
f1b59d26 1680void
2fb9b26a 1681spl_kmem_reap(void)
937879f1 1682{
4afaaefa 1683 spl_kmem_cache_generic_shrinker(KMC_REAP_CHUNK, GFP_KERNEL);
f1ca4da6 1684}
2fb9b26a 1685EXPORT_SYMBOL(spl_kmem_reap);
5d86345d 1686
ff449ac4 1687#if defined(DEBUG_KMEM) && defined(DEBUG_KMEM_TRACKING)
c6dc93d6 1688static char *
4afaaefa 1689spl_sprintf_addr(kmem_debug_t *kd, char *str, int len, int min)
d6a26c6a 1690{
e9d7a2be 1691 int size = ((len - 1) < kd->kd_size) ? (len - 1) : kd->kd_size;
d6a26c6a 1692 int i, flag = 1;
1693
1694 ASSERT(str != NULL && len >= 17);
e9d7a2be 1695 memset(str, 0, len);
d6a26c6a 1696
1697 /* Check for a fully printable string, and while we are at
1698 * it place the printable characters in the passed buffer. */
1699 for (i = 0; i < size; i++) {
e9d7a2be 1700 str[i] = ((char *)(kd->kd_addr))[i];
1701 if (isprint(str[i])) {
1702 continue;
1703 } else {
1704 /* Minimum number of printable characters found
1705 * to make it worthwhile to print this as ascii. */
1706 if (i > min)
1707 break;
1708
1709 flag = 0;
1710 break;
1711 }
d6a26c6a 1712 }
1713
1714 if (!flag) {
1715 sprintf(str, "%02x%02x%02x%02x%02x%02x%02x%02x",
1716 *((uint8_t *)kd->kd_addr),
1717 *((uint8_t *)kd->kd_addr + 2),
1718 *((uint8_t *)kd->kd_addr + 4),
1719 *((uint8_t *)kd->kd_addr + 6),
1720 *((uint8_t *)kd->kd_addr + 8),
1721 *((uint8_t *)kd->kd_addr + 10),
1722 *((uint8_t *)kd->kd_addr + 12),
1723 *((uint8_t *)kd->kd_addr + 14));
1724 }
1725
1726 return str;
1727}
1728
a1502d76 1729static int
1730spl_kmem_init_tracking(struct list_head *list, spinlock_t *lock, int size)
1731{
1732 int i;
1733 ENTRY;
1734
1735 spin_lock_init(lock);
1736 INIT_LIST_HEAD(list);
1737
1738 for (i = 0; i < size; i++)
1739 INIT_HLIST_HEAD(&kmem_table[i]);
1740
1741 RETURN(0);
1742}
1743
ff449ac4 1744static void
1745spl_kmem_fini_tracking(struct list_head *list, spinlock_t *lock)
5d86345d 1746{
2fb9b26a 1747 unsigned long flags;
1748 kmem_debug_t *kd;
1749 char str[17];
a1502d76 1750 ENTRY;
2fb9b26a 1751
ff449ac4 1752 spin_lock_irqsave(lock, flags);
1753 if (!list_empty(list))
a0f6da3d 1754 printk(KERN_WARNING "%-16s %-5s %-16s %s:%s\n", "address",
1755 "size", "data", "func", "line");
2fb9b26a 1756
ff449ac4 1757 list_for_each_entry(kd, list, kd_list)
a0f6da3d 1758 printk(KERN_WARNING "%p %-5d %-16s %s:%d\n", kd->kd_addr,
b6b2acc6 1759 (int)kd->kd_size, spl_sprintf_addr(kd, str, 17, 8),
2fb9b26a 1760 kd->kd_func, kd->kd_line);
1761
ff449ac4 1762 spin_unlock_irqrestore(lock, flags);
a1502d76 1763 EXIT;
ff449ac4 1764}
1765#else /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
a1502d76 1766#define spl_kmem_init_tracking(list, lock, size)
ff449ac4 1767#define spl_kmem_fini_tracking(list, lock)
1768#endif /* DEBUG_KMEM && DEBUG_KMEM_TRACKING */
1769
36b313da
BB
1770static void
1771spl_kmem_init_globals(void)
1772{
1773 struct zone *zone;
1774
1775 /* For now all zones are includes, it may be wise to restrict
1776 * this to normal and highmem zones if we see problems. */
1777 for_each_zone(zone) {
1778
1779 if (!populated_zone(zone))
1780 continue;
1781
1782 minfree += zone->pages_min;
1783 desfree += zone->pages_low;
1784 lotsfree += zone->pages_high;
1785 }
4ab13d3b
BB
1786
1787 /* Solaris default values */
1788 swapfs_minfree = MAX(2*1024*1024 / PAGE_SIZE, physmem / 8);
1789 swapfs_reserve = MIN(4*1024*1024 / PAGE_SIZE, physmem / 16);
36b313da
BB
1790}
1791
d1ff2312
BB
1792/*
1793 * Called at module init when it is safe to use spl_kallsyms_lookup_name()
1794 */
1795int
1796spl_kmem_init_kallsyms_lookup(void)
1797{
1798#ifndef HAVE_GET_VMALLOC_INFO
1799 get_vmalloc_info_fn = (get_vmalloc_info_t)
1800 spl_kallsyms_lookup_name("get_vmalloc_info");
e11d6c5f
BB
1801 if (!get_vmalloc_info_fn) {
1802 printk(KERN_ERR "Error: Unknown symbol get_vmalloc_info\n");
d1ff2312 1803 return -EFAULT;
e11d6c5f 1804 }
d1ff2312
BB
1805#endif /* HAVE_GET_VMALLOC_INFO */
1806
1807#ifndef HAVE_FIRST_ONLINE_PGDAT
1808 first_online_pgdat_fn = (first_online_pgdat_t)
1809 spl_kallsyms_lookup_name("first_online_pgdat");
e11d6c5f
BB
1810 if (!first_online_pgdat_fn) {
1811 printk(KERN_ERR "Error: Unknown symbol first_online_pgdat\n");
d1ff2312 1812 return -EFAULT;
e11d6c5f 1813 }
d1ff2312
BB
1814#endif /* HAVE_FIRST_ONLINE_PGDAT */
1815
1816#ifndef HAVE_NEXT_ONLINE_PGDAT
1817 next_online_pgdat_fn = (next_online_pgdat_t)
1818 spl_kallsyms_lookup_name("next_online_pgdat");
e11d6c5f
BB
1819 if (!next_online_pgdat_fn) {
1820 printk(KERN_ERR "Error: Unknown symbol next_online_pgdat\n");
d1ff2312 1821 return -EFAULT;
e11d6c5f 1822 }
d1ff2312
BB
1823#endif /* HAVE_NEXT_ONLINE_PGDAT */
1824
1825#ifndef HAVE_NEXT_ZONE
1826 next_zone_fn = (next_zone_t)
1827 spl_kallsyms_lookup_name("next_zone");
e11d6c5f
BB
1828 if (!next_zone_fn) {
1829 printk(KERN_ERR "Error: Unknown symbol next_zone\n");
d1ff2312 1830 return -EFAULT;
e11d6c5f 1831 }
d1ff2312
BB
1832#endif /* HAVE_NEXT_ZONE */
1833
e11d6c5f
BB
1834#ifndef HAVE_ZONE_STAT_ITEM_FIA
1835# ifndef HAVE_GET_ZONE_COUNTS
d1ff2312
BB
1836 get_zone_counts_fn = (get_zone_counts_t)
1837 spl_kallsyms_lookup_name("get_zone_counts");
e11d6c5f
BB
1838 if (!get_zone_counts_fn) {
1839 printk(KERN_ERR "Error: Unknown symbol get_zone_counts\n");
d1ff2312 1840 return -EFAULT;
e11d6c5f
BB
1841 }
1842# else
1843# error "HAVE_ZONE_STAT_ITEM_FIA and HAVE_GET_ZONE_COUNTS unavailable"
1844# endif /* HAVE_GET_ZONE_COUNTS */
1845#endif /* HAVE_ZONE_STAT_ITEM_FIA */
d1ff2312
BB
1846
1847 /*
1848 * It is now safe to initialize the global tunings which rely on
1849 * the use of the for_each_zone() macro. This macro in turns
1850 * depends on the *_pgdat symbols which are now available.
1851 */
1852 spl_kmem_init_globals();
1853
1854 return 0;
1855}
1856
a1502d76 1857int
1858spl_kmem_init(void)
1859{
1860 int rc = 0;
1861 ENTRY;
1862
1863 init_rwsem(&spl_kmem_cache_sem);
1864 INIT_LIST_HEAD(&spl_kmem_cache_list);
1865
1866#ifdef HAVE_SET_SHRINKER
1867 spl_kmem_cache_shrinker = set_shrinker(KMC_DEFAULT_SEEKS,
1868 spl_kmem_cache_generic_shrinker);
1869 if (spl_kmem_cache_shrinker == NULL)
f78a933f 1870 RETURN(rc = -ENOMEM);
a1502d76 1871#else
1872 register_shrinker(&spl_kmem_cache_shrinker);
1873#endif
1874
1875#ifdef DEBUG_KMEM
1876 atomic64_set(&kmem_alloc_used, 0);
1877 atomic64_set(&vmem_alloc_used, 0);
1878
1879 spl_kmem_init_tracking(&kmem_list, &kmem_lock, KMEM_TABLE_SIZE);
1880 spl_kmem_init_tracking(&vmem_list, &vmem_lock, VMEM_TABLE_SIZE);
1881#endif
a1502d76 1882 RETURN(rc);
1883}
1884
ff449ac4 1885void
1886spl_kmem_fini(void)
1887{
1888#ifdef DEBUG_KMEM
1889 /* Display all unreclaimed memory addresses, including the
1890 * allocation size and the first few bytes of what's located
1891 * at that address to aid in debugging. Performance is not
1892 * a serious concern here since it is module unload time. */
1893 if (atomic64_read(&kmem_alloc_used) != 0)
1894 CWARN("kmem leaked %ld/%ld bytes\n",
550f1705 1895 atomic64_read(&kmem_alloc_used), kmem_alloc_max);
ff449ac4 1896
2fb9b26a 1897
1898 if (atomic64_read(&vmem_alloc_used) != 0)
1899 CWARN("vmem leaked %ld/%ld bytes\n",
550f1705 1900 atomic64_read(&vmem_alloc_used), vmem_alloc_max);
2fb9b26a 1901
ff449ac4 1902 spl_kmem_fini_tracking(&kmem_list, &kmem_lock);
1903 spl_kmem_fini_tracking(&vmem_list, &vmem_lock);
1904#endif /* DEBUG_KMEM */
2fb9b26a 1905 ENTRY;
1906
1907#ifdef HAVE_SET_SHRINKER
1908 remove_shrinker(spl_kmem_cache_shrinker);
1909#else
1910 unregister_shrinker(&spl_kmem_cache_shrinker);
5d86345d 1911#endif
2fb9b26a 1912
937879f1 1913 EXIT;
5d86345d 1914}