]> git.proxmox.com Git - mirror_spl-debian.git/blame - module/splat/splat-kmem.c
Imported Upstream version 0.6.2
[mirror_spl-debian.git] / module / splat / splat-kmem.c
CommitLineData
716154c5
BB
1/*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
715f6251 6 * UCRL-CODE-235197
7 *
716154c5 8 * This file is part of the SPL, Solaris Porting Layer.
3d6af2dd 9 * For details, see <http://zfsonlinux.org/>.
716154c5
BB
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
715f6251 15 *
716154c5 16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
715f6251 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
716154c5
BB
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting LAyer Tests (SPLAT) Kmem Tests.
25\*****************************************************************************/
715f6251 26
df870a69
BB
27#include <sys/kmem.h>
28#include <sys/thread.h>
7c50328b 29#include "splat-internal.h"
f1ca4da6 30
7c50328b 31#define SPLAT_KMEM_NAME "kmem"
32#define SPLAT_KMEM_DESC "Kernel Malloc/Slab Tests"
f1ca4da6 33
7c50328b 34#define SPLAT_KMEM_TEST1_ID 0x0101
35#define SPLAT_KMEM_TEST1_NAME "kmem_alloc"
36#define SPLAT_KMEM_TEST1_DESC "Memory allocation test (kmem_alloc)"
f1ca4da6 37
7c50328b 38#define SPLAT_KMEM_TEST2_ID 0x0102
39#define SPLAT_KMEM_TEST2_NAME "kmem_zalloc"
40#define SPLAT_KMEM_TEST2_DESC "Memory allocation test (kmem_zalloc)"
f1ca4da6 41
7c50328b 42#define SPLAT_KMEM_TEST3_ID 0x0103
2fb9b26a 43#define SPLAT_KMEM_TEST3_NAME "vmem_alloc"
44#define SPLAT_KMEM_TEST3_DESC "Memory allocation test (vmem_alloc)"
f1ca4da6 45
7c50328b 46#define SPLAT_KMEM_TEST4_ID 0x0104
2fb9b26a 47#define SPLAT_KMEM_TEST4_NAME "vmem_zalloc"
48#define SPLAT_KMEM_TEST4_DESC "Memory allocation test (vmem_zalloc)"
f1ca4da6 49
79b31f36 50#define SPLAT_KMEM_TEST5_ID 0x0105
ea3e6ca9 51#define SPLAT_KMEM_TEST5_NAME "slab_small"
2fb9b26a 52#define SPLAT_KMEM_TEST5_DESC "Slab ctor/dtor test (small)"
53
54#define SPLAT_KMEM_TEST6_ID 0x0106
ea3e6ca9 55#define SPLAT_KMEM_TEST6_NAME "slab_large"
2fb9b26a 56#define SPLAT_KMEM_TEST6_DESC "Slab ctor/dtor test (large)"
57
58#define SPLAT_KMEM_TEST7_ID 0x0107
ea3e6ca9
BB
59#define SPLAT_KMEM_TEST7_NAME "slab_align"
60#define SPLAT_KMEM_TEST7_DESC "Slab alignment test"
79b31f36 61
44b8f176 62#define SPLAT_KMEM_TEST8_ID 0x0108
ea3e6ca9
BB
63#define SPLAT_KMEM_TEST8_NAME "slab_reap"
64#define SPLAT_KMEM_TEST8_DESC "Slab reaping test"
44b8f176 65
48e0606a 66#define SPLAT_KMEM_TEST9_ID 0x0109
ea3e6ca9
BB
67#define SPLAT_KMEM_TEST9_NAME "slab_age"
68#define SPLAT_KMEM_TEST9_DESC "Slab aging test"
69
70#define SPLAT_KMEM_TEST10_ID 0x010a
71#define SPLAT_KMEM_TEST10_NAME "slab_lock"
72#define SPLAT_KMEM_TEST10_DESC "Slab locking test"
73
11124863 74#if 0
ea3e6ca9
BB
75#define SPLAT_KMEM_TEST11_ID 0x010b
76#define SPLAT_KMEM_TEST11_NAME "slab_overcommit"
77#define SPLAT_KMEM_TEST11_DESC "Slab memory overcommit test"
11124863 78#endif
48e0606a 79
e11d6c5f
BB
80#define SPLAT_KMEM_TEST12_ID 0x010c
81#define SPLAT_KMEM_TEST12_NAME "vmem_size"
82#define SPLAT_KMEM_TEST12_DESC "Memory zone test"
83
a9a7a01c
PS
84#define SPLAT_KMEM_TEST13_ID 0x010d
85#define SPLAT_KMEM_TEST13_NAME "slab_reclaim"
86#define SPLAT_KMEM_TEST13_DESC "Slab direct memory reclaim test"
87
7c50328b 88#define SPLAT_KMEM_ALLOC_COUNT 10
79b31f36 89#define SPLAT_VMEM_ALLOC_COUNT 10
90
44b8f176 91
f1ca4da6 92static int
7c50328b 93splat_kmem_test1(struct file *file, void *arg)
f1ca4da6 94{
7c50328b 95 void *ptr[SPLAT_KMEM_ALLOC_COUNT];
f1ca4da6 96 int size = PAGE_SIZE;
97 int i, count, rc = 0;
98
79b31f36 99 while ((!rc) && (size <= (PAGE_SIZE * 32))) {
f1ca4da6 100 count = 0;
101
7c50328b 102 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
23d91792 103 ptr[i] = kmem_alloc(size, KM_SLEEP | KM_NODEBUG);
f1ca4da6 104 if (ptr[i])
105 count++;
106 }
107
7c50328b 108 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
f1ca4da6 109 if (ptr[i])
110 kmem_free(ptr[i], size);
111
7c50328b 112 splat_vprint(file, SPLAT_KMEM_TEST1_NAME,
ea3e6ca9
BB
113 "%d byte allocations, %d/%d successful\n",
114 size, count, SPLAT_KMEM_ALLOC_COUNT);
7c50328b 115 if (count != SPLAT_KMEM_ALLOC_COUNT)
f1ca4da6 116 rc = -ENOMEM;
117
118 size *= 2;
119 }
120
121 return rc;
122}
123
124static int
7c50328b 125splat_kmem_test2(struct file *file, void *arg)
f1ca4da6 126{
7c50328b 127 void *ptr[SPLAT_KMEM_ALLOC_COUNT];
f1ca4da6 128 int size = PAGE_SIZE;
129 int i, j, count, rc = 0;
130
79b31f36 131 while ((!rc) && (size <= (PAGE_SIZE * 32))) {
f1ca4da6 132 count = 0;
133
7c50328b 134 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
23d91792 135 ptr[i] = kmem_zalloc(size, KM_SLEEP | KM_NODEBUG);
f1ca4da6 136 if (ptr[i])
137 count++;
138 }
139
140 /* Ensure buffer has been zero filled */
7c50328b 141 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
f1ca4da6 142 for (j = 0; j < size; j++) {
143 if (((char *)ptr[i])[j] != '\0') {
5198ea0e 144 splat_vprint(file,SPLAT_KMEM_TEST2_NAME,
ea3e6ca9
BB
145 "%d-byte allocation was "
146 "not zeroed\n", size);
f1ca4da6 147 rc = -EFAULT;
148 }
149 }
150 }
151
7c50328b 152 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
f1ca4da6 153 if (ptr[i])
154 kmem_free(ptr[i], size);
155
7c50328b 156 splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
ea3e6ca9
BB
157 "%d byte allocations, %d/%d successful\n",
158 size, count, SPLAT_KMEM_ALLOC_COUNT);
7c50328b 159 if (count != SPLAT_KMEM_ALLOC_COUNT)
f1ca4da6 160 rc = -ENOMEM;
161
162 size *= 2;
163 }
164
165 return rc;
166}
167
2fb9b26a 168static int
169splat_kmem_test3(struct file *file, void *arg)
170{
171 void *ptr[SPLAT_VMEM_ALLOC_COUNT];
172 int size = PAGE_SIZE;
173 int i, count, rc = 0;
174
175 while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
176 count = 0;
177
178 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
179 ptr[i] = vmem_alloc(size, KM_SLEEP);
180 if (ptr[i])
181 count++;
182 }
183
184 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
185 if (ptr[i])
186 vmem_free(ptr[i], size);
187
188 splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
ea3e6ca9
BB
189 "%d byte allocations, %d/%d successful\n",
190 size, count, SPLAT_VMEM_ALLOC_COUNT);
2fb9b26a 191 if (count != SPLAT_VMEM_ALLOC_COUNT)
192 rc = -ENOMEM;
193
194 size *= 2;
195 }
196
197 return rc;
198}
199
200static int
201splat_kmem_test4(struct file *file, void *arg)
202{
203 void *ptr[SPLAT_VMEM_ALLOC_COUNT];
204 int size = PAGE_SIZE;
205 int i, j, count, rc = 0;
206
207 while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
208 count = 0;
209
210 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
211 ptr[i] = vmem_zalloc(size, KM_SLEEP);
212 if (ptr[i])
213 count++;
214 }
215
216 /* Ensure buffer has been zero filled */
217 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
218 for (j = 0; j < size; j++) {
219 if (((char *)ptr[i])[j] != '\0') {
220 splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
ea3e6ca9
BB
221 "%d-byte allocation was "
222 "not zeroed\n", size);
2fb9b26a 223 rc = -EFAULT;
224 }
225 }
226 }
227
228 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
229 if (ptr[i])
230 vmem_free(ptr[i], size);
231
232 splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
ea3e6ca9
BB
233 "%d byte allocations, %d/%d successful\n",
234 size, count, SPLAT_VMEM_ALLOC_COUNT);
2fb9b26a 235 if (count != SPLAT_VMEM_ALLOC_COUNT)
236 rc = -ENOMEM;
237
238 size *= 2;
239 }
240
241 return rc;
242}
243
7c50328b 244#define SPLAT_KMEM_TEST_MAGIC 0x004488CCUL
245#define SPLAT_KMEM_CACHE_NAME "kmem_test"
ea3e6ca9 246#define SPLAT_KMEM_OBJ_COUNT 1024
efcd0ca3 247#define SPLAT_KMEM_OBJ_RECLAIM 1000 /* objects */
ea3e6ca9
BB
248#define SPLAT_KMEM_THREADS 32
249
250#define KCP_FLAG_READY 0x01
f1ca4da6 251
252typedef struct kmem_cache_data {
f1ca4da6 253 unsigned long kcd_magic;
efcd0ca3 254 struct list_head kcd_node;
f1ca4da6 255 int kcd_flag;
2fb9b26a 256 char kcd_buf[0];
f1ca4da6 257} kmem_cache_data_t;
258
ea3e6ca9 259typedef struct kmem_cache_thread {
ea3e6ca9
BB
260 spinlock_t kct_lock;
261 int kct_id;
efcd0ca3 262 struct list_head kct_list;
ea3e6ca9
BB
263} kmem_cache_thread_t;
264
f1ca4da6 265typedef struct kmem_cache_priv {
266 unsigned long kcp_magic;
267 struct file *kcp_file;
268 kmem_cache_t *kcp_cache;
44b8f176 269 spinlock_t kcp_lock;
ea3e6ca9
BB
270 wait_queue_head_t kcp_ctl_waitq;
271 wait_queue_head_t kcp_thr_waitq;
272 int kcp_flags;
273 int kcp_kct_count;
274 kmem_cache_thread_t *kcp_kct[SPLAT_KMEM_THREADS];
2fb9b26a 275 int kcp_size;
48e0606a 276 int kcp_align;
f1ca4da6 277 int kcp_count;
44b8f176 278 int kcp_alloc;
f1ca4da6 279 int kcp_rc;
280} kmem_cache_priv_t;
281
ea3e6ca9
BB
282static kmem_cache_priv_t *
283splat_kmem_cache_test_kcp_alloc(struct file *file, char *name,
efcd0ca3 284 int size, int align, int alloc)
ea3e6ca9
BB
285{
286 kmem_cache_priv_t *kcp;
287
efcd0ca3 288 kcp = kmem_zalloc(sizeof(kmem_cache_priv_t), KM_SLEEP);
ea3e6ca9
BB
289 if (!kcp)
290 return NULL;
291
292 kcp->kcp_magic = SPLAT_KMEM_TEST_MAGIC;
293 kcp->kcp_file = file;
294 kcp->kcp_cache = NULL;
295 spin_lock_init(&kcp->kcp_lock);
296 init_waitqueue_head(&kcp->kcp_ctl_waitq);
297 init_waitqueue_head(&kcp->kcp_thr_waitq);
298 kcp->kcp_flags = 0;
299 kcp->kcp_kct_count = -1;
300 kcp->kcp_size = size;
301 kcp->kcp_align = align;
302 kcp->kcp_count = 0;
303 kcp->kcp_alloc = alloc;
304 kcp->kcp_rc = 0;
ea3e6ca9
BB
305
306 return kcp;
307}
308
309static void
310splat_kmem_cache_test_kcp_free(kmem_cache_priv_t *kcp)
311{
efcd0ca3 312 kmem_free(kcp, sizeof(kmem_cache_priv_t));
ea3e6ca9
BB
313}
314
315static kmem_cache_thread_t *
efcd0ca3 316splat_kmem_cache_test_kct_alloc(kmem_cache_priv_t *kcp, int id)
ea3e6ca9
BB
317{
318 kmem_cache_thread_t *kct;
319
320 ASSERTF(id < SPLAT_KMEM_THREADS, "id=%d\n", id);
efcd0ca3
BB
321 ASSERT(kcp->kcp_kct[id] == NULL);
322
323 kct = kmem_zalloc(sizeof(kmem_cache_thread_t), KM_SLEEP);
ea3e6ca9
BB
324 if (!kct)
325 return NULL;
326
327 spin_lock_init(&kct->kct_lock);
ea3e6ca9 328 kct->kct_id = id;
efcd0ca3
BB
329 INIT_LIST_HEAD(&kct->kct_list);
330
331 spin_lock(&kcp->kcp_lock);
332 kcp->kcp_kct[id] = kct;
333 spin_unlock(&kcp->kcp_lock);
ea3e6ca9
BB
334
335 return kct;
336}
337
338static void
efcd0ca3
BB
339splat_kmem_cache_test_kct_free(kmem_cache_priv_t *kcp,
340 kmem_cache_thread_t *kct)
341{
342 spin_lock(&kcp->kcp_lock);
343 kcp->kcp_kct[kct->kct_id] = NULL;
344 spin_unlock(&kcp->kcp_lock);
345
346 kmem_free(kct, sizeof(kmem_cache_thread_t));
347}
348
349static void
350splat_kmem_cache_test_kcd_free(kmem_cache_priv_t *kcp,
351 kmem_cache_thread_t *kct)
352{
353 kmem_cache_data_t *kcd;
354
355 spin_lock(&kct->kct_lock);
356 while (!list_empty(&kct->kct_list)) {
357 kcd = list_entry(kct->kct_list.next,
358 kmem_cache_data_t, kcd_node);
359 list_del(&kcd->kcd_node);
360 spin_unlock(&kct->kct_lock);
361
362 kmem_cache_free(kcp->kcp_cache, kcd);
363
364 spin_lock(&kct->kct_lock);
365 }
366 spin_unlock(&kct->kct_lock);
367}
368
369static int
370splat_kmem_cache_test_kcd_alloc(kmem_cache_priv_t *kcp,
371 kmem_cache_thread_t *kct, int count)
ea3e6ca9 372{
efcd0ca3
BB
373 kmem_cache_data_t *kcd;
374 int i;
375
376 for (i = 0; i < count; i++) {
377 kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
378 if (kcd == NULL) {
379 splat_kmem_cache_test_kcd_free(kcp, kct);
380 return -ENOMEM;
381 }
382
383 spin_lock(&kct->kct_lock);
384 list_add_tail(&kcd->kcd_node, &kct->kct_list);
385 spin_unlock(&kct->kct_lock);
386 }
387
388 return 0;
ea3e6ca9
BB
389}
390
a9a7a01c
PS
391static void
392splat_kmem_cache_test_debug(struct file *file, char *name,
393 kmem_cache_priv_t *kcp)
394{
395 int j;
396
397 splat_vprint(file, name,
398 "%s cache objects %d, slabs %u/%u objs %u/%u mags ",
399 kcp->kcp_cache->skc_name, kcp->kcp_count,
400 (unsigned)kcp->kcp_cache->skc_slab_alloc,
401 (unsigned)kcp->kcp_cache->skc_slab_total,
402 (unsigned)kcp->kcp_cache->skc_obj_alloc,
403 (unsigned)kcp->kcp_cache->skc_obj_total);
404
405 for_each_online_cpu(j)
406 splat_print(file, "%u/%u ",
407 kcp->kcp_cache->skc_mag[j]->skm_avail,
408 kcp->kcp_cache->skc_mag[j]->skm_size);
409
410 splat_print(file, "%s\n", "");
411}
412
f1ca4da6 413static int
2fb9b26a 414splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags)
f1ca4da6 415{
f1ca4da6 416 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
2fb9b26a 417 kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
f1ca4da6 418
0498e6c5 419 if (kcd && kcp) {
420 kcd->kcd_magic = kcp->kcp_magic;
efcd0ca3 421 INIT_LIST_HEAD(&kcd->kcd_node);
2fb9b26a 422 kcd->kcd_flag = 1;
0498e6c5 423 memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd));
424 kcp->kcp_count++;
f1ca4da6 425 }
426
427 return 0;
428}
429
430static void
2fb9b26a 431splat_kmem_cache_test_destructor(void *ptr, void *priv)
f1ca4da6 432{
f1ca4da6 433 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
2fb9b26a 434 kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
f1ca4da6 435
0498e6c5 436 if (kcd && kcp) {
437 kcd->kcd_magic = 0;
2fb9b26a 438 kcd->kcd_flag = 0;
0498e6c5 439 memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd));
440 kcp->kcp_count--;
f1ca4da6 441 }
442
443 return;
444}
445
ea3e6ca9
BB
446/*
447 * Generic reclaim function which assumes that all objects may
448 * be reclaimed at any time. We free a small percentage of the
449 * objects linked off the kcp or kct[] every time we are called.
450 */
451static void
452splat_kmem_cache_test_reclaim(void *priv)
453{
454 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
455 kmem_cache_thread_t *kct;
efcd0ca3
BB
456 kmem_cache_data_t *kcd;
457 LIST_HEAD(reclaim);
458 int i, count;
ea3e6ca9
BB
459
460 ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
ea3e6ca9 461
efcd0ca3 462 /* For each kct thread reclaim some objects */
ea3e6ca9 463 spin_lock(&kcp->kcp_lock);
efcd0ca3 464 for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
ea3e6ca9 465 kct = kcp->kcp_kct[i];
efcd0ca3 466 if (!kct)
ea3e6ca9
BB
467 continue;
468
efcd0ca3 469 spin_unlock(&kcp->kcp_lock);
ea3e6ca9 470 spin_lock(&kct->kct_lock);
ea3e6ca9 471
efcd0ca3
BB
472 count = SPLAT_KMEM_OBJ_RECLAIM;
473 while (count > 0 && !list_empty(&kct->kct_list)) {
474 kcd = list_entry(kct->kct_list.next,
475 kmem_cache_data_t, kcd_node);
476 list_del(&kcd->kcd_node);
477 list_add(&kcd->kcd_node, &reclaim);
478 count--;
ea3e6ca9 479 }
efcd0ca3 480
ea3e6ca9 481 spin_unlock(&kct->kct_lock);
efcd0ca3
BB
482 spin_lock(&kcp->kcp_lock);
483 }
484 spin_unlock(&kcp->kcp_lock);
485
486 /* Freed outside the spin lock */
487 while (!list_empty(&reclaim)) {
488 kcd = list_entry(reclaim.next, kmem_cache_data_t, kcd_node);
489 list_del(&kcd->kcd_node);
490 kmem_cache_free(kcp->kcp_cache, kcd);
ea3e6ca9
BB
491 }
492
493 return;
494}
495
496static int
497splat_kmem_cache_test_threads(kmem_cache_priv_t *kcp, int threads)
498{
499 int rc;
500
501 spin_lock(&kcp->kcp_lock);
502 rc = (kcp->kcp_kct_count == threads);
503 spin_unlock(&kcp->kcp_lock);
504
505 return rc;
506}
507
508static int
509splat_kmem_cache_test_flags(kmem_cache_priv_t *kcp, int flags)
510{
511 int rc;
512
513 spin_lock(&kcp->kcp_lock);
514 rc = (kcp->kcp_flags & flags);
515 spin_unlock(&kcp->kcp_lock);
516
517 return rc;
518}
519
520static void
521splat_kmem_cache_test_thread(void *arg)
522{
523 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg;
524 kmem_cache_thread_t *kct;
efcd0ca3 525 int rc = 0, id;
ea3e6ca9
BB
526
527 ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
528
529 /* Assign thread ids */
530 spin_lock(&kcp->kcp_lock);
531 if (kcp->kcp_kct_count == -1)
532 kcp->kcp_kct_count = 0;
533
534 id = kcp->kcp_kct_count;
535 kcp->kcp_kct_count++;
536 spin_unlock(&kcp->kcp_lock);
537
efcd0ca3 538 kct = splat_kmem_cache_test_kct_alloc(kcp, id);
ea3e6ca9
BB
539 if (!kct) {
540 rc = -ENOMEM;
541 goto out;
542 }
543
ea3e6ca9
BB
544 /* Wait for all threads to have started and report they are ready */
545 if (kcp->kcp_kct_count == SPLAT_KMEM_THREADS)
546 wake_up(&kcp->kcp_ctl_waitq);
547
548 wait_event(kcp->kcp_thr_waitq,
549 splat_kmem_cache_test_flags(kcp, KCP_FLAG_READY));
550
efcd0ca3
BB
551 /* Create and destroy objects */
552 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, kcp->kcp_alloc);
553 splat_kmem_cache_test_kcd_free(kcp, kct);
ea3e6ca9 554out:
efcd0ca3
BB
555 if (kct)
556 splat_kmem_cache_test_kct_free(kcp, kct);
ea3e6ca9 557
efcd0ca3 558 spin_lock(&kcp->kcp_lock);
ea3e6ca9
BB
559 if (!kcp->kcp_rc)
560 kcp->kcp_rc = rc;
561
562 if ((--kcp->kcp_kct_count) == 0)
563 wake_up(&kcp->kcp_ctl_waitq);
564
565 spin_unlock(&kcp->kcp_lock);
566
567 thread_exit();
568}
569
f1ca4da6 570static int
48e0606a 571splat_kmem_cache_test(struct file *file, void *arg, char *name,
ea3e6ca9 572 int size, int align, int flags)
f1ca4da6 573{
ea3e6ca9 574 kmem_cache_priv_t *kcp;
efcd0ca3 575 kmem_cache_data_t *kcd = NULL;
f1ca4da6 576 int rc = 0, max;
577
efcd0ca3 578 kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, align, 0);
ea3e6ca9
BB
579 if (!kcp) {
580 splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
581 return -ENOMEM;
582 }
583
584 kcp->kcp_cache =
585 kmem_cache_create(SPLAT_KMEM_CACHE_NAME,
586 kcp->kcp_size, kcp->kcp_align,
587 splat_kmem_cache_test_constructor,
588 splat_kmem_cache_test_destructor,
589 NULL, kcp, NULL, flags);
590 if (!kcp->kcp_cache) {
2fb9b26a 591 splat_vprint(file, name,
ea3e6ca9 592 "Unable to create '%s'\n",
3f412673 593 SPLAT_KMEM_CACHE_NAME);
ea3e6ca9
BB
594 rc = -ENOMEM;
595 goto out_free;
f1ca4da6 596 }
597
ea3e6ca9 598 kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
f1ca4da6 599 if (!kcd) {
2fb9b26a 600 splat_vprint(file, name,
ea3e6ca9
BB
601 "Unable to allocate from '%s'\n",
602 SPLAT_KMEM_CACHE_NAME);
f1ca4da6 603 rc = -EINVAL;
604 goto out_free;
605 }
606
efcd0ca3 607 if (!kcd->kcd_flag) {
2fb9b26a 608 splat_vprint(file, name,
ea3e6ca9
BB
609 "Failed to run contructor for '%s'\n",
610 SPLAT_KMEM_CACHE_NAME);
f1ca4da6 611 rc = -EINVAL;
612 goto out_free;
613 }
614
efcd0ca3 615 if (kcd->kcd_magic != kcp->kcp_magic) {
2fb9b26a 616 splat_vprint(file, name,
ea3e6ca9
BB
617 "Failed to pass private data to constructor "
618 "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
f1ca4da6 619 rc = -EINVAL;
620 goto out_free;
621 }
622
ea3e6ca9 623 max = kcp->kcp_count;
efcd0ca3 624 kmem_cache_free(kcp->kcp_cache, kcd);
f1ca4da6 625
626 /* Destroy the entire cache which will force destructors to
627 * run and we can verify one was called for every object */
ea3e6ca9
BB
628 kmem_cache_destroy(kcp->kcp_cache);
629 if (kcp->kcp_count) {
2fb9b26a 630 splat_vprint(file, name,
ea3e6ca9
BB
631 "Failed to run destructor on all slab objects "
632 "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
f1ca4da6 633 rc = -EINVAL;
634 }
635
f250d90b 636 splat_kmem_cache_test_kcp_free(kcp);
2fb9b26a 637 splat_vprint(file, name,
ea3e6ca9
BB
638 "Successfully ran ctors/dtors for %d elements in '%s'\n",
639 max, SPLAT_KMEM_CACHE_NAME);
f1ca4da6 640
641 return rc;
642
643out_free:
efcd0ca3
BB
644 if (kcd)
645 kmem_cache_free(kcp->kcp_cache, kcd);
ea3e6ca9
BB
646
647 if (kcp->kcp_cache)
648 kmem_cache_destroy(kcp->kcp_cache);
649
650 splat_kmem_cache_test_kcp_free(kcp);
651
652 return rc;
653}
654
655static int
656splat_kmem_cache_thread_test(struct file *file, void *arg, char *name,
10a4be0f 657 int size, int alloc, int max_time)
ea3e6ca9
BB
658{
659 kmem_cache_priv_t *kcp;
660 kthread_t *thr;
661 struct timespec start, stop, delta;
662 char cache_name[32];
663 int i, rc = 0;
664
efcd0ca3 665 kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, 0, alloc);
ea3e6ca9
BB
666 if (!kcp) {
667 splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
668 return -ENOMEM;
669 }
670
671 (void)snprintf(cache_name, 32, "%s-%d-%d",
672 SPLAT_KMEM_CACHE_NAME, size, alloc);
673 kcp->kcp_cache =
674 kmem_cache_create(cache_name, kcp->kcp_size, 0,
675 splat_kmem_cache_test_constructor,
676 splat_kmem_cache_test_destructor,
677 splat_kmem_cache_test_reclaim,
3c9ce2bf 678 kcp, NULL, 0);
ea3e6ca9
BB
679 if (!kcp->kcp_cache) {
680 splat_vprint(file, name, "Unable to create '%s'\n", cache_name);
681 rc = -ENOMEM;
682 goto out_kcp;
683 }
684
685 start = current_kernel_time();
686
687 for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
688 thr = thread_create(NULL, 0,
689 splat_kmem_cache_test_thread,
690 kcp, 0, &p0, TS_RUN, minclsyspri);
691 if (thr == NULL) {
692 rc = -ESRCH;
693 goto out_cache;
694 }
695 }
696
697 /* Sleep until all threads have started, then set the ready
698 * flag and wake them all up for maximum concurrency. */
699 wait_event(kcp->kcp_ctl_waitq,
700 splat_kmem_cache_test_threads(kcp, SPLAT_KMEM_THREADS));
701
702 spin_lock(&kcp->kcp_lock);
703 kcp->kcp_flags |= KCP_FLAG_READY;
704 spin_unlock(&kcp->kcp_lock);
705 wake_up_all(&kcp->kcp_thr_waitq);
706
707 /* Sleep until all thread have finished */
708 wait_event(kcp->kcp_ctl_waitq, splat_kmem_cache_test_threads(kcp, 0));
709
710 stop = current_kernel_time();
711 delta = timespec_sub(stop, start);
f1b59d26 712
ea3e6ca9
BB
713 splat_vprint(file, name,
714 "%-22s %2ld.%09ld\t"
715 "%lu/%lu/%lu\t%lu/%lu/%lu\n",
716 kcp->kcp_cache->skc_name,
717 delta.tv_sec, delta.tv_nsec,
718 (unsigned long)kcp->kcp_cache->skc_slab_total,
719 (unsigned long)kcp->kcp_cache->skc_slab_max,
720 (unsigned long)(kcp->kcp_alloc *
721 SPLAT_KMEM_THREADS /
722 SPL_KMEM_CACHE_OBJ_PER_SLAB),
723 (unsigned long)kcp->kcp_cache->skc_obj_total,
724 (unsigned long)kcp->kcp_cache->skc_obj_max,
725 (unsigned long)(kcp->kcp_alloc *
726 SPLAT_KMEM_THREADS));
727
10a4be0f 728 if (delta.tv_sec >= max_time)
ea3e6ca9
BB
729 rc = -ETIME;
730
731 if (!rc && kcp->kcp_rc)
732 rc = kcp->kcp_rc;
733
734out_cache:
735 kmem_cache_destroy(kcp->kcp_cache);
736out_kcp:
737 splat_kmem_cache_test_kcp_free(kcp);
f1ca4da6 738 return rc;
739}
740
a1502d76 741/* Validate small object cache behavior for dynamic/kmem/vmem caches */
2fb9b26a 742static int
743splat_kmem_test5(struct file *file, void *arg)
744{
a1502d76 745 char *name = SPLAT_KMEM_TEST5_NAME;
746 int rc;
747
80093b6f 748 /* On slab (default + kmem + vmem) */
48e0606a 749 rc = splat_kmem_cache_test(file, arg, name, 128, 0, 0);
a1502d76 750 if (rc)
751 return rc;
752
48e0606a 753 rc = splat_kmem_cache_test(file, arg, name, 128, 0, KMC_KMEM);
a1502d76 754 if (rc)
755 return rc;
756
80093b6f
AX
757 rc = splat_kmem_cache_test(file, arg, name, 128, 0, KMC_VMEM);
758 if (rc)
759 return rc;
760
761 /* Off slab (default + kmem + vmem) */
762 rc = splat_kmem_cache_test(file, arg, name, 128, 0, KMC_OFFSLAB);
763 if (rc)
764 return rc;
765
766 rc = splat_kmem_cache_test(file, arg, name, 128, 0,
767 KMC_KMEM | KMC_OFFSLAB);
768 if (rc)
769 return rc;
770
771 rc = splat_kmem_cache_test(file, arg, name, 128, 0,
772 KMC_VMEM | KMC_OFFSLAB);
773
774 return rc;
2fb9b26a 775}
776
efcd0ca3
BB
777/*
778 * Validate large object cache behavior for dynamic/kmem/vmem caches
779 */
2fb9b26a 780static int
781splat_kmem_test6(struct file *file, void *arg)
782{
a1502d76 783 char *name = SPLAT_KMEM_TEST6_NAME;
784 int rc;
785
80093b6f 786 /* On slab (default + kmem + vmem) */
e0dcb22e 787 rc = splat_kmem_cache_test(file, arg, name, 256*1024, 0, 0);
a1502d76 788 if (rc)
789 return rc;
790
e0dcb22e 791 rc = splat_kmem_cache_test(file, arg, name, 64*1024, 0, KMC_KMEM);
a1502d76 792 if (rc)
793 return rc;
794
80093b6f
AX
795 rc = splat_kmem_cache_test(file, arg, name, 1024*1024, 0, KMC_VMEM);
796 if (rc)
797 return rc;
798
799 /* Off slab (default + kmem + vmem) */
800 rc = splat_kmem_cache_test(file, arg, name, 256*1024, 0, KMC_OFFSLAB);
801 if (rc)
802 return rc;
803
804 rc = splat_kmem_cache_test(file, arg, name, 64*1024, 0,
805 KMC_KMEM | KMC_OFFSLAB);
806 if (rc)
807 return rc;
808
809 rc = splat_kmem_cache_test(file, arg, name, 1024*1024, 0,
810 KMC_VMEM | KMC_OFFSLAB);
811
812 return rc;
2fb9b26a 813}
814
efcd0ca3
BB
815/*
816 * Validate object alignment cache behavior for caches
817 */
ea3e6ca9
BB
818static int
819splat_kmem_test7(struct file *file, void *arg)
f1ca4da6 820{
ea3e6ca9
BB
821 char *name = SPLAT_KMEM_TEST7_NAME;
822 int i, rc;
2fb9b26a 823
8b45dda2 824 for (i = SPL_KMEM_CACHE_ALIGN; i <= PAGE_SIZE; i *= 2) {
ea3e6ca9
BB
825 rc = splat_kmem_cache_test(file, arg, name, 157, i, 0);
826 if (rc)
827 return rc;
80093b6f
AX
828
829 rc = splat_kmem_cache_test(file, arg, name, 157, i,
830 KMC_OFFSLAB);
831 if (rc)
832 return rc;
f1ca4da6 833 }
834
ea3e6ca9 835 return rc;
f1ca4da6 836}
837
efcd0ca3
BB
838/*
839 * Validate kmem_cache_reap() by requesting the slab cache free any objects
840 * it can. For a few reasons this may not immediately result in more free
841 * memory even if objects are freed. First off, due to fragmentation we
842 * may not be able to reclaim any slabs. Secondly, even if we do we fully
843 * clear some slabs we will not want to immediately reclaim all of them
844 * because we may contend with cache allocations and thrash. What we want
845 * to see is the slab size decrease more gradually as it becomes clear they
846 * will not be needed. This should be achievable in less than a minute.
847 * If it takes longer than this something has gone wrong.
848 */
f1ca4da6 849static int
ea3e6ca9 850splat_kmem_test8(struct file *file, void *arg)
f1ca4da6 851{
ea3e6ca9 852 kmem_cache_priv_t *kcp;
efcd0ca3 853 kmem_cache_thread_t *kct;
0936c344 854 unsigned int spl_kmem_cache_expire_old;
a9a7a01c 855 int i, rc = 0;
ea3e6ca9 856
0936c344
BB
857 /* Enable cache aging just for this test if it is disabled */
858 spl_kmem_cache_expire_old = spl_kmem_cache_expire;
859 spl_kmem_cache_expire = KMC_EXPIRE_AGE;
860
ea3e6ca9 861 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST8_NAME,
efcd0ca3 862 256, 0, 0);
ea3e6ca9
BB
863 if (!kcp) {
864 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
865 "Unable to create '%s'\n", "kcp");
efcd0ca3
BB
866 rc = -ENOMEM;
867 goto out;
f1ca4da6 868 }
869
ea3e6ca9
BB
870 kcp->kcp_cache =
871 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
872 splat_kmem_cache_test_constructor,
873 splat_kmem_cache_test_destructor,
874 splat_kmem_cache_test_reclaim,
875 kcp, NULL, 0);
876 if (!kcp->kcp_cache) {
ea3e6ca9
BB
877 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
878 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
efcd0ca3
BB
879 rc = -ENOMEM;
880 goto out_kcp;
ea3e6ca9 881 }
f1ca4da6 882
efcd0ca3
BB
883 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
884 if (!kct) {
885 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
886 "Unable to create '%s'\n", "kct");
887 rc = -ENOMEM;
888 goto out_cache;
889 }
890
891 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, SPLAT_KMEM_OBJ_COUNT);
892 if (rc) {
893 splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Unable to "
894 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
895 goto out_kct;
f1ca4da6 896 }
897
2fb9b26a 898 for (i = 0; i < 60; i++) {
ea3e6ca9 899 kmem_cache_reap_now(kcp->kcp_cache);
a9a7a01c 900 splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST8_NAME, kcp);
ea3e6ca9
BB
901
902 if (kcp->kcp_cache->skc_obj_total == 0)
2fb9b26a 903 break;
904
905 set_current_state(TASK_INTERRUPTIBLE);
906 schedule_timeout(HZ);
907 }
908
ea3e6ca9
BB
909 if (kcp->kcp_cache->skc_obj_total == 0) {
910 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
2fb9b26a 911 "Successfully created %d objects "
912 "in cache %s and reclaimed them\n",
ea3e6ca9 913 SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
2fb9b26a 914 } else {
ea3e6ca9 915 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
2fb9b26a 916 "Failed to reclaim %u/%d objects from cache %s\n",
ea3e6ca9
BB
917 (unsigned)kcp->kcp_cache->skc_obj_total,
918 SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
2fb9b26a 919 rc = -ENOMEM;
920 }
f1ca4da6 921
2fb9b26a 922 /* Cleanup our mess (for failure case of time expiring) */
efcd0ca3
BB
923 splat_kmem_cache_test_kcd_free(kcp, kct);
924out_kct:
925 splat_kmem_cache_test_kct_free(kcp, kct);
926out_cache:
ea3e6ca9 927 kmem_cache_destroy(kcp->kcp_cache);
efcd0ca3 928out_kcp:
ea3e6ca9 929 splat_kmem_cache_test_kcp_free(kcp);
efcd0ca3 930out:
0936c344
BB
931 spl_kmem_cache_expire = spl_kmem_cache_expire_old;
932
f1ca4da6 933 return rc;
934}
935
efcd0ca3
BB
936/* Test cache aging, we have allocated a large number of objects thus
937 * creating a large number of slabs and then free'd them all. However,
938 * since there should be little memory pressure at the moment those
939 * slabs have not been freed. What we want to see is the slab size
940 * decrease gradually as it becomes clear they will not be be needed.
941 * This should be achievable in less than minute. If it takes longer
942 * than this something has gone wrong.
943 */
ea3e6ca9
BB
944static int
945splat_kmem_test9(struct file *file, void *arg)
44b8f176 946{
ea3e6ca9 947 kmem_cache_priv_t *kcp;
efcd0ca3 948 kmem_cache_thread_t *kct;
0936c344 949 unsigned int spl_kmem_cache_expire_old;
a9a7a01c 950 int i, rc = 0, count = SPLAT_KMEM_OBJ_COUNT * 128;
ea3e6ca9 951
0936c344
BB
952 /* Enable cache aging just for this test if it is disabled */
953 spl_kmem_cache_expire_old = spl_kmem_cache_expire;
954 spl_kmem_cache_expire = KMC_EXPIRE_AGE;
955
ea3e6ca9 956 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST9_NAME,
efcd0ca3 957 256, 0, 0);
ea3e6ca9
BB
958 if (!kcp) {
959 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
960 "Unable to create '%s'\n", "kcp");
efcd0ca3
BB
961 rc = -ENOMEM;
962 goto out;
ea3e6ca9 963 }
44b8f176 964
ea3e6ca9
BB
965 kcp->kcp_cache =
966 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
967 splat_kmem_cache_test_constructor,
968 splat_kmem_cache_test_destructor,
969 NULL, kcp, NULL, 0);
970 if (!kcp->kcp_cache) {
ea3e6ca9
BB
971 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
972 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
efcd0ca3
BB
973 rc = -ENOMEM;
974 goto out_kcp;
44b8f176 975 }
976
efcd0ca3
BB
977 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
978 if (!kct) {
979 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
980 "Unable to create '%s'\n", "kct");
981 rc = -ENOMEM;
982 goto out_cache;
44b8f176 983 }
984
efcd0ca3
BB
985 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
986 if (rc) {
987 splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Unable to "
988 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
989 goto out_kct;
990 }
991
992 splat_kmem_cache_test_kcd_free(kcp, kct);
e9d7a2be 993
ea3e6ca9 994 for (i = 0; i < 60; i++) {
a9a7a01c 995 splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST9_NAME, kcp);
ea3e6ca9
BB
996
997 if (kcp->kcp_cache->skc_obj_total == 0)
998 break;
44b8f176 999
ea3e6ca9
BB
1000 set_current_state(TASK_INTERRUPTIBLE);
1001 schedule_timeout(HZ);
1002 }
44b8f176 1003
ea3e6ca9
BB
1004 if (kcp->kcp_cache->skc_obj_total == 0) {
1005 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
1006 "Successfully created %d objects "
1007 "in cache %s and reclaimed them\n",
1008 count, SPLAT_KMEM_CACHE_NAME);
1009 } else {
1010 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
1011 "Failed to reclaim %u/%d objects from cache %s\n",
1012 (unsigned)kcp->kcp_cache->skc_obj_total, count,
1013 SPLAT_KMEM_CACHE_NAME);
1014 rc = -ENOMEM;
1015 }
1016
efcd0ca3
BB
1017out_kct:
1018 splat_kmem_cache_test_kct_free(kcp, kct);
1019out_cache:
ea3e6ca9 1020 kmem_cache_destroy(kcp->kcp_cache);
efcd0ca3 1021out_kcp:
ea3e6ca9 1022 splat_kmem_cache_test_kcp_free(kcp);
efcd0ca3 1023out:
0936c344
BB
1024 spl_kmem_cache_expire = spl_kmem_cache_expire_old;
1025
ea3e6ca9 1026 return rc;
44b8f176 1027}
1028
ea3e6ca9
BB
1029/*
1030 * This test creates N threads with a shared kmem cache. They then all
1031 * concurrently allocate and free from the cache to stress the locking and
1032 * concurrent cache performance. If any one test takes longer than 5
1033 * seconds to complete it is treated as a failure and may indicate a
1034 * performance regression. On my test system no one test takes more
1035 * than 1 second to complete so a 5x slowdown likely a problem.
44b8f176 1036 */
1037static int
ea3e6ca9 1038splat_kmem_test10(struct file *file, void *arg)
44b8f176 1039{
e11d6c5f 1040 uint64_t size, alloc, rc = 0;
44b8f176 1041
efcd0ca3 1042 for (size = 32; size <= 1024*1024; size *= 2) {
44b8f176 1043
ea3e6ca9
BB
1044 splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "name",
1045 "time (sec)\tslabs \tobjs \thash\n");
1046 splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "",
1047 " \ttot/max/calc\ttot/max/calc\n");
44b8f176 1048
ea3e6ca9 1049 for (alloc = 1; alloc <= 1024; alloc *= 2) {
44b8f176 1050
e11d6c5f
BB
1051 /* Skip tests which exceed available memory. We
1052 * leverage availrmem here for some extra testing */
1053 if (size * alloc * SPLAT_KMEM_THREADS > availrmem / 2)
ea3e6ca9 1054 continue;
7ea1cbf5 1055
ea3e6ca9 1056 rc = splat_kmem_cache_thread_test(file, arg,
10a4be0f 1057 SPLAT_KMEM_TEST10_NAME, size, alloc, 5);
ea3e6ca9
BB
1058 if (rc)
1059 break;
1060 }
44b8f176 1061 }
1062
7ea1cbf5 1063 return rc;
44b8f176 1064}
1065
11124863 1066#if 0
ea3e6ca9
BB
1067/*
1068 * This test creates N threads with a shared kmem cache which overcommits
1069 * memory by 4x. This makes it impossible for the slab to satify the
1070 * thread requirements without having its reclaim hook run which will
1071 * free objects back for use. This behavior is triggered by the linum VM
1072 * detecting a low memory condition on the node and invoking the shrinkers.
1073 * This should allow all the threads to complete while avoiding deadlock
1074 * and for the most part out of memory events. This is very tough on the
4e5691fa
BB
1075 * system so it is possible the test app may get oom'ed. This particular
1076 * test has proven troublesome on 32-bit archs with limited virtual
1077 * address space so it only run on 64-bit systems.
ea3e6ca9 1078 */
fece7c99 1079static int
ea3e6ca9 1080splat_kmem_test11(struct file *file, void *arg)
fece7c99 1081{
ea3e6ca9 1082 uint64_t size, alloc, rc;
fece7c99 1083
efcd0ca3 1084 size = 8 * 1024;
e11d6c5f 1085 alloc = ((4 * physmem * PAGE_SIZE) / size) / SPLAT_KMEM_THREADS;
fece7c99 1086
e11d6c5f 1087 splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "name",
ea3e6ca9 1088 "time (sec)\tslabs \tobjs \thash\n");
e11d6c5f 1089 splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "",
ea3e6ca9 1090 " \ttot/max/calc\ttot/max/calc\n");
48e0606a 1091
ea3e6ca9 1092 rc = splat_kmem_cache_thread_test(file, arg,
10a4be0f 1093 SPLAT_KMEM_TEST11_NAME, size, alloc, 60);
48e0606a
BB
1094
1095 return rc;
1096}
11124863 1097#endif
48e0606a 1098
e11d6c5f
BB
1099/*
1100 * Check vmem_size() behavior by acquiring the alloc/free/total vmem
1101 * space, then allocate a known buffer size from vmem space. We can
1102 * then check that vmem_size() values were updated properly with in
1103 * a fairly small tolerence. The tolerance is important because we
1104 * are not the only vmem consumer on the system. Other unrelated
1105 * allocations might occur during the small test window. The vmem
1106 * allocation itself may also add in a little extra private space to
1107 * the buffer. Finally, verify total space always remains unchanged.
1108 */
1109static int
1110splat_kmem_test12(struct file *file, void *arg)
1111{
6ae7fef5
BB
1112 size_t alloc1, free1, total1;
1113 size_t alloc2, free2, total2;
e11d6c5f
BB
1114 int size = 8*1024*1024;
1115 void *ptr;
1116
1117 alloc1 = vmem_size(NULL, VMEM_ALLOC);
1118 free1 = vmem_size(NULL, VMEM_FREE);
1119 total1 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
6ae7fef5
BB
1120 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
1121 "free=%lu total=%lu\n", (unsigned long)alloc1,
1122 (unsigned long)free1, (unsigned long)total1);
e11d6c5f
BB
1123
1124 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Alloc %d bytes\n", size);
1125 ptr = vmem_alloc(size, KM_SLEEP);
1126 if (!ptr) {
1127 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
1128 "Failed to alloc %d bytes\n", size);
1129 return -ENOMEM;
1130 }
1131
1132 alloc2 = vmem_size(NULL, VMEM_ALLOC);
1133 free2 = vmem_size(NULL, VMEM_FREE);
1134 total2 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
6ae7fef5
BB
1135 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
1136 "free=%lu total=%lu\n", (unsigned long)alloc2,
1137 (unsigned long)free2, (unsigned long)total2);
e11d6c5f
BB
1138
1139 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Free %d bytes\n", size);
1140 vmem_free(ptr, size);
1141 if (alloc2 < (alloc1 + size - (size / 100)) ||
1142 alloc2 > (alloc1 + size + (size / 100))) {
6ae7fef5
BB
1143 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1144 "VMEM_ALLOC size: %lu != %lu+%d (+/- 1%%)\n",
1145 (unsigned long)alloc2,(unsigned long)alloc1,size);
e11d6c5f
BB
1146 return -ERANGE;
1147 }
1148
1149 if (free2 < (free1 - size - (size / 100)) ||
1150 free2 > (free1 - size + (size / 100))) {
6ae7fef5
BB
1151 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1152 "VMEM_FREE size: %lu != %lu-%d (+/- 1%%)\n",
1153 (unsigned long)free2, (unsigned long)free1, size);
e11d6c5f
BB
1154 return -ERANGE;
1155 }
1156
1157 if (total1 != total2) {
6ae7fef5
BB
1158 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1159 "VMEM_ALLOC | VMEM_FREE not constant: "
1160 "%lu != %lu\n", (unsigned long)total2,
1161 (unsigned long)total1);
e11d6c5f
BB
1162 return -ERANGE;
1163 }
1164
1165 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
6ae7fef5
BB
1166 "VMEM_ALLOC within tolerance: ~%ld%% (%ld/%d)\n",
1167 (long)abs(alloc1 + (long)size - alloc2) * 100 / (long)size,
1168 (long)abs(alloc1 + (long)size - alloc2), size);
e11d6c5f 1169 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
6ae7fef5
BB
1170 "VMEM_FREE within tolerance: ~%ld%% (%ld/%d)\n",
1171 (long)abs((free1 - (long)size) - free2) * 100 / (long)size,
1172 (long)abs((free1 - (long)size) - free2), size);
e11d6c5f
BB
1173
1174 return 0;
1175}
1176
a9a7a01c
PS
1177typedef struct dummy_page {
1178 struct list_head dp_list;
1179 char dp_pad[PAGE_SIZE - sizeof(struct list_head)];
1180} dummy_page_t;
1181
1182/*
1183 * This test is designed to verify that direct reclaim is functioning as
1184 * expected. We allocate a large number of objects thus creating a large
1185 * number of slabs. We then apply memory pressure and expect that the
1186 * direct reclaim path can easily recover those slabs. The registered
1187 * reclaim function will free the objects and the slab shrinker will call
1188 * it repeatedly until at least a single slab can be freed.
1189 *
1190 * Note it may not be possible to reclaim every last slab via direct reclaim
1191 * without a failure because the shrinker_rwsem may be contended. For this
1192 * reason, quickly reclaiming 3/4 of the slabs is considered a success.
1193 *
1194 * This should all be possible within 10 seconds. For reference, on a
1195 * system with 2G of memory this test takes roughly 0.2 seconds to run.
1196 * It may take longer on larger memory systems but should still easily
1197 * complete in the alloted 10 seconds.
1198 */
1199static int
1200splat_kmem_test13(struct file *file, void *arg)
1201{
1202 kmem_cache_priv_t *kcp;
efcd0ca3 1203 kmem_cache_thread_t *kct;
a9a7a01c
PS
1204 dummy_page_t *dp;
1205 struct list_head list;
eaac9ba5 1206 struct timespec start, delta = { 0, 0 };
a9a7a01c
PS
1207 int size, count, slabs, fails = 0;
1208 int i, rc = 0, max_time = 10;
1209
1210 size = 128 * 1024;
1211 count = ((physmem * PAGE_SIZE) / 4 / size);
1212
1213 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST13_NAME,
efcd0ca3 1214 size, 0, 0);
a9a7a01c
PS
1215 if (!kcp) {
1216 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1217 "Unable to create '%s'\n", "kcp");
efcd0ca3
BB
1218 rc = -ENOMEM;
1219 goto out;
a9a7a01c
PS
1220 }
1221
1222 kcp->kcp_cache =
1223 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
1224 splat_kmem_cache_test_constructor,
1225 splat_kmem_cache_test_destructor,
1226 splat_kmem_cache_test_reclaim,
1227 kcp, NULL, 0);
1228 if (!kcp->kcp_cache) {
a9a7a01c
PS
1229 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1230 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
efcd0ca3
BB
1231 rc = -ENOMEM;
1232 goto out_kcp;
a9a7a01c
PS
1233 }
1234
efcd0ca3
BB
1235 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
1236 if (!kct) {
1237 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1238 "Unable to create '%s'\n", "kct");
1239 rc = -ENOMEM;
1240 goto out_cache;
1241 }
1242
1243 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
1244 if (rc) {
1245 splat_vprint(file, SPLAT_KMEM_TEST13_NAME, "Unable to "
1246 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
1247 goto out_kct;
a9a7a01c
PS
1248 }
1249
1250 i = 0;
1251 slabs = kcp->kcp_cache->skc_slab_total;
1252 INIT_LIST_HEAD(&list);
1253 start = current_kernel_time();
1254
efcd0ca3 1255 /* Apply memory pressure */
a9a7a01c
PS
1256 while (kcp->kcp_cache->skc_slab_total > (slabs >> 2)) {
1257
1258 if ((i % 10000) == 0)
1259 splat_kmem_cache_test_debug(
1260 file, SPLAT_KMEM_TEST13_NAME, kcp);
1261
1262 delta = timespec_sub(current_kernel_time(), start);
1263 if (delta.tv_sec >= max_time) {
1264 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1265 "Failed to reclaim 3/4 of cache in %ds, "
1266 "%u/%u slabs remain\n", max_time,
1267 (unsigned)kcp->kcp_cache->skc_slab_total,
1268 slabs);
1269 rc = -ETIME;
1270 break;
1271 }
1272
1273 dp = (dummy_page_t *)__get_free_page(GFP_KERNEL | __GFP_NORETRY);
1274 if (!dp) {
1275 fails++;
1276 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1277 "Failed (%d) to allocate page with %u "
1278 "slabs still in the cache\n", fails,
1279 (unsigned)kcp->kcp_cache->skc_slab_total);
1280 continue;
1281 }
1282
1283 list_add(&dp->dp_list, &list);
1284 i++;
1285 }
1286
1287 if (rc == 0)
1288 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1289 "Successfully created %u slabs and with %d alloc "
1290 "failures reclaimed 3/4 of them in %d.%03ds\n",
1291 slabs, fails,
1292 (int)delta.tv_sec, (int)delta.tv_nsec / 1000000);
1293
1294 /* Release memory pressure pages */
1295 while (!list_empty(&list)) {
1296 dp = list_entry(list.next, dummy_page_t, dp_list);
1297 list_del_init(&dp->dp_list);
1298 free_page((unsigned long)dp);
1299 }
1300
1301 /* Release remaining kmem cache objects */
efcd0ca3
BB
1302 splat_kmem_cache_test_kcd_free(kcp, kct);
1303out_kct:
1304 splat_kmem_cache_test_kct_free(kcp, kct);
1305out_cache:
a9a7a01c 1306 kmem_cache_destroy(kcp->kcp_cache);
efcd0ca3 1307out_kcp:
a9a7a01c 1308 splat_kmem_cache_test_kcp_free(kcp);
efcd0ca3 1309out:
a9a7a01c
PS
1310 return rc;
1311}
1312
7c50328b 1313splat_subsystem_t *
1314splat_kmem_init(void)
f1ca4da6 1315{
ea3e6ca9 1316 splat_subsystem_t *sub;
f1ca4da6 1317
ea3e6ca9
BB
1318 sub = kmalloc(sizeof(*sub), GFP_KERNEL);
1319 if (sub == NULL)
1320 return NULL;
f1ca4da6 1321
ea3e6ca9
BB
1322 memset(sub, 0, sizeof(*sub));
1323 strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE);
7c50328b 1324 strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE);
ea3e6ca9 1325 INIT_LIST_HEAD(&sub->subsystem_list);
f1ca4da6 1326 INIT_LIST_HEAD(&sub->test_list);
ea3e6ca9
BB
1327 spin_lock_init(&sub->test_lock);
1328 sub->desc.id = SPLAT_SUBSYSTEM_KMEM;
1329
1330 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC,
1331 SPLAT_KMEM_TEST1_ID, splat_kmem_test1);
1332 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC,
1333 SPLAT_KMEM_TEST2_ID, splat_kmem_test2);
1334 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC,
1335 SPLAT_KMEM_TEST3_ID, splat_kmem_test3);
1336 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC,
1337 SPLAT_KMEM_TEST4_ID, splat_kmem_test4);
1338 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC,
1339 SPLAT_KMEM_TEST5_ID, splat_kmem_test5);
1340 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC,
1341 SPLAT_KMEM_TEST6_ID, splat_kmem_test6);
1342 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC,
1343 SPLAT_KMEM_TEST7_ID, splat_kmem_test7);
1344 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC,
1345 SPLAT_KMEM_TEST8_ID, splat_kmem_test8);
1346 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST9_NAME, SPLAT_KMEM_TEST9_DESC,
1347 SPLAT_KMEM_TEST9_ID, splat_kmem_test9);
1348 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST10_NAME, SPLAT_KMEM_TEST10_DESC,
1349 SPLAT_KMEM_TEST10_ID, splat_kmem_test10);
11124863 1350#if 0
ea3e6ca9
BB
1351 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST11_NAME, SPLAT_KMEM_TEST11_DESC,
1352 SPLAT_KMEM_TEST11_ID, splat_kmem_test11);
11124863 1353#endif
e11d6c5f
BB
1354 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST12_NAME, SPLAT_KMEM_TEST12_DESC,
1355 SPLAT_KMEM_TEST12_ID, splat_kmem_test12);
a9a7a01c
PS
1356 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST13_NAME, SPLAT_KMEM_TEST13_DESC,
1357 SPLAT_KMEM_TEST13_ID, splat_kmem_test13);
ea3e6ca9
BB
1358
1359 return sub;
f1ca4da6 1360}
1361
1362void
7c50328b 1363splat_kmem_fini(splat_subsystem_t *sub)
f1ca4da6 1364{
ea3e6ca9 1365 ASSERT(sub);
a9a7a01c 1366 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST13_ID);
e11d6c5f 1367 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST12_ID);
11124863 1368#if 0
ea3e6ca9 1369 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST11_ID);
11124863 1370#endif
ea3e6ca9
BB
1371 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST10_ID);
1372 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST9_ID);
1373 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID);
1374 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID);
1375 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID);
1376 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID);
1377 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID);
1378 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID);
1379 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID);
1380 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID);
1381
1382 kfree(sub);
f1ca4da6 1383}
1384
1385int
7c50328b 1386splat_kmem_id(void) {
ea3e6ca9 1387 return SPLAT_SUBSYSTEM_KMEM;
f1ca4da6 1388}