]> git.proxmox.com Git - mirror_spl-debian.git/blame - module/splat/splat-kmem.c
Imported Upstream version 0.6.1
[mirror_spl-debian.git] / module / splat / splat-kmem.c
CommitLineData
716154c5
BB
1/*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
715f6251 6 * UCRL-CODE-235197
7 *
716154c5 8 * This file is part of the SPL, Solaris Porting Layer.
d956cfac 9 * For details, see <http://zfsonlinux.org/>.
716154c5
BB
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
715f6251 15 *
716154c5 16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
715f6251 17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
716154c5
BB
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting LAyer Tests (SPLAT) Kmem Tests.
25\*****************************************************************************/
715f6251 26
df870a69
BB
27#include <sys/kmem.h>
28#include <sys/thread.h>
7c50328b 29#include "splat-internal.h"
f1ca4da6 30
7c50328b 31#define SPLAT_KMEM_NAME "kmem"
32#define SPLAT_KMEM_DESC "Kernel Malloc/Slab Tests"
f1ca4da6 33
7c50328b 34#define SPLAT_KMEM_TEST1_ID 0x0101
35#define SPLAT_KMEM_TEST1_NAME "kmem_alloc"
36#define SPLAT_KMEM_TEST1_DESC "Memory allocation test (kmem_alloc)"
f1ca4da6 37
7c50328b 38#define SPLAT_KMEM_TEST2_ID 0x0102
39#define SPLAT_KMEM_TEST2_NAME "kmem_zalloc"
40#define SPLAT_KMEM_TEST2_DESC "Memory allocation test (kmem_zalloc)"
f1ca4da6 41
7c50328b 42#define SPLAT_KMEM_TEST3_ID 0x0103
2fb9b26a 43#define SPLAT_KMEM_TEST3_NAME "vmem_alloc"
44#define SPLAT_KMEM_TEST3_DESC "Memory allocation test (vmem_alloc)"
f1ca4da6 45
7c50328b 46#define SPLAT_KMEM_TEST4_ID 0x0104
2fb9b26a 47#define SPLAT_KMEM_TEST4_NAME "vmem_zalloc"
48#define SPLAT_KMEM_TEST4_DESC "Memory allocation test (vmem_zalloc)"
f1ca4da6 49
79b31f36 50#define SPLAT_KMEM_TEST5_ID 0x0105
ea3e6ca9 51#define SPLAT_KMEM_TEST5_NAME "slab_small"
2fb9b26a 52#define SPLAT_KMEM_TEST5_DESC "Slab ctor/dtor test (small)"
53
54#define SPLAT_KMEM_TEST6_ID 0x0106
ea3e6ca9 55#define SPLAT_KMEM_TEST6_NAME "slab_large"
2fb9b26a 56#define SPLAT_KMEM_TEST6_DESC "Slab ctor/dtor test (large)"
57
58#define SPLAT_KMEM_TEST7_ID 0x0107
ea3e6ca9
BB
59#define SPLAT_KMEM_TEST7_NAME "slab_align"
60#define SPLAT_KMEM_TEST7_DESC "Slab alignment test"
79b31f36 61
44b8f176 62#define SPLAT_KMEM_TEST8_ID 0x0108
ea3e6ca9
BB
63#define SPLAT_KMEM_TEST8_NAME "slab_reap"
64#define SPLAT_KMEM_TEST8_DESC "Slab reaping test"
44b8f176 65
48e0606a 66#define SPLAT_KMEM_TEST9_ID 0x0109
ea3e6ca9
BB
67#define SPLAT_KMEM_TEST9_NAME "slab_age"
68#define SPLAT_KMEM_TEST9_DESC "Slab aging test"
69
70#define SPLAT_KMEM_TEST10_ID 0x010a
71#define SPLAT_KMEM_TEST10_NAME "slab_lock"
72#define SPLAT_KMEM_TEST10_DESC "Slab locking test"
73
11124863 74#if 0
ea3e6ca9
BB
75#define SPLAT_KMEM_TEST11_ID 0x010b
76#define SPLAT_KMEM_TEST11_NAME "slab_overcommit"
77#define SPLAT_KMEM_TEST11_DESC "Slab memory overcommit test"
11124863 78#endif
48e0606a 79
e11d6c5f
BB
80#define SPLAT_KMEM_TEST12_ID 0x010c
81#define SPLAT_KMEM_TEST12_NAME "vmem_size"
82#define SPLAT_KMEM_TEST12_DESC "Memory zone test"
83
a9a7a01c
PS
84#define SPLAT_KMEM_TEST13_ID 0x010d
85#define SPLAT_KMEM_TEST13_NAME "slab_reclaim"
86#define SPLAT_KMEM_TEST13_DESC "Slab direct memory reclaim test"
87
7c50328b 88#define SPLAT_KMEM_ALLOC_COUNT 10
79b31f36 89#define SPLAT_VMEM_ALLOC_COUNT 10
90
44b8f176 91
f1ca4da6 92static int
7c50328b 93splat_kmem_test1(struct file *file, void *arg)
f1ca4da6 94{
7c50328b 95 void *ptr[SPLAT_KMEM_ALLOC_COUNT];
f1ca4da6 96 int size = PAGE_SIZE;
97 int i, count, rc = 0;
98
79b31f36 99 while ((!rc) && (size <= (PAGE_SIZE * 32))) {
f1ca4da6 100 count = 0;
101
7c50328b 102 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
23d91792 103 ptr[i] = kmem_alloc(size, KM_SLEEP | KM_NODEBUG);
f1ca4da6 104 if (ptr[i])
105 count++;
106 }
107
7c50328b 108 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
f1ca4da6 109 if (ptr[i])
110 kmem_free(ptr[i], size);
111
7c50328b 112 splat_vprint(file, SPLAT_KMEM_TEST1_NAME,
ea3e6ca9
BB
113 "%d byte allocations, %d/%d successful\n",
114 size, count, SPLAT_KMEM_ALLOC_COUNT);
7c50328b 115 if (count != SPLAT_KMEM_ALLOC_COUNT)
f1ca4da6 116 rc = -ENOMEM;
117
118 size *= 2;
119 }
120
121 return rc;
122}
123
124static int
7c50328b 125splat_kmem_test2(struct file *file, void *arg)
f1ca4da6 126{
7c50328b 127 void *ptr[SPLAT_KMEM_ALLOC_COUNT];
f1ca4da6 128 int size = PAGE_SIZE;
129 int i, j, count, rc = 0;
130
79b31f36 131 while ((!rc) && (size <= (PAGE_SIZE * 32))) {
f1ca4da6 132 count = 0;
133
7c50328b 134 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
23d91792 135 ptr[i] = kmem_zalloc(size, KM_SLEEP | KM_NODEBUG);
f1ca4da6 136 if (ptr[i])
137 count++;
138 }
139
140 /* Ensure buffer has been zero filled */
7c50328b 141 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) {
f1ca4da6 142 for (j = 0; j < size; j++) {
143 if (((char *)ptr[i])[j] != '\0') {
5198ea0e 144 splat_vprint(file,SPLAT_KMEM_TEST2_NAME,
ea3e6ca9
BB
145 "%d-byte allocation was "
146 "not zeroed\n", size);
f1ca4da6 147 rc = -EFAULT;
148 }
149 }
150 }
151
7c50328b 152 for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++)
f1ca4da6 153 if (ptr[i])
154 kmem_free(ptr[i], size);
155
7c50328b 156 splat_vprint(file, SPLAT_KMEM_TEST2_NAME,
ea3e6ca9
BB
157 "%d byte allocations, %d/%d successful\n",
158 size, count, SPLAT_KMEM_ALLOC_COUNT);
7c50328b 159 if (count != SPLAT_KMEM_ALLOC_COUNT)
f1ca4da6 160 rc = -ENOMEM;
161
162 size *= 2;
163 }
164
165 return rc;
166}
167
2fb9b26a 168static int
169splat_kmem_test3(struct file *file, void *arg)
170{
171 void *ptr[SPLAT_VMEM_ALLOC_COUNT];
172 int size = PAGE_SIZE;
173 int i, count, rc = 0;
174
175 while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
176 count = 0;
177
178 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
179 ptr[i] = vmem_alloc(size, KM_SLEEP);
180 if (ptr[i])
181 count++;
182 }
183
184 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
185 if (ptr[i])
186 vmem_free(ptr[i], size);
187
188 splat_vprint(file, SPLAT_KMEM_TEST3_NAME,
ea3e6ca9
BB
189 "%d byte allocations, %d/%d successful\n",
190 size, count, SPLAT_VMEM_ALLOC_COUNT);
2fb9b26a 191 if (count != SPLAT_VMEM_ALLOC_COUNT)
192 rc = -ENOMEM;
193
194 size *= 2;
195 }
196
197 return rc;
198}
199
200static int
201splat_kmem_test4(struct file *file, void *arg)
202{
203 void *ptr[SPLAT_VMEM_ALLOC_COUNT];
204 int size = PAGE_SIZE;
205 int i, j, count, rc = 0;
206
207 while ((!rc) && (size <= (PAGE_SIZE * 1024))) {
208 count = 0;
209
210 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
211 ptr[i] = vmem_zalloc(size, KM_SLEEP);
212 if (ptr[i])
213 count++;
214 }
215
216 /* Ensure buffer has been zero filled */
217 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) {
218 for (j = 0; j < size; j++) {
219 if (((char *)ptr[i])[j] != '\0') {
220 splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
ea3e6ca9
BB
221 "%d-byte allocation was "
222 "not zeroed\n", size);
2fb9b26a 223 rc = -EFAULT;
224 }
225 }
226 }
227
228 for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++)
229 if (ptr[i])
230 vmem_free(ptr[i], size);
231
232 splat_vprint(file, SPLAT_KMEM_TEST4_NAME,
ea3e6ca9
BB
233 "%d byte allocations, %d/%d successful\n",
234 size, count, SPLAT_VMEM_ALLOC_COUNT);
2fb9b26a 235 if (count != SPLAT_VMEM_ALLOC_COUNT)
236 rc = -ENOMEM;
237
238 size *= 2;
239 }
240
241 return rc;
242}
243
7c50328b 244#define SPLAT_KMEM_TEST_MAGIC 0x004488CCUL
245#define SPLAT_KMEM_CACHE_NAME "kmem_test"
ea3e6ca9 246#define SPLAT_KMEM_OBJ_COUNT 1024
efcd0ca3 247#define SPLAT_KMEM_OBJ_RECLAIM 1000 /* objects */
ea3e6ca9
BB
248#define SPLAT_KMEM_THREADS 32
249
250#define KCP_FLAG_READY 0x01
f1ca4da6 251
252typedef struct kmem_cache_data {
f1ca4da6 253 unsigned long kcd_magic;
efcd0ca3 254 struct list_head kcd_node;
f1ca4da6 255 int kcd_flag;
2fb9b26a 256 char kcd_buf[0];
f1ca4da6 257} kmem_cache_data_t;
258
ea3e6ca9 259typedef struct kmem_cache_thread {
ea3e6ca9
BB
260 spinlock_t kct_lock;
261 int kct_id;
efcd0ca3 262 struct list_head kct_list;
ea3e6ca9
BB
263} kmem_cache_thread_t;
264
f1ca4da6 265typedef struct kmem_cache_priv {
266 unsigned long kcp_magic;
267 struct file *kcp_file;
268 kmem_cache_t *kcp_cache;
44b8f176 269 spinlock_t kcp_lock;
ea3e6ca9
BB
270 wait_queue_head_t kcp_ctl_waitq;
271 wait_queue_head_t kcp_thr_waitq;
272 int kcp_flags;
273 int kcp_kct_count;
274 kmem_cache_thread_t *kcp_kct[SPLAT_KMEM_THREADS];
2fb9b26a 275 int kcp_size;
48e0606a 276 int kcp_align;
f1ca4da6 277 int kcp_count;
44b8f176 278 int kcp_alloc;
f1ca4da6 279 int kcp_rc;
280} kmem_cache_priv_t;
281
ea3e6ca9
BB
282static kmem_cache_priv_t *
283splat_kmem_cache_test_kcp_alloc(struct file *file, char *name,
efcd0ca3 284 int size, int align, int alloc)
ea3e6ca9
BB
285{
286 kmem_cache_priv_t *kcp;
287
efcd0ca3 288 kcp = kmem_zalloc(sizeof(kmem_cache_priv_t), KM_SLEEP);
ea3e6ca9
BB
289 if (!kcp)
290 return NULL;
291
292 kcp->kcp_magic = SPLAT_KMEM_TEST_MAGIC;
293 kcp->kcp_file = file;
294 kcp->kcp_cache = NULL;
295 spin_lock_init(&kcp->kcp_lock);
296 init_waitqueue_head(&kcp->kcp_ctl_waitq);
297 init_waitqueue_head(&kcp->kcp_thr_waitq);
298 kcp->kcp_flags = 0;
299 kcp->kcp_kct_count = -1;
300 kcp->kcp_size = size;
301 kcp->kcp_align = align;
302 kcp->kcp_count = 0;
303 kcp->kcp_alloc = alloc;
304 kcp->kcp_rc = 0;
ea3e6ca9
BB
305
306 return kcp;
307}
308
309static void
310splat_kmem_cache_test_kcp_free(kmem_cache_priv_t *kcp)
311{
efcd0ca3 312 kmem_free(kcp, sizeof(kmem_cache_priv_t));
ea3e6ca9
BB
313}
314
315static kmem_cache_thread_t *
efcd0ca3 316splat_kmem_cache_test_kct_alloc(kmem_cache_priv_t *kcp, int id)
ea3e6ca9
BB
317{
318 kmem_cache_thread_t *kct;
319
320 ASSERTF(id < SPLAT_KMEM_THREADS, "id=%d\n", id);
efcd0ca3
BB
321 ASSERT(kcp->kcp_kct[id] == NULL);
322
323 kct = kmem_zalloc(sizeof(kmem_cache_thread_t), KM_SLEEP);
ea3e6ca9
BB
324 if (!kct)
325 return NULL;
326
327 spin_lock_init(&kct->kct_lock);
ea3e6ca9 328 kct->kct_id = id;
efcd0ca3
BB
329 INIT_LIST_HEAD(&kct->kct_list);
330
331 spin_lock(&kcp->kcp_lock);
332 kcp->kcp_kct[id] = kct;
333 spin_unlock(&kcp->kcp_lock);
ea3e6ca9
BB
334
335 return kct;
336}
337
338static void
efcd0ca3
BB
339splat_kmem_cache_test_kct_free(kmem_cache_priv_t *kcp,
340 kmem_cache_thread_t *kct)
341{
342 spin_lock(&kcp->kcp_lock);
343 kcp->kcp_kct[kct->kct_id] = NULL;
344 spin_unlock(&kcp->kcp_lock);
345
346 kmem_free(kct, sizeof(kmem_cache_thread_t));
347}
348
349static void
350splat_kmem_cache_test_kcd_free(kmem_cache_priv_t *kcp,
351 kmem_cache_thread_t *kct)
352{
353 kmem_cache_data_t *kcd;
354
355 spin_lock(&kct->kct_lock);
356 while (!list_empty(&kct->kct_list)) {
357 kcd = list_entry(kct->kct_list.next,
358 kmem_cache_data_t, kcd_node);
359 list_del(&kcd->kcd_node);
360 spin_unlock(&kct->kct_lock);
361
362 kmem_cache_free(kcp->kcp_cache, kcd);
363
364 spin_lock(&kct->kct_lock);
365 }
366 spin_unlock(&kct->kct_lock);
367}
368
369static int
370splat_kmem_cache_test_kcd_alloc(kmem_cache_priv_t *kcp,
371 kmem_cache_thread_t *kct, int count)
ea3e6ca9 372{
efcd0ca3
BB
373 kmem_cache_data_t *kcd;
374 int i;
375
376 for (i = 0; i < count; i++) {
377 kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
378 if (kcd == NULL) {
379 splat_kmem_cache_test_kcd_free(kcp, kct);
380 return -ENOMEM;
381 }
382
383 spin_lock(&kct->kct_lock);
384 list_add_tail(&kcd->kcd_node, &kct->kct_list);
385 spin_unlock(&kct->kct_lock);
386 }
387
388 return 0;
ea3e6ca9
BB
389}
390
a9a7a01c
PS
391static void
392splat_kmem_cache_test_debug(struct file *file, char *name,
393 kmem_cache_priv_t *kcp)
394{
395 int j;
396
397 splat_vprint(file, name,
398 "%s cache objects %d, slabs %u/%u objs %u/%u mags ",
399 kcp->kcp_cache->skc_name, kcp->kcp_count,
400 (unsigned)kcp->kcp_cache->skc_slab_alloc,
401 (unsigned)kcp->kcp_cache->skc_slab_total,
402 (unsigned)kcp->kcp_cache->skc_obj_alloc,
403 (unsigned)kcp->kcp_cache->skc_obj_total);
404
405 for_each_online_cpu(j)
406 splat_print(file, "%u/%u ",
407 kcp->kcp_cache->skc_mag[j]->skm_avail,
408 kcp->kcp_cache->skc_mag[j]->skm_size);
409
410 splat_print(file, "%s\n", "");
411}
412
f1ca4da6 413static int
2fb9b26a 414splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags)
f1ca4da6 415{
f1ca4da6 416 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
2fb9b26a 417 kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
f1ca4da6 418
0498e6c5 419 if (kcd && kcp) {
420 kcd->kcd_magic = kcp->kcp_magic;
efcd0ca3 421 INIT_LIST_HEAD(&kcd->kcd_node);
2fb9b26a 422 kcd->kcd_flag = 1;
0498e6c5 423 memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd));
424 kcp->kcp_count++;
f1ca4da6 425 }
426
427 return 0;
428}
429
430static void
2fb9b26a 431splat_kmem_cache_test_destructor(void *ptr, void *priv)
f1ca4da6 432{
f1ca4da6 433 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
2fb9b26a 434 kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr;
f1ca4da6 435
0498e6c5 436 if (kcd && kcp) {
437 kcd->kcd_magic = 0;
2fb9b26a 438 kcd->kcd_flag = 0;
0498e6c5 439 memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd));
440 kcp->kcp_count--;
f1ca4da6 441 }
442
443 return;
444}
445
ea3e6ca9
BB
446/*
447 * Generic reclaim function which assumes that all objects may
448 * be reclaimed at any time. We free a small percentage of the
449 * objects linked off the kcp or kct[] every time we are called.
450 */
451static void
452splat_kmem_cache_test_reclaim(void *priv)
453{
454 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv;
455 kmem_cache_thread_t *kct;
efcd0ca3
BB
456 kmem_cache_data_t *kcd;
457 LIST_HEAD(reclaim);
458 int i, count;
ea3e6ca9
BB
459
460 ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
ea3e6ca9 461
efcd0ca3 462 /* For each kct thread reclaim some objects */
ea3e6ca9 463 spin_lock(&kcp->kcp_lock);
efcd0ca3 464 for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
ea3e6ca9 465 kct = kcp->kcp_kct[i];
efcd0ca3 466 if (!kct)
ea3e6ca9
BB
467 continue;
468
efcd0ca3 469 spin_unlock(&kcp->kcp_lock);
ea3e6ca9 470 spin_lock(&kct->kct_lock);
ea3e6ca9 471
efcd0ca3
BB
472 count = SPLAT_KMEM_OBJ_RECLAIM;
473 while (count > 0 && !list_empty(&kct->kct_list)) {
474 kcd = list_entry(kct->kct_list.next,
475 kmem_cache_data_t, kcd_node);
476 list_del(&kcd->kcd_node);
477 list_add(&kcd->kcd_node, &reclaim);
478 count--;
ea3e6ca9 479 }
efcd0ca3 480
ea3e6ca9 481 spin_unlock(&kct->kct_lock);
efcd0ca3
BB
482 spin_lock(&kcp->kcp_lock);
483 }
484 spin_unlock(&kcp->kcp_lock);
485
486 /* Freed outside the spin lock */
487 while (!list_empty(&reclaim)) {
488 kcd = list_entry(reclaim.next, kmem_cache_data_t, kcd_node);
489 list_del(&kcd->kcd_node);
490 kmem_cache_free(kcp->kcp_cache, kcd);
ea3e6ca9
BB
491 }
492
493 return;
494}
495
496static int
497splat_kmem_cache_test_threads(kmem_cache_priv_t *kcp, int threads)
498{
499 int rc;
500
501 spin_lock(&kcp->kcp_lock);
502 rc = (kcp->kcp_kct_count == threads);
503 spin_unlock(&kcp->kcp_lock);
504
505 return rc;
506}
507
508static int
509splat_kmem_cache_test_flags(kmem_cache_priv_t *kcp, int flags)
510{
511 int rc;
512
513 spin_lock(&kcp->kcp_lock);
514 rc = (kcp->kcp_flags & flags);
515 spin_unlock(&kcp->kcp_lock);
516
517 return rc;
518}
519
520static void
521splat_kmem_cache_test_thread(void *arg)
522{
523 kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg;
524 kmem_cache_thread_t *kct;
efcd0ca3 525 int rc = 0, id;
ea3e6ca9
BB
526
527 ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC);
528
529 /* Assign thread ids */
530 spin_lock(&kcp->kcp_lock);
531 if (kcp->kcp_kct_count == -1)
532 kcp->kcp_kct_count = 0;
533
534 id = kcp->kcp_kct_count;
535 kcp->kcp_kct_count++;
536 spin_unlock(&kcp->kcp_lock);
537
efcd0ca3 538 kct = splat_kmem_cache_test_kct_alloc(kcp, id);
ea3e6ca9
BB
539 if (!kct) {
540 rc = -ENOMEM;
541 goto out;
542 }
543
ea3e6ca9
BB
544 /* Wait for all threads to have started and report they are ready */
545 if (kcp->kcp_kct_count == SPLAT_KMEM_THREADS)
546 wake_up(&kcp->kcp_ctl_waitq);
547
548 wait_event(kcp->kcp_thr_waitq,
549 splat_kmem_cache_test_flags(kcp, KCP_FLAG_READY));
550
efcd0ca3
BB
551 /* Create and destroy objects */
552 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, kcp->kcp_alloc);
553 splat_kmem_cache_test_kcd_free(kcp, kct);
ea3e6ca9 554out:
efcd0ca3
BB
555 if (kct)
556 splat_kmem_cache_test_kct_free(kcp, kct);
ea3e6ca9 557
efcd0ca3 558 spin_lock(&kcp->kcp_lock);
ea3e6ca9
BB
559 if (!kcp->kcp_rc)
560 kcp->kcp_rc = rc;
561
562 if ((--kcp->kcp_kct_count) == 0)
563 wake_up(&kcp->kcp_ctl_waitq);
564
565 spin_unlock(&kcp->kcp_lock);
566
567 thread_exit();
568}
569
f1ca4da6 570static int
48e0606a 571splat_kmem_cache_test(struct file *file, void *arg, char *name,
ea3e6ca9 572 int size, int align, int flags)
f1ca4da6 573{
ea3e6ca9 574 kmem_cache_priv_t *kcp;
efcd0ca3 575 kmem_cache_data_t *kcd = NULL;
f1ca4da6 576 int rc = 0, max;
577
efcd0ca3 578 kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, align, 0);
ea3e6ca9
BB
579 if (!kcp) {
580 splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
581 return -ENOMEM;
582 }
583
584 kcp->kcp_cache =
585 kmem_cache_create(SPLAT_KMEM_CACHE_NAME,
586 kcp->kcp_size, kcp->kcp_align,
587 splat_kmem_cache_test_constructor,
588 splat_kmem_cache_test_destructor,
589 NULL, kcp, NULL, flags);
590 if (!kcp->kcp_cache) {
2fb9b26a 591 splat_vprint(file, name,
ea3e6ca9 592 "Unable to create '%s'\n",
3f412673 593 SPLAT_KMEM_CACHE_NAME);
ea3e6ca9
BB
594 rc = -ENOMEM;
595 goto out_free;
f1ca4da6 596 }
597
ea3e6ca9 598 kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP);
f1ca4da6 599 if (!kcd) {
2fb9b26a 600 splat_vprint(file, name,
ea3e6ca9
BB
601 "Unable to allocate from '%s'\n",
602 SPLAT_KMEM_CACHE_NAME);
f1ca4da6 603 rc = -EINVAL;
604 goto out_free;
605 }
606
efcd0ca3 607 if (!kcd->kcd_flag) {
2fb9b26a 608 splat_vprint(file, name,
ea3e6ca9
BB
609 "Failed to run contructor for '%s'\n",
610 SPLAT_KMEM_CACHE_NAME);
f1ca4da6 611 rc = -EINVAL;
612 goto out_free;
613 }
614
efcd0ca3 615 if (kcd->kcd_magic != kcp->kcp_magic) {
2fb9b26a 616 splat_vprint(file, name,
ea3e6ca9
BB
617 "Failed to pass private data to constructor "
618 "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
f1ca4da6 619 rc = -EINVAL;
620 goto out_free;
621 }
622
ea3e6ca9 623 max = kcp->kcp_count;
efcd0ca3 624 kmem_cache_free(kcp->kcp_cache, kcd);
f1ca4da6 625
626 /* Destroy the entire cache which will force destructors to
627 * run and we can verify one was called for every object */
ea3e6ca9
BB
628 kmem_cache_destroy(kcp->kcp_cache);
629 if (kcp->kcp_count) {
2fb9b26a 630 splat_vprint(file, name,
ea3e6ca9
BB
631 "Failed to run destructor on all slab objects "
632 "for '%s'\n", SPLAT_KMEM_CACHE_NAME);
f1ca4da6 633 rc = -EINVAL;
634 }
635
f250d90b 636 splat_kmem_cache_test_kcp_free(kcp);
2fb9b26a 637 splat_vprint(file, name,
ea3e6ca9
BB
638 "Successfully ran ctors/dtors for %d elements in '%s'\n",
639 max, SPLAT_KMEM_CACHE_NAME);
f1ca4da6 640
641 return rc;
642
643out_free:
efcd0ca3
BB
644 if (kcd)
645 kmem_cache_free(kcp->kcp_cache, kcd);
ea3e6ca9
BB
646
647 if (kcp->kcp_cache)
648 kmem_cache_destroy(kcp->kcp_cache);
649
650 splat_kmem_cache_test_kcp_free(kcp);
651
652 return rc;
653}
654
655static int
656splat_kmem_cache_thread_test(struct file *file, void *arg, char *name,
10a4be0f 657 int size, int alloc, int max_time)
ea3e6ca9
BB
658{
659 kmem_cache_priv_t *kcp;
660 kthread_t *thr;
661 struct timespec start, stop, delta;
662 char cache_name[32];
663 int i, rc = 0;
664
efcd0ca3 665 kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, 0, alloc);
ea3e6ca9
BB
666 if (!kcp) {
667 splat_vprint(file, name, "Unable to create '%s'\n", "kcp");
668 return -ENOMEM;
669 }
670
671 (void)snprintf(cache_name, 32, "%s-%d-%d",
672 SPLAT_KMEM_CACHE_NAME, size, alloc);
673 kcp->kcp_cache =
674 kmem_cache_create(cache_name, kcp->kcp_size, 0,
675 splat_kmem_cache_test_constructor,
676 splat_kmem_cache_test_destructor,
677 splat_kmem_cache_test_reclaim,
3c9ce2bf 678 kcp, NULL, 0);
ea3e6ca9
BB
679 if (!kcp->kcp_cache) {
680 splat_vprint(file, name, "Unable to create '%s'\n", cache_name);
681 rc = -ENOMEM;
682 goto out_kcp;
683 }
684
685 start = current_kernel_time();
686
687 for (i = 0; i < SPLAT_KMEM_THREADS; i++) {
688 thr = thread_create(NULL, 0,
689 splat_kmem_cache_test_thread,
690 kcp, 0, &p0, TS_RUN, minclsyspri);
691 if (thr == NULL) {
692 rc = -ESRCH;
693 goto out_cache;
694 }
695 }
696
697 /* Sleep until all threads have started, then set the ready
698 * flag and wake them all up for maximum concurrency. */
699 wait_event(kcp->kcp_ctl_waitq,
700 splat_kmem_cache_test_threads(kcp, SPLAT_KMEM_THREADS));
701
702 spin_lock(&kcp->kcp_lock);
703 kcp->kcp_flags |= KCP_FLAG_READY;
704 spin_unlock(&kcp->kcp_lock);
705 wake_up_all(&kcp->kcp_thr_waitq);
706
707 /* Sleep until all thread have finished */
708 wait_event(kcp->kcp_ctl_waitq, splat_kmem_cache_test_threads(kcp, 0));
709
710 stop = current_kernel_time();
711 delta = timespec_sub(stop, start);
f1b59d26 712
ea3e6ca9
BB
713 splat_vprint(file, name,
714 "%-22s %2ld.%09ld\t"
715 "%lu/%lu/%lu\t%lu/%lu/%lu\n",
716 kcp->kcp_cache->skc_name,
717 delta.tv_sec, delta.tv_nsec,
718 (unsigned long)kcp->kcp_cache->skc_slab_total,
719 (unsigned long)kcp->kcp_cache->skc_slab_max,
720 (unsigned long)(kcp->kcp_alloc *
721 SPLAT_KMEM_THREADS /
722 SPL_KMEM_CACHE_OBJ_PER_SLAB),
723 (unsigned long)kcp->kcp_cache->skc_obj_total,
724 (unsigned long)kcp->kcp_cache->skc_obj_max,
725 (unsigned long)(kcp->kcp_alloc *
726 SPLAT_KMEM_THREADS));
727
10a4be0f 728 if (delta.tv_sec >= max_time)
ea3e6ca9
BB
729 rc = -ETIME;
730
731 if (!rc && kcp->kcp_rc)
732 rc = kcp->kcp_rc;
733
734out_cache:
735 kmem_cache_destroy(kcp->kcp_cache);
736out_kcp:
737 splat_kmem_cache_test_kcp_free(kcp);
f1ca4da6 738 return rc;
739}
740
a1502d76 741/* Validate small object cache behavior for dynamic/kmem/vmem caches */
2fb9b26a 742static int
743splat_kmem_test5(struct file *file, void *arg)
744{
a1502d76 745 char *name = SPLAT_KMEM_TEST5_NAME;
746 int rc;
747
48e0606a 748 rc = splat_kmem_cache_test(file, arg, name, 128, 0, 0);
a1502d76 749 if (rc)
750 return rc;
751
48e0606a 752 rc = splat_kmem_cache_test(file, arg, name, 128, 0, KMC_KMEM);
a1502d76 753 if (rc)
754 return rc;
755
48e0606a 756 return splat_kmem_cache_test(file, arg, name, 128, 0, KMC_VMEM);
2fb9b26a 757}
758
efcd0ca3
BB
759/*
760 * Validate large object cache behavior for dynamic/kmem/vmem caches
761 */
2fb9b26a 762static int
763splat_kmem_test6(struct file *file, void *arg)
764{
a1502d76 765 char *name = SPLAT_KMEM_TEST6_NAME;
766 int rc;
767
e0dcb22e 768 rc = splat_kmem_cache_test(file, arg, name, 256*1024, 0, 0);
a1502d76 769 if (rc)
770 return rc;
771
e0dcb22e 772 rc = splat_kmem_cache_test(file, arg, name, 64*1024, 0, KMC_KMEM);
a1502d76 773 if (rc)
774 return rc;
775
e0dcb22e 776 return splat_kmem_cache_test(file, arg, name, 1024*1024, 0, KMC_VMEM);
2fb9b26a 777}
778
efcd0ca3
BB
779/*
780 * Validate object alignment cache behavior for caches
781 */
ea3e6ca9
BB
782static int
783splat_kmem_test7(struct file *file, void *arg)
f1ca4da6 784{
ea3e6ca9
BB
785 char *name = SPLAT_KMEM_TEST7_NAME;
786 int i, rc;
2fb9b26a 787
8b45dda2 788 for (i = SPL_KMEM_CACHE_ALIGN; i <= PAGE_SIZE; i *= 2) {
ea3e6ca9
BB
789 rc = splat_kmem_cache_test(file, arg, name, 157, i, 0);
790 if (rc)
791 return rc;
f1ca4da6 792 }
793
ea3e6ca9 794 return rc;
f1ca4da6 795}
796
efcd0ca3
BB
797/*
798 * Validate kmem_cache_reap() by requesting the slab cache free any objects
799 * it can. For a few reasons this may not immediately result in more free
800 * memory even if objects are freed. First off, due to fragmentation we
801 * may not be able to reclaim any slabs. Secondly, even if we do we fully
802 * clear some slabs we will not want to immediately reclaim all of them
803 * because we may contend with cache allocations and thrash. What we want
804 * to see is the slab size decrease more gradually as it becomes clear they
805 * will not be needed. This should be achievable in less than a minute.
806 * If it takes longer than this something has gone wrong.
807 */
f1ca4da6 808static int
ea3e6ca9 809splat_kmem_test8(struct file *file, void *arg)
f1ca4da6 810{
ea3e6ca9 811 kmem_cache_priv_t *kcp;
efcd0ca3 812 kmem_cache_thread_t *kct;
0936c344 813 unsigned int spl_kmem_cache_expire_old;
a9a7a01c 814 int i, rc = 0;
ea3e6ca9 815
0936c344
BB
816 /* Enable cache aging just for this test if it is disabled */
817 spl_kmem_cache_expire_old = spl_kmem_cache_expire;
818 spl_kmem_cache_expire = KMC_EXPIRE_AGE;
819
ea3e6ca9 820 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST8_NAME,
efcd0ca3 821 256, 0, 0);
ea3e6ca9
BB
822 if (!kcp) {
823 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
824 "Unable to create '%s'\n", "kcp");
efcd0ca3
BB
825 rc = -ENOMEM;
826 goto out;
f1ca4da6 827 }
828
ea3e6ca9
BB
829 kcp->kcp_cache =
830 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
831 splat_kmem_cache_test_constructor,
832 splat_kmem_cache_test_destructor,
833 splat_kmem_cache_test_reclaim,
834 kcp, NULL, 0);
835 if (!kcp->kcp_cache) {
ea3e6ca9
BB
836 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
837 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
efcd0ca3
BB
838 rc = -ENOMEM;
839 goto out_kcp;
ea3e6ca9 840 }
f1ca4da6 841
efcd0ca3
BB
842 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
843 if (!kct) {
844 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
845 "Unable to create '%s'\n", "kct");
846 rc = -ENOMEM;
847 goto out_cache;
848 }
849
850 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, SPLAT_KMEM_OBJ_COUNT);
851 if (rc) {
852 splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Unable to "
853 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
854 goto out_kct;
f1ca4da6 855 }
856
2fb9b26a 857 for (i = 0; i < 60; i++) {
ea3e6ca9 858 kmem_cache_reap_now(kcp->kcp_cache);
a9a7a01c 859 splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST8_NAME, kcp);
ea3e6ca9
BB
860
861 if (kcp->kcp_cache->skc_obj_total == 0)
2fb9b26a 862 break;
863
864 set_current_state(TASK_INTERRUPTIBLE);
865 schedule_timeout(HZ);
866 }
867
ea3e6ca9
BB
868 if (kcp->kcp_cache->skc_obj_total == 0) {
869 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
2fb9b26a 870 "Successfully created %d objects "
871 "in cache %s and reclaimed them\n",
ea3e6ca9 872 SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
2fb9b26a 873 } else {
ea3e6ca9 874 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
2fb9b26a 875 "Failed to reclaim %u/%d objects from cache %s\n",
ea3e6ca9
BB
876 (unsigned)kcp->kcp_cache->skc_obj_total,
877 SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME);
2fb9b26a 878 rc = -ENOMEM;
879 }
f1ca4da6 880
2fb9b26a 881 /* Cleanup our mess (for failure case of time expiring) */
efcd0ca3
BB
882 splat_kmem_cache_test_kcd_free(kcp, kct);
883out_kct:
884 splat_kmem_cache_test_kct_free(kcp, kct);
885out_cache:
ea3e6ca9 886 kmem_cache_destroy(kcp->kcp_cache);
efcd0ca3 887out_kcp:
ea3e6ca9 888 splat_kmem_cache_test_kcp_free(kcp);
efcd0ca3 889out:
0936c344
BB
890 spl_kmem_cache_expire = spl_kmem_cache_expire_old;
891
f1ca4da6 892 return rc;
893}
894
efcd0ca3
BB
895/* Test cache aging, we have allocated a large number of objects thus
896 * creating a large number of slabs and then free'd them all. However,
897 * since there should be little memory pressure at the moment those
898 * slabs have not been freed. What we want to see is the slab size
899 * decrease gradually as it becomes clear they will not be be needed.
900 * This should be achievable in less than minute. If it takes longer
901 * than this something has gone wrong.
902 */
ea3e6ca9
BB
903static int
904splat_kmem_test9(struct file *file, void *arg)
44b8f176 905{
ea3e6ca9 906 kmem_cache_priv_t *kcp;
efcd0ca3 907 kmem_cache_thread_t *kct;
0936c344 908 unsigned int spl_kmem_cache_expire_old;
a9a7a01c 909 int i, rc = 0, count = SPLAT_KMEM_OBJ_COUNT * 128;
ea3e6ca9 910
0936c344
BB
911 /* Enable cache aging just for this test if it is disabled */
912 spl_kmem_cache_expire_old = spl_kmem_cache_expire;
913 spl_kmem_cache_expire = KMC_EXPIRE_AGE;
914
ea3e6ca9 915 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST9_NAME,
efcd0ca3 916 256, 0, 0);
ea3e6ca9
BB
917 if (!kcp) {
918 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
919 "Unable to create '%s'\n", "kcp");
efcd0ca3
BB
920 rc = -ENOMEM;
921 goto out;
ea3e6ca9 922 }
44b8f176 923
ea3e6ca9
BB
924 kcp->kcp_cache =
925 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
926 splat_kmem_cache_test_constructor,
927 splat_kmem_cache_test_destructor,
928 NULL, kcp, NULL, 0);
929 if (!kcp->kcp_cache) {
ea3e6ca9
BB
930 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
931 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
efcd0ca3
BB
932 rc = -ENOMEM;
933 goto out_kcp;
44b8f176 934 }
935
efcd0ca3
BB
936 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
937 if (!kct) {
938 splat_vprint(file, SPLAT_KMEM_TEST8_NAME,
939 "Unable to create '%s'\n", "kct");
940 rc = -ENOMEM;
941 goto out_cache;
44b8f176 942 }
943
efcd0ca3
BB
944 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
945 if (rc) {
946 splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Unable to "
947 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
948 goto out_kct;
949 }
950
951 splat_kmem_cache_test_kcd_free(kcp, kct);
e9d7a2be 952
ea3e6ca9 953 for (i = 0; i < 60; i++) {
a9a7a01c 954 splat_kmem_cache_test_debug(file, SPLAT_KMEM_TEST9_NAME, kcp);
ea3e6ca9
BB
955
956 if (kcp->kcp_cache->skc_obj_total == 0)
957 break;
44b8f176 958
ea3e6ca9
BB
959 set_current_state(TASK_INTERRUPTIBLE);
960 schedule_timeout(HZ);
961 }
44b8f176 962
ea3e6ca9
BB
963 if (kcp->kcp_cache->skc_obj_total == 0) {
964 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
965 "Successfully created %d objects "
966 "in cache %s and reclaimed them\n",
967 count, SPLAT_KMEM_CACHE_NAME);
968 } else {
969 splat_vprint(file, SPLAT_KMEM_TEST9_NAME,
970 "Failed to reclaim %u/%d objects from cache %s\n",
971 (unsigned)kcp->kcp_cache->skc_obj_total, count,
972 SPLAT_KMEM_CACHE_NAME);
973 rc = -ENOMEM;
974 }
975
efcd0ca3
BB
976out_kct:
977 splat_kmem_cache_test_kct_free(kcp, kct);
978out_cache:
ea3e6ca9 979 kmem_cache_destroy(kcp->kcp_cache);
efcd0ca3 980out_kcp:
ea3e6ca9 981 splat_kmem_cache_test_kcp_free(kcp);
efcd0ca3 982out:
0936c344
BB
983 spl_kmem_cache_expire = spl_kmem_cache_expire_old;
984
ea3e6ca9 985 return rc;
44b8f176 986}
987
ea3e6ca9
BB
988/*
989 * This test creates N threads with a shared kmem cache. They then all
990 * concurrently allocate and free from the cache to stress the locking and
991 * concurrent cache performance. If any one test takes longer than 5
992 * seconds to complete it is treated as a failure and may indicate a
993 * performance regression. On my test system no one test takes more
994 * than 1 second to complete so a 5x slowdown likely a problem.
44b8f176 995 */
996static int
ea3e6ca9 997splat_kmem_test10(struct file *file, void *arg)
44b8f176 998{
e11d6c5f 999 uint64_t size, alloc, rc = 0;
44b8f176 1000
efcd0ca3 1001 for (size = 32; size <= 1024*1024; size *= 2) {
44b8f176 1002
ea3e6ca9
BB
1003 splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "name",
1004 "time (sec)\tslabs \tobjs \thash\n");
1005 splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "",
1006 " \ttot/max/calc\ttot/max/calc\n");
44b8f176 1007
ea3e6ca9 1008 for (alloc = 1; alloc <= 1024; alloc *= 2) {
44b8f176 1009
e11d6c5f
BB
1010 /* Skip tests which exceed available memory. We
1011 * leverage availrmem here for some extra testing */
1012 if (size * alloc * SPLAT_KMEM_THREADS > availrmem / 2)
ea3e6ca9 1013 continue;
7ea1cbf5 1014
ea3e6ca9 1015 rc = splat_kmem_cache_thread_test(file, arg,
10a4be0f 1016 SPLAT_KMEM_TEST10_NAME, size, alloc, 5);
ea3e6ca9
BB
1017 if (rc)
1018 break;
1019 }
44b8f176 1020 }
1021
7ea1cbf5 1022 return rc;
44b8f176 1023}
1024
11124863 1025#if 0
ea3e6ca9
BB
1026/*
1027 * This test creates N threads with a shared kmem cache which overcommits
1028 * memory by 4x. This makes it impossible for the slab to satify the
1029 * thread requirements without having its reclaim hook run which will
1030 * free objects back for use. This behavior is triggered by the linum VM
1031 * detecting a low memory condition on the node and invoking the shrinkers.
1032 * This should allow all the threads to complete while avoiding deadlock
1033 * and for the most part out of memory events. This is very tough on the
4e5691fa
BB
1034 * system so it is possible the test app may get oom'ed. This particular
1035 * test has proven troublesome on 32-bit archs with limited virtual
1036 * address space so it only run on 64-bit systems.
ea3e6ca9 1037 */
fece7c99 1038static int
ea3e6ca9 1039splat_kmem_test11(struct file *file, void *arg)
fece7c99 1040{
ea3e6ca9 1041 uint64_t size, alloc, rc;
fece7c99 1042
efcd0ca3 1043 size = 8 * 1024;
e11d6c5f 1044 alloc = ((4 * physmem * PAGE_SIZE) / size) / SPLAT_KMEM_THREADS;
fece7c99 1045
e11d6c5f 1046 splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "name",
ea3e6ca9 1047 "time (sec)\tslabs \tobjs \thash\n");
e11d6c5f 1048 splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "",
ea3e6ca9 1049 " \ttot/max/calc\ttot/max/calc\n");
48e0606a 1050
ea3e6ca9 1051 rc = splat_kmem_cache_thread_test(file, arg,
10a4be0f 1052 SPLAT_KMEM_TEST11_NAME, size, alloc, 60);
48e0606a
BB
1053
1054 return rc;
1055}
11124863 1056#endif
48e0606a 1057
e11d6c5f
BB
1058/*
1059 * Check vmem_size() behavior by acquiring the alloc/free/total vmem
1060 * space, then allocate a known buffer size from vmem space. We can
1061 * then check that vmem_size() values were updated properly with in
1062 * a fairly small tolerence. The tolerance is important because we
1063 * are not the only vmem consumer on the system. Other unrelated
1064 * allocations might occur during the small test window. The vmem
1065 * allocation itself may also add in a little extra private space to
1066 * the buffer. Finally, verify total space always remains unchanged.
1067 */
1068static int
1069splat_kmem_test12(struct file *file, void *arg)
1070{
6ae7fef5
BB
1071 size_t alloc1, free1, total1;
1072 size_t alloc2, free2, total2;
e11d6c5f
BB
1073 int size = 8*1024*1024;
1074 void *ptr;
1075
1076 alloc1 = vmem_size(NULL, VMEM_ALLOC);
1077 free1 = vmem_size(NULL, VMEM_FREE);
1078 total1 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
6ae7fef5
BB
1079 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
1080 "free=%lu total=%lu\n", (unsigned long)alloc1,
1081 (unsigned long)free1, (unsigned long)total1);
e11d6c5f
BB
1082
1083 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Alloc %d bytes\n", size);
1084 ptr = vmem_alloc(size, KM_SLEEP);
1085 if (!ptr) {
1086 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
1087 "Failed to alloc %d bytes\n", size);
1088 return -ENOMEM;
1089 }
1090
1091 alloc2 = vmem_size(NULL, VMEM_ALLOC);
1092 free2 = vmem_size(NULL, VMEM_FREE);
1093 total2 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE);
6ae7fef5
BB
1094 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu "
1095 "free=%lu total=%lu\n", (unsigned long)alloc2,
1096 (unsigned long)free2, (unsigned long)total2);
e11d6c5f
BB
1097
1098 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Free %d bytes\n", size);
1099 vmem_free(ptr, size);
1100 if (alloc2 < (alloc1 + size - (size / 100)) ||
1101 alloc2 > (alloc1 + size + (size / 100))) {
6ae7fef5
BB
1102 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1103 "VMEM_ALLOC size: %lu != %lu+%d (+/- 1%%)\n",
1104 (unsigned long)alloc2,(unsigned long)alloc1,size);
e11d6c5f
BB
1105 return -ERANGE;
1106 }
1107
1108 if (free2 < (free1 - size - (size / 100)) ||
1109 free2 > (free1 - size + (size / 100))) {
6ae7fef5
BB
1110 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1111 "VMEM_FREE size: %lu != %lu-%d (+/- 1%%)\n",
1112 (unsigned long)free2, (unsigned long)free1, size);
e11d6c5f
BB
1113 return -ERANGE;
1114 }
1115
1116 if (total1 != total2) {
6ae7fef5
BB
1117 splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed "
1118 "VMEM_ALLOC | VMEM_FREE not constant: "
1119 "%lu != %lu\n", (unsigned long)total2,
1120 (unsigned long)total1);
e11d6c5f
BB
1121 return -ERANGE;
1122 }
1123
1124 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
6ae7fef5
BB
1125 "VMEM_ALLOC within tolerance: ~%ld%% (%ld/%d)\n",
1126 (long)abs(alloc1 + (long)size - alloc2) * 100 / (long)size,
1127 (long)abs(alloc1 + (long)size - alloc2), size);
e11d6c5f 1128 splat_vprint(file, SPLAT_KMEM_TEST12_NAME,
6ae7fef5
BB
1129 "VMEM_FREE within tolerance: ~%ld%% (%ld/%d)\n",
1130 (long)abs((free1 - (long)size) - free2) * 100 / (long)size,
1131 (long)abs((free1 - (long)size) - free2), size);
e11d6c5f
BB
1132
1133 return 0;
1134}
1135
a9a7a01c
PS
1136typedef struct dummy_page {
1137 struct list_head dp_list;
1138 char dp_pad[PAGE_SIZE - sizeof(struct list_head)];
1139} dummy_page_t;
1140
1141/*
1142 * This test is designed to verify that direct reclaim is functioning as
1143 * expected. We allocate a large number of objects thus creating a large
1144 * number of slabs. We then apply memory pressure and expect that the
1145 * direct reclaim path can easily recover those slabs. The registered
1146 * reclaim function will free the objects and the slab shrinker will call
1147 * it repeatedly until at least a single slab can be freed.
1148 *
1149 * Note it may not be possible to reclaim every last slab via direct reclaim
1150 * without a failure because the shrinker_rwsem may be contended. For this
1151 * reason, quickly reclaiming 3/4 of the slabs is considered a success.
1152 *
1153 * This should all be possible within 10 seconds. For reference, on a
1154 * system with 2G of memory this test takes roughly 0.2 seconds to run.
1155 * It may take longer on larger memory systems but should still easily
1156 * complete in the alloted 10 seconds.
1157 */
1158static int
1159splat_kmem_test13(struct file *file, void *arg)
1160{
1161 kmem_cache_priv_t *kcp;
efcd0ca3 1162 kmem_cache_thread_t *kct;
a9a7a01c
PS
1163 dummy_page_t *dp;
1164 struct list_head list;
eaac9ba5 1165 struct timespec start, delta = { 0, 0 };
a9a7a01c
PS
1166 int size, count, slabs, fails = 0;
1167 int i, rc = 0, max_time = 10;
1168
1169 size = 128 * 1024;
1170 count = ((physmem * PAGE_SIZE) / 4 / size);
1171
1172 kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST13_NAME,
efcd0ca3 1173 size, 0, 0);
a9a7a01c
PS
1174 if (!kcp) {
1175 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1176 "Unable to create '%s'\n", "kcp");
efcd0ca3
BB
1177 rc = -ENOMEM;
1178 goto out;
a9a7a01c
PS
1179 }
1180
1181 kcp->kcp_cache =
1182 kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0,
1183 splat_kmem_cache_test_constructor,
1184 splat_kmem_cache_test_destructor,
1185 splat_kmem_cache_test_reclaim,
1186 kcp, NULL, 0);
1187 if (!kcp->kcp_cache) {
a9a7a01c
PS
1188 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1189 "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME);
efcd0ca3
BB
1190 rc = -ENOMEM;
1191 goto out_kcp;
a9a7a01c
PS
1192 }
1193
efcd0ca3
BB
1194 kct = splat_kmem_cache_test_kct_alloc(kcp, 0);
1195 if (!kct) {
1196 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1197 "Unable to create '%s'\n", "kct");
1198 rc = -ENOMEM;
1199 goto out_cache;
1200 }
1201
1202 rc = splat_kmem_cache_test_kcd_alloc(kcp, kct, count);
1203 if (rc) {
1204 splat_vprint(file, SPLAT_KMEM_TEST13_NAME, "Unable to "
1205 "allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME);
1206 goto out_kct;
a9a7a01c
PS
1207 }
1208
1209 i = 0;
1210 slabs = kcp->kcp_cache->skc_slab_total;
1211 INIT_LIST_HEAD(&list);
1212 start = current_kernel_time();
1213
efcd0ca3 1214 /* Apply memory pressure */
a9a7a01c
PS
1215 while (kcp->kcp_cache->skc_slab_total > (slabs >> 2)) {
1216
1217 if ((i % 10000) == 0)
1218 splat_kmem_cache_test_debug(
1219 file, SPLAT_KMEM_TEST13_NAME, kcp);
1220
1221 delta = timespec_sub(current_kernel_time(), start);
1222 if (delta.tv_sec >= max_time) {
1223 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1224 "Failed to reclaim 3/4 of cache in %ds, "
1225 "%u/%u slabs remain\n", max_time,
1226 (unsigned)kcp->kcp_cache->skc_slab_total,
1227 slabs);
1228 rc = -ETIME;
1229 break;
1230 }
1231
1232 dp = (dummy_page_t *)__get_free_page(GFP_KERNEL | __GFP_NORETRY);
1233 if (!dp) {
1234 fails++;
1235 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1236 "Failed (%d) to allocate page with %u "
1237 "slabs still in the cache\n", fails,
1238 (unsigned)kcp->kcp_cache->skc_slab_total);
1239 continue;
1240 }
1241
1242 list_add(&dp->dp_list, &list);
1243 i++;
1244 }
1245
1246 if (rc == 0)
1247 splat_vprint(file, SPLAT_KMEM_TEST13_NAME,
1248 "Successfully created %u slabs and with %d alloc "
1249 "failures reclaimed 3/4 of them in %d.%03ds\n",
1250 slabs, fails,
1251 (int)delta.tv_sec, (int)delta.tv_nsec / 1000000);
1252
1253 /* Release memory pressure pages */
1254 while (!list_empty(&list)) {
1255 dp = list_entry(list.next, dummy_page_t, dp_list);
1256 list_del_init(&dp->dp_list);
1257 free_page((unsigned long)dp);
1258 }
1259
1260 /* Release remaining kmem cache objects */
efcd0ca3
BB
1261 splat_kmem_cache_test_kcd_free(kcp, kct);
1262out_kct:
1263 splat_kmem_cache_test_kct_free(kcp, kct);
1264out_cache:
a9a7a01c 1265 kmem_cache_destroy(kcp->kcp_cache);
efcd0ca3 1266out_kcp:
a9a7a01c 1267 splat_kmem_cache_test_kcp_free(kcp);
efcd0ca3 1268out:
a9a7a01c
PS
1269 return rc;
1270}
1271
7c50328b 1272splat_subsystem_t *
1273splat_kmem_init(void)
f1ca4da6 1274{
ea3e6ca9 1275 splat_subsystem_t *sub;
f1ca4da6 1276
ea3e6ca9
BB
1277 sub = kmalloc(sizeof(*sub), GFP_KERNEL);
1278 if (sub == NULL)
1279 return NULL;
f1ca4da6 1280
ea3e6ca9
BB
1281 memset(sub, 0, sizeof(*sub));
1282 strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE);
7c50328b 1283 strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE);
ea3e6ca9 1284 INIT_LIST_HEAD(&sub->subsystem_list);
f1ca4da6 1285 INIT_LIST_HEAD(&sub->test_list);
ea3e6ca9
BB
1286 spin_lock_init(&sub->test_lock);
1287 sub->desc.id = SPLAT_SUBSYSTEM_KMEM;
1288
1289 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC,
1290 SPLAT_KMEM_TEST1_ID, splat_kmem_test1);
1291 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC,
1292 SPLAT_KMEM_TEST2_ID, splat_kmem_test2);
1293 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC,
1294 SPLAT_KMEM_TEST3_ID, splat_kmem_test3);
1295 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC,
1296 SPLAT_KMEM_TEST4_ID, splat_kmem_test4);
1297 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC,
1298 SPLAT_KMEM_TEST5_ID, splat_kmem_test5);
1299 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC,
1300 SPLAT_KMEM_TEST6_ID, splat_kmem_test6);
1301 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC,
1302 SPLAT_KMEM_TEST7_ID, splat_kmem_test7);
1303 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC,
1304 SPLAT_KMEM_TEST8_ID, splat_kmem_test8);
1305 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST9_NAME, SPLAT_KMEM_TEST9_DESC,
1306 SPLAT_KMEM_TEST9_ID, splat_kmem_test9);
1307 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST10_NAME, SPLAT_KMEM_TEST10_DESC,
1308 SPLAT_KMEM_TEST10_ID, splat_kmem_test10);
11124863 1309#if 0
ea3e6ca9
BB
1310 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST11_NAME, SPLAT_KMEM_TEST11_DESC,
1311 SPLAT_KMEM_TEST11_ID, splat_kmem_test11);
11124863 1312#endif
e11d6c5f
BB
1313 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST12_NAME, SPLAT_KMEM_TEST12_DESC,
1314 SPLAT_KMEM_TEST12_ID, splat_kmem_test12);
a9a7a01c
PS
1315 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST13_NAME, SPLAT_KMEM_TEST13_DESC,
1316 SPLAT_KMEM_TEST13_ID, splat_kmem_test13);
ea3e6ca9
BB
1317
1318 return sub;
f1ca4da6 1319}
1320
1321void
7c50328b 1322splat_kmem_fini(splat_subsystem_t *sub)
f1ca4da6 1323{
ea3e6ca9 1324 ASSERT(sub);
a9a7a01c 1325 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST13_ID);
e11d6c5f 1326 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST12_ID);
11124863 1327#if 0
ea3e6ca9 1328 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST11_ID);
11124863 1329#endif
ea3e6ca9
BB
1330 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST10_ID);
1331 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST9_ID);
1332 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID);
1333 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID);
1334 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID);
1335 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID);
1336 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID);
1337 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID);
1338 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID);
1339 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID);
1340
1341 kfree(sub);
f1ca4da6 1342}
1343
1344int
7c50328b 1345splat_kmem_id(void) {
ea3e6ca9 1346 return SPLAT_SUBSYSTEM_KMEM;
f1ca4da6 1347}