]> git.proxmox.com Git - qemu.git/blame - qemu-doc.texi
Update Sparc parts in documentation
[qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
8f40c388 4@settitle QEMU Emulator User Documentation
debc7065
FB
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
386405f7 8
0806e3f6 9@iftex
386405f7
FB
10@titlepage
11@sp 7
8f40c388 12@center @titlefont{QEMU Emulator}
debc7065
FB
13@sp 1
14@center @titlefont{User Documentation}
386405f7
FB
15@sp 3
16@end titlepage
0806e3f6 17@end iftex
386405f7 18
debc7065
FB
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
83195237 28* QEMU User space emulator::
debc7065
FB
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
386405f7
FB
37@chapter Introduction
38
debc7065
FB
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
322d0c66 44@section Features
386405f7 45
1f673135
FB
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
1eb20527
FB
48
49QEMU has two operating modes:
0806e3f6
FB
50
51@itemize @minus
52
5fafdf24 53@item
1f673135 54Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
1eb20527 58
5fafdf24 59@item
83195237
FB
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
1eb20527
FB
64
65@end itemize
66
7c3fc84d 67QEMU can run without an host kernel driver and yet gives acceptable
5fafdf24 68performance.
322d0c66 69
52c00a5f
FB
70For system emulation, the following hardware targets are supported:
71@itemize
9d0a8e6f 72@item PC (x86 or x86_64 processor)
3f9f3aa1 73@item ISA PC (old style PC without PCI bus)
52c00a5f 74@item PREP (PowerPC processor)
9d0a8e6f
FB
75@item G3 BW PowerMac (PowerPC processor)
76@item Mac99 PowerMac (PowerPC processor, in progress)
3475187d
FB
77@item Sun4m (32-bit Sparc processor)
78@item Sun4u (64-bit Sparc processor, in progress)
3f9f3aa1 79@item Malta board (32-bit MIPS processor)
ce819861 80@item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
00a9bf19 81@item ARM Versatile baseboard (ARM926E)
d7739d75 82@item ARM RealView Emulation baseboard (ARM926EJ-S)
b00052e4 83@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
707e011b 84@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 85@item Arnewsh MCF5206 evaluation board (ColdFire V2).
52c00a5f 86@end itemize
386405f7 87
e6e5906b 88For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
0806e3f6 89
debc7065 90@node Installation
5b9f457a
FB
91@chapter Installation
92
15a34c63
FB
93If you want to compile QEMU yourself, see @ref{compilation}.
94
debc7065
FB
95@menu
96* install_linux:: Linux
97* install_windows:: Windows
98* install_mac:: Macintosh
99@end menu
100
101@node install_linux
1f673135
FB
102@section Linux
103
7c3fc84d
FB
104If a precompiled package is available for your distribution - you just
105have to install it. Otherwise, see @ref{compilation}.
5b9f457a 106
debc7065 107@node install_windows
1f673135 108@section Windows
8cd0ac2f 109
15a34c63 110Download the experimental binary installer at
debc7065 111@url{http://www.free.oszoo.org/@/download.html}.
d691f669 112
debc7065 113@node install_mac
1f673135 114@section Mac OS X
d691f669 115
15a34c63 116Download the experimental binary installer at
debc7065 117@url{http://www.free.oszoo.org/@/download.html}.
df0f11a0 118
debc7065 119@node QEMU PC System emulator
3f9f3aa1 120@chapter QEMU PC System emulator
1eb20527 121
debc7065
FB
122@menu
123* pcsys_introduction:: Introduction
124* pcsys_quickstart:: Quick Start
125* sec_invocation:: Invocation
126* pcsys_keys:: Keys
127* pcsys_monitor:: QEMU Monitor
128* disk_images:: Disk Images
129* pcsys_network:: Network emulation
130* direct_linux_boot:: Direct Linux Boot
131* pcsys_usb:: USB emulation
f858dcae 132* vnc_security:: VNC security
debc7065
FB
133* gdb_usage:: GDB usage
134* pcsys_os_specific:: Target OS specific information
135@end menu
136
137@node pcsys_introduction
0806e3f6
FB
138@section Introduction
139
140@c man begin DESCRIPTION
141
3f9f3aa1
FB
142The QEMU PC System emulator simulates the
143following peripherals:
0806e3f6
FB
144
145@itemize @minus
5fafdf24 146@item
15a34c63 147i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 148@item
15a34c63
FB
149Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
150extensions (hardware level, including all non standard modes).
0806e3f6
FB
151@item
152PS/2 mouse and keyboard
5fafdf24 153@item
15a34c63 1542 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
155@item
156Floppy disk
5fafdf24 157@item
c4a7060c 158PCI/ISA PCI network adapters
0806e3f6 159@item
05d5818c
FB
160Serial ports
161@item
c0fe3827
FB
162Creative SoundBlaster 16 sound card
163@item
164ENSONIQ AudioPCI ES1370 sound card
165@item
166Adlib(OPL2) - Yamaha YM3812 compatible chip
b389dbfb
FB
167@item
168PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
169@end itemize
170
3f9f3aa1
FB
171SMP is supported with up to 255 CPUs.
172
c0fe3827
FB
173Note that adlib is only available when QEMU was configured with
174-enable-adlib
175
15a34c63
FB
176QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
177VGA BIOS.
178
c0fe3827
FB
179QEMU uses YM3812 emulation by Tatsuyuki Satoh.
180
0806e3f6
FB
181@c man end
182
debc7065 183@node pcsys_quickstart
1eb20527
FB
184@section Quick Start
185
285dc330 186Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
187
188@example
285dc330 189qemu linux.img
0806e3f6
FB
190@end example
191
192Linux should boot and give you a prompt.
193
6cc721cf 194@node sec_invocation
ec410fc9
FB
195@section Invocation
196
197@example
0806e3f6
FB
198@c man begin SYNOPSIS
199usage: qemu [options] [disk_image]
200@c man end
ec410fc9
FB
201@end example
202
0806e3f6 203@c man begin OPTIONS
9d4520d0 204@var{disk_image} is a raw hard disk image for IDE hard disk 0.
ec410fc9
FB
205
206General options:
207@table @option
3dbbdc25
FB
208@item -M machine
209Select the emulated machine (@code{-M ?} for list)
210
2be3bc02
FB
211@item -fda file
212@item -fdb file
debc7065 213Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
19cb3738 214use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
2be3bc02 215
ec410fc9
FB
216@item -hda file
217@item -hdb file
181f1558
FB
218@item -hdc file
219@item -hdd file
debc7065 220Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
1f47a922 221
181f1558
FB
222@item -cdrom file
223Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
be3edd95 224@option{-cdrom} at the same time). You can use the host CD-ROM by
19cb3738 225using @file{/dev/cdrom} as filename (@pxref{host_drives}).
181f1558 226
eec85c2a
TS
227@item -boot [a|c|d|n]
228Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
229is the default.
1f47a922 230
181f1558 231@item -snapshot
1f47a922
FB
232Write to temporary files instead of disk image files. In this case,
233the raw disk image you use is not written back. You can however force
42550fde 234the write back by pressing @key{C-a s} (@pxref{disk_images}).
ec410fc9 235
52ca8d6a
FB
236@item -no-fd-bootchk
237Disable boot signature checking for floppy disks in Bochs BIOS. It may
238be needed to boot from old floppy disks.
239
ec410fc9 240@item -m megs
15a34c63 241Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
ec410fc9 242
3f9f3aa1
FB
243@item -smp n
244Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
a785e42e
BS
245CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
246to 4.
3f9f3aa1 247
1d14ffa9
FB
248@item -audio-help
249
250Will show the audio subsystem help: list of drivers, tunable
251parameters.
252
6a36d84e 253@item -soundhw card1,card2,... or -soundhw all
1d14ffa9
FB
254
255Enable audio and selected sound hardware. Use ? to print all
256available sound hardware.
257
258@example
259qemu -soundhw sb16,adlib hda
260qemu -soundhw es1370 hda
6a36d84e 261qemu -soundhw all hda
1d14ffa9
FB
262qemu -soundhw ?
263@end example
a8c490cd 264
15a34c63
FB
265@item -localtime
266Set the real time clock to local time (the default is to UTC
267time). This option is needed to have correct date in MS-DOS or
268Windows.
269
f7cce898
FB
270@item -pidfile file
271Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
272from a script.
273
71e3ceb8
TS
274@item -daemonize
275Daemonize the QEMU process after initialization. QEMU will not detach from
276standard IO until it is ready to receive connections on any of its devices.
277This option is a useful way for external programs to launch QEMU without having
278to cope with initialization race conditions.
279
9d0a8e6f
FB
280@item -win2k-hack
281Use it when installing Windows 2000 to avoid a disk full bug. After
282Windows 2000 is installed, you no longer need this option (this option
283slows down the IDE transfers).
284
9ae02555
TS
285@item -option-rom file
286Load the contents of file as an option ROM. This option is useful to load
287things like EtherBoot.
288
c35734b2
TS
289@item -name string
290Sets the name of the guest. This name will be display in the SDL window
291caption. The name will also be used for the VNC server.
292
0806e3f6
FB
293@end table
294
f858dcae
TS
295Display options:
296@table @option
297
298@item -nographic
299
300Normally, QEMU uses SDL to display the VGA output. With this option,
301you can totally disable graphical output so that QEMU is a simple
302command line application. The emulated serial port is redirected on
303the console. Therefore, you can still use QEMU to debug a Linux kernel
304with a serial console.
305
306@item -no-frame
307
308Do not use decorations for SDL windows and start them using the whole
309available screen space. This makes the using QEMU in a dedicated desktop
310workspace more convenient.
311
312@item -full-screen
313Start in full screen.
314
315@item -vnc display[,option[,option[,...]]]
316
317Normally, QEMU uses SDL to display the VGA output. With this option,
318you can have QEMU listen on VNC display @var{display} and redirect the VGA
319display over the VNC session. It is very useful to enable the usb
320tablet device when using this option (option @option{-usbdevice
321tablet}). When using the VNC display, you must use the @option{-k}
322parameter to set the keyboard layout if you are not using en-us. Valid
323syntax for the @var{display} is
324
325@table @code
326
327@item @var{interface:d}
328
329TCP connections will only be allowed from @var{interface} on display @var{d}.
330By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
331be omitted in which case the server will bind to all interfaces.
332
333@item @var{unix:path}
334
335Connections will be allowed over UNIX domain sockets where @var{path} is the
336location of a unix socket to listen for connections on.
337
338@item @var{none}
339
340VNC is initialized by not started. The monitor @code{change} command can be used
341to later start the VNC server.
342
343@end table
344
345Following the @var{display} value there may be one or more @var{option} flags
346separated by commas. Valid options are
347
348@table @code
349
350@item @var{password}
351
352Require that password based authentication is used for client connections.
353The password must be set separately using the @code{change} command in the
354@ref{pcsys_monitor}
355
356@item @var{tls}
357
358Require that client use TLS when communicating with the VNC server. This
359uses anonymous TLS credentials so is susceptible to a man-in-the-middle
360attack. It is recommended that this option be combined with either the
361@var{x509} or @var{x509verify} options.
362
363@item @var{x509=/path/to/certificate/dir}
364
365Valid if @var{tls} is specified. Require that x509 credentials are used
366for negotiating the TLS session. The server will send its x509 certificate
367to the client. It is recommended that a password be set on the VNC server
368to provide authentication of the client when this is used. The path following
369this option specifies where the x509 certificates are to be loaded from.
370See the @ref{vnc_security} section for details on generating certificates.
371
372@item @var{x509verify=/path/to/certificate/dir}
373
374Valid if @var{tls} is specified. Require that x509 credentials are used
375for negotiating the TLS session. The server will send its x509 certificate
376to the client, and request that the client send its own x509 certificate.
377The server will validate the client's certificate against the CA certificate,
378and reject clients when validation fails. If the certificate authority is
379trusted, this is a sufficient authentication mechanism. You may still wish
380to set a password on the VNC server as a second authentication layer. The
381path following this option specifies where the x509 certificates are to
382be loaded from. See the @ref{vnc_security} section for details on generating
383certificates.
384
385@end table
386
387@item -k language
388
389Use keyboard layout @var{language} (for example @code{fr} for
390French). This option is only needed where it is not easy to get raw PC
391keycodes (e.g. on Macs, with some X11 servers or with a VNC
392display). You don't normally need to use it on PC/Linux or PC/Windows
393hosts.
394
395The available layouts are:
396@example
397ar de-ch es fo fr-ca hu ja mk no pt-br sv
398da en-gb et fr fr-ch is lt nl pl ru th
399de en-us fi fr-be hr it lv nl-be pt sl tr
400@end example
401
402The default is @code{en-us}.
403
404@end table
405
b389dbfb
FB
406USB options:
407@table @option
408
409@item -usb
410Enable the USB driver (will be the default soon)
411
412@item -usbdevice devname
0aff66b5 413Add the USB device @var{devname}. @xref{usb_devices}.
b389dbfb
FB
414@end table
415
1f673135
FB
416Network options:
417
418@table @option
419
a41b2ff2 420@item -net nic[,vlan=n][,macaddr=addr][,model=type]
41d03949 421Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
c4a7060c 422= 0 is the default). The NIC is an ne2k_pci by default on the PC
41d03949
FB
423target. Optionally, the MAC address can be changed. If no
424@option{-net} option is specified, a single NIC is created.
549444e1
AZ
425Qemu can emulate several different models of network card.
426Valid values for @var{type} are
427@code{i82551}, @code{i82557b}, @code{i82559er},
428@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
7e049b8a 429@code{smc91c111}, @code{lance} and @code{mcf_fec}.
c4a7060c
BS
430Not all devices are supported on all targets. Use -net nic,model=?
431for a list of available devices for your target.
41d03949 432
115defd1 433@item -net user[,vlan=n][,hostname=name]
7e89463d 434Use the user mode network stack which requires no administrator
4be456f1 435privilege to run. @option{hostname=name} can be used to specify the client
115defd1 436hostname reported by the builtin DHCP server.
41d03949
FB
437
438@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
439Connect the host TAP network interface @var{name} to VLAN @var{n} and
440use the network script @var{file} to configure it. The default
6a1cbf68
TS
441network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
442disable script execution. If @var{name} is not
41d03949
FB
443provided, the OS automatically provides one. @option{fd=h} can be
444used to specify the handle of an already opened host TAP interface. Example:
1f673135 445
41d03949
FB
446@example
447qemu linux.img -net nic -net tap
448@end example
449
450More complicated example (two NICs, each one connected to a TAP device)
451@example
452qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
453 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
454@end example
3f1a88f4 455
3f1a88f4 456
41d03949 457@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
1f673135 458
41d03949
FB
459Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
460machine using a TCP socket connection. If @option{listen} is
461specified, QEMU waits for incoming connections on @var{port}
462(@var{host} is optional). @option{connect} is used to connect to
3d830459
FB
463another QEMU instance using the @option{listen} option. @option{fd=h}
464specifies an already opened TCP socket.
1f673135 465
41d03949
FB
466Example:
467@example
468# launch a first QEMU instance
debc7065
FB
469qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
470 -net socket,listen=:1234
471# connect the VLAN 0 of this instance to the VLAN 0
472# of the first instance
473qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
474 -net socket,connect=127.0.0.1:1234
41d03949 475@end example
52c00a5f 476
3d830459
FB
477@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
478
479Create a VLAN @var{n} shared with another QEMU virtual
5fafdf24 480machines using a UDP multicast socket, effectively making a bus for
3d830459
FB
481every QEMU with same multicast address @var{maddr} and @var{port}.
482NOTES:
483@enumerate
5fafdf24
TS
484@item
485Several QEMU can be running on different hosts and share same bus (assuming
3d830459
FB
486correct multicast setup for these hosts).
487@item
488mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
489@url{http://user-mode-linux.sf.net}.
4be456f1
TS
490@item
491Use @option{fd=h} to specify an already opened UDP multicast socket.
3d830459
FB
492@end enumerate
493
494Example:
495@example
496# launch one QEMU instance
debc7065
FB
497qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
498 -net socket,mcast=230.0.0.1:1234
3d830459 499# launch another QEMU instance on same "bus"
debc7065
FB
500qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
501 -net socket,mcast=230.0.0.1:1234
3d830459 502# launch yet another QEMU instance on same "bus"
debc7065
FB
503qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
504 -net socket,mcast=230.0.0.1:1234
3d830459
FB
505@end example
506
507Example (User Mode Linux compat.):
508@example
debc7065
FB
509# launch QEMU instance (note mcast address selected
510# is UML's default)
511qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
512 -net socket,mcast=239.192.168.1:1102
3d830459
FB
513# launch UML
514/path/to/linux ubd0=/path/to/root_fs eth0=mcast
515@end example
516
41d03949
FB
517@item -net none
518Indicate that no network devices should be configured. It is used to
039af320
FB
519override the default configuration (@option{-net nic -net user}) which
520is activated if no @option{-net} options are provided.
52c00a5f 521
0db1137d 522@item -tftp dir
9bf05444 523When using the user mode network stack, activate a built-in TFTP
0db1137d
TS
524server. The files in @var{dir} will be exposed as the root of a TFTP server.
525The TFTP client on the guest must be configured in binary mode (use the command
526@code{bin} of the Unix TFTP client). The host IP address on the guest is as
527usual 10.0.2.2.
9bf05444 528
47d5d01a
TS
529@item -bootp file
530When using the user mode network stack, broadcast @var{file} as the BOOTP
531filename. In conjunction with @option{-tftp}, this can be used to network boot
532a guest from a local directory.
533
534Example (using pxelinux):
535@example
536qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
537@end example
538
2518bd0d
FB
539@item -smb dir
540When using the user mode network stack, activate a built-in SMB
541server so that Windows OSes can access to the host files in @file{dir}
542transparently.
543
544In the guest Windows OS, the line:
545@example
54610.0.2.4 smbserver
547@end example
548must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
549or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
550
551Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
552
553Note that a SAMBA server must be installed on the host OS in
366dfc52 554@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
6cc721cf 5552.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
2518bd0d 556
9bf05444
FB
557@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
558
559When using the user mode network stack, redirect incoming TCP or UDP
560connections to the host port @var{host-port} to the guest
561@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
562is not specified, its value is 10.0.2.15 (default address given by the
563built-in DHCP server).
564
565For example, to redirect host X11 connection from screen 1 to guest
566screen 0, use the following:
567
568@example
569# on the host
570qemu -redir tcp:6001::6000 [...]
571# this host xterm should open in the guest X11 server
572xterm -display :1
573@end example
574
575To redirect telnet connections from host port 5555 to telnet port on
576the guest, use the following:
577
578@example
579# on the host
580qemu -redir tcp:5555::23 [...]
581telnet localhost 5555
582@end example
583
584Then when you use on the host @code{telnet localhost 5555}, you
585connect to the guest telnet server.
586
1f673135
FB
587@end table
588
41d03949 589Linux boot specific: When using these options, you can use a given
1f673135
FB
590Linux kernel without installing it in the disk image. It can be useful
591for easier testing of various kernels.
592
0806e3f6
FB
593@table @option
594
5fafdf24 595@item -kernel bzImage
0806e3f6
FB
596Use @var{bzImage} as kernel image.
597
5fafdf24 598@item -append cmdline
0806e3f6
FB
599Use @var{cmdline} as kernel command line
600
601@item -initrd file
602Use @var{file} as initial ram disk.
603
ec410fc9
FB
604@end table
605
15a34c63 606Debug/Expert options:
ec410fc9 607@table @option
a0a821a4
FB
608
609@item -serial dev
0bab00f3
FB
610Redirect the virtual serial port to host character device
611@var{dev}. The default device is @code{vc} in graphical mode and
612@code{stdio} in non graphical mode.
613
614This option can be used several times to simulate up to 4 serials
615ports.
616
c03b0f0f
FB
617Use @code{-serial none} to disable all serial ports.
618
0bab00f3 619Available character devices are:
a0a821a4 620@table @code
af3a9031
TS
621@item vc[:WxH]
622Virtual console. Optionally, a width and height can be given in pixel with
623@example
624vc:800x600
625@end example
626It is also possible to specify width or height in characters:
627@example
628vc:80Cx24C
629@end example
a0a821a4
FB
630@item pty
631[Linux only] Pseudo TTY (a new PTY is automatically allocated)
c03b0f0f
FB
632@item none
633No device is allocated.
a0a821a4
FB
634@item null
635void device
f8d179e3 636@item /dev/XXX
e57a8c0e 637[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
f8d179e3 638parameters are set according to the emulated ones.
e57a8c0e
FB
639@item /dev/parportN
640[Linux only, parallel port only] Use host parallel port
5867c88a 641@var{N}. Currently SPP and EPP parallel port features can be used.
f8d179e3
FB
642@item file:filename
643Write output to filename. No character can be read.
a0a821a4
FB
644@item stdio
645[Unix only] standard input/output
f8d179e3 646@item pipe:filename
0bab00f3
FB
647name pipe @var{filename}
648@item COMn
649[Windows only] Use host serial port @var{n}
951f1351 650@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
4be456f1 651This implements UDP Net Console. When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}. When not using a specified @var{src_port} a random port is automatically chosen.
951f1351
FB
652
653If you just want a simple readonly console you can use @code{netcat} or
654@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
655@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
656will appear in the netconsole session.
0bab00f3
FB
657
658If you plan to send characters back via netconsole or you want to stop
659and start qemu a lot of times, you should have qemu use the same
660source port each time by using something like @code{-serial
951f1351 661udp::4555@@:4556} to qemu. Another approach is to use a patched
0bab00f3
FB
662version of netcat which can listen to a TCP port and send and receive
663characters via udp. If you have a patched version of netcat which
664activates telnet remote echo and single char transfer, then you can
665use the following options to step up a netcat redirector to allow
666telnet on port 5555 to access the qemu port.
667@table @code
951f1351
FB
668@item Qemu Options:
669-serial udp::4555@@:4556
670@item netcat options:
671-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
672@item telnet options:
673localhost 5555
674@end table
675
676
f7499989 677@item tcp:[host]:port[,server][,nowait][,nodelay]
951f1351
FB
678The TCP Net Console has two modes of operation. It can send the serial
679I/O to a location or wait for a connection from a location. By default
680the TCP Net Console is sent to @var{host} at the @var{port}. If you use
f542086d
FB
681the @var{server} option QEMU will wait for a client socket application
682to connect to the port before continuing, unless the @code{nowait}
f7499989 683option was specified. The @code{nodelay} option disables the Nagle buffering
4be456f1 684algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
951f1351
FB
685one TCP connection at a time is accepted. You can use @code{telnet} to
686connect to the corresponding character device.
687@table @code
688@item Example to send tcp console to 192.168.0.2 port 4444
689-serial tcp:192.168.0.2:4444
690@item Example to listen and wait on port 4444 for connection
691-serial tcp::4444,server
692@item Example to not wait and listen on ip 192.168.0.100 port 4444
693-serial tcp:192.168.0.100:4444,server,nowait
a0a821a4 694@end table
a0a821a4 695
f7499989 696@item telnet:host:port[,server][,nowait][,nodelay]
951f1351
FB
697The telnet protocol is used instead of raw tcp sockets. The options
698work the same as if you had specified @code{-serial tcp}. The
699difference is that the port acts like a telnet server or client using
700telnet option negotiation. This will also allow you to send the
701MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
702sequence. Typically in unix telnet you do it with Control-] and then
703type "send break" followed by pressing the enter key.
0bab00f3 704
ffd843bc
TS
705@item unix:path[,server][,nowait]
706A unix domain socket is used instead of a tcp socket. The option works the
707same as if you had specified @code{-serial tcp} except the unix domain socket
708@var{path} is used for connections.
709
20d8a3ed
TS
710@item mon:dev_string
711This is a special option to allow the monitor to be multiplexed onto
712another serial port. The monitor is accessed with key sequence of
713@key{Control-a} and then pressing @key{c}. See monitor access
714@ref{pcsys_keys} in the -nographic section for more keys.
715@var{dev_string} should be any one of the serial devices specified
716above. An example to multiplex the monitor onto a telnet server
717listening on port 4444 would be:
718@table @code
719@item -serial mon:telnet::4444,server,nowait
720@end table
721
0bab00f3 722@end table
05d5818c 723
e57a8c0e
FB
724@item -parallel dev
725Redirect the virtual parallel port to host device @var{dev} (same
726devices as the serial port). On Linux hosts, @file{/dev/parportN} can
727be used to use hardware devices connected on the corresponding host
728parallel port.
729
730This option can be used several times to simulate up to 3 parallel
731ports.
732
c03b0f0f
FB
733Use @code{-parallel none} to disable all parallel ports.
734
a0a821a4
FB
735@item -monitor dev
736Redirect the monitor to host device @var{dev} (same devices as the
737serial port).
738The default device is @code{vc} in graphical mode and @code{stdio} in
739non graphical mode.
740
20d8a3ed
TS
741@item -echr numeric_ascii_value
742Change the escape character used for switching to the monitor when using
743monitor and serial sharing. The default is @code{0x01} when using the
744@code{-nographic} option. @code{0x01} is equal to pressing
745@code{Control-a}. You can select a different character from the ascii
746control keys where 1 through 26 map to Control-a through Control-z. For
747instance you could use the either of the following to change the escape
748character to Control-t.
749@table @code
750@item -echr 0x14
751@item -echr 20
752@end table
753
ec410fc9 754@item -s
5fafdf24 755Wait gdb connection to port 1234 (@pxref{gdb_usage}).
ec410fc9 756@item -p port
4046d913
PB
757Change gdb connection port. @var{port} can be either a decimal number
758to specify a TCP port, or a host device (same devices as the serial port).
52c00a5f
FB
759@item -S
760Do not start CPU at startup (you must type 'c' in the monitor).
3b46e624 761@item -d
9d4520d0 762Output log in /tmp/qemu.log
46d4767d
FB
763@item -hdachs c,h,s,[,t]
764Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
765@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
766translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
4be456f1 767all those parameters. This option is useful for old MS-DOS disk
46d4767d 768images.
7c3fc84d 769
87b47350
FB
770@item -L path
771Set the directory for the BIOS, VGA BIOS and keymaps.
772
15a34c63
FB
773@item -std-vga
774Simulate a standard VGA card with Bochs VBE extensions (default is
3cb0853a
FB
775Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
776VBE extensions (e.g. Windows XP) and if you want to use high
777resolution modes (>= 1280x1024x16) then you should use this option.
778
3c656346
FB
779@item -no-acpi
780Disable ACPI (Advanced Configuration and Power Interface) support. Use
781it if your guest OS complains about ACPI problems (PC target machine
782only).
783
d1beab82
FB
784@item -no-reboot
785Exit instead of rebooting.
786
d63d307f
FB
787@item -loadvm file
788Start right away with a saved state (@code{loadvm} in monitor)
8e71621f
PB
789
790@item -semihosting
a87295e8
PB
791Enable semihosting syscall emulation (ARM and M68K target machines only).
792
793On ARM this implements the "Angel" interface.
794On M68K this implements the "ColdFire GDB" interface used by libgloss.
795
8e71621f
PB
796Note that this allows guest direct access to the host filesystem,
797so should only be used with trusted guest OS.
ec410fc9
FB
798@end table
799
3e11db9a
FB
800@c man end
801
debc7065 802@node pcsys_keys
3e11db9a
FB
803@section Keys
804
805@c man begin OPTIONS
806
a1b74fe8
FB
807During the graphical emulation, you can use the following keys:
808@table @key
f9859310 809@item Ctrl-Alt-f
a1b74fe8 810Toggle full screen
a0a821a4 811
f9859310 812@item Ctrl-Alt-n
a0a821a4
FB
813Switch to virtual console 'n'. Standard console mappings are:
814@table @emph
815@item 1
816Target system display
817@item 2
818Monitor
819@item 3
820Serial port
a1b74fe8
FB
821@end table
822
f9859310 823@item Ctrl-Alt
a0a821a4
FB
824Toggle mouse and keyboard grab.
825@end table
826
3e11db9a
FB
827In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
828@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
829
a0a821a4
FB
830During emulation, if you are using the @option{-nographic} option, use
831@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
832
833@table @key
a1b74fe8 834@item Ctrl-a h
ec410fc9 835Print this help
3b46e624 836@item Ctrl-a x
366dfc52 837Exit emulator
3b46e624 838@item Ctrl-a s
1f47a922 839Save disk data back to file (if -snapshot)
20d8a3ed
TS
840@item Ctrl-a t
841toggle console timestamps
a1b74fe8 842@item Ctrl-a b
1f673135 843Send break (magic sysrq in Linux)
a1b74fe8 844@item Ctrl-a c
1f673135 845Switch between console and monitor
a1b74fe8
FB
846@item Ctrl-a Ctrl-a
847Send Ctrl-a
ec410fc9 848@end table
0806e3f6
FB
849@c man end
850
851@ignore
852
1f673135
FB
853@c man begin SEEALSO
854The HTML documentation of QEMU for more precise information and Linux
855user mode emulator invocation.
856@c man end
857
858@c man begin AUTHOR
859Fabrice Bellard
860@c man end
861
862@end ignore
863
debc7065 864@node pcsys_monitor
1f673135
FB
865@section QEMU Monitor
866
867The QEMU monitor is used to give complex commands to the QEMU
868emulator. You can use it to:
869
870@itemize @minus
871
872@item
e598752a 873Remove or insert removable media images
1f673135
FB
874(such as CD-ROM or floppies)
875
5fafdf24 876@item
1f673135
FB
877Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
878from a disk file.
879
880@item Inspect the VM state without an external debugger.
881
882@end itemize
883
884@subsection Commands
885
886The following commands are available:
887
888@table @option
889
890@item help or ? [cmd]
891Show the help for all commands or just for command @var{cmd}.
892
3b46e624 893@item commit
1f673135
FB
894Commit changes to the disk images (if -snapshot is used)
895
5fafdf24 896@item info subcommand
1f673135
FB
897show various information about the system state
898
899@table @option
900@item info network
41d03949 901show the various VLANs and the associated devices
1f673135
FB
902@item info block
903show the block devices
904@item info registers
905show the cpu registers
906@item info history
907show the command line history
b389dbfb
FB
908@item info pci
909show emulated PCI device
910@item info usb
911show USB devices plugged on the virtual USB hub
912@item info usbhost
913show all USB host devices
a3c25997
FB
914@item info capture
915show information about active capturing
13a2e80f
FB
916@item info snapshots
917show list of VM snapshots
455204eb
TS
918@item info mice
919show which guest mouse is receiving events
1f673135
FB
920@end table
921
922@item q or quit
923Quit the emulator.
924
925@item eject [-f] device
e598752a 926Eject a removable medium (use -f to force it).
1f673135 927
f858dcae
TS
928@item change device setting
929
930Change the configuration of a device
931
932@table @option
933@item change @var{diskdevice} @var{filename}
934Change the medium for a removable disk device to point to @var{filename}. eg
935
936@example
937(qemu) change cdrom /path/to/some.iso
938@end example
939
940@item change vnc @var{display,options}
941Change the configuration of the VNC server. The valid syntax for @var{display}
942and @var{options} are described at @ref{sec_invocation}. eg
943
944@example
945(qemu) change vnc localhost:1
946@end example
947
948@item change vnc password
949
950Change the password associated with the VNC server. The monitor will prompt for
951the new password to be entered. VNC passwords are only significant upto 8 letters.
952eg.
953
954@example
955(qemu) change vnc password
956Password: ********
957@end example
958
959@end table
1f673135
FB
960
961@item screendump filename
962Save screen into PPM image @var{filename}.
963
455204eb
TS
964@item mouse_move dx dy [dz]
965Move the active mouse to the specified coordinates @var{dx} @var{dy}
966with optional scroll axis @var{dz}.
967
968@item mouse_button val
969Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
970
971@item mouse_set index
972Set which mouse device receives events at given @var{index}, index
973can be obtained with
974@example
975info mice
976@end example
977
a3c25997
FB
978@item wavcapture filename [frequency [bits [channels]]]
979Capture audio into @var{filename}. Using sample rate @var{frequency}
980bits per sample @var{bits} and number of channels @var{channels}.
981
982Defaults:
983@itemize @minus
984@item Sample rate = 44100 Hz - CD quality
985@item Bits = 16
986@item Number of channels = 2 - Stereo
987@end itemize
988
989@item stopcapture index
990Stop capture with a given @var{index}, index can be obtained with
991@example
992info capture
993@end example
994
1f673135
FB
995@item log item1[,...]
996Activate logging of the specified items to @file{/tmp/qemu.log}.
997
13a2e80f
FB
998@item savevm [tag|id]
999Create a snapshot of the whole virtual machine. If @var{tag} is
1000provided, it is used as human readable identifier. If there is already
1001a snapshot with the same tag or ID, it is replaced. More info at
1002@ref{vm_snapshots}.
1f673135 1003
13a2e80f
FB
1004@item loadvm tag|id
1005Set the whole virtual machine to the snapshot identified by the tag
1006@var{tag} or the unique snapshot ID @var{id}.
1007
1008@item delvm tag|id
1009Delete the snapshot identified by @var{tag} or @var{id}.
1f673135
FB
1010
1011@item stop
1012Stop emulation.
1013
1014@item c or cont
1015Resume emulation.
1016
1017@item gdbserver [port]
1018Start gdbserver session (default port=1234)
1019
1020@item x/fmt addr
1021Virtual memory dump starting at @var{addr}.
1022
1023@item xp /fmt addr
1024Physical memory dump starting at @var{addr}.
1025
1026@var{fmt} is a format which tells the command how to format the
1027data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1028
1029@table @var
5fafdf24 1030@item count
1f673135
FB
1031is the number of items to be dumped.
1032
1033@item format
4be456f1 1034can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1f673135
FB
1035c (char) or i (asm instruction).
1036
1037@item size
52c00a5f
FB
1038can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1039@code{h} or @code{w} can be specified with the @code{i} format to
1040respectively select 16 or 32 bit code instruction size.
1f673135
FB
1041
1042@end table
1043
5fafdf24 1044Examples:
1f673135
FB
1045@itemize
1046@item
1047Dump 10 instructions at the current instruction pointer:
5fafdf24 1048@example
1f673135
FB
1049(qemu) x/10i $eip
10500x90107063: ret
10510x90107064: sti
10520x90107065: lea 0x0(%esi,1),%esi
10530x90107069: lea 0x0(%edi,1),%edi
10540x90107070: ret
10550x90107071: jmp 0x90107080
10560x90107073: nop
10570x90107074: nop
10580x90107075: nop
10590x90107076: nop
1060@end example
1061
1062@item
1063Dump 80 16 bit values at the start of the video memory.
5fafdf24 1064@smallexample
1f673135
FB
1065(qemu) xp/80hx 0xb8000
10660x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
10670x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
10680x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
10690x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
10700x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
10710x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
10720x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
10730x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
10740x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
10750x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
debc7065 1076@end smallexample
1f673135
FB
1077@end itemize
1078
1079@item p or print/fmt expr
1080
1081Print expression value. Only the @var{format} part of @var{fmt} is
1082used.
0806e3f6 1083
a3a91a35
FB
1084@item sendkey keys
1085
1086Send @var{keys} to the emulator. Use @code{-} to press several keys
1087simultaneously. Example:
1088@example
1089sendkey ctrl-alt-f1
1090@end example
1091
1092This command is useful to send keys that your graphical user interface
1093intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1094
15a34c63
FB
1095@item system_reset
1096
1097Reset the system.
1098
b389dbfb
FB
1099@item usb_add devname
1100
0aff66b5
PB
1101Add the USB device @var{devname}. For details of available devices see
1102@ref{usb_devices}
b389dbfb
FB
1103
1104@item usb_del devname
1105
1106Remove the USB device @var{devname} from the QEMU virtual USB
1107hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1108command @code{info usb} to see the devices you can remove.
1109
1f673135 1110@end table
0806e3f6 1111
1f673135
FB
1112@subsection Integer expressions
1113
1114The monitor understands integers expressions for every integer
1115argument. You can use register names to get the value of specifics
1116CPU registers by prefixing them with @emph{$}.
ec410fc9 1117
1f47a922
FB
1118@node disk_images
1119@section Disk Images
1120
acd935ef
FB
1121Since version 0.6.1, QEMU supports many disk image formats, including
1122growable disk images (their size increase as non empty sectors are
13a2e80f
FB
1123written), compressed and encrypted disk images. Version 0.8.3 added
1124the new qcow2 disk image format which is essential to support VM
1125snapshots.
1f47a922 1126
debc7065
FB
1127@menu
1128* disk_images_quickstart:: Quick start for disk image creation
1129* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 1130* vm_snapshots:: VM snapshots
debc7065 1131* qemu_img_invocation:: qemu-img Invocation
19cb3738 1132* host_drives:: Using host drives
debc7065
FB
1133* disk_images_fat_images:: Virtual FAT disk images
1134@end menu
1135
1136@node disk_images_quickstart
acd935ef
FB
1137@subsection Quick start for disk image creation
1138
1139You can create a disk image with the command:
1f47a922 1140@example
acd935ef 1141qemu-img create myimage.img mysize
1f47a922 1142@end example
acd935ef
FB
1143where @var{myimage.img} is the disk image filename and @var{mysize} is its
1144size in kilobytes. You can add an @code{M} suffix to give the size in
1145megabytes and a @code{G} suffix for gigabytes.
1146
debc7065 1147See @ref{qemu_img_invocation} for more information.
1f47a922 1148
debc7065 1149@node disk_images_snapshot_mode
1f47a922
FB
1150@subsection Snapshot mode
1151
1152If you use the option @option{-snapshot}, all disk images are
1153considered as read only. When sectors in written, they are written in
1154a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
1155write back to the raw disk images by using the @code{commit} monitor
1156command (or @key{C-a s} in the serial console).
1f47a922 1157
13a2e80f
FB
1158@node vm_snapshots
1159@subsection VM snapshots
1160
1161VM snapshots are snapshots of the complete virtual machine including
1162CPU state, RAM, device state and the content of all the writable
1163disks. In order to use VM snapshots, you must have at least one non
1164removable and writable block device using the @code{qcow2} disk image
1165format. Normally this device is the first virtual hard drive.
1166
1167Use the monitor command @code{savevm} to create a new VM snapshot or
1168replace an existing one. A human readable name can be assigned to each
19d36792 1169snapshot in addition to its numerical ID.
13a2e80f
FB
1170
1171Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1172a VM snapshot. @code{info snapshots} lists the available snapshots
1173with their associated information:
1174
1175@example
1176(qemu) info snapshots
1177Snapshot devices: hda
1178Snapshot list (from hda):
1179ID TAG VM SIZE DATE VM CLOCK
11801 start 41M 2006-08-06 12:38:02 00:00:14.954
11812 40M 2006-08-06 12:43:29 00:00:18.633
11823 msys 40M 2006-08-06 12:44:04 00:00:23.514
1183@end example
1184
1185A VM snapshot is made of a VM state info (its size is shown in
1186@code{info snapshots}) and a snapshot of every writable disk image.
1187The VM state info is stored in the first @code{qcow2} non removable
1188and writable block device. The disk image snapshots are stored in
1189every disk image. The size of a snapshot in a disk image is difficult
1190to evaluate and is not shown by @code{info snapshots} because the
1191associated disk sectors are shared among all the snapshots to save
19d36792
FB
1192disk space (otherwise each snapshot would need a full copy of all the
1193disk images).
13a2e80f
FB
1194
1195When using the (unrelated) @code{-snapshot} option
1196(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1197but they are deleted as soon as you exit QEMU.
1198
1199VM snapshots currently have the following known limitations:
1200@itemize
5fafdf24 1201@item
13a2e80f
FB
1202They cannot cope with removable devices if they are removed or
1203inserted after a snapshot is done.
5fafdf24 1204@item
13a2e80f
FB
1205A few device drivers still have incomplete snapshot support so their
1206state is not saved or restored properly (in particular USB).
1207@end itemize
1208
acd935ef
FB
1209@node qemu_img_invocation
1210@subsection @code{qemu-img} Invocation
1f47a922 1211
acd935ef 1212@include qemu-img.texi
05efe46e 1213
19cb3738
FB
1214@node host_drives
1215@subsection Using host drives
1216
1217In addition to disk image files, QEMU can directly access host
1218devices. We describe here the usage for QEMU version >= 0.8.3.
1219
1220@subsubsection Linux
1221
1222On Linux, you can directly use the host device filename instead of a
4be456f1 1223disk image filename provided you have enough privileges to access
19cb3738
FB
1224it. For example, use @file{/dev/cdrom} to access to the CDROM or
1225@file{/dev/fd0} for the floppy.
1226
f542086d 1227@table @code
19cb3738
FB
1228@item CD
1229You can specify a CDROM device even if no CDROM is loaded. QEMU has
1230specific code to detect CDROM insertion or removal. CDROM ejection by
1231the guest OS is supported. Currently only data CDs are supported.
1232@item Floppy
1233You can specify a floppy device even if no floppy is loaded. Floppy
1234removal is currently not detected accurately (if you change floppy
1235without doing floppy access while the floppy is not loaded, the guest
1236OS will think that the same floppy is loaded).
1237@item Hard disks
1238Hard disks can be used. Normally you must specify the whole disk
1239(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1240see it as a partitioned disk. WARNING: unless you know what you do, it
1241is better to only make READ-ONLY accesses to the hard disk otherwise
1242you may corrupt your host data (use the @option{-snapshot} command
1243line option or modify the device permissions accordingly).
1244@end table
1245
1246@subsubsection Windows
1247
01781963
FB
1248@table @code
1249@item CD
4be456f1 1250The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
1251alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1252supported as an alias to the first CDROM drive.
19cb3738 1253
e598752a 1254Currently there is no specific code to handle removable media, so it
19cb3738
FB
1255is better to use the @code{change} or @code{eject} monitor commands to
1256change or eject media.
01781963
FB
1257@item Hard disks
1258Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1259where @var{N} is the drive number (0 is the first hard disk).
1260
1261WARNING: unless you know what you do, it is better to only make
1262READ-ONLY accesses to the hard disk otherwise you may corrupt your
1263host data (use the @option{-snapshot} command line so that the
1264modifications are written in a temporary file).
1265@end table
1266
19cb3738
FB
1267
1268@subsubsection Mac OS X
1269
5fafdf24 1270@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 1271
e598752a 1272Currently there is no specific code to handle removable media, so it
19cb3738
FB
1273is better to use the @code{change} or @code{eject} monitor commands to
1274change or eject media.
1275
debc7065 1276@node disk_images_fat_images
2c6cadd4
FB
1277@subsection Virtual FAT disk images
1278
1279QEMU can automatically create a virtual FAT disk image from a
1280directory tree. In order to use it, just type:
1281
5fafdf24 1282@example
2c6cadd4
FB
1283qemu linux.img -hdb fat:/my_directory
1284@end example
1285
1286Then you access access to all the files in the @file{/my_directory}
1287directory without having to copy them in a disk image or to export
1288them via SAMBA or NFS. The default access is @emph{read-only}.
1289
1290Floppies can be emulated with the @code{:floppy:} option:
1291
5fafdf24 1292@example
2c6cadd4
FB
1293qemu linux.img -fda fat:floppy:/my_directory
1294@end example
1295
1296A read/write support is available for testing (beta stage) with the
1297@code{:rw:} option:
1298
5fafdf24 1299@example
2c6cadd4
FB
1300qemu linux.img -fda fat:floppy:rw:/my_directory
1301@end example
1302
1303What you should @emph{never} do:
1304@itemize
1305@item use non-ASCII filenames ;
1306@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
1307@item expect it to work when loadvm'ing ;
1308@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
1309@end itemize
1310
debc7065 1311@node pcsys_network
9d4fb82e
FB
1312@section Network emulation
1313
4be456f1 1314QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1315target) and can connect them to an arbitrary number of Virtual Local
1316Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1317VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1318simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1319network stack can replace the TAP device to have a basic network
1320connection.
1321
1322@subsection VLANs
9d4fb82e 1323
41d03949
FB
1324QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1325connection between several network devices. These devices can be for
1326example QEMU virtual Ethernet cards or virtual Host ethernet devices
1327(TAP devices).
9d4fb82e 1328
41d03949
FB
1329@subsection Using TAP network interfaces
1330
1331This is the standard way to connect QEMU to a real network. QEMU adds
1332a virtual network device on your host (called @code{tapN}), and you
1333can then configure it as if it was a real ethernet card.
9d4fb82e 1334
8f40c388
FB
1335@subsubsection Linux host
1336
9d4fb82e
FB
1337As an example, you can download the @file{linux-test-xxx.tar.gz}
1338archive and copy the script @file{qemu-ifup} in @file{/etc} and
1339configure properly @code{sudo} so that the command @code{ifconfig}
1340contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1341that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1342device @file{/dev/net/tun} must be present.
1343
ee0f4751
FB
1344See @ref{sec_invocation} to have examples of command lines using the
1345TAP network interfaces.
9d4fb82e 1346
8f40c388
FB
1347@subsubsection Windows host
1348
1349There is a virtual ethernet driver for Windows 2000/XP systems, called
1350TAP-Win32. But it is not included in standard QEMU for Windows,
1351so you will need to get it separately. It is part of OpenVPN package,
1352so download OpenVPN from : @url{http://openvpn.net/}.
1353
9d4fb82e
FB
1354@subsection Using the user mode network stack
1355
41d03949
FB
1356By using the option @option{-net user} (default configuration if no
1357@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1358network stack (you don't need root privilege to use the virtual
41d03949 1359network). The virtual network configuration is the following:
9d4fb82e
FB
1360
1361@example
1362
41d03949
FB
1363 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1364 | (10.0.2.2)
9d4fb82e 1365 |
2518bd0d 1366 ----> DNS server (10.0.2.3)
3b46e624 1367 |
2518bd0d 1368 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1369@end example
1370
1371The QEMU VM behaves as if it was behind a firewall which blocks all
1372incoming connections. You can use a DHCP client to automatically
41d03949
FB
1373configure the network in the QEMU VM. The DHCP server assign addresses
1374to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1375
1376In order to check that the user mode network is working, you can ping
1377the address 10.0.2.2 and verify that you got an address in the range
137810.0.2.x from the QEMU virtual DHCP server.
1379
b415a407 1380Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1381would require root privileges. It means you can only ping the local
b415a407
FB
1382router (10.0.2.2).
1383
9bf05444
FB
1384When using the built-in TFTP server, the router is also the TFTP
1385server.
1386
1387When using the @option{-redir} option, TCP or UDP connections can be
1388redirected from the host to the guest. It allows for example to
1389redirect X11, telnet or SSH connections.
443f1376 1390
41d03949
FB
1391@subsection Connecting VLANs between QEMU instances
1392
1393Using the @option{-net socket} option, it is possible to make VLANs
1394that span several QEMU instances. See @ref{sec_invocation} to have a
1395basic example.
1396
9d4fb82e
FB
1397@node direct_linux_boot
1398@section Direct Linux Boot
1f673135
FB
1399
1400This section explains how to launch a Linux kernel inside QEMU without
1401having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1402kernel testing.
1f673135 1403
ee0f4751 1404The syntax is:
1f673135 1405@example
ee0f4751 1406qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1407@end example
1408
ee0f4751
FB
1409Use @option{-kernel} to provide the Linux kernel image and
1410@option{-append} to give the kernel command line arguments. The
1411@option{-initrd} option can be used to provide an INITRD image.
1f673135 1412
ee0f4751
FB
1413When using the direct Linux boot, a disk image for the first hard disk
1414@file{hda} is required because its boot sector is used to launch the
1415Linux kernel.
1f673135 1416
ee0f4751
FB
1417If you do not need graphical output, you can disable it and redirect
1418the virtual serial port and the QEMU monitor to the console with the
1419@option{-nographic} option. The typical command line is:
1f673135 1420@example
ee0f4751
FB
1421qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1422 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1423@end example
1424
ee0f4751
FB
1425Use @key{Ctrl-a c} to switch between the serial console and the
1426monitor (@pxref{pcsys_keys}).
1f673135 1427
debc7065 1428@node pcsys_usb
b389dbfb
FB
1429@section USB emulation
1430
0aff66b5
PB
1431QEMU emulates a PCI UHCI USB controller. You can virtually plug
1432virtual USB devices or real host USB devices (experimental, works only
1433on Linux hosts). Qemu will automatically create and connect virtual USB hubs
f542086d 1434as necessary to connect multiple USB devices.
b389dbfb 1435
0aff66b5
PB
1436@menu
1437* usb_devices::
1438* host_usb_devices::
1439@end menu
1440@node usb_devices
1441@subsection Connecting USB devices
b389dbfb 1442
0aff66b5
PB
1443USB devices can be connected with the @option{-usbdevice} commandline option
1444or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1445
0aff66b5
PB
1446@table @var
1447@item @code{mouse}
1448Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1449@item @code{tablet}
c6d46c20 1450Pointer device that uses absolute coordinates (like a touchscreen).
0aff66b5
PB
1451This means qemu is able to report the mouse position without having
1452to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1453@item @code{disk:file}
1454Mass storage device based on @var{file} (@pxref{disk_images})
1455@item @code{host:bus.addr}
1456Pass through the host device identified by @var{bus.addr}
1457(Linux only)
1458@item @code{host:vendor_id:product_id}
1459Pass through the host device identified by @var{vendor_id:product_id}
1460(Linux only)
f6d2a316
AZ
1461@item @code{wacom-tablet}
1462Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1463above but it can be used with the tslib library because in addition to touch
1464coordinates it reports touch pressure.
47b2d338
AZ
1465@item @code{keyboard}
1466Standard USB keyboard. Will override the PS/2 keyboard (if present).
0aff66b5 1467@end table
b389dbfb 1468
0aff66b5 1469@node host_usb_devices
b389dbfb
FB
1470@subsection Using host USB devices on a Linux host
1471
1472WARNING: this is an experimental feature. QEMU will slow down when
1473using it. USB devices requiring real time streaming (i.e. USB Video
1474Cameras) are not supported yet.
1475
1476@enumerate
5fafdf24 1477@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1478is actually using the USB device. A simple way to do that is simply to
1479disable the corresponding kernel module by renaming it from @file{mydriver.o}
1480to @file{mydriver.o.disabled}.
1481
1482@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1483@example
1484ls /proc/bus/usb
1485001 devices drivers
1486@end example
1487
1488@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1489@example
1490chown -R myuid /proc/bus/usb
1491@end example
1492
1493@item Launch QEMU and do in the monitor:
5fafdf24 1494@example
b389dbfb
FB
1495info usbhost
1496 Device 1.2, speed 480 Mb/s
1497 Class 00: USB device 1234:5678, USB DISK
1498@end example
1499You should see the list of the devices you can use (Never try to use
1500hubs, it won't work).
1501
1502@item Add the device in QEMU by using:
5fafdf24 1503@example
b389dbfb
FB
1504usb_add host:1234:5678
1505@end example
1506
1507Normally the guest OS should report that a new USB device is
1508plugged. You can use the option @option{-usbdevice} to do the same.
1509
1510@item Now you can try to use the host USB device in QEMU.
1511
1512@end enumerate
1513
1514When relaunching QEMU, you may have to unplug and plug again the USB
1515device to make it work again (this is a bug).
1516
f858dcae
TS
1517@node vnc_security
1518@section VNC security
1519
1520The VNC server capability provides access to the graphical console
1521of the guest VM across the network. This has a number of security
1522considerations depending on the deployment scenarios.
1523
1524@menu
1525* vnc_sec_none::
1526* vnc_sec_password::
1527* vnc_sec_certificate::
1528* vnc_sec_certificate_verify::
1529* vnc_sec_certificate_pw::
1530* vnc_generate_cert::
1531@end menu
1532@node vnc_sec_none
1533@subsection Without passwords
1534
1535The simplest VNC server setup does not include any form of authentication.
1536For this setup it is recommended to restrict it to listen on a UNIX domain
1537socket only. For example
1538
1539@example
1540qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1541@end example
1542
1543This ensures that only users on local box with read/write access to that
1544path can access the VNC server. To securely access the VNC server from a
1545remote machine, a combination of netcat+ssh can be used to provide a secure
1546tunnel.
1547
1548@node vnc_sec_password
1549@subsection With passwords
1550
1551The VNC protocol has limited support for password based authentication. Since
1552the protocol limits passwords to 8 characters it should not be considered
1553to provide high security. The password can be fairly easily brute-forced by
1554a client making repeat connections. For this reason, a VNC server using password
1555authentication should be restricted to only listen on the loopback interface
1556or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1557option, and then once QEMU is running the password is set with the monitor. Until
1558the monitor is used to set the password all clients will be rejected.
1559
1560@example
1561qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1562(qemu) change vnc password
1563Password: ********
1564(qemu)
1565@end example
1566
1567@node vnc_sec_certificate
1568@subsection With x509 certificates
1569
1570The QEMU VNC server also implements the VeNCrypt extension allowing use of
1571TLS for encryption of the session, and x509 certificates for authentication.
1572The use of x509 certificates is strongly recommended, because TLS on its
1573own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1574support provides a secure session, but no authentication. This allows any
1575client to connect, and provides an encrypted session.
1576
1577@example
1578qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1579@end example
1580
1581In the above example @code{/etc/pki/qemu} should contain at least three files,
1582@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1583users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1584NB the @code{server-key.pem} file should be protected with file mode 0600 to
1585only be readable by the user owning it.
1586
1587@node vnc_sec_certificate_verify
1588@subsection With x509 certificates and client verification
1589
1590Certificates can also provide a means to authenticate the client connecting.
1591The server will request that the client provide a certificate, which it will
1592then validate against the CA certificate. This is a good choice if deploying
1593in an environment with a private internal certificate authority.
1594
1595@example
1596qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1597@end example
1598
1599
1600@node vnc_sec_certificate_pw
1601@subsection With x509 certificates, client verification and passwords
1602
1603Finally, the previous method can be combined with VNC password authentication
1604to provide two layers of authentication for clients.
1605
1606@example
1607qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1608(qemu) change vnc password
1609Password: ********
1610(qemu)
1611@end example
1612
1613@node vnc_generate_cert
1614@subsection Generating certificates for VNC
1615
1616The GNU TLS packages provides a command called @code{certtool} which can
1617be used to generate certificates and keys in PEM format. At a minimum it
1618is neccessary to setup a certificate authority, and issue certificates to
1619each server. If using certificates for authentication, then each client
1620will also need to be issued a certificate. The recommendation is for the
1621server to keep its certificates in either @code{/etc/pki/qemu} or for
1622unprivileged users in @code{$HOME/.pki/qemu}.
1623
1624@menu
1625* vnc_generate_ca::
1626* vnc_generate_server::
1627* vnc_generate_client::
1628@end menu
1629@node vnc_generate_ca
1630@subsubsection Setup the Certificate Authority
1631
1632This step only needs to be performed once per organization / organizational
1633unit. First the CA needs a private key. This key must be kept VERY secret
1634and secure. If this key is compromised the entire trust chain of the certificates
1635issued with it is lost.
1636
1637@example
1638# certtool --generate-privkey > ca-key.pem
1639@end example
1640
1641A CA needs to have a public certificate. For simplicity it can be a self-signed
1642certificate, or one issue by a commercial certificate issuing authority. To
1643generate a self-signed certificate requires one core piece of information, the
1644name of the organization.
1645
1646@example
1647# cat > ca.info <<EOF
1648cn = Name of your organization
1649ca
1650cert_signing_key
1651EOF
1652# certtool --generate-self-signed \
1653 --load-privkey ca-key.pem
1654 --template ca.info \
1655 --outfile ca-cert.pem
1656@end example
1657
1658The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1659TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1660
1661@node vnc_generate_server
1662@subsubsection Issuing server certificates
1663
1664Each server (or host) needs to be issued with a key and certificate. When connecting
1665the certificate is sent to the client which validates it against the CA certificate.
1666The core piece of information for a server certificate is the hostname. This should
1667be the fully qualified hostname that the client will connect with, since the client
1668will typically also verify the hostname in the certificate. On the host holding the
1669secure CA private key:
1670
1671@example
1672# cat > server.info <<EOF
1673organization = Name of your organization
1674cn = server.foo.example.com
1675tls_www_server
1676encryption_key
1677signing_key
1678EOF
1679# certtool --generate-privkey > server-key.pem
1680# certtool --generate-certificate \
1681 --load-ca-certificate ca-cert.pem \
1682 --load-ca-privkey ca-key.pem \
1683 --load-privkey server server-key.pem \
1684 --template server.info \
1685 --outfile server-cert.pem
1686@end example
1687
1688The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1689to the server for which they were generated. The @code{server-key.pem} is security
1690sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1691
1692@node vnc_generate_client
1693@subsubsection Issuing client certificates
1694
1695If the QEMU VNC server is to use the @code{x509verify} option to validate client
1696certificates as its authentication mechanism, each client also needs to be issued
1697a certificate. The client certificate contains enough metadata to uniquely identify
1698the client, typically organization, state, city, building, etc. On the host holding
1699the secure CA private key:
1700
1701@example
1702# cat > client.info <<EOF
1703country = GB
1704state = London
1705locality = London
1706organiazation = Name of your organization
1707cn = client.foo.example.com
1708tls_www_client
1709encryption_key
1710signing_key
1711EOF
1712# certtool --generate-privkey > client-key.pem
1713# certtool --generate-certificate \
1714 --load-ca-certificate ca-cert.pem \
1715 --load-ca-privkey ca-key.pem \
1716 --load-privkey client-key.pem \
1717 --template client.info \
1718 --outfile client-cert.pem
1719@end example
1720
1721The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1722copied to the client for which they were generated.
1723
0806e3f6 1724@node gdb_usage
da415d54
FB
1725@section GDB usage
1726
1727QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1728'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1729
9d4520d0 1730In order to use gdb, launch qemu with the '-s' option. It will wait for a
da415d54
FB
1731gdb connection:
1732@example
debc7065
FB
1733> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1734 -append "root=/dev/hda"
da415d54
FB
1735Connected to host network interface: tun0
1736Waiting gdb connection on port 1234
1737@end example
1738
1739Then launch gdb on the 'vmlinux' executable:
1740@example
1741> gdb vmlinux
1742@end example
1743
1744In gdb, connect to QEMU:
1745@example
6c9bf893 1746(gdb) target remote localhost:1234
da415d54
FB
1747@end example
1748
1749Then you can use gdb normally. For example, type 'c' to launch the kernel:
1750@example
1751(gdb) c
1752@end example
1753
0806e3f6
FB
1754Here are some useful tips in order to use gdb on system code:
1755
1756@enumerate
1757@item
1758Use @code{info reg} to display all the CPU registers.
1759@item
1760Use @code{x/10i $eip} to display the code at the PC position.
1761@item
1762Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1763@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1764@end enumerate
1765
debc7065 1766@node pcsys_os_specific
1a084f3d
FB
1767@section Target OS specific information
1768
1769@subsection Linux
1770
15a34c63
FB
1771To have access to SVGA graphic modes under X11, use the @code{vesa} or
1772the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1773color depth in the guest and the host OS.
1a084f3d 1774
e3371e62
FB
1775When using a 2.6 guest Linux kernel, you should add the option
1776@code{clock=pit} on the kernel command line because the 2.6 Linux
1777kernels make very strict real time clock checks by default that QEMU
1778cannot simulate exactly.
1779
7c3fc84d
FB
1780When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1781not activated because QEMU is slower with this patch. The QEMU
1782Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1783Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1784patch by default. Newer kernels don't have it.
1785
1a084f3d
FB
1786@subsection Windows
1787
1788If you have a slow host, using Windows 95 is better as it gives the
1789best speed. Windows 2000 is also a good choice.
1790
e3371e62
FB
1791@subsubsection SVGA graphic modes support
1792
1793QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1794card. All Windows versions starting from Windows 95 should recognize
1795and use this graphic card. For optimal performances, use 16 bit color
1796depth in the guest and the host OS.
1a084f3d 1797
3cb0853a
FB
1798If you are using Windows XP as guest OS and if you want to use high
1799resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
18001280x1024x16), then you should use the VESA VBE virtual graphic card
1801(option @option{-std-vga}).
1802
e3371e62
FB
1803@subsubsection CPU usage reduction
1804
1805Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1806instruction. The result is that it takes host CPU cycles even when
1807idle. You can install the utility from
1808@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1809problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1810
9d0a8e6f 1811@subsubsection Windows 2000 disk full problem
e3371e62 1812
9d0a8e6f
FB
1813Windows 2000 has a bug which gives a disk full problem during its
1814installation. When installing it, use the @option{-win2k-hack} QEMU
1815option to enable a specific workaround. After Windows 2000 is
1816installed, you no longer need this option (this option slows down the
1817IDE transfers).
e3371e62 1818
6cc721cf
FB
1819@subsubsection Windows 2000 shutdown
1820
1821Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1822can. It comes from the fact that Windows 2000 does not automatically
1823use the APM driver provided by the BIOS.
1824
1825In order to correct that, do the following (thanks to Struan
1826Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1827Add/Troubleshoot a device => Add a new device & Next => No, select the
1828hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1829(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1830correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1831
1832@subsubsection Share a directory between Unix and Windows
1833
1834See @ref{sec_invocation} about the help of the option @option{-smb}.
1835
2192c332 1836@subsubsection Windows XP security problem
e3371e62
FB
1837
1838Some releases of Windows XP install correctly but give a security
1839error when booting:
1840@example
1841A problem is preventing Windows from accurately checking the
1842license for this computer. Error code: 0x800703e6.
1843@end example
e3371e62 1844
2192c332
FB
1845The workaround is to install a service pack for XP after a boot in safe
1846mode. Then reboot, and the problem should go away. Since there is no
1847network while in safe mode, its recommended to download the full
1848installation of SP1 or SP2 and transfer that via an ISO or using the
1849vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1850
a0a821a4
FB
1851@subsection MS-DOS and FreeDOS
1852
1853@subsubsection CPU usage reduction
1854
1855DOS does not correctly use the CPU HLT instruction. The result is that
1856it takes host CPU cycles even when idle. You can install the utility
1857from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1858problem.
1859
debc7065 1860@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1861@chapter QEMU System emulator for non PC targets
1862
1863QEMU is a generic emulator and it emulates many non PC
1864machines. Most of the options are similar to the PC emulator. The
4be456f1 1865differences are mentioned in the following sections.
3f9f3aa1 1866
debc7065
FB
1867@menu
1868* QEMU PowerPC System emulator::
24d4de45
TS
1869* Sparc32 System emulator::
1870* Sparc64 System emulator::
1871* MIPS System emulator::
1872* ARM System emulator::
1873* ColdFire System emulator::
debc7065
FB
1874@end menu
1875
1876@node QEMU PowerPC System emulator
3f9f3aa1 1877@section QEMU PowerPC System emulator
1a084f3d 1878
15a34c63
FB
1879Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1880or PowerMac PowerPC system.
1a084f3d 1881
b671f9ed 1882QEMU emulates the following PowerMac peripherals:
1a084f3d 1883
15a34c63 1884@itemize @minus
5fafdf24
TS
1885@item
1886UniNorth PCI Bridge
15a34c63
FB
1887@item
1888PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1889@item
15a34c63 18902 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1891@item
15a34c63
FB
1892NE2000 PCI adapters
1893@item
1894Non Volatile RAM
1895@item
1896VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1897@end itemize
1898
b671f9ed 1899QEMU emulates the following PREP peripherals:
52c00a5f
FB
1900
1901@itemize @minus
5fafdf24 1902@item
15a34c63
FB
1903PCI Bridge
1904@item
1905PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1906@item
52c00a5f
FB
19072 IDE interfaces with hard disk and CD-ROM support
1908@item
1909Floppy disk
5fafdf24 1910@item
15a34c63 1911NE2000 network adapters
52c00a5f
FB
1912@item
1913Serial port
1914@item
1915PREP Non Volatile RAM
15a34c63
FB
1916@item
1917PC compatible keyboard and mouse.
52c00a5f
FB
1918@end itemize
1919
15a34c63 1920QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1921@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1922
15a34c63
FB
1923@c man begin OPTIONS
1924
1925The following options are specific to the PowerPC emulation:
1926
1927@table @option
1928
3b46e624 1929@item -g WxH[xDEPTH]
15a34c63
FB
1930
1931Set the initial VGA graphic mode. The default is 800x600x15.
1932
1933@end table
1934
5fafdf24 1935@c man end
15a34c63
FB
1936
1937
52c00a5f 1938More information is available at
3f9f3aa1 1939@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1940
24d4de45
TS
1941@node Sparc32 System emulator
1942@section Sparc32 System emulator
e80cfcfc 1943
0986ac3b 1944Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
a2502b58 1945or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
a785e42e
BS
1946SMP up to 16 CPUs is supported, but Linux limits the number of usable CPUs
1947to 4.
e80cfcfc 1948
b671f9ed 1949QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1950
1951@itemize @minus
3475187d 1952@item
e80cfcfc
FB
1953IOMMU
1954@item
1955TCX Frame buffer
5fafdf24 1956@item
e80cfcfc
FB
1957Lance (Am7990) Ethernet
1958@item
1959Non Volatile RAM M48T08
1960@item
3475187d
FB
1961Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1962and power/reset logic
1963@item
1964ESP SCSI controller with hard disk and CD-ROM support
1965@item
1966Floppy drive
a2502b58
BS
1967@item
1968CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1969@end itemize
1970
a785e42e
BS
1971The number of peripherals is fixed in the architecture. Maximum memory size
1972depends on the machine type, for SS-5 it is 256MB and for SS-10 2047MB.
3475187d 1973
30a604f3 1974Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
1975@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1976firmware implementation. The goal is to implement a 100% IEEE
19771275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1978
1979A sample Linux 2.6 series kernel and ram disk image are available on
0986ac3b
FB
1980the QEMU web site. Please note that currently NetBSD, OpenBSD or
1981Solaris kernels don't work.
3475187d
FB
1982
1983@c man begin OPTIONS
1984
a2502b58 1985The following options are specific to the Sparc32 emulation:
3475187d
FB
1986
1987@table @option
1988
a2502b58 1989@item -g WxHx[xDEPTH]
3475187d 1990
a2502b58
BS
1991Set the initial TCX graphic mode. The default is 1024x768x8, currently
1992the only other possible mode is 1024x768x24.
3475187d 1993
66508601
BS
1994@item -prom-env string
1995
1996Set OpenBIOS variables in NVRAM, for example:
1997
1998@example
1999qemu-system-sparc -prom-env 'auto-boot?=false' \
2000 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2001@end example
2002
a2502b58
BS
2003@item -M [SS-5|SS-10]
2004
2005Set the emulated machine type. Default is SS-5.
2006
3475187d
FB
2007@end table
2008
5fafdf24 2009@c man end
3475187d 2010
24d4de45
TS
2011@node Sparc64 System emulator
2012@section Sparc64 System emulator
e80cfcfc 2013
3475187d
FB
2014Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2015The emulator is not usable for anything yet.
b756921a 2016
83469015
FB
2017QEMU emulates the following sun4u peripherals:
2018
2019@itemize @minus
2020@item
5fafdf24 2021UltraSparc IIi APB PCI Bridge
83469015
FB
2022@item
2023PCI VGA compatible card with VESA Bochs Extensions
2024@item
2025Non Volatile RAM M48T59
2026@item
2027PC-compatible serial ports
2028@end itemize
2029
24d4de45
TS
2030@node MIPS System emulator
2031@section MIPS System emulator
9d0a8e6f
FB
2032
2033Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
24d4de45
TS
2034Three different machine types are emulated:
2035
2036@itemize @minus
2037@item
2038A generic ISA PC-like machine "mips"
2039@item
2040The MIPS Malta prototype board "malta"
2041@item
2042An ACER Pica "pica61"
6bf5b4e8 2043@item
f0fc6f8f 2044MIPS emulator pseudo board "mipssim"
24d4de45
TS
2045@end itemize
2046
2047The generic emulation is supported by Debian 'Etch' and is able to
2048install Debian into a virtual disk image. The following devices are
2049emulated:
3f9f3aa1
FB
2050
2051@itemize @minus
5fafdf24 2052@item
6bf5b4e8 2053A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2054@item
2055PC style serial port
2056@item
24d4de45
TS
2057PC style IDE disk
2058@item
3f9f3aa1
FB
2059NE2000 network card
2060@end itemize
2061
24d4de45
TS
2062The Malta emulation supports the following devices:
2063
2064@itemize @minus
2065@item
0b64d008 2066Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2067@item
2068PIIX4 PCI/USB/SMbus controller
2069@item
2070The Multi-I/O chip's serial device
2071@item
2072PCnet32 PCI network card
2073@item
2074Malta FPGA serial device
2075@item
2076Cirrus VGA graphics card
2077@end itemize
2078
2079The ACER Pica emulation supports:
2080
2081@itemize @minus
2082@item
2083MIPS R4000 CPU
2084@item
2085PC-style IRQ and DMA controllers
2086@item
2087PC Keyboard
2088@item
2089IDE controller
2090@end itemize
3f9f3aa1 2091
f0fc6f8f
TS
2092The mipssim pseudo board emulation provides an environment similiar
2093to what the proprietary MIPS emulator uses for running Linux.
2094It supports:
6bf5b4e8
TS
2095
2096@itemize @minus
2097@item
2098A range of MIPS CPUs, default is the 24Kf
2099@item
2100PC style serial port
2101@item
2102MIPSnet network emulation
2103@end itemize
2104
24d4de45
TS
2105@node ARM System emulator
2106@section ARM System emulator
3f9f3aa1
FB
2107
2108Use the executable @file{qemu-system-arm} to simulate a ARM
2109machine. The ARM Integrator/CP board is emulated with the following
2110devices:
2111
2112@itemize @minus
2113@item
ce819861 2114ARM926E, ARM1026E or ARM946E CPU
3f9f3aa1
FB
2115@item
2116Two PL011 UARTs
5fafdf24 2117@item
3f9f3aa1 2118SMC 91c111 Ethernet adapter
00a9bf19
PB
2119@item
2120PL110 LCD controller
2121@item
2122PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2123@item
2124PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2125@end itemize
2126
2127The ARM Versatile baseboard is emulated with the following devices:
2128
2129@itemize @minus
2130@item
2131ARM926E CPU
2132@item
2133PL190 Vectored Interrupt Controller
2134@item
2135Four PL011 UARTs
5fafdf24 2136@item
00a9bf19
PB
2137SMC 91c111 Ethernet adapter
2138@item
2139PL110 LCD controller
2140@item
2141PL050 KMI with PS/2 keyboard and mouse.
2142@item
2143PCI host bridge. Note the emulated PCI bridge only provides access to
2144PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2145This means some devices (eg. ne2k_pci NIC) are not usable, and others
2146(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2147mapped control registers.
e6de1bad
PB
2148@item
2149PCI OHCI USB controller.
2150@item
2151LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2152@item
2153PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2154@end itemize
2155
d7739d75
PB
2156The ARM RealView Emulation baseboard is emulated with the following devices:
2157
2158@itemize @minus
2159@item
2160ARM926E CPU
2161@item
2162ARM AMBA Generic/Distributed Interrupt Controller
2163@item
2164Four PL011 UARTs
5fafdf24 2165@item
d7739d75
PB
2166SMC 91c111 Ethernet adapter
2167@item
2168PL110 LCD controller
2169@item
2170PL050 KMI with PS/2 keyboard and mouse
2171@item
2172PCI host bridge
2173@item
2174PCI OHCI USB controller
2175@item
2176LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2177@item
2178PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2179@end itemize
2180
b00052e4
AZ
2181The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2182and "Terrier") emulation includes the following peripherals:
2183
2184@itemize @minus
2185@item
2186Intel PXA270 System-on-chip (ARM V5TE core)
2187@item
2188NAND Flash memory
2189@item
2190IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2191@item
2192On-chip OHCI USB controller
2193@item
2194On-chip LCD controller
2195@item
2196On-chip Real Time Clock
2197@item
2198TI ADS7846 touchscreen controller on SSP bus
2199@item
2200Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2201@item
2202GPIO-connected keyboard controller and LEDs
2203@item
549444e1 2204Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2205@item
2206Three on-chip UARTs
2207@item
2208WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2209@end itemize
2210
3f9f3aa1
FB
2211A Linux 2.6 test image is available on the QEMU web site. More
2212information is available in the QEMU mailing-list archive.
9d0a8e6f 2213
24d4de45
TS
2214@node ColdFire System emulator
2215@section ColdFire System emulator
209a4e69
PB
2216
2217Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2218The emulator is able to boot a uClinux kernel.
707e011b
PB
2219
2220The M5208EVB emulation includes the following devices:
2221
2222@itemize @minus
5fafdf24 2223@item
707e011b
PB
2224MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2225@item
2226Three Two on-chip UARTs.
2227@item
2228Fast Ethernet Controller (FEC)
2229@end itemize
2230
2231The AN5206 emulation includes the following devices:
209a4e69
PB
2232
2233@itemize @minus
5fafdf24 2234@item
209a4e69
PB
2235MCF5206 ColdFire V2 Microprocessor.
2236@item
2237Two on-chip UARTs.
2238@end itemize
2239
5fafdf24
TS
2240@node QEMU User space emulator
2241@chapter QEMU User space emulator
83195237
FB
2242
2243@menu
2244* Supported Operating Systems ::
2245* Linux User space emulator::
2246* Mac OS X/Darwin User space emulator ::
2247@end menu
2248
2249@node Supported Operating Systems
2250@section Supported Operating Systems
2251
2252The following OS are supported in user space emulation:
2253
2254@itemize @minus
2255@item
4be456f1 2256Linux (referred as qemu-linux-user)
83195237 2257@item
4be456f1 2258Mac OS X/Darwin (referred as qemu-darwin-user)
83195237
FB
2259@end itemize
2260
2261@node Linux User space emulator
2262@section Linux User space emulator
386405f7 2263
debc7065
FB
2264@menu
2265* Quick Start::
2266* Wine launch::
2267* Command line options::
79737e4a 2268* Other binaries::
debc7065
FB
2269@end menu
2270
2271@node Quick Start
83195237 2272@subsection Quick Start
df0f11a0 2273
1f673135 2274In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2275itself and all the target (x86) dynamic libraries used by it.
386405f7 2276
1f673135 2277@itemize
386405f7 2278
1f673135
FB
2279@item On x86, you can just try to launch any process by using the native
2280libraries:
386405f7 2281
5fafdf24 2282@example
1f673135
FB
2283qemu-i386 -L / /bin/ls
2284@end example
386405f7 2285
1f673135
FB
2286@code{-L /} tells that the x86 dynamic linker must be searched with a
2287@file{/} prefix.
386405f7 2288
dbcf5e82
TS
2289@item Since QEMU is also a linux process, you can launch qemu with
2290qemu (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2291
5fafdf24 2292@example
1f673135
FB
2293qemu-i386 -L / qemu-i386 -L / /bin/ls
2294@end example
386405f7 2295
1f673135
FB
2296@item On non x86 CPUs, you need first to download at least an x86 glibc
2297(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2298@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2299
1f673135 2300@example
5fafdf24 2301unset LD_LIBRARY_PATH
1f673135 2302@end example
1eb87257 2303
1f673135 2304Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2305
1f673135
FB
2306@example
2307qemu-i386 tests/i386/ls
2308@end example
2309You can look at @file{qemu-binfmt-conf.sh} so that
2310QEMU is automatically launched by the Linux kernel when you try to
2311launch x86 executables. It requires the @code{binfmt_misc} module in the
2312Linux kernel.
1eb87257 2313
1f673135
FB
2314@item The x86 version of QEMU is also included. You can try weird things such as:
2315@example
debc7065
FB
2316qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2317 /usr/local/qemu-i386/bin/ls-i386
1f673135 2318@end example
1eb20527 2319
1f673135 2320@end itemize
1eb20527 2321
debc7065 2322@node Wine launch
83195237 2323@subsection Wine launch
1eb20527 2324
1f673135 2325@itemize
386405f7 2326
1f673135
FB
2327@item Ensure that you have a working QEMU with the x86 glibc
2328distribution (see previous section). In order to verify it, you must be
2329able to do:
386405f7 2330
1f673135
FB
2331@example
2332qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2333@end example
386405f7 2334
1f673135 2335@item Download the binary x86 Wine install
5fafdf24 2336(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2337
1f673135 2338@item Configure Wine on your account. Look at the provided script
debc7065 2339@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2340@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2341
1f673135 2342@item Then you can try the example @file{putty.exe}:
386405f7 2343
1f673135 2344@example
debc7065
FB
2345qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2346 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2347@end example
386405f7 2348
1f673135 2349@end itemize
fd429f2f 2350
debc7065 2351@node Command line options
83195237 2352@subsection Command line options
1eb20527 2353
1f673135
FB
2354@example
2355usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2356@end example
1eb20527 2357
1f673135
FB
2358@table @option
2359@item -h
2360Print the help
3b46e624 2361@item -L path
1f673135
FB
2362Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2363@item -s size
2364Set the x86 stack size in bytes (default=524288)
386405f7
FB
2365@end table
2366
1f673135 2367Debug options:
386405f7 2368
1f673135
FB
2369@table @option
2370@item -d
2371Activate log (logfile=/tmp/qemu.log)
2372@item -p pagesize
2373Act as if the host page size was 'pagesize' bytes
2374@end table
386405f7 2375
79737e4a 2376@node Other binaries
83195237 2377@subsection Other binaries
79737e4a
PB
2378
2379@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2380binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2381configurations), and arm-uclinux bFLT format binaries.
2382
e6e5906b
PB
2383@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2384(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2385coldfire uClinux bFLT format binaries.
2386
79737e4a
PB
2387The binary format is detected automatically.
2388
a785e42e
BS
2389@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2390(Sparc64 CPU, 32 bit ABI).
2391
2392@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2393SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2394
83195237
FB
2395@node Mac OS X/Darwin User space emulator
2396@section Mac OS X/Darwin User space emulator
2397
2398@menu
2399* Mac OS X/Darwin Status::
2400* Mac OS X/Darwin Quick Start::
2401* Mac OS X/Darwin Command line options::
2402@end menu
2403
2404@node Mac OS X/Darwin Status
2405@subsection Mac OS X/Darwin Status
2406
2407@itemize @minus
2408@item
2409target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2410@item
2411target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2412@item
dbcf5e82 2413target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
83195237
FB
2414@item
2415target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2416@end itemize
2417
2418[1] If you're host commpage can be executed by qemu.
2419
2420@node Mac OS X/Darwin Quick Start
2421@subsection Quick Start
2422
2423In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2424itself and all the target dynamic libraries used by it. If you don't have the FAT
2425libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2426CD or compile them by hand.
2427
2428@itemize
2429
2430@item On x86, you can just try to launch any process by using the native
2431libraries:
2432
5fafdf24 2433@example
dbcf5e82 2434qemu-i386 /bin/ls
83195237
FB
2435@end example
2436
2437or to run the ppc version of the executable:
2438
5fafdf24 2439@example
dbcf5e82 2440qemu-ppc /bin/ls
83195237
FB
2441@end example
2442
2443@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2444are installed:
2445
5fafdf24 2446@example
dbcf5e82 2447qemu-i386 -L /opt/x86_root/ /bin/ls
83195237
FB
2448@end example
2449
2450@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2451@file{/opt/x86_root/usr/bin/dyld}.
2452
2453@end itemize
2454
2455@node Mac OS X/Darwin Command line options
2456@subsection Command line options
2457
2458@example
dbcf5e82 2459usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
83195237
FB
2460@end example
2461
2462@table @option
2463@item -h
2464Print the help
3b46e624 2465@item -L path
83195237
FB
2466Set the library root path (default=/)
2467@item -s size
2468Set the stack size in bytes (default=524288)
2469@end table
2470
2471Debug options:
2472
2473@table @option
2474@item -d
2475Activate log (logfile=/tmp/qemu.log)
2476@item -p pagesize
2477Act as if the host page size was 'pagesize' bytes
2478@end table
2479
15a34c63
FB
2480@node compilation
2481@chapter Compilation from the sources
2482
debc7065
FB
2483@menu
2484* Linux/Unix::
2485* Windows::
2486* Cross compilation for Windows with Linux::
2487* Mac OS X::
2488@end menu
2489
2490@node Linux/Unix
7c3fc84d
FB
2491@section Linux/Unix
2492
2493@subsection Compilation
2494
2495First you must decompress the sources:
2496@example
2497cd /tmp
2498tar zxvf qemu-x.y.z.tar.gz
2499cd qemu-x.y.z
2500@end example
2501
2502Then you configure QEMU and build it (usually no options are needed):
2503@example
2504./configure
2505make
2506@end example
2507
2508Then type as root user:
2509@example
2510make install
2511@end example
2512to install QEMU in @file{/usr/local}.
2513
4fe8b87a 2514@subsection GCC version
7c3fc84d 2515
366dfc52 2516In order to compile QEMU successfully, it is very important that you
4fe8b87a
FB
2517have the right tools. The most important one is gcc. On most hosts and
2518in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2519Linux distribution includes a gcc 4.x compiler, you can usually
2520install an older version (it is invoked by @code{gcc32} or
2521@code{gcc34}). The QEMU configure script automatically probes for
4be456f1 2522these older versions so that usually you don't have to do anything.
15a34c63 2523
debc7065 2524@node Windows
15a34c63
FB
2525@section Windows
2526
2527@itemize
2528@item Install the current versions of MSYS and MinGW from
2529@url{http://www.mingw.org/}. You can find detailed installation
2530instructions in the download section and the FAQ.
2531
5fafdf24 2532@item Download
15a34c63 2533the MinGW development library of SDL 1.2.x
debc7065 2534(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
15a34c63
FB
2535@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2536unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2537directory. Edit the @file{sdl-config} script so that it gives the
2538correct SDL directory when invoked.
2539
2540@item Extract the current version of QEMU.
5fafdf24 2541
15a34c63
FB
2542@item Start the MSYS shell (file @file{msys.bat}).
2543
5fafdf24 2544@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2545@file{make}. If you have problems using SDL, verify that
2546@file{sdl-config} can be launched from the MSYS command line.
2547
5fafdf24 2548@item You can install QEMU in @file{Program Files/Qemu} by typing
15a34c63
FB
2549@file{make install}. Don't forget to copy @file{SDL.dll} in
2550@file{Program Files/Qemu}.
2551
2552@end itemize
2553
debc7065 2554@node Cross compilation for Windows with Linux
15a34c63
FB
2555@section Cross compilation for Windows with Linux
2556
2557@itemize
2558@item
2559Install the MinGW cross compilation tools available at
2560@url{http://www.mingw.org/}.
2561
5fafdf24 2562@item
15a34c63
FB
2563Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2564unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2565variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2566the QEMU configuration script.
2567
5fafdf24 2568@item
15a34c63
FB
2569Configure QEMU for Windows cross compilation:
2570@example
2571./configure --enable-mingw32
2572@end example
2573If necessary, you can change the cross-prefix according to the prefix
4be456f1 2574chosen for the MinGW tools with --cross-prefix. You can also use
15a34c63
FB
2575--prefix to set the Win32 install path.
2576
5fafdf24 2577@item You can install QEMU in the installation directory by typing
15a34c63 2578@file{make install}. Don't forget to copy @file{SDL.dll} in the
5fafdf24 2579installation directory.
15a34c63
FB
2580
2581@end itemize
2582
2583Note: Currently, Wine does not seem able to launch
2584QEMU for Win32.
2585
debc7065 2586@node Mac OS X
15a34c63
FB
2587@section Mac OS X
2588
2589The Mac OS X patches are not fully merged in QEMU, so you should look
2590at the QEMU mailing list archive to have all the necessary
2591information.
2592
debc7065
FB
2593@node Index
2594@chapter Index
2595@printindex cp
2596
2597@bye