]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
Merge remote-tracking branch 'stefanha/tags/tracing-pull-request' into staging
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
e080e785
SW
4
5@documentlanguage en
6@documentencoding UTF-8
7
8f40c388 8@settitle QEMU Emulator User Documentation
debc7065
FB
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
386405f7 12
a1a32b05
SW
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
0806e3f6 19@iftex
386405f7
FB
20@titlepage
21@sp 7
8f40c388 22@center @titlefont{QEMU Emulator}
debc7065
FB
23@sp 1
24@center @titlefont{User Documentation}
386405f7
FB
25@sp 3
26@end titlepage
0806e3f6 27@end iftex
386405f7 28
debc7065
FB
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
83195237 38* QEMU User space emulator::
debc7065 39* compilation:: Compilation from the sources
7544a042 40* License::
debc7065
FB
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
386405f7
FB
48@chapter Introduction
49
debc7065
FB
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
322d0c66 55@section Features
386405f7 56
1f673135
FB
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
1eb20527
FB
59
60QEMU has two operating modes:
0806e3f6 61
d7e5edca 62@itemize
7544a042 63@cindex operating modes
0806e3f6 64
5fafdf24 65@item
7544a042 66@cindex system emulation
1f673135 67Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
5fafdf24 72@item
7544a042 73@cindex user mode emulation
83195237
FB
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
1f673135
FB
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
1eb20527
FB
78
79@end itemize
80
e1b4382c 81QEMU can run without a host kernel driver and yet gives acceptable
5fafdf24 82performance.
322d0c66 83
52c00a5f
FB
84For system emulation, the following hardware targets are supported:
85@itemize
7544a042
SW
86@cindex emulated target systems
87@cindex supported target systems
9d0a8e6f 88@item PC (x86 or x86_64 processor)
3f9f3aa1 89@item ISA PC (old style PC without PCI bus)
52c00a5f 90@item PREP (PowerPC processor)
d45952a0 91@item G3 Beige PowerMac (PowerPC processor)
9d0a8e6f 92@item Mac99 PowerMac (PowerPC processor, in progress)
ee76f82e 93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
c7ba218d 94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
d9aedc32 95@item Malta board (32-bit and 64-bit MIPS processors)
88cb0a02 96@item MIPS Magnum (64-bit MIPS processor)
9ee6e8bb
PB
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
0ef849d7 99@item ARM RealView Emulation/Platform baseboard (ARM)
ef4c3856 100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
9ee6e8bb
PB
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
707e011b 103@item Freescale MCF5208EVB (ColdFire V2).
209a4e69 104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
02645926 105@item Palm Tungsten|E PDA (OMAP310 processor)
c30bb264 106@item N800 and N810 tablets (OMAP2420 processor)
57cd6e97 107@item MusicPal (MV88W8618 ARM processor)
ef4c3856
AZ
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
48c50a62
EI
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
3aeaea65 112@item Avnet LX60/LX110/LX200 boards (Xtensa)
52c00a5f 113@end itemize
386405f7 114
7544a042
SW
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
0806e3f6 119
debc7065 120@node Installation
5b9f457a
FB
121@chapter Installation
122
15a34c63
FB
123If you want to compile QEMU yourself, see @ref{compilation}.
124
debc7065
FB
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
1f673135 132@section Linux
7544a042 133@cindex installation (Linux)
1f673135 134
7c3fc84d
FB
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
5b9f457a 137
debc7065 138@node install_windows
1f673135 139@section Windows
7544a042 140@cindex installation (Windows)
8cd0ac2f 141
15a34c63 142Download the experimental binary installer at
debc7065 143@url{http://www.free.oszoo.org/@/download.html}.
7544a042 144TODO (no longer available)
d691f669 145
debc7065 146@node install_mac
1f673135 147@section Mac OS X
d691f669 148
15a34c63 149Download the experimental binary installer at
debc7065 150@url{http://www.free.oszoo.org/@/download.html}.
7544a042 151TODO (no longer available)
df0f11a0 152
debc7065 153@node QEMU PC System emulator
3f9f3aa1 154@chapter QEMU PC System emulator
7544a042 155@cindex system emulation (PC)
1eb20527 156
debc7065
FB
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
576fd0a1 165* pcsys_other_devs:: Other Devices
debc7065
FB
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
f858dcae 168* vnc_security:: VNC security
debc7065
FB
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
0806e3f6
FB
174@section Introduction
175
176@c man begin DESCRIPTION
177
3f9f3aa1
FB
178The QEMU PC System emulator simulates the
179following peripherals:
0806e3f6
FB
180
181@itemize @minus
5fafdf24 182@item
15a34c63 183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 184@item
15a34c63
FB
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
0806e3f6
FB
187@item
188PS/2 mouse and keyboard
5fafdf24 189@item
15a34c63 1902 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
191@item
192Floppy disk
5fafdf24 193@item
3a2eeac0 194PCI and ISA network adapters
0806e3f6 195@item
05d5818c
FB
196Serial ports
197@item
c0fe3827
FB
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
e5c9a13e
AZ
202Intel 82801AA AC97 Audio compatible sound card
203@item
7d72e762
GH
204Intel HD Audio Controller and HDA codec
205@item
2d983446 206Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 207@item
26463dbc
AZ
208Gravis Ultrasound GF1 sound card
209@item
cc53d26d 210CS4231A compatible sound card
211@item
b389dbfb 212PCI UHCI USB controller and a virtual USB hub.
0806e3f6
FB
213@end itemize
214
3f9f3aa1
FB
215SMP is supported with up to 255 CPUs.
216
a8ad4159 217QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
218VGA BIOS.
219
c0fe3827
FB
220QEMU uses YM3812 emulation by Tatsuyuki Satoh.
221
2d983446 222QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 223by Tibor "TS" Schütz.
423d65f4 224
1a1a0e20 225Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 226QEMU must be told to not have parallel ports to have working GUS.
720036a5 227
228@example
3804da9d 229qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 230@end example
231
232Alternatively:
233@example
3804da9d 234qemu-system-i386 dos.img -device gus,irq=5
720036a5 235@end example
236
237Or some other unclaimed IRQ.
238
cc53d26d 239CS4231A is the chip used in Windows Sound System and GUSMAX products
240
0806e3f6
FB
241@c man end
242
debc7065 243@node pcsys_quickstart
1eb20527 244@section Quick Start
7544a042 245@cindex quick start
1eb20527 246
285dc330 247Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
248
249@example
3804da9d 250qemu-system-i386 linux.img
0806e3f6
FB
251@end example
252
253Linux should boot and give you a prompt.
254
6cc721cf 255@node sec_invocation
ec410fc9
FB
256@section Invocation
257
258@example
0806e3f6 259@c man begin SYNOPSIS
3804da9d 260usage: qemu-system-i386 [options] [@var{disk_image}]
0806e3f6 261@c man end
ec410fc9
FB
262@end example
263
0806e3f6 264@c man begin OPTIONS
d2c639d6
BS
265@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
266targets do not need a disk image.
ec410fc9 267
5824d651 268@include qemu-options.texi
ec410fc9 269
3e11db9a
FB
270@c man end
271
debc7065 272@node pcsys_keys
3e11db9a
FB
273@section Keys
274
275@c man begin OPTIONS
276
de1db2a1
BH
277During the graphical emulation, you can use special key combinations to change
278modes. The default key mappings are shown below, but if you use @code{-alt-grab}
279then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
280@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
281
a1b74fe8 282@table @key
f9859310 283@item Ctrl-Alt-f
7544a042 284@kindex Ctrl-Alt-f
a1b74fe8 285Toggle full screen
a0a821a4 286
d6a65ba3
JK
287@item Ctrl-Alt-+
288@kindex Ctrl-Alt-+
289Enlarge the screen
290
291@item Ctrl-Alt--
292@kindex Ctrl-Alt--
293Shrink the screen
294
c4a735f9 295@item Ctrl-Alt-u
7544a042 296@kindex Ctrl-Alt-u
c4a735f9 297Restore the screen's un-scaled dimensions
298
f9859310 299@item Ctrl-Alt-n
7544a042 300@kindex Ctrl-Alt-n
a0a821a4
FB
301Switch to virtual console 'n'. Standard console mappings are:
302@table @emph
303@item 1
304Target system display
305@item 2
306Monitor
307@item 3
308Serial port
a1b74fe8
FB
309@end table
310
f9859310 311@item Ctrl-Alt
7544a042 312@kindex Ctrl-Alt
a0a821a4
FB
313Toggle mouse and keyboard grab.
314@end table
315
7544a042
SW
316@kindex Ctrl-Up
317@kindex Ctrl-Down
318@kindex Ctrl-PageUp
319@kindex Ctrl-PageDown
3e11db9a
FB
320In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
321@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
322
7544a042 323@kindex Ctrl-a h
a0a821a4
FB
324During emulation, if you are using the @option{-nographic} option, use
325@key{Ctrl-a h} to get terminal commands:
ec410fc9
FB
326
327@table @key
a1b74fe8 328@item Ctrl-a h
7544a042 329@kindex Ctrl-a h
d2c639d6 330@item Ctrl-a ?
7544a042 331@kindex Ctrl-a ?
ec410fc9 332Print this help
3b46e624 333@item Ctrl-a x
7544a042 334@kindex Ctrl-a x
366dfc52 335Exit emulator
3b46e624 336@item Ctrl-a s
7544a042 337@kindex Ctrl-a s
1f47a922 338Save disk data back to file (if -snapshot)
20d8a3ed 339@item Ctrl-a t
7544a042 340@kindex Ctrl-a t
d2c639d6 341Toggle console timestamps
a1b74fe8 342@item Ctrl-a b
7544a042 343@kindex Ctrl-a b
1f673135 344Send break (magic sysrq in Linux)
a1b74fe8 345@item Ctrl-a c
7544a042 346@kindex Ctrl-a c
1f673135 347Switch between console and monitor
a1b74fe8 348@item Ctrl-a Ctrl-a
7544a042 349@kindex Ctrl-a a
a1b74fe8 350Send Ctrl-a
ec410fc9 351@end table
0806e3f6
FB
352@c man end
353
354@ignore
355
1f673135
FB
356@c man begin SEEALSO
357The HTML documentation of QEMU for more precise information and Linux
358user mode emulator invocation.
359@c man end
360
361@c man begin AUTHOR
362Fabrice Bellard
363@c man end
364
365@end ignore
366
debc7065 367@node pcsys_monitor
1f673135 368@section QEMU Monitor
7544a042 369@cindex QEMU monitor
1f673135
FB
370
371The QEMU monitor is used to give complex commands to the QEMU
372emulator. You can use it to:
373
374@itemize @minus
375
376@item
e598752a 377Remove or insert removable media images
89dfe898 378(such as CD-ROM or floppies).
1f673135 379
5fafdf24 380@item
1f673135
FB
381Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
382from a disk file.
383
384@item Inspect the VM state without an external debugger.
385
386@end itemize
387
388@subsection Commands
389
390The following commands are available:
391
2313086a 392@include qemu-monitor.texi
0806e3f6 393
1f673135
FB
394@subsection Integer expressions
395
396The monitor understands integers expressions for every integer
397argument. You can use register names to get the value of specifics
398CPU registers by prefixing them with @emph{$}.
ec410fc9 399
1f47a922
FB
400@node disk_images
401@section Disk Images
402
acd935ef
FB
403Since version 0.6.1, QEMU supports many disk image formats, including
404growable disk images (their size increase as non empty sectors are
13a2e80f
FB
405written), compressed and encrypted disk images. Version 0.8.3 added
406the new qcow2 disk image format which is essential to support VM
407snapshots.
1f47a922 408
debc7065
FB
409@menu
410* disk_images_quickstart:: Quick start for disk image creation
411* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 412* vm_snapshots:: VM snapshots
debc7065 413* qemu_img_invocation:: qemu-img Invocation
975b092b 414* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 415* disk_images_formats:: Disk image file formats
19cb3738 416* host_drives:: Using host drives
debc7065 417* disk_images_fat_images:: Virtual FAT disk images
75818250 418* disk_images_nbd:: NBD access
42af9c30 419* disk_images_sheepdog:: Sheepdog disk images
00984e39 420* disk_images_iscsi:: iSCSI LUNs
8809e289 421* disk_images_gluster:: GlusterFS disk images
0a12ec87 422* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
423@end menu
424
425@node disk_images_quickstart
acd935ef
FB
426@subsection Quick start for disk image creation
427
428You can create a disk image with the command:
1f47a922 429@example
acd935ef 430qemu-img create myimage.img mysize
1f47a922 431@end example
acd935ef
FB
432where @var{myimage.img} is the disk image filename and @var{mysize} is its
433size in kilobytes. You can add an @code{M} suffix to give the size in
434megabytes and a @code{G} suffix for gigabytes.
435
debc7065 436See @ref{qemu_img_invocation} for more information.
1f47a922 437
debc7065 438@node disk_images_snapshot_mode
1f47a922
FB
439@subsection Snapshot mode
440
441If you use the option @option{-snapshot}, all disk images are
442considered as read only. When sectors in written, they are written in
443a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
444write back to the raw disk images by using the @code{commit} monitor
445command (or @key{C-a s} in the serial console).
1f47a922 446
13a2e80f
FB
447@node vm_snapshots
448@subsection VM snapshots
449
450VM snapshots are snapshots of the complete virtual machine including
451CPU state, RAM, device state and the content of all the writable
452disks. In order to use VM snapshots, you must have at least one non
453removable and writable block device using the @code{qcow2} disk image
454format. Normally this device is the first virtual hard drive.
455
456Use the monitor command @code{savevm} to create a new VM snapshot or
457replace an existing one. A human readable name can be assigned to each
19d36792 458snapshot in addition to its numerical ID.
13a2e80f
FB
459
460Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
461a VM snapshot. @code{info snapshots} lists the available snapshots
462with their associated information:
463
464@example
465(qemu) info snapshots
466Snapshot devices: hda
467Snapshot list (from hda):
468ID TAG VM SIZE DATE VM CLOCK
4691 start 41M 2006-08-06 12:38:02 00:00:14.954
4702 40M 2006-08-06 12:43:29 00:00:18.633
4713 msys 40M 2006-08-06 12:44:04 00:00:23.514
472@end example
473
474A VM snapshot is made of a VM state info (its size is shown in
475@code{info snapshots}) and a snapshot of every writable disk image.
476The VM state info is stored in the first @code{qcow2} non removable
477and writable block device. The disk image snapshots are stored in
478every disk image. The size of a snapshot in a disk image is difficult
479to evaluate and is not shown by @code{info snapshots} because the
480associated disk sectors are shared among all the snapshots to save
19d36792
FB
481disk space (otherwise each snapshot would need a full copy of all the
482disk images).
13a2e80f
FB
483
484When using the (unrelated) @code{-snapshot} option
485(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
486but they are deleted as soon as you exit QEMU.
487
488VM snapshots currently have the following known limitations:
489@itemize
5fafdf24 490@item
13a2e80f
FB
491They cannot cope with removable devices if they are removed or
492inserted after a snapshot is done.
5fafdf24 493@item
13a2e80f
FB
494A few device drivers still have incomplete snapshot support so their
495state is not saved or restored properly (in particular USB).
496@end itemize
497
acd935ef
FB
498@node qemu_img_invocation
499@subsection @code{qemu-img} Invocation
1f47a922 500
acd935ef 501@include qemu-img.texi
05efe46e 502
975b092b
TS
503@node qemu_nbd_invocation
504@subsection @code{qemu-nbd} Invocation
505
506@include qemu-nbd.texi
507
d3067b02
KW
508@node disk_images_formats
509@subsection Disk image file formats
510
511QEMU supports many image file formats that can be used with VMs as well as with
512any of the tools (like @code{qemu-img}). This includes the preferred formats
513raw and qcow2 as well as formats that are supported for compatibility with
514older QEMU versions or other hypervisors.
515
516Depending on the image format, different options can be passed to
517@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
518This section describes each format and the options that are supported for it.
519
520@table @option
521@item raw
522
523Raw disk image format. This format has the advantage of
524being simple and easily exportable to all other emulators. If your
525file system supports @emph{holes} (for example in ext2 or ext3 on
526Linux or NTFS on Windows), then only the written sectors will reserve
527space. Use @code{qemu-img info} to know the real size used by the
528image or @code{ls -ls} on Unix/Linux.
529
530@item qcow2
531QEMU image format, the most versatile format. Use it to have smaller
532images (useful if your filesystem does not supports holes, for example
533on Windows), optional AES encryption, zlib based compression and
534support of multiple VM snapshots.
535
536Supported options:
537@table @code
538@item compat
7fa9e1f9
SH
539Determines the qcow2 version to use. @code{compat=0.10} uses the
540traditional image format that can be read by any QEMU since 0.10.
d3067b02 541@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
7fa9e1f9
SH
542newer understand (this is the default). Amongst others, this includes
543zero clusters, which allow efficient copy-on-read for sparse images.
d3067b02
KW
544
545@item backing_file
546File name of a base image (see @option{create} subcommand)
547@item backing_fmt
548Image format of the base image
549@item encryption
550If this option is set to @code{on}, the image is encrypted.
551
552Encryption uses the AES format which is very secure (128 bit keys). Use
553a long password (16 characters) to get maximum protection.
554
555@item cluster_size
556Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
557sizes can improve the image file size whereas larger cluster sizes generally
558provide better performance.
559
560@item preallocation
561Preallocation mode (allowed values: off, metadata). An image with preallocated
562metadata is initially larger but can improve performance when the image needs
563to grow.
564
565@item lazy_refcounts
566If this option is set to @code{on}, reference count updates are postponed with
567the goal of avoiding metadata I/O and improving performance. This is
568particularly interesting with @option{cache=writethrough} which doesn't batch
569metadata updates. The tradeoff is that after a host crash, the reference count
570tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
571check -r all} is required, which may take some time.
572
573This option can only be enabled if @code{compat=1.1} is specified.
574
575@end table
576
577@item qed
578Old QEMU image format with support for backing files and compact image files
579(when your filesystem or transport medium does not support holes).
580
581When converting QED images to qcow2, you might want to consider using the
582@code{lazy_refcounts=on} option to get a more QED-like behaviour.
583
584Supported options:
585@table @code
586@item backing_file
587File name of a base image (see @option{create} subcommand).
588@item backing_fmt
589Image file format of backing file (optional). Useful if the format cannot be
590autodetected because it has no header, like some vhd/vpc files.
591@item cluster_size
592Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
593cluster sizes can improve the image file size whereas larger cluster sizes
594generally provide better performance.
595@item table_size
596Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
597and 16). There is normally no need to change this value but this option can be
598used for performance benchmarking.
599@end table
600
601@item qcow
602Old QEMU image format with support for backing files, compact image files,
603encryption and compression.
604
605Supported options:
606@table @code
607@item backing_file
608File name of a base image (see @option{create} subcommand)
609@item encryption
610If this option is set to @code{on}, the image is encrypted.
611@end table
612
613@item cow
614User Mode Linux Copy On Write image format. It is supported only for
615compatibility with previous versions.
616Supported options:
617@table @code
618@item backing_file
619File name of a base image (see @option{create} subcommand)
620@end table
621
622@item vdi
623VirtualBox 1.1 compatible image format.
624Supported options:
625@table @code
626@item static
627If this option is set to @code{on}, the image is created with metadata
628preallocation.
629@end table
630
631@item vmdk
632VMware 3 and 4 compatible image format.
633
634Supported options:
635@table @code
636@item backing_file
637File name of a base image (see @option{create} subcommand).
638@item compat6
639Create a VMDK version 6 image (instead of version 4)
640@item subformat
641Specifies which VMDK subformat to use. Valid options are
642@code{monolithicSparse} (default),
643@code{monolithicFlat},
644@code{twoGbMaxExtentSparse},
645@code{twoGbMaxExtentFlat} and
646@code{streamOptimized}.
647@end table
648
649@item vpc
650VirtualPC compatible image format (VHD).
651Supported options:
652@table @code
653@item subformat
654Specifies which VHD subformat to use. Valid options are
655@code{dynamic} (default) and @code{fixed}.
656@end table
8282db1b
JC
657
658@item VHDX
659Hyper-V compatible image format (VHDX).
660Supported options:
661@table @code
662@item subformat
663Specifies which VHDX subformat to use. Valid options are
664@code{dynamic} (default) and @code{fixed}.
665@item block_state_zero
666Force use of payload blocks of type 'ZERO'.
667@item block_size
668Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size.
669@item log_size
670Log size; min 1 MB.
671@end table
d3067b02
KW
672@end table
673
674@subsubsection Read-only formats
675More disk image file formats are supported in a read-only mode.
676@table @option
677@item bochs
678Bochs images of @code{growing} type.
679@item cloop
680Linux Compressed Loop image, useful only to reuse directly compressed
681CD-ROM images present for example in the Knoppix CD-ROMs.
682@item dmg
683Apple disk image.
684@item parallels
685Parallels disk image format.
686@end table
687
688
19cb3738
FB
689@node host_drives
690@subsection Using host drives
691
692In addition to disk image files, QEMU can directly access host
693devices. We describe here the usage for QEMU version >= 0.8.3.
694
695@subsubsection Linux
696
697On Linux, you can directly use the host device filename instead of a
4be456f1 698disk image filename provided you have enough privileges to access
19cb3738
FB
699it. For example, use @file{/dev/cdrom} to access to the CDROM or
700@file{/dev/fd0} for the floppy.
701
f542086d 702@table @code
19cb3738
FB
703@item CD
704You can specify a CDROM device even if no CDROM is loaded. QEMU has
705specific code to detect CDROM insertion or removal. CDROM ejection by
706the guest OS is supported. Currently only data CDs are supported.
707@item Floppy
708You can specify a floppy device even if no floppy is loaded. Floppy
709removal is currently not detected accurately (if you change floppy
710without doing floppy access while the floppy is not loaded, the guest
711OS will think that the same floppy is loaded).
712@item Hard disks
713Hard disks can be used. Normally you must specify the whole disk
714(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
715see it as a partitioned disk. WARNING: unless you know what you do, it
716is better to only make READ-ONLY accesses to the hard disk otherwise
717you may corrupt your host data (use the @option{-snapshot} command
718line option or modify the device permissions accordingly).
719@end table
720
721@subsubsection Windows
722
01781963
FB
723@table @code
724@item CD
4be456f1 725The preferred syntax is the drive letter (e.g. @file{d:}). The
01781963
FB
726alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
727supported as an alias to the first CDROM drive.
19cb3738 728
e598752a 729Currently there is no specific code to handle removable media, so it
19cb3738
FB
730is better to use the @code{change} or @code{eject} monitor commands to
731change or eject media.
01781963 732@item Hard disks
89dfe898 733Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
01781963
FB
734where @var{N} is the drive number (0 is the first hard disk).
735
736WARNING: unless you know what you do, it is better to only make
737READ-ONLY accesses to the hard disk otherwise you may corrupt your
738host data (use the @option{-snapshot} command line so that the
739modifications are written in a temporary file).
740@end table
741
19cb3738
FB
742
743@subsubsection Mac OS X
744
5fafdf24 745@file{/dev/cdrom} is an alias to the first CDROM.
19cb3738 746
e598752a 747Currently there is no specific code to handle removable media, so it
19cb3738
FB
748is better to use the @code{change} or @code{eject} monitor commands to
749change or eject media.
750
debc7065 751@node disk_images_fat_images
2c6cadd4
FB
752@subsection Virtual FAT disk images
753
754QEMU can automatically create a virtual FAT disk image from a
755directory tree. In order to use it, just type:
756
5fafdf24 757@example
3804da9d 758qemu-system-i386 linux.img -hdb fat:/my_directory
2c6cadd4
FB
759@end example
760
761Then you access access to all the files in the @file{/my_directory}
762directory without having to copy them in a disk image or to export
763them via SAMBA or NFS. The default access is @emph{read-only}.
764
765Floppies can be emulated with the @code{:floppy:} option:
766
5fafdf24 767@example
3804da9d 768qemu-system-i386 linux.img -fda fat:floppy:/my_directory
2c6cadd4
FB
769@end example
770
771A read/write support is available for testing (beta stage) with the
772@code{:rw:} option:
773
5fafdf24 774@example
3804da9d 775qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
2c6cadd4
FB
776@end example
777
778What you should @emph{never} do:
779@itemize
780@item use non-ASCII filenames ;
781@item use "-snapshot" together with ":rw:" ;
85b2c688
FB
782@item expect it to work when loadvm'ing ;
783@item write to the FAT directory on the host system while accessing it with the guest system.
2c6cadd4
FB
784@end itemize
785
75818250
TS
786@node disk_images_nbd
787@subsection NBD access
788
789QEMU can access directly to block device exported using the Network Block Device
790protocol.
791
792@example
1d7d2a9d 793qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
75818250
TS
794@end example
795
796If the NBD server is located on the same host, you can use an unix socket instead
797of an inet socket:
798
799@example
1d7d2a9d 800qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
801@end example
802
803In this case, the block device must be exported using qemu-nbd:
804
805@example
806qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
807@end example
808
809The use of qemu-nbd allows to share a disk between several guests:
810@example
811qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
812@end example
813
1d7d2a9d 814@noindent
75818250
TS
815and then you can use it with two guests:
816@example
1d7d2a9d
PB
817qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
818qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
75818250
TS
819@end example
820
1d7d2a9d
PB
821If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
822own embedded NBD server), you must specify an export name in the URI:
1d45f8b5 823@example
1d7d2a9d
PB
824qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
825qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
826@end example
827
828The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
829also available. Here are some example of the older syntax:
830@example
831qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
832qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
833qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
1d45f8b5
LV
834@end example
835
42af9c30
MK
836@node disk_images_sheepdog
837@subsection Sheepdog disk images
838
839Sheepdog is a distributed storage system for QEMU. It provides highly
840available block level storage volumes that can be attached to
841QEMU-based virtual machines.
842
843You can create a Sheepdog disk image with the command:
844@example
5d6768e3 845qemu-img create sheepdog:///@var{image} @var{size}
42af9c30
MK
846@end example
847where @var{image} is the Sheepdog image name and @var{size} is its
848size.
849
850To import the existing @var{filename} to Sheepdog, you can use a
851convert command.
852@example
5d6768e3 853qemu-img convert @var{filename} sheepdog:///@var{image}
42af9c30
MK
854@end example
855
856You can boot from the Sheepdog disk image with the command:
857@example
5d6768e3 858qemu-system-i386 sheepdog:///@var{image}
42af9c30
MK
859@end example
860
861You can also create a snapshot of the Sheepdog image like qcow2.
862@example
5d6768e3 863qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
42af9c30
MK
864@end example
865where @var{tag} is a tag name of the newly created snapshot.
866
867To boot from the Sheepdog snapshot, specify the tag name of the
868snapshot.
869@example
5d6768e3 870qemu-system-i386 sheepdog:///@var{image}#@var{tag}
42af9c30
MK
871@end example
872
873You can create a cloned image from the existing snapshot.
874@example
5d6768e3 875qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
42af9c30
MK
876@end example
877where @var{base} is a image name of the source snapshot and @var{tag}
878is its tag name.
879
1b8bbb46
MK
880You can use an unix socket instead of an inet socket:
881
882@example
883qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
884@end example
885
42af9c30
MK
886If the Sheepdog daemon doesn't run on the local host, you need to
887specify one of the Sheepdog servers to connect to.
888@example
5d6768e3
MK
889qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
890qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
42af9c30
MK
891@end example
892
00984e39
RS
893@node disk_images_iscsi
894@subsection iSCSI LUNs
895
896iSCSI is a popular protocol used to access SCSI devices across a computer
897network.
898
899There are two different ways iSCSI devices can be used by QEMU.
900
901The first method is to mount the iSCSI LUN on the host, and make it appear as
902any other ordinary SCSI device on the host and then to access this device as a
903/dev/sd device from QEMU. How to do this differs between host OSes.
904
905The second method involves using the iSCSI initiator that is built into
906QEMU. This provides a mechanism that works the same way regardless of which
907host OS you are running QEMU on. This section will describe this second method
908of using iSCSI together with QEMU.
909
910In QEMU, iSCSI devices are described using special iSCSI URLs
911
912@example
913URL syntax:
914iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
915@end example
916
917Username and password are optional and only used if your target is set up
918using CHAP authentication for access control.
919Alternatively the username and password can also be set via environment
920variables to have these not show up in the process list
921
922@example
923export LIBISCSI_CHAP_USERNAME=<username>
924export LIBISCSI_CHAP_PASSWORD=<password>
925iscsi://<host>/<target-iqn-name>/<lun>
926@end example
927
f9dadc98
RS
928Various session related parameters can be set via special options, either
929in a configuration file provided via '-readconfig' or directly on the
930command line.
931
31459f46
RS
932If the initiator-name is not specified qemu will use a default name
933of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
934virtual machine.
935
936
f9dadc98
RS
937@example
938Setting a specific initiator name to use when logging in to the target
939-iscsi initiator-name=iqn.qemu.test:my-initiator
940@end example
941
942@example
943Controlling which type of header digest to negotiate with the target
944-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
945@end example
946
947These can also be set via a configuration file
948@example
949[iscsi]
950 user = "CHAP username"
951 password = "CHAP password"
952 initiator-name = "iqn.qemu.test:my-initiator"
953 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
954 header-digest = "CRC32C"
955@end example
956
957
958Setting the target name allows different options for different targets
959@example
960[iscsi "iqn.target.name"]
961 user = "CHAP username"
962 password = "CHAP password"
963 initiator-name = "iqn.qemu.test:my-initiator"
964 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
965 header-digest = "CRC32C"
966@end example
967
968
969Howto use a configuration file to set iSCSI configuration options:
970@example
971cat >iscsi.conf <<EOF
972[iscsi]
973 user = "me"
974 password = "my password"
975 initiator-name = "iqn.qemu.test:my-initiator"
976 header-digest = "CRC32C"
977EOF
978
979qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
980 -readconfig iscsi.conf
981@end example
982
983
00984e39
RS
984Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
985@example
986This example shows how to set up an iSCSI target with one CDROM and one DISK
987using the Linux STGT software target. This target is available on Red Hat based
988systems as the package 'scsi-target-utils'.
989
990tgtd --iscsi portal=127.0.0.1:3260
991tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
992tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
993 -b /IMAGES/disk.img --device-type=disk
994tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
995 -b /IMAGES/cd.iso --device-type=cd
996tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
997
f9dadc98
RS
998qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
999 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
00984e39
RS
1000 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
1001@end example
1002
8809e289
BR
1003@node disk_images_gluster
1004@subsection GlusterFS disk images
00984e39 1005
8809e289
BR
1006GlusterFS is an user space distributed file system.
1007
1008You can boot from the GlusterFS disk image with the command:
1009@example
1010qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1011@end example
1012
1013@var{gluster} is the protocol.
1014
1015@var{transport} specifies the transport type used to connect to gluster
1016management daemon (glusterd). Valid transport types are
1017tcp, unix and rdma. If a transport type isn't specified, then tcp
1018type is assumed.
1019
1020@var{server} specifies the server where the volume file specification for
1021the given volume resides. This can be either hostname, ipv4 address
1022or ipv6 address. ipv6 address needs to be within square brackets [ ].
1023If transport type is unix, then @var{server} field should not be specifed.
1024Instead @var{socket} field needs to be populated with the path to unix domain
1025socket.
1026
1027@var{port} is the port number on which glusterd is listening. This is optional
1028and if not specified, QEMU will send 0 which will make gluster to use the
1029default port. If the transport type is unix, then @var{port} should not be
1030specified.
1031
1032@var{volname} is the name of the gluster volume which contains the disk image.
1033
1034@var{image} is the path to the actual disk image that resides on gluster volume.
1035
1036You can create a GlusterFS disk image with the command:
1037@example
1038qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1039@end example
1040
1041Examples
1042@example
1043qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1044qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1045qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1046qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1047qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1048qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1049qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1050qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1051@end example
00984e39 1052
0a12ec87
RJ
1053@node disk_images_ssh
1054@subsection Secure Shell (ssh) disk images
1055
1056You can access disk images located on a remote ssh server
1057by using the ssh protocol:
1058
1059@example
1060qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1061@end example
1062
1063Alternative syntax using properties:
1064
1065@example
1066qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1067@end example
1068
1069@var{ssh} is the protocol.
1070
1071@var{user} is the remote user. If not specified, then the local
1072username is tried.
1073
1074@var{server} specifies the remote ssh server. Any ssh server can be
1075used, but it must implement the sftp-server protocol. Most Unix/Linux
1076systems should work without requiring any extra configuration.
1077
1078@var{port} is the port number on which sshd is listening. By default
1079the standard ssh port (22) is used.
1080
1081@var{path} is the path to the disk image.
1082
1083The optional @var{host_key_check} parameter controls how the remote
1084host's key is checked. The default is @code{yes} which means to use
1085the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1086turns off known-hosts checking. Or you can check that the host key
1087matches a specific fingerprint:
1088@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1089(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1090tools only use MD5 to print fingerprints).
1091
1092Currently authentication must be done using ssh-agent. Other
1093authentication methods may be supported in future.
1094
9a2d462e
RJ
1095Note: Many ssh servers do not support an @code{fsync}-style operation.
1096The ssh driver cannot guarantee that disk flush requests are
1097obeyed, and this causes a risk of disk corruption if the remote
1098server or network goes down during writes. The driver will
1099print a warning when @code{fsync} is not supported:
1100
1101warning: ssh server @code{ssh.example.com:22} does not support fsync
1102
1103With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1104supported.
0a12ec87 1105
debc7065 1106@node pcsys_network
9d4fb82e
FB
1107@section Network emulation
1108
4be456f1 1109QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
1110target) and can connect them to an arbitrary number of Virtual Local
1111Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1112VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 1113simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
1114network stack can replace the TAP device to have a basic network
1115connection.
1116
1117@subsection VLANs
9d4fb82e 1118
41d03949
FB
1119QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1120connection between several network devices. These devices can be for
1121example QEMU virtual Ethernet cards or virtual Host ethernet devices
1122(TAP devices).
9d4fb82e 1123
41d03949
FB
1124@subsection Using TAP network interfaces
1125
1126This is the standard way to connect QEMU to a real network. QEMU adds
1127a virtual network device on your host (called @code{tapN}), and you
1128can then configure it as if it was a real ethernet card.
9d4fb82e 1129
8f40c388
FB
1130@subsubsection Linux host
1131
9d4fb82e
FB
1132As an example, you can download the @file{linux-test-xxx.tar.gz}
1133archive and copy the script @file{qemu-ifup} in @file{/etc} and
1134configure properly @code{sudo} so that the command @code{ifconfig}
1135contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 1136that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
1137device @file{/dev/net/tun} must be present.
1138
ee0f4751
FB
1139See @ref{sec_invocation} to have examples of command lines using the
1140TAP network interfaces.
9d4fb82e 1141
8f40c388
FB
1142@subsubsection Windows host
1143
1144There is a virtual ethernet driver for Windows 2000/XP systems, called
1145TAP-Win32. But it is not included in standard QEMU for Windows,
1146so you will need to get it separately. It is part of OpenVPN package,
1147so download OpenVPN from : @url{http://openvpn.net/}.
1148
9d4fb82e
FB
1149@subsection Using the user mode network stack
1150
41d03949
FB
1151By using the option @option{-net user} (default configuration if no
1152@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 1153network stack (you don't need root privilege to use the virtual
41d03949 1154network). The virtual network configuration is the following:
9d4fb82e
FB
1155
1156@example
1157
41d03949
FB
1158 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1159 | (10.0.2.2)
9d4fb82e 1160 |
2518bd0d 1161 ----> DNS server (10.0.2.3)
3b46e624 1162 |
2518bd0d 1163 ----> SMB server (10.0.2.4)
9d4fb82e
FB
1164@end example
1165
1166The QEMU VM behaves as if it was behind a firewall which blocks all
1167incoming connections. You can use a DHCP client to automatically
41d03949
FB
1168configure the network in the QEMU VM. The DHCP server assign addresses
1169to the hosts starting from 10.0.2.15.
9d4fb82e
FB
1170
1171In order to check that the user mode network is working, you can ping
1172the address 10.0.2.2 and verify that you got an address in the range
117310.0.2.x from the QEMU virtual DHCP server.
1174
b415a407 1175Note that @code{ping} is not supported reliably to the internet as it
4be456f1 1176would require root privileges. It means you can only ping the local
b415a407
FB
1177router (10.0.2.2).
1178
9bf05444
FB
1179When using the built-in TFTP server, the router is also the TFTP
1180server.
1181
1182When using the @option{-redir} option, TCP or UDP connections can be
1183redirected from the host to the guest. It allows for example to
1184redirect X11, telnet or SSH connections.
443f1376 1185
41d03949
FB
1186@subsection Connecting VLANs between QEMU instances
1187
1188Using the @option{-net socket} option, it is possible to make VLANs
1189that span several QEMU instances. See @ref{sec_invocation} to have a
1190basic example.
1191
576fd0a1 1192@node pcsys_other_devs
6cbf4c8c
CM
1193@section Other Devices
1194
1195@subsection Inter-VM Shared Memory device
1196
1197With KVM enabled on a Linux host, a shared memory device is available. Guests
1198map a POSIX shared memory region into the guest as a PCI device that enables
1199zero-copy communication to the application level of the guests. The basic
1200syntax is:
1201
1202@example
3804da9d 1203qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
6cbf4c8c
CM
1204@end example
1205
1206If desired, interrupts can be sent between guest VMs accessing the same shared
1207memory region. Interrupt support requires using a shared memory server and
1208using a chardev socket to connect to it. The code for the shared memory server
1209is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1210memory server is:
1211
1212@example
3804da9d
SW
1213qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1214 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1215qemu-system-i386 -chardev socket,path=<path>,id=<id>
6cbf4c8c
CM
1216@end example
1217
1218When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1219using the same server to communicate via interrupts. Guests can read their
1220VM ID from a device register (see example code). Since receiving the shared
1221memory region from the server is asynchronous, there is a (small) chance the
1222guest may boot before the shared memory is attached. To allow an application
1223to ensure shared memory is attached, the VM ID register will return -1 (an
1224invalid VM ID) until the memory is attached. Once the shared memory is
1225attached, the VM ID will return the guest's valid VM ID. With these semantics,
1226the guest application can check to ensure the shared memory is attached to the
1227guest before proceeding.
1228
1229The @option{role} argument can be set to either master or peer and will affect
1230how the shared memory is migrated. With @option{role=master}, the guest will
1231copy the shared memory on migration to the destination host. With
1232@option{role=peer}, the guest will not be able to migrate with the device attached.
1233With the @option{peer} case, the device should be detached and then reattached
1234after migration using the PCI hotplug support.
1235
9d4fb82e
FB
1236@node direct_linux_boot
1237@section Direct Linux Boot
1f673135
FB
1238
1239This section explains how to launch a Linux kernel inside QEMU without
1240having to make a full bootable image. It is very useful for fast Linux
ee0f4751 1241kernel testing.
1f673135 1242
ee0f4751 1243The syntax is:
1f673135 1244@example
3804da9d 1245qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
1246@end example
1247
ee0f4751
FB
1248Use @option{-kernel} to provide the Linux kernel image and
1249@option{-append} to give the kernel command line arguments. The
1250@option{-initrd} option can be used to provide an INITRD image.
1f673135 1251
ee0f4751
FB
1252When using the direct Linux boot, a disk image for the first hard disk
1253@file{hda} is required because its boot sector is used to launch the
1254Linux kernel.
1f673135 1255
ee0f4751
FB
1256If you do not need graphical output, you can disable it and redirect
1257the virtual serial port and the QEMU monitor to the console with the
1258@option{-nographic} option. The typical command line is:
1f673135 1259@example
3804da9d
SW
1260qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1261 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
1262@end example
1263
ee0f4751
FB
1264Use @key{Ctrl-a c} to switch between the serial console and the
1265monitor (@pxref{pcsys_keys}).
1f673135 1266
debc7065 1267@node pcsys_usb
b389dbfb
FB
1268@section USB emulation
1269
0aff66b5
PB
1270QEMU emulates a PCI UHCI USB controller. You can virtually plug
1271virtual USB devices or real host USB devices (experimental, works only
071c9394 1272on Linux hosts). QEMU will automatically create and connect virtual USB hubs
f542086d 1273as necessary to connect multiple USB devices.
b389dbfb 1274
0aff66b5
PB
1275@menu
1276* usb_devices::
1277* host_usb_devices::
1278@end menu
1279@node usb_devices
1280@subsection Connecting USB devices
b389dbfb 1281
0aff66b5
PB
1282USB devices can be connected with the @option{-usbdevice} commandline option
1283or the @code{usb_add} monitor command. Available devices are:
b389dbfb 1284
db380c06
AZ
1285@table @code
1286@item mouse
0aff66b5 1287Virtual Mouse. This will override the PS/2 mouse emulation when activated.
db380c06 1288@item tablet
c6d46c20 1289Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 1290This means QEMU is able to report the mouse position without having
0aff66b5 1291to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
db380c06 1292@item disk:@var{file}
0aff66b5 1293Mass storage device based on @var{file} (@pxref{disk_images})
db380c06 1294@item host:@var{bus.addr}
0aff66b5
PB
1295Pass through the host device identified by @var{bus.addr}
1296(Linux only)
db380c06 1297@item host:@var{vendor_id:product_id}
0aff66b5
PB
1298Pass through the host device identified by @var{vendor_id:product_id}
1299(Linux only)
db380c06 1300@item wacom-tablet
f6d2a316
AZ
1301Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1302above but it can be used with the tslib library because in addition to touch
1303coordinates it reports touch pressure.
db380c06 1304@item keyboard
47b2d338 1305Standard USB keyboard. Will override the PS/2 keyboard (if present).
db380c06
AZ
1306@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1307Serial converter. This emulates an FTDI FT232BM chip connected to host character
1308device @var{dev}. The available character devices are the same as for the
1309@code{-serial} option. The @code{vendorid} and @code{productid} options can be
0d6753e5 1310used to override the default 0403:6001. For instance,
db380c06
AZ
1311@example
1312usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1313@end example
1314will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1315serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
2e4d9fb1
AJ
1316@item braille
1317Braille device. This will use BrlAPI to display the braille output on a real
1318or fake device.
9ad97e65
AZ
1319@item net:@var{options}
1320Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1321specifies NIC options as with @code{-net nic,}@var{options} (see description).
1322For instance, user-mode networking can be used with
6c9f886c 1323@example
3804da9d 1324qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
6c9f886c
AZ
1325@end example
1326Currently this cannot be used in machines that support PCI NICs.
2d564691
AZ
1327@item bt[:@var{hci-type}]
1328Bluetooth dongle whose type is specified in the same format as with
1329the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1330no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1331This USB device implements the USB Transport Layer of HCI. Example
1332usage:
1333@example
3804da9d 1334qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2d564691 1335@end example
0aff66b5 1336@end table
b389dbfb 1337
0aff66b5 1338@node host_usb_devices
b389dbfb
FB
1339@subsection Using host USB devices on a Linux host
1340
1341WARNING: this is an experimental feature. QEMU will slow down when
1342using it. USB devices requiring real time streaming (i.e. USB Video
1343Cameras) are not supported yet.
1344
1345@enumerate
5fafdf24 1346@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1347is actually using the USB device. A simple way to do that is simply to
1348disable the corresponding kernel module by renaming it from @file{mydriver.o}
1349to @file{mydriver.o.disabled}.
1350
1351@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1352@example
1353ls /proc/bus/usb
1354001 devices drivers
1355@end example
1356
1357@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1358@example
1359chown -R myuid /proc/bus/usb
1360@end example
1361
1362@item Launch QEMU and do in the monitor:
5fafdf24 1363@example
b389dbfb
FB
1364info usbhost
1365 Device 1.2, speed 480 Mb/s
1366 Class 00: USB device 1234:5678, USB DISK
1367@end example
1368You should see the list of the devices you can use (Never try to use
1369hubs, it won't work).
1370
1371@item Add the device in QEMU by using:
5fafdf24 1372@example
b389dbfb
FB
1373usb_add host:1234:5678
1374@end example
1375
1376Normally the guest OS should report that a new USB device is
1377plugged. You can use the option @option{-usbdevice} to do the same.
1378
1379@item Now you can try to use the host USB device in QEMU.
1380
1381@end enumerate
1382
1383When relaunching QEMU, you may have to unplug and plug again the USB
1384device to make it work again (this is a bug).
1385
f858dcae
TS
1386@node vnc_security
1387@section VNC security
1388
1389The VNC server capability provides access to the graphical console
1390of the guest VM across the network. This has a number of security
1391considerations depending on the deployment scenarios.
1392
1393@menu
1394* vnc_sec_none::
1395* vnc_sec_password::
1396* vnc_sec_certificate::
1397* vnc_sec_certificate_verify::
1398* vnc_sec_certificate_pw::
2f9606b3
AL
1399* vnc_sec_sasl::
1400* vnc_sec_certificate_sasl::
f858dcae 1401* vnc_generate_cert::
2f9606b3 1402* vnc_setup_sasl::
f858dcae
TS
1403@end menu
1404@node vnc_sec_none
1405@subsection Without passwords
1406
1407The simplest VNC server setup does not include any form of authentication.
1408For this setup it is recommended to restrict it to listen on a UNIX domain
1409socket only. For example
1410
1411@example
3804da9d 1412qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1413@end example
1414
1415This ensures that only users on local box with read/write access to that
1416path can access the VNC server. To securely access the VNC server from a
1417remote machine, a combination of netcat+ssh can be used to provide a secure
1418tunnel.
1419
1420@node vnc_sec_password
1421@subsection With passwords
1422
1423The VNC protocol has limited support for password based authentication. Since
1424the protocol limits passwords to 8 characters it should not be considered
1425to provide high security. The password can be fairly easily brute-forced by
1426a client making repeat connections. For this reason, a VNC server using password
1427authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1428or UNIX domain sockets. Password authentication is not supported when operating
1429in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1430authentication is requested with the @code{password} option, and then once QEMU
1431is running the password is set with the monitor. Until the monitor is used to
1432set the password all clients will be rejected.
f858dcae
TS
1433
1434@example
3804da9d 1435qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1436(qemu) change vnc password
1437Password: ********
1438(qemu)
1439@end example
1440
1441@node vnc_sec_certificate
1442@subsection With x509 certificates
1443
1444The QEMU VNC server also implements the VeNCrypt extension allowing use of
1445TLS for encryption of the session, and x509 certificates for authentication.
1446The use of x509 certificates is strongly recommended, because TLS on its
1447own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1448support provides a secure session, but no authentication. This allows any
1449client to connect, and provides an encrypted session.
1450
1451@example
3804da9d 1452qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
1453@end example
1454
1455In the above example @code{/etc/pki/qemu} should contain at least three files,
1456@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1457users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1458NB the @code{server-key.pem} file should be protected with file mode 0600 to
1459only be readable by the user owning it.
1460
1461@node vnc_sec_certificate_verify
1462@subsection With x509 certificates and client verification
1463
1464Certificates can also provide a means to authenticate the client connecting.
1465The server will request that the client provide a certificate, which it will
1466then validate against the CA certificate. This is a good choice if deploying
1467in an environment with a private internal certificate authority.
1468
1469@example
3804da9d 1470qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1471@end example
1472
1473
1474@node vnc_sec_certificate_pw
1475@subsection With x509 certificates, client verification and passwords
1476
1477Finally, the previous method can be combined with VNC password authentication
1478to provide two layers of authentication for clients.
1479
1480@example
3804da9d 1481qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
1482(qemu) change vnc password
1483Password: ********
1484(qemu)
1485@end example
1486
2f9606b3
AL
1487
1488@node vnc_sec_sasl
1489@subsection With SASL authentication
1490
1491The SASL authentication method is a VNC extension, that provides an
1492easily extendable, pluggable authentication method. This allows for
1493integration with a wide range of authentication mechanisms, such as
1494PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1495The strength of the authentication depends on the exact mechanism
1496configured. If the chosen mechanism also provides a SSF layer, then
1497it will encrypt the datastream as well.
1498
1499Refer to the later docs on how to choose the exact SASL mechanism
1500used for authentication, but assuming use of one supporting SSF,
1501then QEMU can be launched with:
1502
1503@example
3804da9d 1504qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1505@end example
1506
1507@node vnc_sec_certificate_sasl
1508@subsection With x509 certificates and SASL authentication
1509
1510If the desired SASL authentication mechanism does not supported
1511SSF layers, then it is strongly advised to run it in combination
1512with TLS and x509 certificates. This provides securely encrypted
1513data stream, avoiding risk of compromising of the security
1514credentials. This can be enabled, by combining the 'sasl' option
1515with the aforementioned TLS + x509 options:
1516
1517@example
3804da9d 1518qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
1519@end example
1520
1521
f858dcae
TS
1522@node vnc_generate_cert
1523@subsection Generating certificates for VNC
1524
1525The GNU TLS packages provides a command called @code{certtool} which can
1526be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 1527is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
1528each server. If using certificates for authentication, then each client
1529will also need to be issued a certificate. The recommendation is for the
1530server to keep its certificates in either @code{/etc/pki/qemu} or for
1531unprivileged users in @code{$HOME/.pki/qemu}.
1532
1533@menu
1534* vnc_generate_ca::
1535* vnc_generate_server::
1536* vnc_generate_client::
1537@end menu
1538@node vnc_generate_ca
1539@subsubsection Setup the Certificate Authority
1540
1541This step only needs to be performed once per organization / organizational
1542unit. First the CA needs a private key. This key must be kept VERY secret
1543and secure. If this key is compromised the entire trust chain of the certificates
1544issued with it is lost.
1545
1546@example
1547# certtool --generate-privkey > ca-key.pem
1548@end example
1549
1550A CA needs to have a public certificate. For simplicity it can be a self-signed
1551certificate, or one issue by a commercial certificate issuing authority. To
1552generate a self-signed certificate requires one core piece of information, the
1553name of the organization.
1554
1555@example
1556# cat > ca.info <<EOF
1557cn = Name of your organization
1558ca
1559cert_signing_key
1560EOF
1561# certtool --generate-self-signed \
1562 --load-privkey ca-key.pem
1563 --template ca.info \
1564 --outfile ca-cert.pem
1565@end example
1566
1567The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1568TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1569
1570@node vnc_generate_server
1571@subsubsection Issuing server certificates
1572
1573Each server (or host) needs to be issued with a key and certificate. When connecting
1574the certificate is sent to the client which validates it against the CA certificate.
1575The core piece of information for a server certificate is the hostname. This should
1576be the fully qualified hostname that the client will connect with, since the client
1577will typically also verify the hostname in the certificate. On the host holding the
1578secure CA private key:
1579
1580@example
1581# cat > server.info <<EOF
1582organization = Name of your organization
1583cn = server.foo.example.com
1584tls_www_server
1585encryption_key
1586signing_key
1587EOF
1588# certtool --generate-privkey > server-key.pem
1589# certtool --generate-certificate \
1590 --load-ca-certificate ca-cert.pem \
1591 --load-ca-privkey ca-key.pem \
1592 --load-privkey server server-key.pem \
1593 --template server.info \
1594 --outfile server-cert.pem
1595@end example
1596
1597The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1598to the server for which they were generated. The @code{server-key.pem} is security
1599sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1600
1601@node vnc_generate_client
1602@subsubsection Issuing client certificates
1603
1604If the QEMU VNC server is to use the @code{x509verify} option to validate client
1605certificates as its authentication mechanism, each client also needs to be issued
1606a certificate. The client certificate contains enough metadata to uniquely identify
1607the client, typically organization, state, city, building, etc. On the host holding
1608the secure CA private key:
1609
1610@example
1611# cat > client.info <<EOF
1612country = GB
1613state = London
1614locality = London
1615organiazation = Name of your organization
1616cn = client.foo.example.com
1617tls_www_client
1618encryption_key
1619signing_key
1620EOF
1621# certtool --generate-privkey > client-key.pem
1622# certtool --generate-certificate \
1623 --load-ca-certificate ca-cert.pem \
1624 --load-ca-privkey ca-key.pem \
1625 --load-privkey client-key.pem \
1626 --template client.info \
1627 --outfile client-cert.pem
1628@end example
1629
1630The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1631copied to the client for which they were generated.
1632
2f9606b3
AL
1633
1634@node vnc_setup_sasl
1635
1636@subsection Configuring SASL mechanisms
1637
1638The following documentation assumes use of the Cyrus SASL implementation on a
1639Linux host, but the principals should apply to any other SASL impl. When SASL
1640is enabled, the mechanism configuration will be loaded from system default
1641SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1642unprivileged user, an environment variable SASL_CONF_PATH can be used
1643to make it search alternate locations for the service config.
1644
1645The default configuration might contain
1646
1647@example
1648mech_list: digest-md5
1649sasldb_path: /etc/qemu/passwd.db
1650@end example
1651
1652This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1653Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1654in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1655command. While this mechanism is easy to configure and use, it is not
1656considered secure by modern standards, so only suitable for developers /
1657ad-hoc testing.
1658
1659A more serious deployment might use Kerberos, which is done with the 'gssapi'
1660mechanism
1661
1662@example
1663mech_list: gssapi
1664keytab: /etc/qemu/krb5.tab
1665@end example
1666
1667For this to work the administrator of your KDC must generate a Kerberos
1668principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1669replacing 'somehost.example.com' with the fully qualified host name of the
40c5c6cd 1670machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3
AL
1671
1672Other configurations will be left as an exercise for the reader. It should
1673be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1674encryption. For all other mechanisms, VNC should always be configured to
1675use TLS and x509 certificates to protect security credentials from snooping.
1676
0806e3f6 1677@node gdb_usage
da415d54
FB
1678@section GDB usage
1679
1680QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1681'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1682
b65ee4fa 1683In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1684gdb connection:
1685@example
3804da9d
SW
1686qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1687 -append "root=/dev/hda"
da415d54
FB
1688Connected to host network interface: tun0
1689Waiting gdb connection on port 1234
1690@end example
1691
1692Then launch gdb on the 'vmlinux' executable:
1693@example
1694> gdb vmlinux
1695@end example
1696
1697In gdb, connect to QEMU:
1698@example
6c9bf893 1699(gdb) target remote localhost:1234
da415d54
FB
1700@end example
1701
1702Then you can use gdb normally. For example, type 'c' to launch the kernel:
1703@example
1704(gdb) c
1705@end example
1706
0806e3f6
FB
1707Here are some useful tips in order to use gdb on system code:
1708
1709@enumerate
1710@item
1711Use @code{info reg} to display all the CPU registers.
1712@item
1713Use @code{x/10i $eip} to display the code at the PC position.
1714@item
1715Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1716@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1717@end enumerate
1718
60897d36
EI
1719Advanced debugging options:
1720
1721The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1722@table @code
60897d36
EI
1723@item maintenance packet qqemu.sstepbits
1724
1725This will display the MASK bits used to control the single stepping IE:
1726@example
1727(gdb) maintenance packet qqemu.sstepbits
1728sending: "qqemu.sstepbits"
1729received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1730@end example
1731@item maintenance packet qqemu.sstep
1732
1733This will display the current value of the mask used when single stepping IE:
1734@example
1735(gdb) maintenance packet qqemu.sstep
1736sending: "qqemu.sstep"
1737received: "0x7"
1738@end example
1739@item maintenance packet Qqemu.sstep=HEX_VALUE
1740
1741This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1742@example
1743(gdb) maintenance packet Qqemu.sstep=0x5
1744sending: "qemu.sstep=0x5"
1745received: "OK"
1746@end example
94d45e44 1747@end table
60897d36 1748
debc7065 1749@node pcsys_os_specific
1a084f3d
FB
1750@section Target OS specific information
1751
1752@subsection Linux
1753
15a34c63
FB
1754To have access to SVGA graphic modes under X11, use the @code{vesa} or
1755the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1756color depth in the guest and the host OS.
1a084f3d 1757
e3371e62
FB
1758When using a 2.6 guest Linux kernel, you should add the option
1759@code{clock=pit} on the kernel command line because the 2.6 Linux
1760kernels make very strict real time clock checks by default that QEMU
1761cannot simulate exactly.
1762
7c3fc84d
FB
1763When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1764not activated because QEMU is slower with this patch. The QEMU
1765Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1766Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1767patch by default. Newer kernels don't have it.
1768
1a084f3d
FB
1769@subsection Windows
1770
1771If you have a slow host, using Windows 95 is better as it gives the
1772best speed. Windows 2000 is also a good choice.
1773
e3371e62
FB
1774@subsubsection SVGA graphic modes support
1775
1776QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1777card. All Windows versions starting from Windows 95 should recognize
1778and use this graphic card. For optimal performances, use 16 bit color
1779depth in the guest and the host OS.
1a084f3d 1780
3cb0853a
FB
1781If you are using Windows XP as guest OS and if you want to use high
1782resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
17831280x1024x16), then you should use the VESA VBE virtual graphic card
1784(option @option{-std-vga}).
1785
e3371e62
FB
1786@subsubsection CPU usage reduction
1787
1788Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1789instruction. The result is that it takes host CPU cycles even when
1790idle. You can install the utility from
1791@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1792problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1793
9d0a8e6f 1794@subsubsection Windows 2000 disk full problem
e3371e62 1795
9d0a8e6f
FB
1796Windows 2000 has a bug which gives a disk full problem during its
1797installation. When installing it, use the @option{-win2k-hack} QEMU
1798option to enable a specific workaround. After Windows 2000 is
1799installed, you no longer need this option (this option slows down the
1800IDE transfers).
e3371e62 1801
6cc721cf
FB
1802@subsubsection Windows 2000 shutdown
1803
1804Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1805can. It comes from the fact that Windows 2000 does not automatically
1806use the APM driver provided by the BIOS.
1807
1808In order to correct that, do the following (thanks to Struan
1809Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1810Add/Troubleshoot a device => Add a new device & Next => No, select the
1811hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1812(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1813correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1814
1815@subsubsection Share a directory between Unix and Windows
1816
1817See @ref{sec_invocation} about the help of the option @option{-smb}.
1818
2192c332 1819@subsubsection Windows XP security problem
e3371e62
FB
1820
1821Some releases of Windows XP install correctly but give a security
1822error when booting:
1823@example
1824A problem is preventing Windows from accurately checking the
1825license for this computer. Error code: 0x800703e6.
1826@end example
e3371e62 1827
2192c332
FB
1828The workaround is to install a service pack for XP after a boot in safe
1829mode. Then reboot, and the problem should go away. Since there is no
1830network while in safe mode, its recommended to download the full
1831installation of SP1 or SP2 and transfer that via an ISO or using the
1832vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1833
a0a821a4
FB
1834@subsection MS-DOS and FreeDOS
1835
1836@subsubsection CPU usage reduction
1837
1838DOS does not correctly use the CPU HLT instruction. The result is that
1839it takes host CPU cycles even when idle. You can install the utility
1840from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1841problem.
1842
debc7065 1843@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1844@chapter QEMU System emulator for non PC targets
1845
1846QEMU is a generic emulator and it emulates many non PC
1847machines. Most of the options are similar to the PC emulator. The
4be456f1 1848differences are mentioned in the following sections.
3f9f3aa1 1849
debc7065 1850@menu
7544a042 1851* PowerPC System emulator::
24d4de45
TS
1852* Sparc32 System emulator::
1853* Sparc64 System emulator::
1854* MIPS System emulator::
1855* ARM System emulator::
1856* ColdFire System emulator::
7544a042
SW
1857* Cris System emulator::
1858* Microblaze System emulator::
1859* SH4 System emulator::
3aeaea65 1860* Xtensa System emulator::
debc7065
FB
1861@end menu
1862
7544a042
SW
1863@node PowerPC System emulator
1864@section PowerPC System emulator
1865@cindex system emulation (PowerPC)
1a084f3d 1866
15a34c63
FB
1867Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1868or PowerMac PowerPC system.
1a084f3d 1869
b671f9ed 1870QEMU emulates the following PowerMac peripherals:
1a084f3d 1871
15a34c63 1872@itemize @minus
5fafdf24 1873@item
006f3a48 1874UniNorth or Grackle PCI Bridge
15a34c63
FB
1875@item
1876PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1877@item
15a34c63 18782 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1879@item
15a34c63
FB
1880NE2000 PCI adapters
1881@item
1882Non Volatile RAM
1883@item
1884VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1885@end itemize
1886
b671f9ed 1887QEMU emulates the following PREP peripherals:
52c00a5f
FB
1888
1889@itemize @minus
5fafdf24 1890@item
15a34c63
FB
1891PCI Bridge
1892@item
1893PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1894@item
52c00a5f
FB
18952 IDE interfaces with hard disk and CD-ROM support
1896@item
1897Floppy disk
5fafdf24 1898@item
15a34c63 1899NE2000 network adapters
52c00a5f
FB
1900@item
1901Serial port
1902@item
1903PREP Non Volatile RAM
15a34c63
FB
1904@item
1905PC compatible keyboard and mouse.
52c00a5f
FB
1906@end itemize
1907
15a34c63 1908QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1909@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1910
992e5acd 1911Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
006f3a48
BS
1912for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1913v2) portable firmware implementation. The goal is to implement a 100%
1914IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1915
15a34c63
FB
1916@c man begin OPTIONS
1917
1918The following options are specific to the PowerPC emulation:
1919
1920@table @option
1921
4e257e5e 1922@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63
FB
1923
1924Set the initial VGA graphic mode. The default is 800x600x15.
1925
4e257e5e 1926@item -prom-env @var{string}
95efd11c
BS
1927
1928Set OpenBIOS variables in NVRAM, for example:
1929
1930@example
1931qemu-system-ppc -prom-env 'auto-boot?=false' \
1932 -prom-env 'boot-device=hd:2,\yaboot' \
1933 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1934@end example
1935
1936These variables are not used by Open Hack'Ware.
1937
15a34c63
FB
1938@end table
1939
5fafdf24 1940@c man end
15a34c63
FB
1941
1942
52c00a5f 1943More information is available at
3f9f3aa1 1944@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1945
24d4de45
TS
1946@node Sparc32 System emulator
1947@section Sparc32 System emulator
7544a042 1948@cindex system emulation (Sparc32)
e80cfcfc 1949
34a3d239
BS
1950Use the executable @file{qemu-system-sparc} to simulate the following
1951Sun4m architecture machines:
1952@itemize @minus
1953@item
1954SPARCstation 4
1955@item
1956SPARCstation 5
1957@item
1958SPARCstation 10
1959@item
1960SPARCstation 20
1961@item
1962SPARCserver 600MP
1963@item
1964SPARCstation LX
1965@item
1966SPARCstation Voyager
1967@item
1968SPARCclassic
1969@item
1970SPARCbook
1971@end itemize
1972
1973The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1974but Linux limits the number of usable CPUs to 4.
e80cfcfc 1975
6a4e1771 1976QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1977
1978@itemize @minus
3475187d 1979@item
6a4e1771 1980IOMMU
e80cfcfc
FB
1981@item
1982TCX Frame buffer
5fafdf24 1983@item
e80cfcfc
FB
1984Lance (Am7990) Ethernet
1985@item
34a3d239 1986Non Volatile RAM M48T02/M48T08
e80cfcfc 1987@item
3475187d
FB
1988Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1989and power/reset logic
1990@item
1991ESP SCSI controller with hard disk and CD-ROM support
1992@item
6a3b9cc9 1993Floppy drive (not on SS-600MP)
a2502b58
BS
1994@item
1995CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1996@end itemize
1997
6a3b9cc9
BS
1998The number of peripherals is fixed in the architecture. Maximum
1999memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 2000others 2047MB.
3475187d 2001
30a604f3 2002Since version 0.8.2, QEMU uses OpenBIOS
0986ac3b
FB
2003@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2004firmware implementation. The goal is to implement a 100% IEEE
20051275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
2006
2007A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239
BS
2008the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2009some kernel versions work. Please note that currently Solaris kernels
2010don't work probably due to interface issues between OpenBIOS and
2011Solaris.
3475187d
FB
2012
2013@c man begin OPTIONS
2014
a2502b58 2015The following options are specific to the Sparc32 emulation:
3475187d
FB
2016
2017@table @option
2018
4e257e5e 2019@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 2020
a2502b58
BS
2021Set the initial TCX graphic mode. The default is 1024x768x8, currently
2022the only other possible mode is 1024x768x24.
3475187d 2023
4e257e5e 2024@item -prom-env @var{string}
66508601
BS
2025
2026Set OpenBIOS variables in NVRAM, for example:
2027
2028@example
2029qemu-system-sparc -prom-env 'auto-boot?=false' \
2030 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2031@end example
2032
6a4e1771 2033@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
2034
2035Set the emulated machine type. Default is SS-5.
2036
3475187d
FB
2037@end table
2038
5fafdf24 2039@c man end
3475187d 2040
24d4de45
TS
2041@node Sparc64 System emulator
2042@section Sparc64 System emulator
7544a042 2043@cindex system emulation (Sparc64)
e80cfcfc 2044
34a3d239
BS
2045Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2046(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2047Niagara (T1) machine. The emulator is not usable for anything yet, but
2048it can launch some kernels.
b756921a 2049
c7ba218d 2050QEMU emulates the following peripherals:
83469015
FB
2051
2052@itemize @minus
2053@item
5fafdf24 2054UltraSparc IIi APB PCI Bridge
83469015
FB
2055@item
2056PCI VGA compatible card with VESA Bochs Extensions
2057@item
34a3d239
BS
2058PS/2 mouse and keyboard
2059@item
83469015
FB
2060Non Volatile RAM M48T59
2061@item
2062PC-compatible serial ports
c7ba218d
BS
2063@item
20642 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
2065@item
2066Floppy disk
83469015
FB
2067@end itemize
2068
c7ba218d
BS
2069@c man begin OPTIONS
2070
2071The following options are specific to the Sparc64 emulation:
2072
2073@table @option
2074
4e257e5e 2075@item -prom-env @var{string}
34a3d239
BS
2076
2077Set OpenBIOS variables in NVRAM, for example:
2078
2079@example
2080qemu-system-sparc64 -prom-env 'auto-boot?=false'
2081@end example
2082
2083@item -M [sun4u|sun4v|Niagara]
c7ba218d
BS
2084
2085Set the emulated machine type. The default is sun4u.
2086
2087@end table
2088
2089@c man end
2090
24d4de45
TS
2091@node MIPS System emulator
2092@section MIPS System emulator
7544a042 2093@cindex system emulation (MIPS)
9d0a8e6f 2094
d9aedc32
TS
2095Four executables cover simulation of 32 and 64-bit MIPS systems in
2096both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2097@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2098Five different machine types are emulated:
24d4de45
TS
2099
2100@itemize @minus
2101@item
2102A generic ISA PC-like machine "mips"
2103@item
2104The MIPS Malta prototype board "malta"
2105@item
d9aedc32 2106An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2107@item
f0fc6f8f 2108MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2109@item
2110A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2111@end itemize
2112
2113The generic emulation is supported by Debian 'Etch' and is able to
2114install Debian into a virtual disk image. The following devices are
2115emulated:
3f9f3aa1
FB
2116
2117@itemize @minus
5fafdf24 2118@item
6bf5b4e8 2119A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2120@item
2121PC style serial port
2122@item
24d4de45
TS
2123PC style IDE disk
2124@item
3f9f3aa1
FB
2125NE2000 network card
2126@end itemize
2127
24d4de45
TS
2128The Malta emulation supports the following devices:
2129
2130@itemize @minus
2131@item
0b64d008 2132Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2133@item
2134PIIX4 PCI/USB/SMbus controller
2135@item
2136The Multi-I/O chip's serial device
2137@item
3a2eeac0 2138PCI network cards (PCnet32 and others)
24d4de45
TS
2139@item
2140Malta FPGA serial device
2141@item
1f605a76 2142Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2143@end itemize
2144
2145The ACER Pica emulation supports:
2146
2147@itemize @minus
2148@item
2149MIPS R4000 CPU
2150@item
2151PC-style IRQ and DMA controllers
2152@item
2153PC Keyboard
2154@item
2155IDE controller
2156@end itemize
3f9f3aa1 2157
b5e4946f 2158The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
2159to what the proprietary MIPS emulator uses for running Linux.
2160It supports:
6bf5b4e8
TS
2161
2162@itemize @minus
2163@item
2164A range of MIPS CPUs, default is the 24Kf
2165@item
2166PC style serial port
2167@item
2168MIPSnet network emulation
2169@end itemize
2170
88cb0a02
AJ
2171The MIPS Magnum R4000 emulation supports:
2172
2173@itemize @minus
2174@item
2175MIPS R4000 CPU
2176@item
2177PC-style IRQ controller
2178@item
2179PC Keyboard
2180@item
2181SCSI controller
2182@item
2183G364 framebuffer
2184@end itemize
2185
2186
24d4de45
TS
2187@node ARM System emulator
2188@section ARM System emulator
7544a042 2189@cindex system emulation (ARM)
3f9f3aa1
FB
2190
2191Use the executable @file{qemu-system-arm} to simulate a ARM
2192machine. The ARM Integrator/CP board is emulated with the following
2193devices:
2194
2195@itemize @minus
2196@item
9ee6e8bb 2197ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2198@item
2199Two PL011 UARTs
5fafdf24 2200@item
3f9f3aa1 2201SMC 91c111 Ethernet adapter
00a9bf19
PB
2202@item
2203PL110 LCD controller
2204@item
2205PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2206@item
2207PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2208@end itemize
2209
2210The ARM Versatile baseboard is emulated with the following devices:
2211
2212@itemize @minus
2213@item
9ee6e8bb 2214ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2215@item
2216PL190 Vectored Interrupt Controller
2217@item
2218Four PL011 UARTs
5fafdf24 2219@item
00a9bf19
PB
2220SMC 91c111 Ethernet adapter
2221@item
2222PL110 LCD controller
2223@item
2224PL050 KMI with PS/2 keyboard and mouse.
2225@item
2226PCI host bridge. Note the emulated PCI bridge only provides access to
2227PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2228This means some devices (eg. ne2k_pci NIC) are not usable, and others
2229(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2230mapped control registers.
e6de1bad
PB
2231@item
2232PCI OHCI USB controller.
2233@item
2234LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2235@item
2236PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2237@end itemize
2238
21a88941
PB
2239Several variants of the ARM RealView baseboard are emulated,
2240including the EB, PB-A8 and PBX-A9. Due to interactions with the
2241bootloader, only certain Linux kernel configurations work out
2242of the box on these boards.
2243
2244Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2245enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2246should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2247disabled and expect 1024M RAM.
2248
40c5c6cd 2249The following devices are emulated:
d7739d75
PB
2250
2251@itemize @minus
2252@item
f7c70325 2253ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2254@item
2255ARM AMBA Generic/Distributed Interrupt Controller
2256@item
2257Four PL011 UARTs
5fafdf24 2258@item
0ef849d7 2259SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2260@item
2261PL110 LCD controller
2262@item
2263PL050 KMI with PS/2 keyboard and mouse
2264@item
2265PCI host bridge
2266@item
2267PCI OHCI USB controller
2268@item
2269LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2270@item
2271PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2272@end itemize
2273
b00052e4
AZ
2274The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2275and "Terrier") emulation includes the following peripherals:
2276
2277@itemize @minus
2278@item
2279Intel PXA270 System-on-chip (ARM V5TE core)
2280@item
2281NAND Flash memory
2282@item
2283IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2284@item
2285On-chip OHCI USB controller
2286@item
2287On-chip LCD controller
2288@item
2289On-chip Real Time Clock
2290@item
2291TI ADS7846 touchscreen controller on SSP bus
2292@item
2293Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2294@item
2295GPIO-connected keyboard controller and LEDs
2296@item
549444e1 2297Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2298@item
2299Three on-chip UARTs
2300@item
2301WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2302@end itemize
2303
02645926
AZ
2304The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2305following elements:
2306
2307@itemize @minus
2308@item
2309Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2310@item
2311ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2312@item
2313On-chip LCD controller
2314@item
2315On-chip Real Time Clock
2316@item
2317TI TSC2102i touchscreen controller / analog-digital converter / Audio
2318CODEC, connected through MicroWire and I@math{^2}S busses
2319@item
2320GPIO-connected matrix keypad
2321@item
2322Secure Digital card connected to OMAP MMC/SD host
2323@item
2324Three on-chip UARTs
2325@end itemize
2326
c30bb264
AZ
2327Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2328emulation supports the following elements:
2329
2330@itemize @minus
2331@item
2332Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2333@item
2334RAM and non-volatile OneNAND Flash memories
2335@item
2336Display connected to EPSON remote framebuffer chip and OMAP on-chip
2337display controller and a LS041y3 MIPI DBI-C controller
2338@item
2339TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2340driven through SPI bus
2341@item
2342National Semiconductor LM8323-controlled qwerty keyboard driven
2343through I@math{^2}C bus
2344@item
2345Secure Digital card connected to OMAP MMC/SD host
2346@item
2347Three OMAP on-chip UARTs and on-chip STI debugging console
2348@item
40c5c6cd 2349A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2350@item
c30bb264
AZ
2351Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2352TUSB6010 chip - only USB host mode is supported
2353@item
2354TI TMP105 temperature sensor driven through I@math{^2}C bus
2355@item
2356TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2357@item
2358Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2359through CBUS
2360@end itemize
2361
9ee6e8bb
PB
2362The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2363devices:
2364
2365@itemize @minus
2366@item
2367Cortex-M3 CPU core.
2368@item
236964k Flash and 8k SRAM.
2370@item
2371Timers, UARTs, ADC and I@math{^2}C interface.
2372@item
2373OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2374@end itemize
2375
2376The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2377devices:
2378
2379@itemize @minus
2380@item
2381Cortex-M3 CPU core.
2382@item
2383256k Flash and 64k SRAM.
2384@item
2385Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2386@item
2387OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2388@end itemize
2389
57cd6e97
AZ
2390The Freecom MusicPal internet radio emulation includes the following
2391elements:
2392
2393@itemize @minus
2394@item
2395Marvell MV88W8618 ARM core.
2396@item
239732 MB RAM, 256 KB SRAM, 8 MB flash.
2398@item
2399Up to 2 16550 UARTs
2400@item
2401MV88W8xx8 Ethernet controller
2402@item
2403MV88W8618 audio controller, WM8750 CODEC and mixer
2404@item
e080e785 2405128×64 display with brightness control
57cd6e97
AZ
2406@item
24072 buttons, 2 navigation wheels with button function
2408@end itemize
2409
997641a8 2410The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2411The emulation includes the following elements:
997641a8
AZ
2412
2413@itemize @minus
2414@item
2415Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2416@item
2417ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2418V1
24191 Flash of 16MB and 1 Flash of 8MB
2420V2
24211 Flash of 32MB
2422@item
2423On-chip LCD controller
2424@item
2425On-chip Real Time Clock
2426@item
2427Secure Digital card connected to OMAP MMC/SD host
2428@item
2429Three on-chip UARTs
2430@end itemize
2431
3f9f3aa1
FB
2432A Linux 2.6 test image is available on the QEMU web site. More
2433information is available in the QEMU mailing-list archive.
9d0a8e6f 2434
d2c639d6
BS
2435@c man begin OPTIONS
2436
2437The following options are specific to the ARM emulation:
2438
2439@table @option
2440
2441@item -semihosting
2442Enable semihosting syscall emulation.
2443
2444On ARM this implements the "Angel" interface.
2445
2446Note that this allows guest direct access to the host filesystem,
2447so should only be used with trusted guest OS.
2448
2449@end table
2450
24d4de45
TS
2451@node ColdFire System emulator
2452@section ColdFire System emulator
7544a042
SW
2453@cindex system emulation (ColdFire)
2454@cindex system emulation (M68K)
209a4e69
PB
2455
2456Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2457The emulator is able to boot a uClinux kernel.
707e011b
PB
2458
2459The M5208EVB emulation includes the following devices:
2460
2461@itemize @minus
5fafdf24 2462@item
707e011b
PB
2463MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2464@item
2465Three Two on-chip UARTs.
2466@item
2467Fast Ethernet Controller (FEC)
2468@end itemize
2469
2470The AN5206 emulation includes the following devices:
209a4e69
PB
2471
2472@itemize @minus
5fafdf24 2473@item
209a4e69
PB
2474MCF5206 ColdFire V2 Microprocessor.
2475@item
2476Two on-chip UARTs.
2477@end itemize
2478
d2c639d6
BS
2479@c man begin OPTIONS
2480
7544a042 2481The following options are specific to the ColdFire emulation:
d2c639d6
BS
2482
2483@table @option
2484
2485@item -semihosting
2486Enable semihosting syscall emulation.
2487
2488On M68K this implements the "ColdFire GDB" interface used by libgloss.
2489
2490Note that this allows guest direct access to the host filesystem,
2491so should only be used with trusted guest OS.
2492
2493@end table
2494
7544a042
SW
2495@node Cris System emulator
2496@section Cris System emulator
2497@cindex system emulation (Cris)
2498
2499TODO
2500
2501@node Microblaze System emulator
2502@section Microblaze System emulator
2503@cindex system emulation (Microblaze)
2504
2505TODO
2506
2507@node SH4 System emulator
2508@section SH4 System emulator
2509@cindex system emulation (SH4)
2510
2511TODO
2512
3aeaea65
MF
2513@node Xtensa System emulator
2514@section Xtensa System emulator
2515@cindex system emulation (Xtensa)
2516
2517Two executables cover simulation of both Xtensa endian options,
2518@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2519Two different machine types are emulated:
2520
2521@itemize @minus
2522@item
2523Xtensa emulator pseudo board "sim"
2524@item
2525Avnet LX60/LX110/LX200 board
2526@end itemize
2527
b5e4946f 2528The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2529to one provided by the proprietary Tensilica ISS.
2530It supports:
2531
2532@itemize @minus
2533@item
2534A range of Xtensa CPUs, default is the DC232B
2535@item
2536Console and filesystem access via semihosting calls
2537@end itemize
2538
2539The Avnet LX60/LX110/LX200 emulation supports:
2540
2541@itemize @minus
2542@item
2543A range of Xtensa CPUs, default is the DC232B
2544@item
254516550 UART
2546@item
2547OpenCores 10/100 Mbps Ethernet MAC
2548@end itemize
2549
2550@c man begin OPTIONS
2551
2552The following options are specific to the Xtensa emulation:
2553
2554@table @option
2555
2556@item -semihosting
2557Enable semihosting syscall emulation.
2558
2559Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2560Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2561
2562Note that this allows guest direct access to the host filesystem,
2563so should only be used with trusted guest OS.
2564
2565@end table
5fafdf24
TS
2566@node QEMU User space emulator
2567@chapter QEMU User space emulator
83195237
FB
2568
2569@menu
2570* Supported Operating Systems ::
2571* Linux User space emulator::
84778508 2572* BSD User space emulator ::
83195237
FB
2573@end menu
2574
2575@node Supported Operating Systems
2576@section Supported Operating Systems
2577
2578The following OS are supported in user space emulation:
2579
2580@itemize @minus
2581@item
4be456f1 2582Linux (referred as qemu-linux-user)
83195237 2583@item
84778508 2584BSD (referred as qemu-bsd-user)
83195237
FB
2585@end itemize
2586
2587@node Linux User space emulator
2588@section Linux User space emulator
386405f7 2589
debc7065
FB
2590@menu
2591* Quick Start::
2592* Wine launch::
2593* Command line options::
79737e4a 2594* Other binaries::
debc7065
FB
2595@end menu
2596
2597@node Quick Start
83195237 2598@subsection Quick Start
df0f11a0 2599
1f673135 2600In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2601itself and all the target (x86) dynamic libraries used by it.
386405f7 2602
1f673135 2603@itemize
386405f7 2604
1f673135
FB
2605@item On x86, you can just try to launch any process by using the native
2606libraries:
386405f7 2607
5fafdf24 2608@example
1f673135
FB
2609qemu-i386 -L / /bin/ls
2610@end example
386405f7 2611
1f673135
FB
2612@code{-L /} tells that the x86 dynamic linker must be searched with a
2613@file{/} prefix.
386405f7 2614
b65ee4fa
SW
2615@item Since QEMU is also a linux process, you can launch QEMU with
2616QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2617
5fafdf24 2618@example
1f673135
FB
2619qemu-i386 -L / qemu-i386 -L / /bin/ls
2620@end example
386405f7 2621
1f673135
FB
2622@item On non x86 CPUs, you need first to download at least an x86 glibc
2623(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2624@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2625
1f673135 2626@example
5fafdf24 2627unset LD_LIBRARY_PATH
1f673135 2628@end example
1eb87257 2629
1f673135 2630Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2631
1f673135
FB
2632@example
2633qemu-i386 tests/i386/ls
2634@end example
4c3b5a48 2635You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2636QEMU is automatically launched by the Linux kernel when you try to
2637launch x86 executables. It requires the @code{binfmt_misc} module in the
2638Linux kernel.
1eb87257 2639
1f673135
FB
2640@item The x86 version of QEMU is also included. You can try weird things such as:
2641@example
debc7065
FB
2642qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2643 /usr/local/qemu-i386/bin/ls-i386
1f673135 2644@end example
1eb20527 2645
1f673135 2646@end itemize
1eb20527 2647
debc7065 2648@node Wine launch
83195237 2649@subsection Wine launch
1eb20527 2650
1f673135 2651@itemize
386405f7 2652
1f673135
FB
2653@item Ensure that you have a working QEMU with the x86 glibc
2654distribution (see previous section). In order to verify it, you must be
2655able to do:
386405f7 2656
1f673135
FB
2657@example
2658qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2659@end example
386405f7 2660
1f673135 2661@item Download the binary x86 Wine install
5fafdf24 2662(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2663
1f673135 2664@item Configure Wine on your account. Look at the provided script
debc7065 2665@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2666@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2667
1f673135 2668@item Then you can try the example @file{putty.exe}:
386405f7 2669
1f673135 2670@example
debc7065
FB
2671qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2672 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2673@end example
386405f7 2674
1f673135 2675@end itemize
fd429f2f 2676
debc7065 2677@node Command line options
83195237 2678@subsection Command line options
1eb20527 2679
1f673135 2680@example
68a1c816 2681usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
1f673135 2682@end example
1eb20527 2683
1f673135
FB
2684@table @option
2685@item -h
2686Print the help
3b46e624 2687@item -L path
1f673135
FB
2688Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2689@item -s size
2690Set the x86 stack size in bytes (default=524288)
34a3d239 2691@item -cpu model
c8057f95 2692Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2693@item -E @var{var}=@var{value}
2694Set environment @var{var} to @var{value}.
2695@item -U @var{var}
2696Remove @var{var} from the environment.
379f6698
PB
2697@item -B offset
2698Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2699the address region required by guest applications is reserved on the host.
2700This option is currently only supported on some hosts.
68a1c816
PB
2701@item -R size
2702Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2703"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2704@end table
2705
1f673135 2706Debug options:
386405f7 2707
1f673135 2708@table @option
989b697d
PM
2709@item -d item1,...
2710Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2711@item -p pagesize
2712Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2713@item -g port
2714Wait gdb connection to port
1b530a6d
AJ
2715@item -singlestep
2716Run the emulation in single step mode.
1f673135 2717@end table
386405f7 2718
b01bcae6
AZ
2719Environment variables:
2720
2721@table @env
2722@item QEMU_STRACE
2723Print system calls and arguments similar to the 'strace' program
2724(NOTE: the actual 'strace' program will not work because the user
2725space emulator hasn't implemented ptrace). At the moment this is
2726incomplete. All system calls that don't have a specific argument
2727format are printed with information for six arguments. Many
2728flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2729@end table
b01bcae6 2730
79737e4a 2731@node Other binaries
83195237 2732@subsection Other binaries
79737e4a 2733
7544a042
SW
2734@cindex user mode (Alpha)
2735@command{qemu-alpha} TODO.
2736
2737@cindex user mode (ARM)
2738@command{qemu-armeb} TODO.
2739
2740@cindex user mode (ARM)
79737e4a
PB
2741@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2742binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2743configurations), and arm-uclinux bFLT format binaries.
2744
7544a042
SW
2745@cindex user mode (ColdFire)
2746@cindex user mode (M68K)
e6e5906b
PB
2747@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2748(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2749coldfire uClinux bFLT format binaries.
2750
79737e4a
PB
2751The binary format is detected automatically.
2752
7544a042
SW
2753@cindex user mode (Cris)
2754@command{qemu-cris} TODO.
2755
2756@cindex user mode (i386)
2757@command{qemu-i386} TODO.
2758@command{qemu-x86_64} TODO.
2759
2760@cindex user mode (Microblaze)
2761@command{qemu-microblaze} TODO.
2762
2763@cindex user mode (MIPS)
2764@command{qemu-mips} TODO.
2765@command{qemu-mipsel} TODO.
2766
2767@cindex user mode (PowerPC)
2768@command{qemu-ppc64abi32} TODO.
2769@command{qemu-ppc64} TODO.
2770@command{qemu-ppc} TODO.
2771
2772@cindex user mode (SH4)
2773@command{qemu-sh4eb} TODO.
2774@command{qemu-sh4} TODO.
2775
2776@cindex user mode (SPARC)
34a3d239
BS
2777@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2778
a785e42e
BS
2779@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2780(Sparc64 CPU, 32 bit ABI).
2781
2782@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2783SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2784
84778508
BS
2785@node BSD User space emulator
2786@section BSD User space emulator
2787
2788@menu
2789* BSD Status::
2790* BSD Quick Start::
2791* BSD Command line options::
2792@end menu
2793
2794@node BSD Status
2795@subsection BSD Status
2796
2797@itemize @minus
2798@item
2799target Sparc64 on Sparc64: Some trivial programs work.
2800@end itemize
2801
2802@node BSD Quick Start
2803@subsection Quick Start
2804
2805In order to launch a BSD process, QEMU needs the process executable
2806itself and all the target dynamic libraries used by it.
2807
2808@itemize
2809
2810@item On Sparc64, you can just try to launch any process by using the native
2811libraries:
2812
2813@example
2814qemu-sparc64 /bin/ls
2815@end example
2816
2817@end itemize
2818
2819@node BSD Command line options
2820@subsection Command line options
2821
2822@example
2823usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2824@end example
2825
2826@table @option
2827@item -h
2828Print the help
2829@item -L path
2830Set the library root path (default=/)
2831@item -s size
2832Set the stack size in bytes (default=524288)
f66724c9
SW
2833@item -ignore-environment
2834Start with an empty environment. Without this option,
40c5c6cd 2835the initial environment is a copy of the caller's environment.
f66724c9
SW
2836@item -E @var{var}=@var{value}
2837Set environment @var{var} to @var{value}.
2838@item -U @var{var}
2839Remove @var{var} from the environment.
84778508
BS
2840@item -bsd type
2841Set the type of the emulated BSD Operating system. Valid values are
2842FreeBSD, NetBSD and OpenBSD (default).
2843@end table
2844
2845Debug options:
2846
2847@table @option
989b697d
PM
2848@item -d item1,...
2849Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2850@item -p pagesize
2851Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2852@item -singlestep
2853Run the emulation in single step mode.
84778508
BS
2854@end table
2855
15a34c63
FB
2856@node compilation
2857@chapter Compilation from the sources
2858
debc7065
FB
2859@menu
2860* Linux/Unix::
2861* Windows::
2862* Cross compilation for Windows with Linux::
2863* Mac OS X::
47eacb4f 2864* Make targets::
debc7065
FB
2865@end menu
2866
2867@node Linux/Unix
7c3fc84d
FB
2868@section Linux/Unix
2869
2870@subsection Compilation
2871
2872First you must decompress the sources:
2873@example
2874cd /tmp
2875tar zxvf qemu-x.y.z.tar.gz
2876cd qemu-x.y.z
2877@end example
2878
2879Then you configure QEMU and build it (usually no options are needed):
2880@example
2881./configure
2882make
2883@end example
2884
2885Then type as root user:
2886@example
2887make install
2888@end example
2889to install QEMU in @file{/usr/local}.
2890
debc7065 2891@node Windows
15a34c63
FB
2892@section Windows
2893
2894@itemize
2895@item Install the current versions of MSYS and MinGW from
2896@url{http://www.mingw.org/}. You can find detailed installation
2897instructions in the download section and the FAQ.
2898
5fafdf24 2899@item Download
15a34c63 2900the MinGW development library of SDL 1.2.x
debc7065 2901(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
d0a96f3d
ST
2902@url{http://www.libsdl.org}. Unpack it in a temporary place and
2903edit the @file{sdl-config} script so that it gives the
15a34c63
FB
2904correct SDL directory when invoked.
2905
d0a96f3d
ST
2906@item Install the MinGW version of zlib and make sure
2907@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2908MinGW's default header and linker search paths.
d0a96f3d 2909
15a34c63 2910@item Extract the current version of QEMU.
5fafdf24 2911
15a34c63
FB
2912@item Start the MSYS shell (file @file{msys.bat}).
2913
5fafdf24 2914@item Change to the QEMU directory. Launch @file{./configure} and
15a34c63
FB
2915@file{make}. If you have problems using SDL, verify that
2916@file{sdl-config} can be launched from the MSYS command line.
2917
c5ec15ea 2918@item You can install QEMU in @file{Program Files/QEMU} by typing
15a34c63 2919@file{make install}. Don't forget to copy @file{SDL.dll} in
c5ec15ea 2920@file{Program Files/QEMU}.
15a34c63
FB
2921
2922@end itemize
2923
debc7065 2924@node Cross compilation for Windows with Linux
15a34c63
FB
2925@section Cross compilation for Windows with Linux
2926
2927@itemize
2928@item
2929Install the MinGW cross compilation tools available at
2930@url{http://www.mingw.org/}.
2931
d0a96f3d
ST
2932@item Download
2933the MinGW development library of SDL 1.2.x
2934(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2935@url{http://www.libsdl.org}. Unpack it in a temporary place and
2936edit the @file{sdl-config} script so that it gives the
2937correct SDL directory when invoked. Set up the @code{PATH} environment
2938variable so that @file{sdl-config} can be launched by
15a34c63
FB
2939the QEMU configuration script.
2940
d0a96f3d
ST
2941@item Install the MinGW version of zlib and make sure
2942@file{zlib.h} and @file{libz.dll.a} are in
40c5c6cd 2943MinGW's default header and linker search paths.
d0a96f3d 2944
5fafdf24 2945@item
15a34c63
FB
2946Configure QEMU for Windows cross compilation:
2947@example
d0a96f3d
ST
2948PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2949@end example
2950The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2951MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
40c5c6cd 2952We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
d0a96f3d 2953use --cross-prefix to specify the name of the cross compiler.
c5ec15ea 2954You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
d0a96f3d
ST
2955
2956Under Fedora Linux, you can run:
2957@example
2958yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
15a34c63 2959@end example
d0a96f3d 2960to get a suitable cross compilation environment.
15a34c63 2961
5fafdf24 2962@item You can install QEMU in the installation directory by typing
d0a96f3d 2963@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
5fafdf24 2964installation directory.
15a34c63
FB
2965
2966@end itemize
2967
3804da9d
SW
2968Wine can be used to launch the resulting qemu-system-i386.exe
2969and all other qemu-system-@var{target}.exe compiled for Win32.
15a34c63 2970
debc7065 2971@node Mac OS X
15a34c63
FB
2972@section Mac OS X
2973
2974The Mac OS X patches are not fully merged in QEMU, so you should look
2975at the QEMU mailing list archive to have all the necessary
2976information.
2977
47eacb4f
SW
2978@node Make targets
2979@section Make targets
2980
2981@table @code
2982
2983@item make
2984@item make all
2985Make everything which is typically needed.
2986
2987@item install
2988TODO
2989
2990@item install-doc
2991TODO
2992
2993@item make clean
2994Remove most files which were built during make.
2995
2996@item make distclean
2997Remove everything which was built during make.
2998
2999@item make dvi
3000@item make html
3001@item make info
3002@item make pdf
3003Create documentation in dvi, html, info or pdf format.
3004
3005@item make cscope
3006TODO
3007
3008@item make defconfig
3009(Re-)create some build configuration files.
3010User made changes will be overwritten.
3011
3012@item tar
3013@item tarbin
3014TODO
3015
3016@end table
3017
7544a042
SW
3018@node License
3019@appendix License
3020
3021QEMU is a trademark of Fabrice Bellard.
3022
3023QEMU is released under the GNU General Public License (TODO: add link).
3024Parts of QEMU have specific licenses, see file LICENSE.
3025
3026TODO (refer to file LICENSE, include it, include the GPL?)
3027
debc7065 3028@node Index
7544a042
SW
3029@appendix Index
3030@menu
3031* Concept Index::
3032* Function Index::
3033* Keystroke Index::
3034* Program Index::
3035* Data Type Index::
3036* Variable Index::
3037@end menu
3038
3039@node Concept Index
3040@section Concept Index
3041This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
3042@printindex cp
3043
7544a042
SW
3044@node Function Index
3045@section Function Index
3046This index could be used for command line options and monitor functions.
3047@printindex fn
3048
3049@node Keystroke Index
3050@section Keystroke Index
3051
3052This is a list of all keystrokes which have a special function
3053in system emulation.
3054
3055@printindex ky
3056
3057@node Program Index
3058@section Program Index
3059@printindex pg
3060
3061@node Data Type Index
3062@section Data Type Index
3063
3064This index could be used for qdev device names and options.
3065
3066@printindex tp
3067
3068@node Variable Index
3069@section Variable Index
3070@printindex vr
3071
debc7065 3072@bye