]> git.proxmox.com Git - qemu.git/blame - qemu-timer.c
unlock iothread during WaitForMultipleObjects
[qemu.git] / qemu-timer.c
CommitLineData
db1a4972
PB
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include "sysemu.h"
26#include "net.h"
27#include "monitor.h"
28#include "console.h"
29
30#include "hw/hw.h"
31
32#include <unistd.h>
33#include <fcntl.h>
34#include <time.h>
35#include <errno.h>
36#include <sys/time.h>
37#include <signal.h>
44459349
JL
38#ifdef __FreeBSD__
39#include <sys/param.h>
40#endif
db1a4972
PB
41
42#ifdef __linux__
43#include <sys/ioctl.h>
44#include <linux/rtc.h>
45/* For the benefit of older linux systems which don't supply it,
46 we use a local copy of hpet.h. */
47/* #include <linux/hpet.h> */
48#include "hpet.h"
49#endif
50
51#ifdef _WIN32
52#include <windows.h>
53#include <mmsystem.h>
54#endif
55
db1a4972 56#include "qemu-timer.h"
db1a4972
PB
57
58/* Conversion factor from emulated instructions to virtual clock ticks. */
29e922b6 59int icount_time_shift;
db1a4972
PB
60/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
61#define MAX_ICOUNT_SHIFT 10
62/* Compensate for varying guest execution speed. */
29e922b6 63int64_t qemu_icount_bias;
db1a4972
PB
64static QEMUTimer *icount_rt_timer;
65static QEMUTimer *icount_vm_timer;
66
db1a4972
PB
67/***********************************************************/
68/* guest cycle counter */
69
70typedef struct TimersState {
71 int64_t cpu_ticks_prev;
72 int64_t cpu_ticks_offset;
73 int64_t cpu_clock_offset;
74 int32_t cpu_ticks_enabled;
75 int64_t dummy;
76} TimersState;
77
78TimersState timers_state;
79
80/* return the host CPU cycle counter and handle stop/restart */
81int64_t cpu_get_ticks(void)
82{
83 if (use_icount) {
84 return cpu_get_icount();
85 }
86 if (!timers_state.cpu_ticks_enabled) {
87 return timers_state.cpu_ticks_offset;
88 } else {
89 int64_t ticks;
90 ticks = cpu_get_real_ticks();
91 if (timers_state.cpu_ticks_prev > ticks) {
92 /* Note: non increasing ticks may happen if the host uses
93 software suspend */
94 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
95 }
96 timers_state.cpu_ticks_prev = ticks;
97 return ticks + timers_state.cpu_ticks_offset;
98 }
99}
100
101/* return the host CPU monotonic timer and handle stop/restart */
102static int64_t cpu_get_clock(void)
103{
104 int64_t ti;
105 if (!timers_state.cpu_ticks_enabled) {
106 return timers_state.cpu_clock_offset;
107 } else {
108 ti = get_clock();
109 return ti + timers_state.cpu_clock_offset;
110 }
111}
112
db1a4972
PB
113static int64_t qemu_icount_delta(void)
114{
c9f7383c 115 if (use_icount == 1) {
db1a4972
PB
116 /* When not using an adaptive execution frequency
117 we tend to get badly out of sync with real time,
118 so just delay for a reasonable amount of time. */
119 return 0;
120 } else {
121 return cpu_get_icount() - cpu_get_clock();
122 }
123}
db1a4972
PB
124
125/* enable cpu_get_ticks() */
126void cpu_enable_ticks(void)
127{
128 if (!timers_state.cpu_ticks_enabled) {
129 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
130 timers_state.cpu_clock_offset -= get_clock();
131 timers_state.cpu_ticks_enabled = 1;
132 }
133}
134
135/* disable cpu_get_ticks() : the clock is stopped. You must not call
136 cpu_get_ticks() after that. */
137void cpu_disable_ticks(void)
138{
139 if (timers_state.cpu_ticks_enabled) {
140 timers_state.cpu_ticks_offset = cpu_get_ticks();
141 timers_state.cpu_clock_offset = cpu_get_clock();
142 timers_state.cpu_ticks_enabled = 0;
143 }
144}
145
146/***********************************************************/
147/* timers */
148
149#define QEMU_CLOCK_REALTIME 0
150#define QEMU_CLOCK_VIRTUAL 1
151#define QEMU_CLOCK_HOST 2
152
153struct QEMUClock {
154 int type;
155 int enabled;
156 /* XXX: add frequency */
157};
158
159struct QEMUTimer {
160 QEMUClock *clock;
161 int64_t expire_time;
162 QEMUTimerCB *cb;
163 void *opaque;
164 struct QEMUTimer *next;
165};
166
167struct qemu_alarm_timer {
168 char const *name;
169 int (*start)(struct qemu_alarm_timer *t);
170 void (*stop)(struct qemu_alarm_timer *t);
171 void (*rearm)(struct qemu_alarm_timer *t);
172 void *priv;
173
174 char expired;
175 char pending;
176};
177
178static struct qemu_alarm_timer *alarm_timer;
179
180int qemu_alarm_pending(void)
181{
182 return alarm_timer->pending;
183}
184
185static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
186{
187 return !!t->rearm;
188}
189
190static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
191{
192 if (!alarm_has_dynticks(t))
193 return;
194
195 t->rearm(t);
196}
197
9c13246a
PB
198/* TODO: MIN_TIMER_REARM_NS should be optimized */
199#define MIN_TIMER_REARM_NS 250000
db1a4972
PB
200
201#ifdef _WIN32
202
203struct qemu_alarm_win32 {
204 MMRESULT timerId;
205 unsigned int period;
206} alarm_win32_data = {0, 0};
207
208static int win32_start_timer(struct qemu_alarm_timer *t);
209static void win32_stop_timer(struct qemu_alarm_timer *t);
210static void win32_rearm_timer(struct qemu_alarm_timer *t);
211
212#else
213
214static int unix_start_timer(struct qemu_alarm_timer *t);
215static void unix_stop_timer(struct qemu_alarm_timer *t);
216
217#ifdef __linux__
218
219static int dynticks_start_timer(struct qemu_alarm_timer *t);
220static void dynticks_stop_timer(struct qemu_alarm_timer *t);
221static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
222
223static int hpet_start_timer(struct qemu_alarm_timer *t);
224static void hpet_stop_timer(struct qemu_alarm_timer *t);
225
226static int rtc_start_timer(struct qemu_alarm_timer *t);
227static void rtc_stop_timer(struct qemu_alarm_timer *t);
228
229#endif /* __linux__ */
230
231#endif /* _WIN32 */
232
233/* Correlation between real and virtual time is always going to be
234 fairly approximate, so ignore small variation.
235 When the guest is idle real and virtual time will be aligned in
236 the IO wait loop. */
237#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
238
239static void icount_adjust(void)
240{
241 int64_t cur_time;
242 int64_t cur_icount;
243 int64_t delta;
244 static int64_t last_delta;
245 /* If the VM is not running, then do nothing. */
246 if (!vm_running)
247 return;
248
249 cur_time = cpu_get_clock();
250 cur_icount = qemu_get_clock(vm_clock);
251 delta = cur_icount - cur_time;
252 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
253 if (delta > 0
254 && last_delta + ICOUNT_WOBBLE < delta * 2
255 && icount_time_shift > 0) {
256 /* The guest is getting too far ahead. Slow time down. */
257 icount_time_shift--;
258 }
259 if (delta < 0
260 && last_delta - ICOUNT_WOBBLE > delta * 2
261 && icount_time_shift < MAX_ICOUNT_SHIFT) {
262 /* The guest is getting too far behind. Speed time up. */
263 icount_time_shift++;
264 }
265 last_delta = delta;
266 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
267}
268
269static void icount_adjust_rt(void * opaque)
270{
271 qemu_mod_timer(icount_rt_timer,
272 qemu_get_clock(rt_clock) + 1000);
273 icount_adjust();
274}
275
276static void icount_adjust_vm(void * opaque)
277{
278 qemu_mod_timer(icount_vm_timer,
279 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
280 icount_adjust();
281}
282
283int64_t qemu_icount_round(int64_t count)
284{
285 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
286}
287
288static struct qemu_alarm_timer alarm_timers[] = {
289#ifndef _WIN32
290#ifdef __linux__
291 {"dynticks", dynticks_start_timer,
292 dynticks_stop_timer, dynticks_rearm_timer, NULL},
293 /* HPET - if available - is preferred */
294 {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL},
295 /* ...otherwise try RTC */
296 {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL},
297#endif
298 {"unix", unix_start_timer, unix_stop_timer, NULL, NULL},
299#else
300 {"dynticks", win32_start_timer,
301 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
302 {"win32", win32_start_timer,
303 win32_stop_timer, NULL, &alarm_win32_data},
304#endif
305 {NULL, }
306};
307
308static void show_available_alarms(void)
309{
310 int i;
311
312 printf("Available alarm timers, in order of precedence:\n");
313 for (i = 0; alarm_timers[i].name; i++)
314 printf("%s\n", alarm_timers[i].name);
315}
316
317void configure_alarms(char const *opt)
318{
319 int i;
320 int cur = 0;
321 int count = ARRAY_SIZE(alarm_timers) - 1;
322 char *arg;
323 char *name;
324 struct qemu_alarm_timer tmp;
325
326 if (!strcmp(opt, "?")) {
327 show_available_alarms();
328 exit(0);
329 }
330
331 arg = qemu_strdup(opt);
332
333 /* Reorder the array */
334 name = strtok(arg, ",");
335 while (name) {
336 for (i = 0; i < count && alarm_timers[i].name; i++) {
337 if (!strcmp(alarm_timers[i].name, name))
338 break;
339 }
340
341 if (i == count) {
342 fprintf(stderr, "Unknown clock %s\n", name);
343 goto next;
344 }
345
346 if (i < cur)
347 /* Ignore */
348 goto next;
349
350 /* Swap */
351 tmp = alarm_timers[i];
352 alarm_timers[i] = alarm_timers[cur];
353 alarm_timers[cur] = tmp;
354
355 cur++;
356next:
357 name = strtok(NULL, ",");
358 }
359
360 qemu_free(arg);
361
362 if (cur) {
363 /* Disable remaining timers */
364 for (i = cur; i < count; i++)
365 alarm_timers[i].name = NULL;
366 } else {
367 show_available_alarms();
368 exit(1);
369 }
370}
371
372#define QEMU_NUM_CLOCKS 3
373
374QEMUClock *rt_clock;
375QEMUClock *vm_clock;
376QEMUClock *host_clock;
377
378static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
379
380static QEMUClock *qemu_new_clock(int type)
381{
382 QEMUClock *clock;
383 clock = qemu_mallocz(sizeof(QEMUClock));
384 clock->type = type;
385 clock->enabled = 1;
386 return clock;
387}
388
389void qemu_clock_enable(QEMUClock *clock, int enabled)
390{
391 clock->enabled = enabled;
392}
393
394QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
395{
396 QEMUTimer *ts;
397
398 ts = qemu_mallocz(sizeof(QEMUTimer));
399 ts->clock = clock;
400 ts->cb = cb;
401 ts->opaque = opaque;
402 return ts;
403}
404
405void qemu_free_timer(QEMUTimer *ts)
406{
407 qemu_free(ts);
408}
409
410/* stop a timer, but do not dealloc it */
411void qemu_del_timer(QEMUTimer *ts)
412{
413 QEMUTimer **pt, *t;
414
415 /* NOTE: this code must be signal safe because
416 qemu_timer_expired() can be called from a signal. */
417 pt = &active_timers[ts->clock->type];
418 for(;;) {
419 t = *pt;
420 if (!t)
421 break;
422 if (t == ts) {
423 *pt = t->next;
424 break;
425 }
426 pt = &t->next;
427 }
428}
429
430/* modify the current timer so that it will be fired when current_time
431 >= expire_time. The corresponding callback will be called. */
432void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
433{
434 QEMUTimer **pt, *t;
435
436 qemu_del_timer(ts);
437
438 /* add the timer in the sorted list */
439 /* NOTE: this code must be signal safe because
440 qemu_timer_expired() can be called from a signal. */
441 pt = &active_timers[ts->clock->type];
442 for(;;) {
443 t = *pt;
444 if (!t)
445 break;
446 if (t->expire_time > expire_time)
447 break;
448 pt = &t->next;
449 }
450 ts->expire_time = expire_time;
451 ts->next = *pt;
452 *pt = ts;
453
454 /* Rearm if necessary */
455 if (pt == &active_timers[ts->clock->type]) {
456 if (!alarm_timer->pending) {
457 qemu_rearm_alarm_timer(alarm_timer);
458 }
459 /* Interrupt execution to force deadline recalculation. */
460 if (use_icount)
461 qemu_notify_event();
462 }
463}
464
465int qemu_timer_pending(QEMUTimer *ts)
466{
467 QEMUTimer *t;
468 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
469 if (t == ts)
470 return 1;
471 }
472 return 0;
473}
474
475int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
476{
477 if (!timer_head)
478 return 0;
479 return (timer_head->expire_time <= current_time);
480}
481
482static void qemu_run_timers(QEMUClock *clock)
483{
484 QEMUTimer **ptimer_head, *ts;
485 int64_t current_time;
486
487 if (!clock->enabled)
488 return;
489
490 current_time = qemu_get_clock (clock);
491 ptimer_head = &active_timers[clock->type];
492 for(;;) {
493 ts = *ptimer_head;
494 if (!ts || ts->expire_time > current_time)
495 break;
496 /* remove timer from the list before calling the callback */
497 *ptimer_head = ts->next;
498 ts->next = NULL;
499
500 /* run the callback (the timer list can be modified) */
501 ts->cb(ts->opaque);
502 }
503}
504
505int64_t qemu_get_clock(QEMUClock *clock)
506{
507 switch(clock->type) {
508 case QEMU_CLOCK_REALTIME:
509 return get_clock() / 1000000;
510 default:
511 case QEMU_CLOCK_VIRTUAL:
512 if (use_icount) {
513 return cpu_get_icount();
514 } else {
515 return cpu_get_clock();
516 }
517 case QEMU_CLOCK_HOST:
518 return get_clock_realtime();
519 }
520}
521
522int64_t qemu_get_clock_ns(QEMUClock *clock)
523{
524 switch(clock->type) {
525 case QEMU_CLOCK_REALTIME:
526 return get_clock();
527 default:
528 case QEMU_CLOCK_VIRTUAL:
529 if (use_icount) {
530 return cpu_get_icount();
531 } else {
532 return cpu_get_clock();
533 }
534 case QEMU_CLOCK_HOST:
535 return get_clock_realtime();
536 }
537}
538
539void init_clocks(void)
540{
db1a4972
PB
541 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
542 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
543 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
544
545 rtc_clock = host_clock;
546}
547
548/* save a timer */
549void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
550{
551 uint64_t expire_time;
552
553 if (qemu_timer_pending(ts)) {
554 expire_time = ts->expire_time;
555 } else {
556 expire_time = -1;
557 }
558 qemu_put_be64(f, expire_time);
559}
560
561void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
562{
563 uint64_t expire_time;
564
565 expire_time = qemu_get_be64(f);
566 if (expire_time != -1) {
567 qemu_mod_timer(ts, expire_time);
568 } else {
569 qemu_del_timer(ts);
570 }
571}
572
573static const VMStateDescription vmstate_timers = {
574 .name = "timer",
575 .version_id = 2,
576 .minimum_version_id = 1,
577 .minimum_version_id_old = 1,
578 .fields = (VMStateField []) {
579 VMSTATE_INT64(cpu_ticks_offset, TimersState),
580 VMSTATE_INT64(dummy, TimersState),
581 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
582 VMSTATE_END_OF_LIST()
583 }
584};
585
586void configure_icount(const char *option)
587{
0be71e32 588 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
db1a4972
PB
589 if (!option)
590 return;
591
592 if (strcmp(option, "auto") != 0) {
593 icount_time_shift = strtol(option, NULL, 0);
594 use_icount = 1;
595 return;
596 }
597
598 use_icount = 2;
599
600 /* 125MIPS seems a reasonable initial guess at the guest speed.
601 It will be corrected fairly quickly anyway. */
602 icount_time_shift = 3;
603
604 /* Have both realtime and virtual time triggers for speed adjustment.
605 The realtime trigger catches emulated time passing too slowly,
606 the virtual time trigger catches emulated time passing too fast.
607 Realtime triggers occur even when idle, so use them less frequently
608 than VM triggers. */
609 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
610 qemu_mod_timer(icount_rt_timer,
611 qemu_get_clock(rt_clock) + 1000);
612 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
613 qemu_mod_timer(icount_vm_timer,
614 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
615}
616
617void qemu_run_all_timers(void)
618{
ca5a2a4b
PB
619 alarm_timer->pending = 0;
620
db1a4972
PB
621 /* rearm timer, if not periodic */
622 if (alarm_timer->expired) {
623 alarm_timer->expired = 0;
624 qemu_rearm_alarm_timer(alarm_timer);
625 }
626
db1a4972
PB
627 /* vm time timers */
628 if (vm_running) {
629 qemu_run_timers(vm_clock);
630 }
631
632 qemu_run_timers(rt_clock);
633 qemu_run_timers(host_clock);
634}
635
4c3d45eb
PB
636static int64_t qemu_next_alarm_deadline(void);
637
db1a4972
PB
638#ifdef _WIN32
639static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
640 DWORD_PTR dwUser, DWORD_PTR dw1,
641 DWORD_PTR dw2)
642#else
643static void host_alarm_handler(int host_signum)
644#endif
645{
646 struct qemu_alarm_timer *t = alarm_timer;
647 if (!t)
648 return;
649
650#if 0
651#define DISP_FREQ 1000
652 {
653 static int64_t delta_min = INT64_MAX;
654 static int64_t delta_max, delta_cum, last_clock, delta, ti;
655 static int count;
656 ti = qemu_get_clock(vm_clock);
657 if (last_clock != 0) {
658 delta = ti - last_clock;
659 if (delta < delta_min)
660 delta_min = delta;
661 if (delta > delta_max)
662 delta_max = delta;
663 delta_cum += delta;
664 if (++count == DISP_FREQ) {
665 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
666 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
667 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
668 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
669 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
670 count = 0;
671 delta_min = INT64_MAX;
672 delta_max = 0;
673 delta_cum = 0;
674 }
675 }
676 last_clock = ti;
677 }
678#endif
679 if (alarm_has_dynticks(t) ||
4c3d45eb 680 qemu_next_alarm_deadline () <= 0) {
db1a4972
PB
681 t->expired = alarm_has_dynticks(t);
682 t->pending = 1;
683 qemu_notify_event();
684 }
685}
686
687int64_t qemu_next_deadline(void)
688{
689 /* To avoid problems with overflow limit this to 2^32. */
690 int64_t delta = INT32_MAX;
691
692 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
693 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
9c13246a 694 qemu_get_clock_ns(vm_clock);
db1a4972
PB
695 }
696 if (active_timers[QEMU_CLOCK_HOST]) {
697 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
9c13246a 698 qemu_get_clock_ns(host_clock);
db1a4972
PB
699 if (hdelta < delta)
700 delta = hdelta;
701 }
702
703 if (delta < 0)
704 delta = 0;
705
706 return delta;
707}
708
4c3d45eb 709static int64_t qemu_next_alarm_deadline(void)
db1a4972
PB
710{
711 int64_t delta;
712 int64_t rtdelta;
713
6ad0a1ed
PB
714 if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) {
715 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
716 qemu_get_clock(vm_clock);
717 } else {
db1a4972 718 delta = INT32_MAX;
6ad0a1ed
PB
719 }
720 if (active_timers[QEMU_CLOCK_HOST]) {
721 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
722 qemu_get_clock_ns(host_clock);
723 if (hdelta < delta)
724 delta = hdelta;
725 }
db1a4972 726 if (active_timers[QEMU_CLOCK_REALTIME]) {
9c13246a
PB
727 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time * 1000000 -
728 qemu_get_clock_ns(rt_clock));
db1a4972
PB
729 if (rtdelta < delta)
730 delta = rtdelta;
731 }
732
db1a4972
PB
733 return delta;
734}
735
4c3d45eb
PB
736#if defined(__linux__)
737
738#define RTC_FREQ 1024
739
db1a4972
PB
740static void enable_sigio_timer(int fd)
741{
742 struct sigaction act;
743
744 /* timer signal */
745 sigfillset(&act.sa_mask);
746 act.sa_flags = 0;
747 act.sa_handler = host_alarm_handler;
748
749 sigaction(SIGIO, &act, NULL);
750 fcntl_setfl(fd, O_ASYNC);
751 fcntl(fd, F_SETOWN, getpid());
752}
753
754static int hpet_start_timer(struct qemu_alarm_timer *t)
755{
756 struct hpet_info info;
757 int r, fd;
758
759 fd = qemu_open("/dev/hpet", O_RDONLY);
760 if (fd < 0)
761 return -1;
762
763 /* Set frequency */
764 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
765 if (r < 0) {
766 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
767 "error, but for better emulation accuracy type:\n"
768 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
769 goto fail;
770 }
771
772 /* Check capabilities */
773 r = ioctl(fd, HPET_INFO, &info);
774 if (r < 0)
775 goto fail;
776
777 /* Enable periodic mode */
778 r = ioctl(fd, HPET_EPI, 0);
779 if (info.hi_flags && (r < 0))
780 goto fail;
781
782 /* Enable interrupt */
783 r = ioctl(fd, HPET_IE_ON, 0);
784 if (r < 0)
785 goto fail;
786
787 enable_sigio_timer(fd);
788 t->priv = (void *)(long)fd;
789
790 return 0;
791fail:
792 close(fd);
793 return -1;
794}
795
796static void hpet_stop_timer(struct qemu_alarm_timer *t)
797{
798 int fd = (long)t->priv;
799
800 close(fd);
801}
802
803static int rtc_start_timer(struct qemu_alarm_timer *t)
804{
805 int rtc_fd;
806 unsigned long current_rtc_freq = 0;
807
808 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
809 if (rtc_fd < 0)
810 return -1;
811 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
812 if (current_rtc_freq != RTC_FREQ &&
813 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
814 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
815 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
816 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
817 goto fail;
818 }
819 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
820 fail:
821 close(rtc_fd);
822 return -1;
823 }
824
825 enable_sigio_timer(rtc_fd);
826
827 t->priv = (void *)(long)rtc_fd;
828
829 return 0;
830}
831
832static void rtc_stop_timer(struct qemu_alarm_timer *t)
833{
834 int rtc_fd = (long)t->priv;
835
836 close(rtc_fd);
837}
838
839static int dynticks_start_timer(struct qemu_alarm_timer *t)
840{
841 struct sigevent ev;
842 timer_t host_timer;
843 struct sigaction act;
844
845 sigfillset(&act.sa_mask);
846 act.sa_flags = 0;
847 act.sa_handler = host_alarm_handler;
848
849 sigaction(SIGALRM, &act, NULL);
850
851 /*
852 * Initialize ev struct to 0 to avoid valgrind complaining
853 * about uninitialized data in timer_create call
854 */
855 memset(&ev, 0, sizeof(ev));
856 ev.sigev_value.sival_int = 0;
857 ev.sigev_notify = SIGEV_SIGNAL;
858 ev.sigev_signo = SIGALRM;
859
860 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
861 perror("timer_create");
862
863 /* disable dynticks */
864 fprintf(stderr, "Dynamic Ticks disabled\n");
865
866 return -1;
867 }
868
869 t->priv = (void *)(long)host_timer;
870
871 return 0;
872}
873
874static void dynticks_stop_timer(struct qemu_alarm_timer *t)
875{
876 timer_t host_timer = (timer_t)(long)t->priv;
877
878 timer_delete(host_timer);
879}
880
881static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
882{
883 timer_t host_timer = (timer_t)(long)t->priv;
884 struct itimerspec timeout;
9c13246a
PB
885 int64_t nearest_delta_ns = INT64_MAX;
886 int64_t current_ns;
db1a4972
PB
887
888 assert(alarm_has_dynticks(t));
889 if (!active_timers[QEMU_CLOCK_REALTIME] &&
890 !active_timers[QEMU_CLOCK_VIRTUAL] &&
891 !active_timers[QEMU_CLOCK_HOST])
892 return;
893
4c3d45eb
PB
894 nearest_delta_ns = qemu_next_alarm_deadline();
895 if (nearest_delta_ns < MIN_TIMER_REARM_NS)
896 nearest_delta_ns = MIN_TIMER_REARM_NS;
db1a4972
PB
897
898 /* check whether a timer is already running */
899 if (timer_gettime(host_timer, &timeout)) {
900 perror("gettime");
901 fprintf(stderr, "Internal timer error: aborting\n");
902 exit(1);
903 }
9c13246a
PB
904 current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec;
905 if (current_ns && current_ns <= nearest_delta_ns)
db1a4972
PB
906 return;
907
908 timeout.it_interval.tv_sec = 0;
909 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
9c13246a
PB
910 timeout.it_value.tv_sec = nearest_delta_ns / 1000000000;
911 timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000;
db1a4972
PB
912 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
913 perror("settime");
914 fprintf(stderr, "Internal timer error: aborting\n");
915 exit(1);
916 }
917}
918
919#endif /* defined(__linux__) */
920
f26e5a54
SW
921#if !defined(_WIN32)
922
db1a4972
PB
923static int unix_start_timer(struct qemu_alarm_timer *t)
924{
925 struct sigaction act;
926 struct itimerval itv;
927 int err;
928
929 /* timer signal */
930 sigfillset(&act.sa_mask);
931 act.sa_flags = 0;
932 act.sa_handler = host_alarm_handler;
933
934 sigaction(SIGALRM, &act, NULL);
935
936 itv.it_interval.tv_sec = 0;
937 /* for i386 kernel 2.6 to get 1 ms */
938 itv.it_interval.tv_usec = 999;
939 itv.it_value.tv_sec = 0;
940 itv.it_value.tv_usec = 10 * 1000;
941
942 err = setitimer(ITIMER_REAL, &itv, NULL);
943 if (err)
944 return -1;
945
946 return 0;
947}
948
949static void unix_stop_timer(struct qemu_alarm_timer *t)
950{
951 struct itimerval itv;
952
953 memset(&itv, 0, sizeof(itv));
954 setitimer(ITIMER_REAL, &itv, NULL);
955}
956
957#endif /* !defined(_WIN32) */
958
959
960#ifdef _WIN32
961
962static int win32_start_timer(struct qemu_alarm_timer *t)
963{
964 TIMECAPS tc;
965 struct qemu_alarm_win32 *data = t->priv;
966 UINT flags;
967
968 memset(&tc, 0, sizeof(tc));
969 timeGetDevCaps(&tc, sizeof(tc));
970
971 data->period = tc.wPeriodMin;
972 timeBeginPeriod(data->period);
973
974 flags = TIME_CALLBACK_FUNCTION;
975 if (alarm_has_dynticks(t))
976 flags |= TIME_ONESHOT;
977 else
978 flags |= TIME_PERIODIC;
979
980 data->timerId = timeSetEvent(1, // interval (ms)
981 data->period, // resolution
982 host_alarm_handler, // function
983 (DWORD)t, // parameter
984 flags);
985
986 if (!data->timerId) {
987 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
988 GetLastError());
989 timeEndPeriod(data->period);
990 return -1;
991 }
992
993 return 0;
994}
995
996static void win32_stop_timer(struct qemu_alarm_timer *t)
997{
998 struct qemu_alarm_win32 *data = t->priv;
999
1000 timeKillEvent(data->timerId);
1001 timeEndPeriod(data->period);
1002}
1003
1004static void win32_rearm_timer(struct qemu_alarm_timer *t)
1005{
1006 struct qemu_alarm_win32 *data = t->priv;
1007
1008 assert(alarm_has_dynticks(t));
1009 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1010 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1011 !active_timers[QEMU_CLOCK_HOST])
1012 return;
1013
1014 timeKillEvent(data->timerId);
1015
1016 data->timerId = timeSetEvent(1,
1017 data->period,
1018 host_alarm_handler,
1019 (DWORD)t,
1020 TIME_ONESHOT | TIME_CALLBACK_FUNCTION);
1021
1022 if (!data->timerId) {
1023 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1024 GetLastError());
1025
1026 timeEndPeriod(data->period);
1027 exit(1);
1028 }
1029}
1030
1031#endif /* _WIN32 */
1032
1033static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)
1034{
1035 if (running)
1036 qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);
1037}
1038
1039int init_timer_alarm(void)
1040{
1041 struct qemu_alarm_timer *t = NULL;
1042 int i, err = -1;
1043
1044 for (i = 0; alarm_timers[i].name; i++) {
1045 t = &alarm_timers[i];
1046
1047 err = t->start(t);
1048 if (!err)
1049 break;
1050 }
1051
1052 if (err) {
1053 err = -ENOENT;
1054 goto fail;
1055 }
1056
1057 /* first event is at time 0 */
1058 t->pending = 1;
1059 alarm_timer = t;
1060 qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);
1061
1062 return 0;
1063
1064fail:
1065 return err;
1066}
1067
1068void quit_timers(void)
1069{
1070 struct qemu_alarm_timer *t = alarm_timer;
1071 alarm_timer = NULL;
1072 t->stop(t);
1073}
1074
1075int qemu_calculate_timeout(void)
1076{
db1a4972 1077 int timeout;
c9f7383c
PB
1078 int64_t add;
1079 int64_t delta;
db1a4972 1080
225d02cd
EI
1081 /* When using icount, making forward progress with qemu_icount when the
1082 guest CPU is idle is critical. We only use the static io-thread timeout
1083 for non icount runs. */
c9f7383c
PB
1084 if (!use_icount || !vm_running) {
1085 return 5000;
225d02cd 1086 }
225d02cd 1087
c9f7383c
PB
1088 /* Advance virtual time to the next event. */
1089 delta = qemu_icount_delta();
1090 if (delta > 0) {
1091 /* If virtual time is ahead of real time then just
1092 wait for IO. */
1093 timeout = (delta + 999999) / 1000000;
1094 } else {
1095 /* Wait for either IO to occur or the next
1096 timer event. */
1097 add = qemu_next_deadline();
1098 /* We advance the timer before checking for IO.
1099 Limit the amount we advance so that early IO
1100 activity won't get the guest too far ahead. */
1101 if (add > 10000000)
1102 add = 10000000;
1103 delta += add;
1104 qemu_icount += qemu_icount_round (add);
1105 timeout = delta / 1000000;
1106 if (timeout < 0)
1107 timeout = 0;
db1a4972
PB
1108 }
1109
1110 return timeout;
db1a4972
PB
1111}
1112