]> git.proxmox.com Git - qemu.git/blame - qemu-timer.c
Correct alarm deadline computation
[qemu.git] / qemu-timer.c
CommitLineData
db1a4972
PB
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include "sysemu.h"
26#include "net.h"
27#include "monitor.h"
28#include "console.h"
29
30#include "hw/hw.h"
31
32#include <unistd.h>
33#include <fcntl.h>
34#include <time.h>
35#include <errno.h>
36#include <sys/time.h>
37#include <signal.h>
44459349
JL
38#ifdef __FreeBSD__
39#include <sys/param.h>
40#endif
db1a4972
PB
41
42#ifdef __linux__
43#include <sys/ioctl.h>
44#include <linux/rtc.h>
45/* For the benefit of older linux systems which don't supply it,
46 we use a local copy of hpet.h. */
47/* #include <linux/hpet.h> */
48#include "hpet.h"
49#endif
50
51#ifdef _WIN32
52#include <windows.h>
53#include <mmsystem.h>
54#endif
55
db1a4972 56#include "qemu-timer.h"
db1a4972
PB
57
58/* Conversion factor from emulated instructions to virtual clock ticks. */
29e922b6 59int icount_time_shift;
db1a4972
PB
60/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
61#define MAX_ICOUNT_SHIFT 10
62/* Compensate for varying guest execution speed. */
29e922b6 63int64_t qemu_icount_bias;
db1a4972
PB
64static QEMUTimer *icount_rt_timer;
65static QEMUTimer *icount_vm_timer;
66
db1a4972
PB
67/***********************************************************/
68/* guest cycle counter */
69
70typedef struct TimersState {
71 int64_t cpu_ticks_prev;
72 int64_t cpu_ticks_offset;
73 int64_t cpu_clock_offset;
74 int32_t cpu_ticks_enabled;
75 int64_t dummy;
76} TimersState;
77
78TimersState timers_state;
79
80/* return the host CPU cycle counter and handle stop/restart */
81int64_t cpu_get_ticks(void)
82{
83 if (use_icount) {
84 return cpu_get_icount();
85 }
86 if (!timers_state.cpu_ticks_enabled) {
87 return timers_state.cpu_ticks_offset;
88 } else {
89 int64_t ticks;
90 ticks = cpu_get_real_ticks();
91 if (timers_state.cpu_ticks_prev > ticks) {
92 /* Note: non increasing ticks may happen if the host uses
93 software suspend */
94 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
95 }
96 timers_state.cpu_ticks_prev = ticks;
97 return ticks + timers_state.cpu_ticks_offset;
98 }
99}
100
101/* return the host CPU monotonic timer and handle stop/restart */
102static int64_t cpu_get_clock(void)
103{
104 int64_t ti;
105 if (!timers_state.cpu_ticks_enabled) {
106 return timers_state.cpu_clock_offset;
107 } else {
108 ti = get_clock();
109 return ti + timers_state.cpu_clock_offset;
110 }
111}
112
db1a4972
PB
113static int64_t qemu_icount_delta(void)
114{
115 if (!use_icount) {
116 return 5000 * (int64_t) 1000000;
117 } else if (use_icount == 1) {
118 /* When not using an adaptive execution frequency
119 we tend to get badly out of sync with real time,
120 so just delay for a reasonable amount of time. */
121 return 0;
122 } else {
123 return cpu_get_icount() - cpu_get_clock();
124 }
125}
db1a4972
PB
126
127/* enable cpu_get_ticks() */
128void cpu_enable_ticks(void)
129{
130 if (!timers_state.cpu_ticks_enabled) {
131 timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
132 timers_state.cpu_clock_offset -= get_clock();
133 timers_state.cpu_ticks_enabled = 1;
134 }
135}
136
137/* disable cpu_get_ticks() : the clock is stopped. You must not call
138 cpu_get_ticks() after that. */
139void cpu_disable_ticks(void)
140{
141 if (timers_state.cpu_ticks_enabled) {
142 timers_state.cpu_ticks_offset = cpu_get_ticks();
143 timers_state.cpu_clock_offset = cpu_get_clock();
144 timers_state.cpu_ticks_enabled = 0;
145 }
146}
147
148/***********************************************************/
149/* timers */
150
151#define QEMU_CLOCK_REALTIME 0
152#define QEMU_CLOCK_VIRTUAL 1
153#define QEMU_CLOCK_HOST 2
154
155struct QEMUClock {
156 int type;
157 int enabled;
158 /* XXX: add frequency */
159};
160
161struct QEMUTimer {
162 QEMUClock *clock;
163 int64_t expire_time;
164 QEMUTimerCB *cb;
165 void *opaque;
166 struct QEMUTimer *next;
167};
168
169struct qemu_alarm_timer {
170 char const *name;
171 int (*start)(struct qemu_alarm_timer *t);
172 void (*stop)(struct qemu_alarm_timer *t);
173 void (*rearm)(struct qemu_alarm_timer *t);
174 void *priv;
175
176 char expired;
177 char pending;
178};
179
180static struct qemu_alarm_timer *alarm_timer;
181
182int qemu_alarm_pending(void)
183{
184 return alarm_timer->pending;
185}
186
187static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
188{
189 return !!t->rearm;
190}
191
192static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
193{
194 if (!alarm_has_dynticks(t))
195 return;
196
197 t->rearm(t);
198}
199
d7f88b4b
PB
200/* TODO: MIN_TIMER_REARM_NS should be optimized */
201#define MIN_TIMER_REARM_NS 250000
db1a4972
PB
202
203#ifdef _WIN32
204
205struct qemu_alarm_win32 {
206 MMRESULT timerId;
207 unsigned int period;
208} alarm_win32_data = {0, 0};
209
210static int win32_start_timer(struct qemu_alarm_timer *t);
211static void win32_stop_timer(struct qemu_alarm_timer *t);
212static void win32_rearm_timer(struct qemu_alarm_timer *t);
213
214#else
215
216static int unix_start_timer(struct qemu_alarm_timer *t);
217static void unix_stop_timer(struct qemu_alarm_timer *t);
218
219#ifdef __linux__
220
221static int dynticks_start_timer(struct qemu_alarm_timer *t);
222static void dynticks_stop_timer(struct qemu_alarm_timer *t);
223static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
224
225static int hpet_start_timer(struct qemu_alarm_timer *t);
226static void hpet_stop_timer(struct qemu_alarm_timer *t);
227
228static int rtc_start_timer(struct qemu_alarm_timer *t);
229static void rtc_stop_timer(struct qemu_alarm_timer *t);
230
231#endif /* __linux__ */
232
233#endif /* _WIN32 */
234
235/* Correlation between real and virtual time is always going to be
236 fairly approximate, so ignore small variation.
237 When the guest is idle real and virtual time will be aligned in
238 the IO wait loop. */
239#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
240
241static void icount_adjust(void)
242{
243 int64_t cur_time;
244 int64_t cur_icount;
245 int64_t delta;
246 static int64_t last_delta;
247 /* If the VM is not running, then do nothing. */
248 if (!vm_running)
249 return;
250
251 cur_time = cpu_get_clock();
252 cur_icount = qemu_get_clock(vm_clock);
253 delta = cur_icount - cur_time;
254 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
255 if (delta > 0
256 && last_delta + ICOUNT_WOBBLE < delta * 2
257 && icount_time_shift > 0) {
258 /* The guest is getting too far ahead. Slow time down. */
259 icount_time_shift--;
260 }
261 if (delta < 0
262 && last_delta - ICOUNT_WOBBLE > delta * 2
263 && icount_time_shift < MAX_ICOUNT_SHIFT) {
264 /* The guest is getting too far behind. Speed time up. */
265 icount_time_shift++;
266 }
267 last_delta = delta;
268 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
269}
270
271static void icount_adjust_rt(void * opaque)
272{
273 qemu_mod_timer(icount_rt_timer,
274 qemu_get_clock(rt_clock) + 1000);
275 icount_adjust();
276}
277
278static void icount_adjust_vm(void * opaque)
279{
280 qemu_mod_timer(icount_vm_timer,
281 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
282 icount_adjust();
283}
284
285int64_t qemu_icount_round(int64_t count)
286{
287 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
288}
289
290static struct qemu_alarm_timer alarm_timers[] = {
291#ifndef _WIN32
292#ifdef __linux__
293 {"dynticks", dynticks_start_timer,
294 dynticks_stop_timer, dynticks_rearm_timer, NULL},
295 /* HPET - if available - is preferred */
296 {"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL},
297 /* ...otherwise try RTC */
298 {"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL},
299#endif
300 {"unix", unix_start_timer, unix_stop_timer, NULL, NULL},
301#else
302 {"dynticks", win32_start_timer,
303 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
304 {"win32", win32_start_timer,
305 win32_stop_timer, NULL, &alarm_win32_data},
306#endif
307 {NULL, }
308};
309
310static void show_available_alarms(void)
311{
312 int i;
313
314 printf("Available alarm timers, in order of precedence:\n");
315 for (i = 0; alarm_timers[i].name; i++)
316 printf("%s\n", alarm_timers[i].name);
317}
318
319void configure_alarms(char const *opt)
320{
321 int i;
322 int cur = 0;
323 int count = ARRAY_SIZE(alarm_timers) - 1;
324 char *arg;
325 char *name;
326 struct qemu_alarm_timer tmp;
327
328 if (!strcmp(opt, "?")) {
329 show_available_alarms();
330 exit(0);
331 }
332
333 arg = qemu_strdup(opt);
334
335 /* Reorder the array */
336 name = strtok(arg, ",");
337 while (name) {
338 for (i = 0; i < count && alarm_timers[i].name; i++) {
339 if (!strcmp(alarm_timers[i].name, name))
340 break;
341 }
342
343 if (i == count) {
344 fprintf(stderr, "Unknown clock %s\n", name);
345 goto next;
346 }
347
348 if (i < cur)
349 /* Ignore */
350 goto next;
351
352 /* Swap */
353 tmp = alarm_timers[i];
354 alarm_timers[i] = alarm_timers[cur];
355 alarm_timers[cur] = tmp;
356
357 cur++;
358next:
359 name = strtok(NULL, ",");
360 }
361
362 qemu_free(arg);
363
364 if (cur) {
365 /* Disable remaining timers */
366 for (i = cur; i < count; i++)
367 alarm_timers[i].name = NULL;
368 } else {
369 show_available_alarms();
370 exit(1);
371 }
372}
373
374#define QEMU_NUM_CLOCKS 3
375
376QEMUClock *rt_clock;
377QEMUClock *vm_clock;
378QEMUClock *host_clock;
379
380static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
381
382static QEMUClock *qemu_new_clock(int type)
383{
384 QEMUClock *clock;
385 clock = qemu_mallocz(sizeof(QEMUClock));
386 clock->type = type;
387 clock->enabled = 1;
388 return clock;
389}
390
391void qemu_clock_enable(QEMUClock *clock, int enabled)
392{
393 clock->enabled = enabled;
394}
395
396QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
397{
398 QEMUTimer *ts;
399
400 ts = qemu_mallocz(sizeof(QEMUTimer));
401 ts->clock = clock;
402 ts->cb = cb;
403 ts->opaque = opaque;
404 return ts;
405}
406
407void qemu_free_timer(QEMUTimer *ts)
408{
409 qemu_free(ts);
410}
411
412/* stop a timer, but do not dealloc it */
413void qemu_del_timer(QEMUTimer *ts)
414{
415 QEMUTimer **pt, *t;
416
417 /* NOTE: this code must be signal safe because
418 qemu_timer_expired() can be called from a signal. */
419 pt = &active_timers[ts->clock->type];
420 for(;;) {
421 t = *pt;
422 if (!t)
423 break;
424 if (t == ts) {
425 *pt = t->next;
426 break;
427 }
428 pt = &t->next;
429 }
430}
431
432/* modify the current timer so that it will be fired when current_time
433 >= expire_time. The corresponding callback will be called. */
434void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
435{
436 QEMUTimer **pt, *t;
437
438 qemu_del_timer(ts);
439
440 /* add the timer in the sorted list */
441 /* NOTE: this code must be signal safe because
442 qemu_timer_expired() can be called from a signal. */
443 pt = &active_timers[ts->clock->type];
444 for(;;) {
445 t = *pt;
446 if (!t)
447 break;
448 if (t->expire_time > expire_time)
449 break;
450 pt = &t->next;
451 }
452 ts->expire_time = expire_time;
453 ts->next = *pt;
454 *pt = ts;
455
456 /* Rearm if necessary */
457 if (pt == &active_timers[ts->clock->type]) {
458 if (!alarm_timer->pending) {
459 qemu_rearm_alarm_timer(alarm_timer);
460 }
461 /* Interrupt execution to force deadline recalculation. */
462 if (use_icount)
463 qemu_notify_event();
464 }
465}
466
467int qemu_timer_pending(QEMUTimer *ts)
468{
469 QEMUTimer *t;
470 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
471 if (t == ts)
472 return 1;
473 }
474 return 0;
475}
476
477int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
478{
479 if (!timer_head)
480 return 0;
481 return (timer_head->expire_time <= current_time);
482}
483
484static void qemu_run_timers(QEMUClock *clock)
485{
486 QEMUTimer **ptimer_head, *ts;
487 int64_t current_time;
488
489 if (!clock->enabled)
490 return;
491
492 current_time = qemu_get_clock (clock);
493 ptimer_head = &active_timers[clock->type];
494 for(;;) {
495 ts = *ptimer_head;
496 if (!ts || ts->expire_time > current_time)
497 break;
498 /* remove timer from the list before calling the callback */
499 *ptimer_head = ts->next;
500 ts->next = NULL;
501
502 /* run the callback (the timer list can be modified) */
503 ts->cb(ts->opaque);
504 }
505}
506
507int64_t qemu_get_clock(QEMUClock *clock)
508{
509 switch(clock->type) {
510 case QEMU_CLOCK_REALTIME:
511 return get_clock() / 1000000;
512 default:
513 case QEMU_CLOCK_VIRTUAL:
514 if (use_icount) {
515 return cpu_get_icount();
516 } else {
517 return cpu_get_clock();
518 }
519 case QEMU_CLOCK_HOST:
520 return get_clock_realtime();
521 }
522}
523
524int64_t qemu_get_clock_ns(QEMUClock *clock)
525{
526 switch(clock->type) {
527 case QEMU_CLOCK_REALTIME:
528 return get_clock();
529 default:
530 case QEMU_CLOCK_VIRTUAL:
531 if (use_icount) {
532 return cpu_get_icount();
533 } else {
534 return cpu_get_clock();
535 }
536 case QEMU_CLOCK_HOST:
537 return get_clock_realtime();
538 }
539}
540
541void init_clocks(void)
542{
db1a4972
PB
543 rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
544 vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
545 host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
546
547 rtc_clock = host_clock;
548}
549
550/* save a timer */
551void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
552{
553 uint64_t expire_time;
554
555 if (qemu_timer_pending(ts)) {
556 expire_time = ts->expire_time;
557 } else {
558 expire_time = -1;
559 }
560 qemu_put_be64(f, expire_time);
561}
562
563void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
564{
565 uint64_t expire_time;
566
567 expire_time = qemu_get_be64(f);
568 if (expire_time != -1) {
569 qemu_mod_timer(ts, expire_time);
570 } else {
571 qemu_del_timer(ts);
572 }
573}
574
575static const VMStateDescription vmstate_timers = {
576 .name = "timer",
577 .version_id = 2,
578 .minimum_version_id = 1,
579 .minimum_version_id_old = 1,
580 .fields = (VMStateField []) {
581 VMSTATE_INT64(cpu_ticks_offset, TimersState),
582 VMSTATE_INT64(dummy, TimersState),
583 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
584 VMSTATE_END_OF_LIST()
585 }
586};
587
588void configure_icount(const char *option)
589{
0be71e32 590 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
db1a4972
PB
591 if (!option)
592 return;
593
594 if (strcmp(option, "auto") != 0) {
595 icount_time_shift = strtol(option, NULL, 0);
596 use_icount = 1;
597 return;
598 }
599
600 use_icount = 2;
601
602 /* 125MIPS seems a reasonable initial guess at the guest speed.
603 It will be corrected fairly quickly anyway. */
604 icount_time_shift = 3;
605
606 /* Have both realtime and virtual time triggers for speed adjustment.
607 The realtime trigger catches emulated time passing too slowly,
608 the virtual time trigger catches emulated time passing too fast.
609 Realtime triggers occur even when idle, so use them less frequently
610 than VM triggers. */
611 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
612 qemu_mod_timer(icount_rt_timer,
613 qemu_get_clock(rt_clock) + 1000);
614 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
615 qemu_mod_timer(icount_vm_timer,
616 qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
617}
618
619void qemu_run_all_timers(void)
620{
ca5a2a4b
PB
621 alarm_timer->pending = 0;
622
db1a4972
PB
623 /* rearm timer, if not periodic */
624 if (alarm_timer->expired) {
625 alarm_timer->expired = 0;
626 qemu_rearm_alarm_timer(alarm_timer);
627 }
628
db1a4972
PB
629 /* vm time timers */
630 if (vm_running) {
631 qemu_run_timers(vm_clock);
632 }
633
634 qemu_run_timers(rt_clock);
635 qemu_run_timers(host_clock);
636}
637
638#ifdef _WIN32
639static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
640 DWORD_PTR dwUser, DWORD_PTR dw1,
641 DWORD_PTR dw2)
642#else
643static void host_alarm_handler(int host_signum)
644#endif
645{
646 struct qemu_alarm_timer *t = alarm_timer;
647 if (!t)
648 return;
649
650#if 0
651#define DISP_FREQ 1000
652 {
653 static int64_t delta_min = INT64_MAX;
654 static int64_t delta_max, delta_cum, last_clock, delta, ti;
655 static int count;
656 ti = qemu_get_clock(vm_clock);
657 if (last_clock != 0) {
658 delta = ti - last_clock;
659 if (delta < delta_min)
660 delta_min = delta;
661 if (delta > delta_max)
662 delta_max = delta;
663 delta_cum += delta;
664 if (++count == DISP_FREQ) {
665 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
666 muldiv64(delta_min, 1000000, get_ticks_per_sec()),
667 muldiv64(delta_max, 1000000, get_ticks_per_sec()),
668 muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
669 (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
670 count = 0;
671 delta_min = INT64_MAX;
672 delta_max = 0;
673 delta_cum = 0;
674 }
675 }
676 last_clock = ti;
677 }
678#endif
679 if (alarm_has_dynticks(t) ||
680 (!use_icount &&
681 qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
682 qemu_get_clock(vm_clock))) ||
683 qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
684 qemu_get_clock(rt_clock)) ||
685 qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
686 qemu_get_clock(host_clock))) {
687
688 t->expired = alarm_has_dynticks(t);
689 t->pending = 1;
690 qemu_notify_event();
691 }
692}
693
694int64_t qemu_next_deadline(void)
695{
696 /* To avoid problems with overflow limit this to 2^32. */
697 int64_t delta = INT32_MAX;
698
699 if (active_timers[QEMU_CLOCK_VIRTUAL]) {
700 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
d7f88b4b 701 qemu_get_clock_ns(vm_clock);
db1a4972
PB
702 }
703 if (active_timers[QEMU_CLOCK_HOST]) {
704 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
d7f88b4b 705 qemu_get_clock_ns(host_clock);
db1a4972
PB
706 if (hdelta < delta)
707 delta = hdelta;
708 }
709
710 if (delta < 0)
711 delta = 0;
712
713 return delta;
714}
715
716#ifndef _WIN32
717
718#if defined(__linux__)
719
720#define RTC_FREQ 1024
721
722static uint64_t qemu_next_deadline_dyntick(void)
723{
724 int64_t delta;
725 int64_t rtdelta;
726
bbd9827c
PB
727 if (!use_icount && active_timers[QEMU_CLOCK_VIRTUAL]) {
728 delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
729 qemu_get_clock(vm_clock);
730 } else {
db1a4972 731 delta = INT32_MAX;
bbd9827c
PB
732 }
733 if (active_timers[QEMU_CLOCK_HOST]) {
734 int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
735 qemu_get_clock_ns(host_clock);
736 if (hdelta < delta)
737 delta = hdelta;
738 }
db1a4972 739 if (active_timers[QEMU_CLOCK_REALTIME]) {
d7f88b4b
PB
740 rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time * 1000000 -
741 qemu_get_clock_ns(rt_clock));
db1a4972
PB
742 if (rtdelta < delta)
743 delta = rtdelta;
744 }
745
d7f88b4b
PB
746 if (delta < MIN_TIMER_REARM_NS)
747 delta = MIN_TIMER_REARM_NS;
db1a4972
PB
748
749 return delta;
750}
751
752static void enable_sigio_timer(int fd)
753{
754 struct sigaction act;
755
756 /* timer signal */
757 sigfillset(&act.sa_mask);
758 act.sa_flags = 0;
759 act.sa_handler = host_alarm_handler;
760
761 sigaction(SIGIO, &act, NULL);
762 fcntl_setfl(fd, O_ASYNC);
763 fcntl(fd, F_SETOWN, getpid());
764}
765
766static int hpet_start_timer(struct qemu_alarm_timer *t)
767{
768 struct hpet_info info;
769 int r, fd;
770
771 fd = qemu_open("/dev/hpet", O_RDONLY);
772 if (fd < 0)
773 return -1;
774
775 /* Set frequency */
776 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
777 if (r < 0) {
778 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
779 "error, but for better emulation accuracy type:\n"
780 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
781 goto fail;
782 }
783
784 /* Check capabilities */
785 r = ioctl(fd, HPET_INFO, &info);
786 if (r < 0)
787 goto fail;
788
789 /* Enable periodic mode */
790 r = ioctl(fd, HPET_EPI, 0);
791 if (info.hi_flags && (r < 0))
792 goto fail;
793
794 /* Enable interrupt */
795 r = ioctl(fd, HPET_IE_ON, 0);
796 if (r < 0)
797 goto fail;
798
799 enable_sigio_timer(fd);
800 t->priv = (void *)(long)fd;
801
802 return 0;
803fail:
804 close(fd);
805 return -1;
806}
807
808static void hpet_stop_timer(struct qemu_alarm_timer *t)
809{
810 int fd = (long)t->priv;
811
812 close(fd);
813}
814
815static int rtc_start_timer(struct qemu_alarm_timer *t)
816{
817 int rtc_fd;
818 unsigned long current_rtc_freq = 0;
819
820 TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
821 if (rtc_fd < 0)
822 return -1;
823 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
824 if (current_rtc_freq != RTC_FREQ &&
825 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
826 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
827 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
828 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
829 goto fail;
830 }
831 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
832 fail:
833 close(rtc_fd);
834 return -1;
835 }
836
837 enable_sigio_timer(rtc_fd);
838
839 t->priv = (void *)(long)rtc_fd;
840
841 return 0;
842}
843
844static void rtc_stop_timer(struct qemu_alarm_timer *t)
845{
846 int rtc_fd = (long)t->priv;
847
848 close(rtc_fd);
849}
850
851static int dynticks_start_timer(struct qemu_alarm_timer *t)
852{
853 struct sigevent ev;
854 timer_t host_timer;
855 struct sigaction act;
856
857 sigfillset(&act.sa_mask);
858 act.sa_flags = 0;
859 act.sa_handler = host_alarm_handler;
860
861 sigaction(SIGALRM, &act, NULL);
862
863 /*
864 * Initialize ev struct to 0 to avoid valgrind complaining
865 * about uninitialized data in timer_create call
866 */
867 memset(&ev, 0, sizeof(ev));
868 ev.sigev_value.sival_int = 0;
869 ev.sigev_notify = SIGEV_SIGNAL;
870 ev.sigev_signo = SIGALRM;
871
872 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
873 perror("timer_create");
874
875 /* disable dynticks */
876 fprintf(stderr, "Dynamic Ticks disabled\n");
877
878 return -1;
879 }
880
881 t->priv = (void *)(long)host_timer;
882
883 return 0;
884}
885
886static void dynticks_stop_timer(struct qemu_alarm_timer *t)
887{
888 timer_t host_timer = (timer_t)(long)t->priv;
889
890 timer_delete(host_timer);
891}
892
893static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
894{
895 timer_t host_timer = (timer_t)(long)t->priv;
896 struct itimerspec timeout;
d7f88b4b
PB
897 int64_t nearest_delta_ns = INT64_MAX;
898 int64_t current_ns;
db1a4972
PB
899
900 assert(alarm_has_dynticks(t));
901 if (!active_timers[QEMU_CLOCK_REALTIME] &&
902 !active_timers[QEMU_CLOCK_VIRTUAL] &&
903 !active_timers[QEMU_CLOCK_HOST])
904 return;
905
d7f88b4b 906 nearest_delta_ns = qemu_next_deadline_dyntick();
db1a4972
PB
907
908 /* check whether a timer is already running */
909 if (timer_gettime(host_timer, &timeout)) {
910 perror("gettime");
911 fprintf(stderr, "Internal timer error: aborting\n");
912 exit(1);
913 }
d7f88b4b
PB
914 current_ns = timeout.it_value.tv_sec * 1000000000LL + timeout.it_value.tv_nsec;
915 if (current_ns && current_ns <= nearest_delta_ns)
db1a4972
PB
916 return;
917
918 timeout.it_interval.tv_sec = 0;
919 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
d7f88b4b
PB
920 timeout.it_value.tv_sec = nearest_delta_ns / 1000000000;
921 timeout.it_value.tv_nsec = nearest_delta_ns % 1000000000;
db1a4972
PB
922 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
923 perror("settime");
924 fprintf(stderr, "Internal timer error: aborting\n");
925 exit(1);
926 }
927}
928
929#endif /* defined(__linux__) */
930
931static int unix_start_timer(struct qemu_alarm_timer *t)
932{
933 struct sigaction act;
934 struct itimerval itv;
935 int err;
936
937 /* timer signal */
938 sigfillset(&act.sa_mask);
939 act.sa_flags = 0;
940 act.sa_handler = host_alarm_handler;
941
942 sigaction(SIGALRM, &act, NULL);
943
944 itv.it_interval.tv_sec = 0;
945 /* for i386 kernel 2.6 to get 1 ms */
946 itv.it_interval.tv_usec = 999;
947 itv.it_value.tv_sec = 0;
948 itv.it_value.tv_usec = 10 * 1000;
949
950 err = setitimer(ITIMER_REAL, &itv, NULL);
951 if (err)
952 return -1;
953
954 return 0;
955}
956
957static void unix_stop_timer(struct qemu_alarm_timer *t)
958{
959 struct itimerval itv;
960
961 memset(&itv, 0, sizeof(itv));
962 setitimer(ITIMER_REAL, &itv, NULL);
963}
964
965#endif /* !defined(_WIN32) */
966
967
968#ifdef _WIN32
969
970static int win32_start_timer(struct qemu_alarm_timer *t)
971{
972 TIMECAPS tc;
973 struct qemu_alarm_win32 *data = t->priv;
974 UINT flags;
975
976 memset(&tc, 0, sizeof(tc));
977 timeGetDevCaps(&tc, sizeof(tc));
978
979 data->period = tc.wPeriodMin;
980 timeBeginPeriod(data->period);
981
982 flags = TIME_CALLBACK_FUNCTION;
983 if (alarm_has_dynticks(t))
984 flags |= TIME_ONESHOT;
985 else
986 flags |= TIME_PERIODIC;
987
988 data->timerId = timeSetEvent(1, // interval (ms)
989 data->period, // resolution
990 host_alarm_handler, // function
991 (DWORD)t, // parameter
992 flags);
993
994 if (!data->timerId) {
995 fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
996 GetLastError());
997 timeEndPeriod(data->period);
998 return -1;
999 }
1000
1001 return 0;
1002}
1003
1004static void win32_stop_timer(struct qemu_alarm_timer *t)
1005{
1006 struct qemu_alarm_win32 *data = t->priv;
1007
1008 timeKillEvent(data->timerId);
1009 timeEndPeriod(data->period);
1010}
1011
1012static void win32_rearm_timer(struct qemu_alarm_timer *t)
1013{
1014 struct qemu_alarm_win32 *data = t->priv;
1015
1016 assert(alarm_has_dynticks(t));
1017 if (!active_timers[QEMU_CLOCK_REALTIME] &&
1018 !active_timers[QEMU_CLOCK_VIRTUAL] &&
1019 !active_timers[QEMU_CLOCK_HOST])
1020 return;
1021
1022 timeKillEvent(data->timerId);
1023
1024 data->timerId = timeSetEvent(1,
1025 data->period,
1026 host_alarm_handler,
1027 (DWORD)t,
1028 TIME_ONESHOT | TIME_CALLBACK_FUNCTION);
1029
1030 if (!data->timerId) {
1031 fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1032 GetLastError());
1033
1034 timeEndPeriod(data->period);
1035 exit(1);
1036 }
1037}
1038
1039#endif /* _WIN32 */
1040
1041static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)
1042{
1043 if (running)
1044 qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);
1045}
1046
1047int init_timer_alarm(void)
1048{
1049 struct qemu_alarm_timer *t = NULL;
1050 int i, err = -1;
1051
1052 for (i = 0; alarm_timers[i].name; i++) {
1053 t = &alarm_timers[i];
1054
1055 err = t->start(t);
1056 if (!err)
1057 break;
1058 }
1059
1060 if (err) {
1061 err = -ENOENT;
1062 goto fail;
1063 }
1064
1065 /* first event is at time 0 */
1066 t->pending = 1;
1067 alarm_timer = t;
1068 qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);
1069
1070 return 0;
1071
1072fail:
1073 return err;
1074}
1075
1076void quit_timers(void)
1077{
1078 struct qemu_alarm_timer *t = alarm_timer;
1079 alarm_timer = NULL;
1080 t->stop(t);
1081}
1082
1083int qemu_calculate_timeout(void)
1084{
db1a4972
PB
1085 int timeout;
1086
225d02cd
EI
1087#ifdef CONFIG_IOTHREAD
1088 /* When using icount, making forward progress with qemu_icount when the
1089 guest CPU is idle is critical. We only use the static io-thread timeout
1090 for non icount runs. */
1091 if (!use_icount) {
1092 return 1000;
1093 }
1094#endif
1095
db1a4972
PB
1096 if (!vm_running)
1097 timeout = 5000;
1098 else {
1099 /* XXX: use timeout computed from timers */
1100 int64_t add;
1101 int64_t delta;
1102 /* Advance virtual time to the next event. */
1103 delta = qemu_icount_delta();
1104 if (delta > 0) {
1105 /* If virtual time is ahead of real time then just
1106 wait for IO. */
1107 timeout = (delta + 999999) / 1000000;
1108 } else {
1109 /* Wait for either IO to occur or the next
1110 timer event. */
1111 add = qemu_next_deadline();
1112 /* We advance the timer before checking for IO.
1113 Limit the amount we advance so that early IO
1114 activity won't get the guest too far ahead. */
1115 if (add > 10000000)
1116 add = 10000000;
1117 delta += add;
1118 qemu_icount += qemu_icount_round (add);
1119 timeout = delta / 1000000;
1120 if (timeout < 0)
1121 timeout = 0;
1122 }
1123 }
1124
1125 return timeout;
db1a4972
PB
1126}
1127