]> git.proxmox.com Git - mirror_qemu.git/blame - softmmu/physmem.c
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / softmmu / physmem.c
CommitLineData
54936004 1/*
d9f24bf5 2 * RAM allocation and memory access
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
61f3c91a 9 * version 2.1 of the License, or (at your option) any later version.
54936004
FB
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
ec5f7ca8 21#include "exec/page-vary.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
084cfca1 25#include "qemu/cacheflush.h"
e2c1c34f 26#include "qemu/hbitmap.h"
b85ea5fa 27#include "qemu/madvise.h"
78271684
CF
28
29#ifdef CONFIG_TCG
30#include "hw/core/tcg-cpu-ops.h"
31#endif /* CONFIG_TCG */
32
63c91552 33#include "exec/exec-all.h"
51180423 34#include "exec/target_page.h"
741da0d3 35#include "hw/qdev-core.h"
c7e002c5 36#include "hw/qdev-properties.h"
47c8ca53 37#include "hw/boards.h"
33c11879 38#include "hw/xen/xen.h"
9c17d615 39#include "sysemu/kvm.h"
14a48c1d 40#include "sysemu/tcg.h"
a028edea 41#include "sysemu/qtest.h"
1de7afc9
PB
42#include "qemu/timer.h"
43#include "qemu/config-file.h"
75a34036 44#include "qemu/error-report.h"
b6b71cb5 45#include "qemu/qemu-print.h"
3ab6fdc9 46#include "qemu/log.h"
5df022cf 47#include "qemu/memalign.h"
741da0d3 48#include "exec/memory.h"
df43d49c 49#include "exec/ioport.h"
741da0d3 50#include "sysemu/dma.h"
b58c5c2d 51#include "sysemu/hostmem.h"
79ca7a1b 52#include "sysemu/hw_accel.h"
9c17d615 53#include "sysemu/xen-mapcache.h"
243af022 54#include "trace/trace-root.h"
d3a5038c 55
e2fa71f5 56#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
57#include <linux/falloc.h>
58#endif
59
0dc3f44a 60#include "qemu/rcu_queue.h"
4840f10e 61#include "qemu/main-loop.h"
3b9bd3f4 62#include "exec/translate-all.h"
7615936e 63#include "sysemu/replay.h"
0cac1b66 64
022c62cb 65#include "exec/memory-internal.h"
220c3ebd 66#include "exec/ram_addr.h"
67d95c15 67
61c490e2
BM
68#include "qemu/pmem.h"
69
9dfeca7c
BR
70#include "migration/vmstate.h"
71
b35ba30f 72#include "qemu/range.h"
794e8f30
MT
73#ifndef _WIN32
74#include "qemu/mmap-alloc.h"
75#endif
b35ba30f 76
be9b23c4
PX
77#include "monitor/monitor.h"
78
ce317be9
JL
79#ifdef CONFIG_LIBDAXCTL
80#include <daxctl/libdaxctl.h>
81#endif
82
db7b5426 83//#define DEBUG_SUBPAGE
1196be37 84
0dc3f44a
MD
85/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
86 * are protected by the ramlist lock.
87 */
0d53d9fe 88RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
89
90static MemoryRegion *system_memory;
309cb471 91static MemoryRegion *system_io;
62152b8a 92
f6790af6
AK
93AddressSpace address_space_io;
94AddressSpace address_space_memory;
2673a5da 95
acc9d80b 96static MemoryRegion io_mem_unassigned;
4346ae3e 97
1db8abb1
PB
98typedef struct PhysPageEntry PhysPageEntry;
99
100struct PhysPageEntry {
9736e55b 101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 102 uint32_t skip : 6;
9736e55b 103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 104 uint32_t ptr : 26;
1db8abb1
PB
105};
106
8b795765
MT
107#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108
03f49957 109/* Size of the L2 (and L3, etc) page tables. */
57271d63 110#define ADDR_SPACE_BITS 64
03f49957 111
026736ce 112#define P_L2_BITS 9
03f49957
PB
113#define P_L2_SIZE (1 << P_L2_BITS)
114
115#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116
117typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 118
53cb28cb 119typedef struct PhysPageMap {
79e2b9ae
PB
120 struct rcu_head rcu;
121
53cb28cb
MA
122 unsigned sections_nb;
123 unsigned sections_nb_alloc;
124 unsigned nodes_nb;
125 unsigned nodes_nb_alloc;
126 Node *nodes;
127 MemoryRegionSection *sections;
128} PhysPageMap;
129
1db8abb1 130struct AddressSpaceDispatch {
729633c2 131 MemoryRegionSection *mru_section;
1db8abb1
PB
132 /* This is a multi-level map on the physical address space.
133 * The bottom level has pointers to MemoryRegionSections.
134 */
135 PhysPageEntry phys_map;
53cb28cb 136 PhysPageMap map;
1db8abb1
PB
137};
138
90260c6c
JK
139#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140typedef struct subpage_t {
141 MemoryRegion iomem;
16620684 142 FlatView *fv;
90260c6c 143 hwaddr base;
2615fabd 144 uint16_t sub_section[];
90260c6c
JK
145} subpage_t;
146
b41aac4f 147#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 148
e2eef170 149static void io_mem_init(void);
62152b8a 150static void memory_map_init(void);
9458a9a1 151static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 152static void tcg_commit(MemoryListener *listener);
e2eef170 153
32857f4d
PM
154/**
155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156 * @cpu: the CPU whose AddressSpace this is
157 * @as: the AddressSpace itself
158 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159 * @tcg_as_listener: listener for tracking changes to the AddressSpace
160 */
161struct CPUAddressSpace {
162 CPUState *cpu;
163 AddressSpace *as;
164 struct AddressSpaceDispatch *memory_dispatch;
165 MemoryListener tcg_as_listener;
166};
167
8deaf12c
GH
168struct DirtyBitmapSnapshot {
169 ram_addr_t start;
170 ram_addr_t end;
171 unsigned long dirty[];
172};
173
53cb28cb 174static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 175{
101420b8 176 static unsigned alloc_hint = 16;
53cb28cb 177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 180 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 181 }
f7bf5461
AK
182}
183
db94604b 184static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
185{
186 unsigned i;
8b795765 187 uint32_t ret;
db94604b
PB
188 PhysPageEntry e;
189 PhysPageEntry *p;
f7bf5461 190
53cb28cb 191 ret = map->nodes_nb++;
db94604b 192 p = map->nodes[ret];
f7bf5461 193 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 194 assert(ret != map->nodes_nb_alloc);
db94604b
PB
195
196 e.skip = leaf ? 0 : 1;
197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 198 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 199 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 200 }
f7bf5461 201 return ret;
d6f2ea22
AK
202}
203
53cb28cb 204static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 205 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 206 int level)
f7bf5461
AK
207{
208 PhysPageEntry *p;
03f49957 209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 210
9736e55b 211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 212 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 213 }
db94604b 214 p = map->nodes[lp->ptr];
03f49957 215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 216
03f49957 217 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 218 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 219 lp->skip = 0;
c19e8800 220 lp->ptr = leaf;
07f07b31
AK
221 *index += step;
222 *nb -= step;
2999097b 223 } else {
53cb28cb 224 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
225 }
226 ++lp;
f7bf5461
AK
227 }
228}
229
ac1970fb 230static void phys_page_set(AddressSpaceDispatch *d,
56b15076 231 hwaddr index, uint64_t nb,
2999097b 232 uint16_t leaf)
f7bf5461 233{
2999097b 234 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 236
53cb28cb 237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
238}
239
b35ba30f
MT
240/* Compact a non leaf page entry. Simply detect that the entry has a single child,
241 * and update our entry so we can skip it and go directly to the destination.
242 */
efee678d 243static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
244{
245 unsigned valid_ptr = P_L2_SIZE;
246 int valid = 0;
247 PhysPageEntry *p;
248 int i;
249
250 if (lp->ptr == PHYS_MAP_NODE_NIL) {
251 return;
252 }
253
254 p = nodes[lp->ptr];
255 for (i = 0; i < P_L2_SIZE; i++) {
256 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257 continue;
258 }
259
260 valid_ptr = i;
261 valid++;
262 if (p[i].skip) {
efee678d 263 phys_page_compact(&p[i], nodes);
b35ba30f
MT
264 }
265 }
266
267 /* We can only compress if there's only one child. */
268 if (valid != 1) {
269 return;
270 }
271
272 assert(valid_ptr < P_L2_SIZE);
273
274 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
275 if (P_L2_LEVELS >= (1 << 6) &&
276 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
277 return;
278 }
279
280 lp->ptr = p[valid_ptr].ptr;
281 if (!p[valid_ptr].skip) {
282 /* If our only child is a leaf, make this a leaf. */
283 /* By design, we should have made this node a leaf to begin with so we
284 * should never reach here.
285 * But since it's so simple to handle this, let's do it just in case we
286 * change this rule.
287 */
288 lp->skip = 0;
289 } else {
290 lp->skip += p[valid_ptr].skip;
291 }
292}
293
8629d3fc 294void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 295{
b35ba30f 296 if (d->phys_map.skip) {
efee678d 297 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
298 }
299}
300
29cb533d
FZ
301static inline bool section_covers_addr(const MemoryRegionSection *section,
302 hwaddr addr)
303{
304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305 * the section must cover the entire address space.
306 */
258dfaaa 307 return int128_gethi(section->size) ||
29cb533d 308 range_covers_byte(section->offset_within_address_space,
258dfaaa 309 int128_getlo(section->size), addr);
29cb533d
FZ
310}
311
003a0cf2 312static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 313{
003a0cf2
PX
314 PhysPageEntry lp = d->phys_map, *p;
315 Node *nodes = d->map.nodes;
316 MemoryRegionSection *sections = d->map.sections;
97115a8d 317 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 318 int i;
f1f6e3b8 319
9736e55b 320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 321 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 322 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 323 }
9affd6fc 324 p = nodes[lp.ptr];
03f49957 325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 326 }
b35ba30f 327
29cb533d 328 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
329 return &sections[lp.ptr];
330 } else {
331 return &sections[PHYS_SECTION_UNASSIGNED];
332 }
f3705d53
AK
333}
334
79e2b9ae 335/* Called from RCU critical section */
c7086b4a 336static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
337 hwaddr addr,
338 bool resolve_subpage)
9f029603 339{
d73415a3 340 MemoryRegionSection *section = qatomic_read(&d->mru_section);
90260c6c
JK
341 subpage_t *subpage;
342
07c114bb
PB
343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344 !section_covers_addr(section, addr)) {
003a0cf2 345 section = phys_page_find(d, addr);
d73415a3 346 qatomic_set(&d->mru_section, section);
729633c2 347 }
90260c6c
JK
348 if (resolve_subpage && section->mr->subpage) {
349 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
351 }
352 return section;
9f029603
JK
353}
354
79e2b9ae 355/* Called from RCU critical section */
90260c6c 356static MemoryRegionSection *
c7086b4a 357address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 358 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
359{
360 MemoryRegionSection *section;
965eb2fc 361 MemoryRegion *mr;
a87f3954 362 Int128 diff;
149f54b5 363
c7086b4a 364 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
365 /* Compute offset within MemoryRegionSection */
366 addr -= section->offset_within_address_space;
367
368 /* Compute offset within MemoryRegion */
369 *xlat = addr + section->offset_within_region;
370
965eb2fc 371 mr = section->mr;
b242e0e0
PB
372
373 /* MMIO registers can be expected to perform full-width accesses based only
374 * on their address, without considering adjacent registers that could
375 * decode to completely different MemoryRegions. When such registers
376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377 * regions overlap wildly. For this reason we cannot clamp the accesses
378 * here.
379 *
380 * If the length is small (as is the case for address_space_ldl/stl),
381 * everything works fine. If the incoming length is large, however,
382 * the caller really has to do the clamping through memory_access_size.
383 */
965eb2fc 384 if (memory_region_is_ram(mr)) {
e4a511f8 385 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
386 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387 }
149f54b5
PB
388 return section;
389}
90260c6c 390
a411c84b
PB
391/**
392 * address_space_translate_iommu - translate an address through an IOMMU
393 * memory region and then through the target address space.
394 *
395 * @iommu_mr: the IOMMU memory region that we start the translation from
396 * @addr: the address to be translated through the MMU
397 * @xlat: the translated address offset within the destination memory region.
398 * It cannot be %NULL.
399 * @plen_out: valid read/write length of the translated address. It
400 * cannot be %NULL.
401 * @page_mask_out: page mask for the translated address. This
402 * should only be meaningful for IOMMU translated
403 * addresses, since there may be huge pages that this bit
404 * would tell. It can be %NULL if we don't care about it.
405 * @is_write: whether the translation operation is for write
406 * @is_mmio: whether this can be MMIO, set true if it can
407 * @target_as: the address space targeted by the IOMMU
2f7b009c 408 * @attrs: transaction attributes
a411c84b
PB
409 *
410 * This function is called from RCU critical section. It is the common
411 * part of flatview_do_translate and address_space_translate_cached.
412 */
413static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414 hwaddr *xlat,
415 hwaddr *plen_out,
416 hwaddr *page_mask_out,
417 bool is_write,
418 bool is_mmio,
2f7b009c
PM
419 AddressSpace **target_as,
420 MemTxAttrs attrs)
a411c84b
PB
421{
422 MemoryRegionSection *section;
423 hwaddr page_mask = (hwaddr)-1;
424
425 do {
426 hwaddr addr = *xlat;
427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
428 int iommu_idx = 0;
429 IOMMUTLBEntry iotlb;
430
431 if (imrc->attrs_to_index) {
432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433 }
434
435 iotlb = imrc->translate(iommu_mr, addr, is_write ?
436 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
437
438 if (!(iotlb.perm & (1 << is_write))) {
439 goto unassigned;
440 }
441
442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443 | (addr & iotlb.addr_mask));
444 page_mask &= iotlb.addr_mask;
445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446 *target_as = iotlb.target_as;
447
448 section = address_space_translate_internal(
449 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450 plen_out, is_mmio);
451
452 iommu_mr = memory_region_get_iommu(section->mr);
453 } while (unlikely(iommu_mr));
454
455 if (page_mask_out) {
456 *page_mask_out = page_mask;
457 }
458 return *section;
459
460unassigned:
461 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462}
463
d5e5fafd
PX
464/**
465 * flatview_do_translate - translate an address in FlatView
466 *
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
470 * cannot be @NULL.
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 479 * @target_as: the address space targeted by the IOMMU
49e14aa8 480 * @attrs: memory transaction attributes
d5e5fafd
PX
481 *
482 * This function is called from RCU critical section
483 */
16620684
AK
484static MemoryRegionSection flatview_do_translate(FlatView *fv,
485 hwaddr addr,
486 hwaddr *xlat,
d5e5fafd
PX
487 hwaddr *plen_out,
488 hwaddr *page_mask_out,
16620684
AK
489 bool is_write,
490 bool is_mmio,
49e14aa8
PM
491 AddressSpace **target_as,
492 MemTxAttrs attrs)
052c8fa9 493{
052c8fa9 494 MemoryRegionSection *section;
3df9d748 495 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
496 hwaddr plen = (hwaddr)(-1);
497
ad2804d9
PB
498 if (!plen_out) {
499 plen_out = &plen;
d5e5fafd 500 }
052c8fa9 501
a411c84b
PB
502 section = address_space_translate_internal(
503 flatview_to_dispatch(fv), addr, xlat,
504 plen_out, is_mmio);
052c8fa9 505
a411c84b
PB
506 iommu_mr = memory_region_get_iommu(section->mr);
507 if (unlikely(iommu_mr)) {
508 return address_space_translate_iommu(iommu_mr, xlat,
509 plen_out, page_mask_out,
510 is_write, is_mmio,
2f7b009c 511 target_as, attrs);
052c8fa9 512 }
d5e5fafd 513 if (page_mask_out) {
a411c84b
PB
514 /* Not behind an IOMMU, use default page size. */
515 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
516 }
517
a764040c 518 return *section;
052c8fa9
JW
519}
520
521/* Called from RCU critical section */
a764040c 522IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 523 bool is_write, MemTxAttrs attrs)
90260c6c 524{
a764040c 525 MemoryRegionSection section;
076a93d7 526 hwaddr xlat, page_mask;
30951157 527
076a93d7
PX
528 /*
529 * This can never be MMIO, and we don't really care about plen,
530 * but page mask.
531 */
532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
533 NULL, &page_mask, is_write, false, &as,
534 attrs);
30951157 535
a764040c
PX
536 /* Illegal translation */
537 if (section.mr == &io_mem_unassigned) {
538 goto iotlb_fail;
539 }
30951157 540
a764040c
PX
541 /* Convert memory region offset into address space offset */
542 xlat += section.offset_within_address_space -
543 section.offset_within_region;
544
a764040c 545 return (IOMMUTLBEntry) {
e76bb18f 546 .target_as = as,
076a93d7
PX
547 .iova = addr & ~page_mask,
548 .translated_addr = xlat & ~page_mask,
549 .addr_mask = page_mask,
a764040c
PX
550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551 .perm = IOMMU_RW,
552 };
553
554iotlb_fail:
555 return (IOMMUTLBEntry) {0};
556}
557
558/* Called from RCU critical section */
16620684 559MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
560 hwaddr *plen, bool is_write,
561 MemTxAttrs attrs)
a764040c
PX
562{
563 MemoryRegion *mr;
564 MemoryRegionSection section;
16620684 565 AddressSpace *as = NULL;
a764040c
PX
566
567 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 568 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 569 is_write, true, &as, attrs);
a764040c
PX
570 mr = section.mr;
571
fe680d0d 572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 574 *plen = MIN(page, *plen);
a87f3954
PB
575 }
576
30951157 577 return mr;
90260c6c
JK
578}
579
1f871c5e
PM
580typedef struct TCGIOMMUNotifier {
581 IOMMUNotifier n;
582 MemoryRegion *mr;
583 CPUState *cpu;
584 int iommu_idx;
585 bool active;
586} TCGIOMMUNotifier;
587
588static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589{
590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591
592 if (!notifier->active) {
593 return;
594 }
595 tlb_flush(notifier->cpu);
596 notifier->active = false;
597 /* We leave the notifier struct on the list to avoid reallocating it later.
598 * Generally the number of IOMMUs a CPU deals with will be small.
599 * In any case we can't unregister the iommu notifier from a notify
600 * callback.
601 */
602}
603
604static void tcg_register_iommu_notifier(CPUState *cpu,
605 IOMMUMemoryRegion *iommu_mr,
606 int iommu_idx)
607{
608 /* Make sure this CPU has an IOMMU notifier registered for this
609 * IOMMU/IOMMU index combination, so that we can flush its TLB
610 * when the IOMMU tells us the mappings we've cached have changed.
611 */
612 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
bbf90191 613 TCGIOMMUNotifier *notifier = NULL;
805d4496 614 int i;
1f871c5e
PM
615
616 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619 break;
620 }
621 }
622 if (i == cpu->iommu_notifiers->len) {
623 /* Not found, add a new entry at the end of the array */
624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
625 notifier = g_new0(TCGIOMMUNotifier, 1);
626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
627
628 notifier->mr = mr;
629 notifier->iommu_idx = iommu_idx;
630 notifier->cpu = cpu;
631 /* Rather than trying to register interest in the specific part
632 * of the iommu's address space that we've accessed and then
633 * expand it later as subsequent accesses touch more of it, we
634 * just register interest in the whole thing, on the assumption
635 * that iommu reconfiguration will be rare.
636 */
637 iommu_notifier_init(&notifier->n,
638 tcg_iommu_unmap_notify,
639 IOMMU_NOTIFIER_UNMAP,
640 0,
641 HWADDR_MAX,
642 iommu_idx);
805d4496
MA
643 memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644 &error_fatal);
1f871c5e
PM
645 }
646
647 if (!notifier->active) {
648 notifier->active = true;
649 }
650}
651
d9f24bf5 652void tcg_iommu_free_notifier_list(CPUState *cpu)
1f871c5e
PM
653{
654 /* Destroy the CPU's notifier list */
655 int i;
656 TCGIOMMUNotifier *notifier;
657
658 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 660 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 661 g_free(notifier);
1f871c5e
PM
662 }
663 g_array_free(cpu->iommu_notifiers, true);
664}
665
d9f24bf5
PB
666void tcg_iommu_init_notifier_list(CPUState *cpu)
667{
668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669}
670
79e2b9ae 671/* Called from RCU critical section */
90260c6c 672MemoryRegionSection *
418ade78 673address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
1f871c5e
PM
674 hwaddr *xlat, hwaddr *plen,
675 MemTxAttrs attrs, int *prot)
90260c6c 676{
30951157 677 MemoryRegionSection *section;
1f871c5e
PM
678 IOMMUMemoryRegion *iommu_mr;
679 IOMMUMemoryRegionClass *imrc;
680 IOMMUTLBEntry iotlb;
681 int iommu_idx;
418ade78 682 hwaddr addr = orig_addr;
d73415a3
SH
683 AddressSpaceDispatch *d =
684 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 685
1f871c5e
PM
686 for (;;) {
687 section = address_space_translate_internal(d, addr, &addr, plen, false);
688
689 iommu_mr = memory_region_get_iommu(section->mr);
690 if (!iommu_mr) {
691 break;
692 }
693
694 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695
696 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
697 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
698 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
699 * doesn't short-cut its translation table walk.
700 */
701 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
702 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
703 | (addr & iotlb.addr_mask));
704 /* Update the caller's prot bits to remove permissions the IOMMU
705 * is giving us a failure response for. If we get down to no
706 * permissions left at all we can give up now.
707 */
708 if (!(iotlb.perm & IOMMU_RO)) {
709 *prot &= ~(PAGE_READ | PAGE_EXEC);
710 }
711 if (!(iotlb.perm & IOMMU_WO)) {
712 *prot &= ~PAGE_WRITE;
713 }
714
715 if (!*prot) {
716 goto translate_fail;
717 }
718
719 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
720 }
30951157 721
3df9d748 722 assert(!memory_region_is_iommu(section->mr));
1f871c5e 723 *xlat = addr;
30951157 724 return section;
1f871c5e
PM
725
726translate_fail:
418ade78
RH
727 /*
728 * We should be given a page-aligned address -- certainly
729 * tlb_set_page_with_attrs() does so. The page offset of xlat
730 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
731 * The page portion of xlat will be logged by memory_region_access_valid()
732 * when this memory access is rejected, so use the original untranslated
733 * physical address.
734 */
735 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
736 *xlat = orig_addr;
1f871c5e 737 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 738}
1a1562f5 739
80ceb07a
PX
740void cpu_address_space_init(CPUState *cpu, int asidx,
741 const char *prefix, MemoryRegion *mr)
09daed84 742{
12ebc9a7 743 CPUAddressSpace *newas;
80ceb07a 744 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 745 char *as_name;
80ceb07a
PX
746
747 assert(mr);
87a621d8
PX
748 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
749 address_space_init(as, mr, as_name);
750 g_free(as_name);
12ebc9a7
PM
751
752 /* Target code should have set num_ases before calling us */
753 assert(asidx < cpu->num_ases);
754
56943e8c
PM
755 if (asidx == 0) {
756 /* address space 0 gets the convenience alias */
757 cpu->as = as;
758 }
759
12ebc9a7
PM
760 /* KVM cannot currently support multiple address spaces. */
761 assert(asidx == 0 || !kvm_enabled());
09daed84 762
12ebc9a7
PM
763 if (!cpu->cpu_ases) {
764 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 765 }
32857f4d 766
12ebc9a7
PM
767 newas = &cpu->cpu_ases[asidx];
768 newas->cpu = cpu;
769 newas->as = as;
56943e8c 770 if (tcg_enabled()) {
9458a9a1 771 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7 772 newas->tcg_as_listener.commit = tcg_commit;
142518bd 773 newas->tcg_as_listener.name = "tcg";
12ebc9a7 774 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 775 }
09daed84 776}
651a5bc0
PM
777
778AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
779{
780 /* Return the AddressSpace corresponding to the specified index */
781 return cpu->cpu_ases[asidx].as;
782}
8bca9a03 783
0dc3f44a 784/* Called from RCU critical section */
041603fe
PB
785static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
786{
787 RAMBlock *block;
788
d73415a3 789 block = qatomic_rcu_read(&ram_list.mru_block);
9b8424d5 790 if (block && addr - block->offset < block->max_length) {
68851b98 791 return block;
041603fe 792 }
99e15582 793 RAMBLOCK_FOREACH(block) {
9b8424d5 794 if (addr - block->offset < block->max_length) {
041603fe
PB
795 goto found;
796 }
797 }
798
799 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
800 abort();
801
802found:
43771539
PB
803 /* It is safe to write mru_block outside the iothread lock. This
804 * is what happens:
805 *
806 * mru_block = xxx
807 * rcu_read_unlock()
808 * xxx removed from list
809 * rcu_read_lock()
810 * read mru_block
811 * mru_block = NULL;
812 * call_rcu(reclaim_ramblock, xxx);
813 * rcu_read_unlock()
814 *
d73415a3 815 * qatomic_rcu_set is not needed here. The block was already published
43771539
PB
816 * when it was placed into the list. Here we're just making an extra
817 * copy of the pointer.
818 */
041603fe
PB
819 ram_list.mru_block = block;
820 return block;
821}
822
a2f4d5be 823static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 824{
9a13565d 825 CPUState *cpu;
041603fe 826 ram_addr_t start1;
a2f4d5be
JQ
827 RAMBlock *block;
828 ram_addr_t end;
829
f28d0dfd 830 assert(tcg_enabled());
a2f4d5be
JQ
831 end = TARGET_PAGE_ALIGN(start + length);
832 start &= TARGET_PAGE_MASK;
d24981d3 833
694ea274 834 RCU_READ_LOCK_GUARD();
041603fe
PB
835 block = qemu_get_ram_block(start);
836 assert(block == qemu_get_ram_block(end - 1));
1240be24 837 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
838 CPU_FOREACH(cpu) {
839 tlb_reset_dirty(cpu, start1, length);
840 }
d24981d3
JQ
841}
842
5579c7f3 843/* Note: start and end must be within the same ram block. */
03eebc9e
SH
844bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
845 ram_addr_t length,
846 unsigned client)
1ccde1cb 847{
5b82b703 848 DirtyMemoryBlocks *blocks;
25aa6b37 849 unsigned long end, page, start_page;
5b82b703 850 bool dirty = false;
077874e0
PX
851 RAMBlock *ramblock;
852 uint64_t mr_offset, mr_size;
03eebc9e
SH
853
854 if (length == 0) {
855 return false;
856 }
f23db169 857
03eebc9e 858 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
25aa6b37
MB
859 start_page = start >> TARGET_PAGE_BITS;
860 page = start_page;
5b82b703 861
694ea274 862 WITH_RCU_READ_LOCK_GUARD() {
d73415a3 863 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
694ea274
DDAG
864 ramblock = qemu_get_ram_block(start);
865 /* Range sanity check on the ramblock */
866 assert(start >= ramblock->offset &&
867 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 868
694ea274
DDAG
869 while (page < end) {
870 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
871 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
872 unsigned long num = MIN(end - page,
873 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 874
694ea274
DDAG
875 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
876 offset, num);
877 page += num;
878 }
5b82b703 879
25aa6b37
MB
880 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
881 mr_size = (end - start_page) << TARGET_PAGE_BITS;
694ea274 882 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
883 }
884
03eebc9e 885 if (dirty && tcg_enabled()) {
a2f4d5be 886 tlb_reset_dirty_range_all(start, length);
5579c7f3 887 }
03eebc9e
SH
888
889 return dirty;
1ccde1cb
FB
890}
891
8deaf12c 892DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 893 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
894{
895 DirtyMemoryBlocks *blocks;
5dea4079 896 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
897 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
898 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
899 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
900 DirtyBitmapSnapshot *snap;
901 unsigned long page, end, dest;
902
903 snap = g_malloc0(sizeof(*snap) +
904 ((last - first) >> (TARGET_PAGE_BITS + 3)));
905 snap->start = first;
906 snap->end = last;
907
908 page = first >> TARGET_PAGE_BITS;
909 end = last >> TARGET_PAGE_BITS;
910 dest = 0;
911
694ea274 912 WITH_RCU_READ_LOCK_GUARD() {
d73415a3 913 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 914
694ea274
DDAG
915 while (page < end) {
916 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
917 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
918 unsigned long num = MIN(end - page,
919 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 920
694ea274
DDAG
921 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
922 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
923 offset >>= BITS_PER_LEVEL;
8deaf12c 924
694ea274
DDAG
925 bitmap_copy_and_clear_atomic(snap->dirty + dest,
926 blocks->blocks[idx] + offset,
927 num);
928 page += num;
929 dest += num >> BITS_PER_LEVEL;
930 }
8deaf12c
GH
931 }
932
8deaf12c
GH
933 if (tcg_enabled()) {
934 tlb_reset_dirty_range_all(start, length);
935 }
936
077874e0
PX
937 memory_region_clear_dirty_bitmap(mr, offset, length);
938
8deaf12c
GH
939 return snap;
940}
941
942bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
943 ram_addr_t start,
944 ram_addr_t length)
945{
946 unsigned long page, end;
947
948 assert(start >= snap->start);
949 assert(start + length <= snap->end);
950
951 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
952 page = (start - snap->start) >> TARGET_PAGE_BITS;
953
954 while (page < end) {
955 if (test_bit(page, snap->dirty)) {
956 return true;
957 }
958 page++;
959 }
960 return false;
961}
962
79e2b9ae 963/* Called from RCU critical section */
bb0e627a 964hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 965 MemoryRegionSection *section)
e5548617 966{
8f5db641
RH
967 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
968 return section - d->map.sections;
e5548617 969}
8da3ff18 970
b797ab1a
WY
971static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
972 uint16_t section);
16620684 973static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 974
53cb28cb
MA
975static uint16_t phys_section_add(PhysPageMap *map,
976 MemoryRegionSection *section)
5312bd8b 977{
68f3f65b
PB
978 /* The physical section number is ORed with a page-aligned
979 * pointer to produce the iotlb entries. Thus it should
980 * never overflow into the page-aligned value.
981 */
53cb28cb 982 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 983
53cb28cb
MA
984 if (map->sections_nb == map->sections_nb_alloc) {
985 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
986 map->sections = g_renew(MemoryRegionSection, map->sections,
987 map->sections_nb_alloc);
5312bd8b 988 }
53cb28cb 989 map->sections[map->sections_nb] = *section;
dfde4e6e 990 memory_region_ref(section->mr);
53cb28cb 991 return map->sections_nb++;
5312bd8b
AK
992}
993
058bc4b5
PB
994static void phys_section_destroy(MemoryRegion *mr)
995{
55b4e80b
DS
996 bool have_sub_page = mr->subpage;
997
dfde4e6e
PB
998 memory_region_unref(mr);
999
55b4e80b 1000 if (have_sub_page) {
058bc4b5 1001 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1002 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1003 g_free(subpage);
1004 }
1005}
1006
6092666e 1007static void phys_sections_free(PhysPageMap *map)
5312bd8b 1008{
9affd6fc
PB
1009 while (map->sections_nb > 0) {
1010 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1011 phys_section_destroy(section->mr);
1012 }
9affd6fc
PB
1013 g_free(map->sections);
1014 g_free(map->nodes);
5312bd8b
AK
1015}
1016
9950322a 1017static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1018{
9950322a 1019 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1020 subpage_t *subpage;
a8170e5e 1021 hwaddr base = section->offset_within_address_space
0f0cb164 1022 & TARGET_PAGE_MASK;
003a0cf2 1023 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1024 MemoryRegionSection subsection = {
1025 .offset_within_address_space = base,
052e87b0 1026 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1027 };
a8170e5e 1028 hwaddr start, end;
0f0cb164 1029
f3705d53 1030 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1031
f3705d53 1032 if (!(existing->mr->subpage)) {
16620684
AK
1033 subpage = subpage_init(fv, base);
1034 subsection.fv = fv;
0f0cb164 1035 subsection.mr = &subpage->iomem;
ac1970fb 1036 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1037 phys_section_add(&d->map, &subsection));
0f0cb164 1038 } else {
f3705d53 1039 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1040 }
1041 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1042 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1043 subpage_register(subpage, start, end,
1044 phys_section_add(&d->map, section));
0f0cb164
AK
1045}
1046
1047
9950322a 1048static void register_multipage(FlatView *fv,
052e87b0 1049 MemoryRegionSection *section)
33417e70 1050{
9950322a 1051 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1052 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1053 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1054 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1055 TARGET_PAGE_BITS));
dd81124b 1056
733d5ef5
PB
1057 assert(num_pages);
1058 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1059}
1060
494d1997
WY
1061/*
1062 * The range in *section* may look like this:
1063 *
1064 * |s|PPPPPPP|s|
1065 *
1066 * where s stands for subpage and P for page.
1067 */
8629d3fc 1068void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1069{
494d1997 1070 MemoryRegionSection remain = *section;
052e87b0 1071 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1072
494d1997
WY
1073 /* register first subpage */
1074 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1075 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1076 - remain.offset_within_address_space;
733d5ef5 1077
494d1997 1078 MemoryRegionSection now = remain;
052e87b0 1079 now.size = int128_min(int128_make64(left), now.size);
9950322a 1080 register_subpage(fv, &now);
494d1997
WY
1081 if (int128_eq(remain.size, now.size)) {
1082 return;
1083 }
052e87b0
PB
1084 remain.size = int128_sub(remain.size, now.size);
1085 remain.offset_within_address_space += int128_get64(now.size);
1086 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1087 }
1088
1089 /* register whole pages */
1090 if (int128_ge(remain.size, page_size)) {
1091 MemoryRegionSection now = remain;
1092 now.size = int128_and(now.size, int128_neg(page_size));
1093 register_multipage(fv, &now);
1094 if (int128_eq(remain.size, now.size)) {
1095 return;
69b67646 1096 }
494d1997
WY
1097 remain.size = int128_sub(remain.size, now.size);
1098 remain.offset_within_address_space += int128_get64(now.size);
1099 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1100 }
494d1997
WY
1101
1102 /* register last subpage */
1103 register_subpage(fv, &remain);
0f0cb164
AK
1104}
1105
62a2744c
SY
1106void qemu_flush_coalesced_mmio_buffer(void)
1107{
1108 if (kvm_enabled())
1109 kvm_flush_coalesced_mmio_buffer();
1110}
1111
b2a8658e
UD
1112void qemu_mutex_lock_ramlist(void)
1113{
1114 qemu_mutex_lock(&ram_list.mutex);
1115}
1116
1117void qemu_mutex_unlock_ramlist(void)
1118{
1119 qemu_mutex_unlock(&ram_list.mutex);
1120}
1121
ca411b7c 1122GString *ram_block_format(void)
be9b23c4
PX
1123{
1124 RAMBlock *block;
1125 char *psize;
ca411b7c 1126 GString *buf = g_string_new("");
be9b23c4 1127
694ea274 1128 RCU_READ_LOCK_GUARD();
dbc6ae9c
TC
1129 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1130 "Block Name", "PSize", "Offset", "Used", "Total",
1131 "HVA", "RO");
1132
be9b23c4
PX
1133 RAMBLOCK_FOREACH(block) {
1134 psize = size_to_str(block->page_size);
ca411b7c 1135 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
dbc6ae9c
TC
1136 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1137 block->idstr, psize,
ca411b7c
DB
1138 (uint64_t)block->offset,
1139 (uint64_t)block->used_length,
dbc6ae9c
TC
1140 (uint64_t)block->max_length,
1141 (uint64_t)(uintptr_t)block->host,
1142 block->mr->readonly ? "ro" : "rw");
1143
be9b23c4
PX
1144 g_free(psize);
1145 }
ca411b7c
DB
1146
1147 return buf;
be9b23c4
PX
1148}
1149
905b7ee4 1150static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1151{
9c607668
AK
1152 long *hpsize_min = opaque;
1153
1154 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1155 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1156 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1157
7d5489e6 1158 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1159 *hpsize_min = hpsize;
9c607668
AK
1160 }
1161 }
1162
1163 return 0;
1164}
1165
905b7ee4
DH
1166static int find_max_backend_pagesize(Object *obj, void *opaque)
1167{
1168 long *hpsize_max = opaque;
1169
1170 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1171 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1172 long hpsize = host_memory_backend_pagesize(backend);
1173
1174 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1175 *hpsize_max = hpsize;
1176 }
1177 }
1178
1179 return 0;
1180}
1181
1182/*
1183 * TODO: We assume right now that all mapped host memory backends are
1184 * used as RAM, however some might be used for different purposes.
1185 */
1186long qemu_minrampagesize(void)
9c607668
AK
1187{
1188 long hpsize = LONG_MAX;
ad1172d8 1189 Object *memdev_root = object_resolve_path("/objects", NULL);
9c607668 1190
ad1172d8 1191 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1192 return hpsize;
1193}
905b7ee4
DH
1194
1195long qemu_maxrampagesize(void)
1196{
ad1172d8 1197 long pagesize = 0;
905b7ee4
DH
1198 Object *memdev_root = object_resolve_path("/objects", NULL);
1199
ad1172d8 1200 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
905b7ee4
DH
1201 return pagesize;
1202}
9c607668 1203
d5dbde46 1204#ifdef CONFIG_POSIX
d6af99c9
HZ
1205static int64_t get_file_size(int fd)
1206{
72d41eb4
SH
1207 int64_t size;
1208#if defined(__linux__)
1209 struct stat st;
1210
1211 if (fstat(fd, &st) < 0) {
1212 return -errno;
1213 }
1214
1215 /* Special handling for devdax character devices */
1216 if (S_ISCHR(st.st_mode)) {
1217 g_autofree char *subsystem_path = NULL;
1218 g_autofree char *subsystem = NULL;
1219
1220 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1221 major(st.st_rdev), minor(st.st_rdev));
1222 subsystem = g_file_read_link(subsystem_path, NULL);
1223
1224 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1225 g_autofree char *size_path = NULL;
1226 g_autofree char *size_str = NULL;
1227
1228 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1229 major(st.st_rdev), minor(st.st_rdev));
1230
1231 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1232 return g_ascii_strtoll(size_str, NULL, 0);
1233 }
1234 }
1235 }
1236#endif /* defined(__linux__) */
1237
1238 /* st.st_size may be zero for special files yet lseek(2) works */
1239 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1240 if (size < 0) {
1241 return -errno;
1242 }
1243 return size;
1244}
1245
ce317be9
JL
1246static int64_t get_file_align(int fd)
1247{
1248 int64_t align = -1;
1249#if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1250 struct stat st;
1251
1252 if (fstat(fd, &st) < 0) {
1253 return -errno;
1254 }
1255
1256 /* Special handling for devdax character devices */
1257 if (S_ISCHR(st.st_mode)) {
1258 g_autofree char *path = NULL;
1259 g_autofree char *rpath = NULL;
1260 struct daxctl_ctx *ctx;
1261 struct daxctl_region *region;
1262 int rc = 0;
1263
1264 path = g_strdup_printf("/sys/dev/char/%d:%d",
1265 major(st.st_rdev), minor(st.st_rdev));
1266 rpath = realpath(path, NULL);
8efdb7ba
PM
1267 if (!rpath) {
1268 return -errno;
1269 }
ce317be9
JL
1270
1271 rc = daxctl_new(&ctx);
1272 if (rc) {
1273 return -1;
1274 }
1275
1276 daxctl_region_foreach(ctx, region) {
1277 if (strstr(rpath, daxctl_region_get_path(region))) {
1278 align = daxctl_region_get_align(region);
1279 break;
1280 }
1281 }
1282 daxctl_unref(ctx);
1283 }
1284#endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1285
1286 return align;
1287}
1288
8d37b030
MAL
1289static int file_ram_open(const char *path,
1290 const char *region_name,
369d6dc4 1291 bool readonly,
8d37b030
MAL
1292 bool *created,
1293 Error **errp)
c902760f
MT
1294{
1295 char *filename;
8ca761f6
PF
1296 char *sanitized_name;
1297 char *c;
5c3ece79 1298 int fd = -1;
c902760f 1299
8d37b030 1300 *created = false;
fd97fd44 1301 for (;;) {
369d6dc4 1302 fd = open(path, readonly ? O_RDONLY : O_RDWR);
fd97fd44
MA
1303 if (fd >= 0) {
1304 /* @path names an existing file, use it */
1305 break;
8d31d6b6 1306 }
fd97fd44
MA
1307 if (errno == ENOENT) {
1308 /* @path names a file that doesn't exist, create it */
1309 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1310 if (fd >= 0) {
8d37b030 1311 *created = true;
fd97fd44
MA
1312 break;
1313 }
1314 } else if (errno == EISDIR) {
1315 /* @path names a directory, create a file there */
1316 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1317 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1318 for (c = sanitized_name; *c != '\0'; c++) {
1319 if (*c == '/') {
1320 *c = '_';
1321 }
1322 }
8ca761f6 1323
fd97fd44
MA
1324 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1325 sanitized_name);
1326 g_free(sanitized_name);
8d31d6b6 1327
fd97fd44
MA
1328 fd = mkstemp(filename);
1329 if (fd >= 0) {
1330 unlink(filename);
1331 g_free(filename);
1332 break;
1333 }
1334 g_free(filename);
8d31d6b6 1335 }
fd97fd44
MA
1336 if (errno != EEXIST && errno != EINTR) {
1337 error_setg_errno(errp, errno,
1338 "can't open backing store %s for guest RAM",
1339 path);
8d37b030 1340 return -1;
fd97fd44
MA
1341 }
1342 /*
1343 * Try again on EINTR and EEXIST. The latter happens when
1344 * something else creates the file between our two open().
1345 */
8d31d6b6 1346 }
c902760f 1347
8d37b030
MAL
1348 return fd;
1349}
1350
1351static void *file_ram_alloc(RAMBlock *block,
1352 ram_addr_t memory,
1353 int fd,
369d6dc4 1354 bool readonly,
8d37b030 1355 bool truncate,
44a4ff31 1356 off_t offset,
8d37b030
MAL
1357 Error **errp)
1358{
b444f5c0 1359 uint32_t qemu_map_flags;
8d37b030
MAL
1360 void *area;
1361
863e9621 1362 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1363 if (block->mr->align % block->page_size) {
1364 error_setg(errp, "alignment 0x%" PRIx64
1365 " must be multiples of page size 0x%zx",
1366 block->mr->align, block->page_size);
1367 return NULL;
61362b71
DH
1368 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1369 error_setg(errp, "alignment 0x%" PRIx64
1370 " must be a power of two", block->mr->align);
1371 return NULL;
4b870dc4
AG
1372 } else if (offset % block->page_size) {
1373 error_setg(errp, "offset 0x%" PRIx64
1374 " must be multiples of page size 0x%zx",
1375 offset, block->page_size);
1376 return NULL;
98376843
HZ
1377 }
1378 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1379#if defined(__s390x__)
1380 if (kvm_enabled()) {
1381 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1382 }
1383#endif
fd97fd44 1384
863e9621 1385 if (memory < block->page_size) {
fd97fd44 1386 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1387 "or larger than page size 0x%zx",
1388 memory, block->page_size);
8d37b030 1389 return NULL;
1775f111
HZ
1390 }
1391
863e9621 1392 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1393
1394 /*
1395 * ftruncate is not supported by hugetlbfs in older
1396 * hosts, so don't bother bailing out on errors.
1397 * If anything goes wrong with it under other filesystems,
1398 * mmap will fail.
d6af99c9
HZ
1399 *
1400 * Do not truncate the non-empty backend file to avoid corrupting
1401 * the existing data in the file. Disabling shrinking is not
1402 * enough. For example, the current vNVDIMM implementation stores
1403 * the guest NVDIMM labels at the end of the backend file. If the
1404 * backend file is later extended, QEMU will not be able to find
1405 * those labels. Therefore, extending the non-empty backend file
1406 * is disabled as well.
c902760f 1407 */
4b870dc4 1408 if (truncate && ftruncate(fd, offset + memory)) {
9742bf26 1409 perror("ftruncate");
7f56e740 1410 }
c902760f 1411
b444f5c0
DH
1412 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1413 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1414 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
8dbe22c6 1415 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
b444f5c0 1416 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
c902760f 1417 if (area == MAP_FAILED) {
7f56e740 1418 error_setg_errno(errp, errno,
fd97fd44 1419 "unable to map backing store for guest RAM");
8d37b030 1420 return NULL;
c902760f 1421 }
ef36fa14 1422
04b16653 1423 block->fd = fd;
4b870dc4 1424 block->fd_offset = offset;
c902760f
MT
1425 return area;
1426}
1427#endif
1428
154cc9ea
DDAG
1429/* Allocate space within the ram_addr_t space that governs the
1430 * dirty bitmaps.
1431 * Called with the ramlist lock held.
1432 */
d17b5288 1433static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1434{
1435 RAMBlock *block, *next_block;
3e837b2c 1436 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1437
49cd9ac6
SH
1438 assert(size != 0); /* it would hand out same offset multiple times */
1439
0dc3f44a 1440 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1441 return 0;
0d53d9fe 1442 }
04b16653 1443
99e15582 1444 RAMBLOCK_FOREACH(block) {
154cc9ea 1445 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1446
801110ab
DDAG
1447 /* Align blocks to start on a 'long' in the bitmap
1448 * which makes the bitmap sync'ing take the fast path.
1449 */
154cc9ea 1450 candidate = block->offset + block->max_length;
801110ab 1451 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1452
154cc9ea
DDAG
1453 /* Search for the closest following block
1454 * and find the gap.
1455 */
99e15582 1456 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1457 if (next_block->offset >= candidate) {
04b16653
AW
1458 next = MIN(next, next_block->offset);
1459 }
1460 }
154cc9ea
DDAG
1461
1462 /* If it fits remember our place and remember the size
1463 * of gap, but keep going so that we might find a smaller
1464 * gap to fill so avoiding fragmentation.
1465 */
1466 if (next - candidate >= size && next - candidate < mingap) {
1467 offset = candidate;
1468 mingap = next - candidate;
04b16653 1469 }
154cc9ea
DDAG
1470
1471 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1472 }
3e837b2c
AW
1473
1474 if (offset == RAM_ADDR_MAX) {
1475 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1476 (uint64_t)size);
1477 abort();
1478 }
1479
154cc9ea
DDAG
1480 trace_find_ram_offset(size, offset);
1481
04b16653
AW
1482 return offset;
1483}
1484
c136180c 1485static unsigned long last_ram_page(void)
d17b5288
AW
1486{
1487 RAMBlock *block;
1488 ram_addr_t last = 0;
1489
694ea274 1490 RCU_READ_LOCK_GUARD();
99e15582 1491 RAMBLOCK_FOREACH(block) {
62be4e3a 1492 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1493 }
b8c48993 1494 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1495}
1496
ddb97f1d
JB
1497static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1498{
1499 int ret;
ddb97f1d
JB
1500
1501 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1502 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1503 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1504 if (ret) {
1505 perror("qemu_madvise");
1506 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1507 "but dump_guest_core=off specified\n");
1508 }
1509 }
1510}
1511
422148d3
DDAG
1512const char *qemu_ram_get_idstr(RAMBlock *rb)
1513{
1514 return rb->idstr;
1515}
1516
754cb9c0
YK
1517void *qemu_ram_get_host_addr(RAMBlock *rb)
1518{
1519 return rb->host;
1520}
1521
1522ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1523{
1524 return rb->offset;
1525}
1526
1527ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1528{
1529 return rb->used_length;
1530}
1531
082851a3
DH
1532ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1533{
1534 return rb->max_length;
1535}
1536
463a4ac2
DDAG
1537bool qemu_ram_is_shared(RAMBlock *rb)
1538{
1539 return rb->flags & RAM_SHARED;
1540}
1541
8dbe22c6
DH
1542bool qemu_ram_is_noreserve(RAMBlock *rb)
1543{
1544 return rb->flags & RAM_NORESERVE;
1545}
1546
2ce16640
DDAG
1547/* Note: Only set at the start of postcopy */
1548bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1549{
1550 return rb->flags & RAM_UF_ZEROPAGE;
1551}
1552
1553void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1554{
1555 rb->flags |= RAM_UF_ZEROPAGE;
1556}
1557
b895de50
CLG
1558bool qemu_ram_is_migratable(RAMBlock *rb)
1559{
1560 return rb->flags & RAM_MIGRATABLE;
1561}
1562
1563void qemu_ram_set_migratable(RAMBlock *rb)
1564{
1565 rb->flags |= RAM_MIGRATABLE;
1566}
1567
1568void qemu_ram_unset_migratable(RAMBlock *rb)
1569{
1570 rb->flags &= ~RAM_MIGRATABLE;
1571}
1572
6d998f3c
SH
1573int qemu_ram_get_fd(RAMBlock *rb)
1574{
1575 return rb->fd;
1576}
1577
ae3a7047 1578/* Called with iothread lock held. */
fa53a0e5 1579void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1580{
fa53a0e5 1581 RAMBlock *block;
20cfe881 1582
c5705a77
AK
1583 assert(new_block);
1584 assert(!new_block->idstr[0]);
84b89d78 1585
09e5ab63
AL
1586 if (dev) {
1587 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1588 if (id) {
1589 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1590 g_free(id);
84b89d78
CM
1591 }
1592 }
1593 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1594
694ea274 1595 RCU_READ_LOCK_GUARD();
99e15582 1596 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1597 if (block != new_block &&
1598 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1599 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1600 new_block->idstr);
1601 abort();
1602 }
1603 }
c5705a77
AK
1604}
1605
ae3a7047 1606/* Called with iothread lock held. */
fa53a0e5 1607void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1608{
ae3a7047
MD
1609 /* FIXME: arch_init.c assumes that this is not called throughout
1610 * migration. Ignore the problem since hot-unplug during migration
1611 * does not work anyway.
1612 */
20cfe881
HT
1613 if (block) {
1614 memset(block->idstr, 0, sizeof(block->idstr));
1615 }
1616}
1617
863e9621
DDAG
1618size_t qemu_ram_pagesize(RAMBlock *rb)
1619{
1620 return rb->page_size;
1621}
1622
67f11b5c
DDAG
1623/* Returns the largest size of page in use */
1624size_t qemu_ram_pagesize_largest(void)
1625{
1626 RAMBlock *block;
1627 size_t largest = 0;
1628
99e15582 1629 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1630 largest = MAX(largest, qemu_ram_pagesize(block));
1631 }
1632
1633 return largest;
1634}
1635
8490fc78
LC
1636static int memory_try_enable_merging(void *addr, size_t len)
1637{
75cc7f01 1638 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1639 /* disabled by the user */
1640 return 0;
1641 }
1642
1643 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1644}
1645
c7c0e724
DH
1646/*
1647 * Resizing RAM while migrating can result in the migration being canceled.
1648 * Care has to be taken if the guest might have already detected the memory.
62be4e3a
MT
1649 *
1650 * As memory core doesn't know how is memory accessed, it is up to
1651 * resize callback to update device state and/or add assertions to detect
1652 * misuse, if necessary.
1653 */
fa53a0e5 1654int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1655{
8f44304c 1656 const ram_addr_t oldsize = block->used_length;
ce4adc0b
DH
1657 const ram_addr_t unaligned_size = newsize;
1658
62be4e3a
MT
1659 assert(block);
1660
4ed023ce 1661 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1662
62be4e3a 1663 if (block->used_length == newsize) {
ce4adc0b
DH
1664 /*
1665 * We don't have to resize the ram block (which only knows aligned
1666 * sizes), however, we have to notify if the unaligned size changed.
1667 */
1668 if (unaligned_size != memory_region_size(block->mr)) {
1669 memory_region_set_size(block->mr, unaligned_size);
1670 if (block->resized) {
1671 block->resized(block->idstr, unaligned_size, block->host);
1672 }
1673 }
62be4e3a
MT
1674 return 0;
1675 }
1676
1677 if (!(block->flags & RAM_RESIZEABLE)) {
1678 error_setg_errno(errp, EINVAL,
a3a92908
PG
1679 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1680 " != 0x" RAM_ADDR_FMT, block->idstr,
62be4e3a
MT
1681 newsize, block->used_length);
1682 return -EINVAL;
1683 }
1684
1685 if (block->max_length < newsize) {
1686 error_setg_errno(errp, EINVAL,
a3a92908 1687 "Size too large: %s: 0x" RAM_ADDR_FMT
62be4e3a
MT
1688 " > 0x" RAM_ADDR_FMT, block->idstr,
1689 newsize, block->max_length);
1690 return -EINVAL;
1691 }
1692
8f44304c
DH
1693 /* Notify before modifying the ram block and touching the bitmaps. */
1694 if (block->host) {
1695 ram_block_notify_resize(block->host, oldsize, newsize);
1696 }
1697
62be4e3a
MT
1698 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1699 block->used_length = newsize;
58d2707e
PB
1700 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1701 DIRTY_CLIENTS_ALL);
ce4adc0b 1702 memory_region_set_size(block->mr, unaligned_size);
62be4e3a 1703 if (block->resized) {
ce4adc0b 1704 block->resized(block->idstr, unaligned_size, block->host);
62be4e3a
MT
1705 }
1706 return 0;
1707}
1708
61c490e2
BM
1709/*
1710 * Trigger sync on the given ram block for range [start, start + length]
1711 * with the backing store if one is available.
1712 * Otherwise no-op.
1713 * @Note: this is supposed to be a synchronous op.
1714 */
ab7e41e6 1715void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
61c490e2 1716{
61c490e2
BM
1717 /* The requested range should fit in within the block range */
1718 g_assert((start + length) <= block->used_length);
1719
1720#ifdef CONFIG_LIBPMEM
1721 /* The lack of support for pmem should not block the sync */
1722 if (ramblock_is_pmem(block)) {
5d4c9549 1723 void *addr = ramblock_ptr(block, start);
61c490e2
BM
1724 pmem_persist(addr, length);
1725 return;
1726 }
1727#endif
1728 if (block->fd >= 0) {
1729 /**
1730 * Case there is no support for PMEM or the memory has not been
1731 * specified as persistent (or is not one) - use the msync.
1732 * Less optimal but still achieves the same goal
1733 */
5d4c9549 1734 void *addr = ramblock_ptr(block, start);
61c490e2
BM
1735 if (qemu_msync(addr, length, block->fd)) {
1736 warn_report("%s: failed to sync memory range: start: "
1737 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1738 __func__, start, length);
1739 }
1740 }
1741}
1742
5b82b703
SH
1743/* Called with ram_list.mutex held */
1744static void dirty_memory_extend(ram_addr_t old_ram_size,
1745 ram_addr_t new_ram_size)
1746{
1747 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1748 DIRTY_MEMORY_BLOCK_SIZE);
1749 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1750 DIRTY_MEMORY_BLOCK_SIZE);
1751 int i;
1752
1753 /* Only need to extend if block count increased */
1754 if (new_num_blocks <= old_num_blocks) {
1755 return;
1756 }
1757
1758 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1759 DirtyMemoryBlocks *old_blocks;
1760 DirtyMemoryBlocks *new_blocks;
1761 int j;
1762
d73415a3 1763 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
5b82b703
SH
1764 new_blocks = g_malloc(sizeof(*new_blocks) +
1765 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1766
1767 if (old_num_blocks) {
1768 memcpy(new_blocks->blocks, old_blocks->blocks,
1769 old_num_blocks * sizeof(old_blocks->blocks[0]));
1770 }
1771
1772 for (j = old_num_blocks; j < new_num_blocks; j++) {
1773 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1774 }
1775
d73415a3 1776 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
5b82b703
SH
1777
1778 if (old_blocks) {
1779 g_free_rcu(old_blocks, rcu);
1780 }
1781 }
1782}
1783
7ce18ca0 1784static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1785{
8dbe22c6 1786 const bool noreserve = qemu_ram_is_noreserve(new_block);
7ce18ca0 1787 const bool shared = qemu_ram_is_shared(new_block);
e1c57ab8 1788 RAMBlock *block;
0d53d9fe 1789 RAMBlock *last_block = NULL;
2152f5ca 1790 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1791 Error *err = NULL;
2152f5ca 1792
b8c48993 1793 old_ram_size = last_ram_page();
c5705a77 1794
b2a8658e 1795 qemu_mutex_lock_ramlist();
9b8424d5 1796 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1797
1798 if (!new_block->host) {
1799 if (xen_enabled()) {
9b8424d5 1800 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1801 new_block->mr, &err);
1802 if (err) {
1803 error_propagate(errp, err);
1804 qemu_mutex_unlock_ramlist();
39c350ee 1805 return;
37aa7a0e 1806 }
e1c57ab8 1807 } else {
25459eb7
DH
1808 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1809 &new_block->mr->align,
8dbe22c6 1810 shared, noreserve);
39228250 1811 if (!new_block->host) {
ef701d7b
HT
1812 error_setg_errno(errp, errno,
1813 "cannot set up guest memory '%s'",
1814 memory_region_name(new_block->mr));
1815 qemu_mutex_unlock_ramlist();
39c350ee 1816 return;
39228250 1817 }
9b8424d5 1818 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1819 }
c902760f 1820 }
94a6b54f 1821
dd631697
LZ
1822 new_ram_size = MAX(old_ram_size,
1823 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1824 if (new_ram_size > old_ram_size) {
5b82b703 1825 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1826 }
0d53d9fe
MD
1827 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1828 * QLIST (which has an RCU-friendly variant) does not have insertion at
1829 * tail, so save the last element in last_block.
1830 */
99e15582 1831 RAMBLOCK_FOREACH(block) {
0d53d9fe 1832 last_block = block;
9b8424d5 1833 if (block->max_length < new_block->max_length) {
abb26d63
PB
1834 break;
1835 }
1836 }
1837 if (block) {
0dc3f44a 1838 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1839 } else if (last_block) {
0dc3f44a 1840 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1841 } else { /* list is empty */
0dc3f44a 1842 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1843 }
0d6d3c87 1844 ram_list.mru_block = NULL;
94a6b54f 1845
0dc3f44a
MD
1846 /* Write list before version */
1847 smp_wmb();
f798b07f 1848 ram_list.version++;
b2a8658e 1849 qemu_mutex_unlock_ramlist();
f798b07f 1850
9b8424d5 1851 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1852 new_block->used_length,
1853 DIRTY_CLIENTS_ALL);
94a6b54f 1854
a904c911
PB
1855 if (new_block->host) {
1856 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1857 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
a028edea
AB
1858 /*
1859 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1860 * Configure it unless the machine is a qtest server, in which case
1861 * KVM is not used and it may be forked (eg for fuzzing purposes).
1862 */
1863 if (!qtest_enabled()) {
1864 qemu_madvise(new_block->host, new_block->max_length,
1865 QEMU_MADV_DONTFORK);
1866 }
8f44304c
DH
1867 ram_block_notify_add(new_block->host, new_block->used_length,
1868 new_block->max_length);
e1c57ab8 1869 }
94a6b54f 1870}
e9a1ab19 1871
d5dbde46 1872#ifdef CONFIG_POSIX
38b3362d 1873RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
44a4ff31
JR
1874 uint32_t ram_flags, int fd, off_t offset,
1875 bool readonly, Error **errp)
e1c57ab8
PB
1876{
1877 RAMBlock *new_block;
ef701d7b 1878 Error *local_err = NULL;
ce317be9 1879 int64_t file_size, file_align;
e1c57ab8 1880
a4de8552 1881 /* Just support these ram flags by now. */
56918a12
SC
1882 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1883 RAM_PROTECTED)) == 0);
a4de8552 1884
e1c57ab8 1885 if (xen_enabled()) {
7f56e740 1886 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1887 return NULL;
e1c57ab8
PB
1888 }
1889
e45e7ae2
MAL
1890 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1891 error_setg(errp,
1892 "host lacks kvm mmu notifiers, -mem-path unsupported");
1893 return NULL;
1894 }
1895
4ed023ce 1896 size = HOST_PAGE_ALIGN(size);
8d37b030 1897 file_size = get_file_size(fd);
4b870dc4 1898 if (file_size > offset && file_size < (offset + size)) {
c001c3b3 1899 error_setg(errp, "backing store size 0x%" PRIx64
8d37b030 1900 " does not match 'size' option 0x" RAM_ADDR_FMT,
c001c3b3 1901 file_size, size);
8d37b030
MAL
1902 return NULL;
1903 }
1904
ce317be9 1905 file_align = get_file_align(fd);
8f1bdb0e 1906 if (file_align > 0 && file_align > mr->align) {
ce317be9 1907 error_setg(errp, "backing store align 0x%" PRIx64
5f509751 1908 " is larger than 'align' option 0x%" PRIx64,
ce317be9
JL
1909 file_align, mr->align);
1910 return NULL;
1911 }
1912
e1c57ab8
PB
1913 new_block = g_malloc0(sizeof(*new_block));
1914 new_block->mr = mr;
9b8424d5
MT
1915 new_block->used_length = size;
1916 new_block->max_length = size;
cbfc0171 1917 new_block->flags = ram_flags;
369d6dc4 1918 new_block->host = file_ram_alloc(new_block, size, fd, readonly,
44a4ff31 1919 !file_size, offset, errp);
7f56e740
PB
1920 if (!new_block->host) {
1921 g_free(new_block);
528f46af 1922 return NULL;
7f56e740
PB
1923 }
1924
7ce18ca0 1925 ram_block_add(new_block, &local_err);
ef701d7b
HT
1926 if (local_err) {
1927 g_free(new_block);
1928 error_propagate(errp, local_err);
528f46af 1929 return NULL;
ef701d7b 1930 }
528f46af 1931 return new_block;
38b3362d
MAL
1932
1933}
1934
1935
1936RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 1937 uint32_t ram_flags, const char *mem_path,
4b870dc4 1938 off_t offset, bool readonly, Error **errp)
38b3362d
MAL
1939{
1940 int fd;
1941 bool created;
1942 RAMBlock *block;
1943
369d6dc4
SH
1944 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
1945 errp);
38b3362d
MAL
1946 if (fd < 0) {
1947 return NULL;
1948 }
1949
4b870dc4
AG
1950 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, readonly,
1951 errp);
38b3362d
MAL
1952 if (!block) {
1953 if (created) {
1954 unlink(mem_path);
1955 }
1956 close(fd);
1957 return NULL;
1958 }
1959
1960 return block;
e1c57ab8 1961}
0b183fc8 1962#endif
e1c57ab8 1963
62be4e3a 1964static
528f46af
FZ
1965RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1966 void (*resized)(const char*,
1967 uint64_t length,
1968 void *host),
ebef62d0 1969 void *host, uint32_t ram_flags,
528f46af 1970 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1971{
1972 RAMBlock *new_block;
ef701d7b 1973 Error *local_err = NULL;
e1c57ab8 1974
8dbe22c6
DH
1975 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
1976 RAM_NORESERVE)) == 0);
ebef62d0
DH
1977 assert(!host ^ (ram_flags & RAM_PREALLOC));
1978
4ed023ce
DDAG
1979 size = HOST_PAGE_ALIGN(size);
1980 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1981 new_block = g_malloc0(sizeof(*new_block));
1982 new_block->mr = mr;
62be4e3a 1983 new_block->resized = resized;
9b8424d5
MT
1984 new_block->used_length = size;
1985 new_block->max_length = max_size;
62be4e3a 1986 assert(max_size >= size);
e1c57ab8 1987 new_block->fd = -1;
8e3b0cbb 1988 new_block->page_size = qemu_real_host_page_size();
e1c57ab8 1989 new_block->host = host;
ebef62d0 1990 new_block->flags = ram_flags;
7ce18ca0 1991 ram_block_add(new_block, &local_err);
ef701d7b
HT
1992 if (local_err) {
1993 g_free(new_block);
1994 error_propagate(errp, local_err);
528f46af 1995 return NULL;
ef701d7b 1996 }
528f46af 1997 return new_block;
e1c57ab8
PB
1998}
1999
528f46af 2000RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2001 MemoryRegion *mr, Error **errp)
2002{
ebef62d0
DH
2003 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2004 errp);
62be4e3a
MT
2005}
2006
ebef62d0 2007RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
06329cce 2008 MemoryRegion *mr, Error **errp)
6977dfe6 2009{
8dbe22c6 2010 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
ebef62d0 2011 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
62be4e3a
MT
2012}
2013
528f46af 2014RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2015 void (*resized)(const char*,
2016 uint64_t length,
2017 void *host),
2018 MemoryRegion *mr, Error **errp)
2019{
ebef62d0
DH
2020 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2021 RAM_RESIZEABLE, mr, errp);
6977dfe6
YT
2022}
2023
43771539
PB
2024static void reclaim_ramblock(RAMBlock *block)
2025{
2026 if (block->flags & RAM_PREALLOC) {
2027 ;
2028 } else if (xen_enabled()) {
2029 xen_invalidate_map_cache_entry(block->host);
2030#ifndef _WIN32
2031 } else if (block->fd >= 0) {
53adb9d4 2032 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2033 close(block->fd);
2034#endif
2035 } else {
2036 qemu_anon_ram_free(block->host, block->max_length);
2037 }
2038 g_free(block);
2039}
2040
f1060c55 2041void qemu_ram_free(RAMBlock *block)
e9a1ab19 2042{
85bc2a15
MAL
2043 if (!block) {
2044 return;
2045 }
2046
0987d735 2047 if (block->host) {
8f44304c
DH
2048 ram_block_notify_remove(block->host, block->used_length,
2049 block->max_length);
0987d735
PB
2050 }
2051
b2a8658e 2052 qemu_mutex_lock_ramlist();
f1060c55
FZ
2053 QLIST_REMOVE_RCU(block, next);
2054 ram_list.mru_block = NULL;
2055 /* Write list before version */
2056 smp_wmb();
2057 ram_list.version++;
2058 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2059 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2060}
2061
cd19cfa2
HY
2062#ifndef _WIN32
2063void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2064{
2065 RAMBlock *block;
2066 ram_addr_t offset;
2067 int flags;
2068 void *area, *vaddr;
2069
99e15582 2070 RAMBLOCK_FOREACH(block) {
cd19cfa2 2071 offset = addr - block->offset;
9b8424d5 2072 if (offset < block->max_length) {
1240be24 2073 vaddr = ramblock_ptr(block, offset);
7bd4f430 2074 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2075 ;
dfeaf2ab
MA
2076 } else if (xen_enabled()) {
2077 abort();
cd19cfa2
HY
2078 } else {
2079 flags = MAP_FIXED;
dbb92eea
DH
2080 flags |= block->flags & RAM_SHARED ?
2081 MAP_SHARED : MAP_PRIVATE;
d94e0bc9 2082 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
3435f395 2083 if (block->fd >= 0) {
3435f395 2084 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
4b870dc4 2085 flags, block->fd, offset + block->fd_offset);
cd19cfa2 2086 } else {
dbb92eea 2087 flags |= MAP_ANONYMOUS;
cd19cfa2
HY
2088 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2089 flags, -1, 0);
cd19cfa2
HY
2090 }
2091 if (area != vaddr) {
493d89bf
AF
2092 error_report("Could not remap addr: "
2093 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2094 length, addr);
cd19cfa2
HY
2095 exit(1);
2096 }
8490fc78 2097 memory_try_enable_merging(vaddr, length);
ddb97f1d 2098 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2099 }
cd19cfa2
HY
2100 }
2101 }
2102}
2103#endif /* !_WIN32 */
2104
1b5ec234 2105/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2106 * This should not be used for general purpose DMA. Use address_space_map
2107 * or address_space_rw instead. For local memory (e.g. video ram) that the
2108 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2109 *
49b24afc 2110 * Called within RCU critical section.
1b5ec234 2111 */
0878d0e1 2112void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2113{
3655cb9c
GA
2114 RAMBlock *block = ram_block;
2115
2116 if (block == NULL) {
2117 block = qemu_get_ram_block(addr);
0878d0e1 2118 addr -= block->offset;
3655cb9c 2119 }
ae3a7047
MD
2120
2121 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2122 /* We need to check if the requested address is in the RAM
2123 * because we don't want to map the entire memory in QEMU.
2124 * In that case just map until the end of the page.
2125 */
2126 if (block->offset == 0) {
1ff7c598 2127 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2128 }
ae3a7047 2129
1ff7c598 2130 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2131 }
0878d0e1 2132 return ramblock_ptr(block, addr);
dc828ca1
PB
2133}
2134
0878d0e1 2135/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2136 * but takes a size argument.
0dc3f44a 2137 *
e81bcda5 2138 * Called within RCU critical section.
ae3a7047 2139 */
3655cb9c 2140static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2141 hwaddr *size, bool lock)
38bee5dc 2142{
3655cb9c 2143 RAMBlock *block = ram_block;
8ab934f9
SS
2144 if (*size == 0) {
2145 return NULL;
2146 }
e81bcda5 2147
3655cb9c
GA
2148 if (block == NULL) {
2149 block = qemu_get_ram_block(addr);
0878d0e1 2150 addr -= block->offset;
3655cb9c 2151 }
0878d0e1 2152 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2153
2154 if (xen_enabled() && block->host == NULL) {
2155 /* We need to check if the requested address is in the RAM
2156 * because we don't want to map the entire memory in QEMU.
2157 * In that case just map the requested area.
2158 */
2159 if (block->offset == 0) {
f5aa69bd 2160 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2161 }
2162
f5aa69bd 2163 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2164 }
e81bcda5 2165
0878d0e1 2166 return ramblock_ptr(block, addr);
38bee5dc
SS
2167}
2168
f90bb71b
DDAG
2169/* Return the offset of a hostpointer within a ramblock */
2170ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2171{
2172 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2173 assert((uintptr_t)host >= (uintptr_t)rb->host);
2174 assert(res < rb->max_length);
2175
2176 return res;
2177}
2178
422148d3
DDAG
2179/*
2180 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2181 * in that RAMBlock.
2182 *
2183 * ptr: Host pointer to look up
2184 * round_offset: If true round the result offset down to a page boundary
2185 * *ram_addr: set to result ram_addr
2186 * *offset: set to result offset within the RAMBlock
2187 *
2188 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2189 *
2190 * By the time this function returns, the returned pointer is not protected
2191 * by RCU anymore. If the caller is not within an RCU critical section and
2192 * does not hold the iothread lock, it must have other means of protecting the
2193 * pointer, such as a reference to the region that includes the incoming
2194 * ram_addr_t.
2195 */
422148d3 2196RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2197 ram_addr_t *offset)
5579c7f3 2198{
94a6b54f
PB
2199 RAMBlock *block;
2200 uint8_t *host = ptr;
2201
868bb33f 2202 if (xen_enabled()) {
f615f396 2203 ram_addr_t ram_addr;
694ea274 2204 RCU_READ_LOCK_GUARD();
f615f396
PB
2205 ram_addr = xen_ram_addr_from_mapcache(ptr);
2206 block = qemu_get_ram_block(ram_addr);
422148d3 2207 if (block) {
d6b6aec4 2208 *offset = ram_addr - block->offset;
422148d3 2209 }
422148d3 2210 return block;
712c2b41
SS
2211 }
2212
694ea274 2213 RCU_READ_LOCK_GUARD();
d73415a3 2214 block = qatomic_rcu_read(&ram_list.mru_block);
9b8424d5 2215 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2216 goto found;
2217 }
2218
99e15582 2219 RAMBLOCK_FOREACH(block) {
432d268c
JN
2220 /* This case append when the block is not mapped. */
2221 if (block->host == NULL) {
2222 continue;
2223 }
9b8424d5 2224 if (host - block->host < block->max_length) {
23887b79 2225 goto found;
f471a17e 2226 }
94a6b54f 2227 }
432d268c 2228
1b5ec234 2229 return NULL;
23887b79
PB
2230
2231found:
422148d3
DDAG
2232 *offset = (host - block->host);
2233 if (round_offset) {
2234 *offset &= TARGET_PAGE_MASK;
2235 }
422148d3
DDAG
2236 return block;
2237}
2238
e3dd7493
DDAG
2239/*
2240 * Finds the named RAMBlock
2241 *
2242 * name: The name of RAMBlock to find
2243 *
2244 * Returns: RAMBlock (or NULL if not found)
2245 */
2246RAMBlock *qemu_ram_block_by_name(const char *name)
2247{
2248 RAMBlock *block;
2249
99e15582 2250 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2251 if (!strcmp(name, block->idstr)) {
2252 return block;
2253 }
2254 }
2255
2256 return NULL;
2257}
2258
422148d3
DDAG
2259/* Some of the softmmu routines need to translate from a host pointer
2260 (typically a TLB entry) back to a ram offset. */
07bdaa41 2261ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2262{
2263 RAMBlock *block;
f615f396 2264 ram_addr_t offset;
422148d3 2265
f615f396 2266 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2267 if (!block) {
07bdaa41 2268 return RAM_ADDR_INVALID;
422148d3
DDAG
2269 }
2270
07bdaa41 2271 return block->offset + offset;
e890261f 2272}
f471a17e 2273
97e03465
RH
2274ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2275{
2276 ram_addr_t ram_addr;
2277
2278 ram_addr = qemu_ram_addr_from_host(ptr);
2279 if (ram_addr == RAM_ADDR_INVALID) {
2280 error_report("Bad ram pointer %p", ptr);
2281 abort();
2282 }
2283 return ram_addr;
2284}
2285
b2a44fca 2286static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2287 MemTxAttrs attrs, void *buf, hwaddr len);
16620684 2288static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2289 const void *buf, hwaddr len);
0c249ff7 2290static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2291 bool is_write, MemTxAttrs attrs);
16620684 2292
f25a49e0
PM
2293static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2294 unsigned len, MemTxAttrs attrs)
db7b5426 2295{
acc9d80b 2296 subpage_t *subpage = opaque;
ff6cff75 2297 uint8_t buf[8];
5c9eb028 2298 MemTxResult res;
791af8c8 2299
db7b5426 2300#if defined(DEBUG_SUBPAGE)
883f2c59 2301 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
acc9d80b 2302 subpage, len, addr);
db7b5426 2303#endif
16620684 2304 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2305 if (res) {
2306 return res;
f25a49e0 2307 }
6d3ede54
PM
2308 *data = ldn_p(buf, len);
2309 return MEMTX_OK;
db7b5426
BS
2310}
2311
f25a49e0
PM
2312static MemTxResult subpage_write(void *opaque, hwaddr addr,
2313 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2314{
acc9d80b 2315 subpage_t *subpage = opaque;
ff6cff75 2316 uint8_t buf[8];
acc9d80b 2317
db7b5426 2318#if defined(DEBUG_SUBPAGE)
883f2c59 2319 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
acc9d80b
JK
2320 " value %"PRIx64"\n",
2321 __func__, subpage, len, addr, value);
db7b5426 2322#endif
6d3ede54 2323 stn_p(buf, len, value);
16620684 2324 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2325}
2326
c353e4cc 2327static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2328 unsigned len, bool is_write,
2329 MemTxAttrs attrs)
c353e4cc 2330{
acc9d80b 2331 subpage_t *subpage = opaque;
c353e4cc 2332#if defined(DEBUG_SUBPAGE)
883f2c59 2333 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
acc9d80b 2334 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2335#endif
2336
16620684 2337 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2338 len, is_write, attrs);
c353e4cc
PB
2339}
2340
70c68e44 2341static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2342 .read_with_attrs = subpage_read,
2343 .write_with_attrs = subpage_write,
ff6cff75
PB
2344 .impl.min_access_size = 1,
2345 .impl.max_access_size = 8,
2346 .valid.min_access_size = 1,
2347 .valid.max_access_size = 8,
c353e4cc 2348 .valid.accepts = subpage_accepts,
70c68e44 2349 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2350};
2351
b797ab1a
WY
2352static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2353 uint16_t section)
db7b5426
BS
2354{
2355 int idx, eidx;
2356
2357 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2358 return -1;
2359 idx = SUBPAGE_IDX(start);
2360 eidx = SUBPAGE_IDX(end);
2361#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2362 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2363 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2364#endif
db7b5426 2365 for (; idx <= eidx; idx++) {
5312bd8b 2366 mmio->sub_section[idx] = section;
db7b5426
BS
2367 }
2368
2369 return 0;
2370}
2371
16620684 2372static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2373{
c227f099 2374 subpage_t *mmio;
db7b5426 2375
b797ab1a 2376 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2377 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2378 mmio->fv = fv;
1eec614b 2379 mmio->base = base;
2c9b15ca 2380 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2381 NULL, TARGET_PAGE_SIZE);
b3b00c78 2382 mmio->iomem.subpage = true;
db7b5426 2383#if defined(DEBUG_SUBPAGE)
883f2c59 2384 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
016e9d62 2385 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2386#endif
db7b5426
BS
2387
2388 return mmio;
2389}
2390
16620684 2391static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2392{
16620684 2393 assert(fv);
5312bd8b 2394 MemoryRegionSection section = {
16620684 2395 .fv = fv,
5312bd8b
AK
2396 .mr = mr,
2397 .offset_within_address_space = 0,
2398 .offset_within_region = 0,
052e87b0 2399 .size = int128_2_64(),
5312bd8b
AK
2400 };
2401
53cb28cb 2402 return phys_section_add(map, &section);
5312bd8b
AK
2403}
2404
2d54f194
PM
2405MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2406 hwaddr index, MemTxAttrs attrs)
aa102231 2407{
a54c87b6
PM
2408 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2409 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
d73415a3 2410 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2411 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2412
2d54f194 2413 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2414}
2415
e9179ce1
AK
2416static void io_mem_init(void)
2417{
2c9b15ca 2418 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2419 NULL, UINT64_MAX);
e9179ce1
AK
2420}
2421
8629d3fc 2422AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2423{
53cb28cb
MA
2424 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2425 uint16_t n;
2426
16620684 2427 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2428 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2429
9736e55b 2430 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2431
2432 return d;
00752703
PB
2433}
2434
66a6df1d 2435void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2436{
2437 phys_sections_free(&d->map);
2438 g_free(d);
2439}
2440
9458a9a1
PB
2441static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2442{
2443}
2444
2445static void tcg_log_global_after_sync(MemoryListener *listener)
2446{
2447 CPUAddressSpace *cpuas;
2448
2449 /* Wait for the CPU to end the current TB. This avoids the following
2450 * incorrect race:
2451 *
2452 * vCPU migration
2453 * ---------------------- -------------------------
2454 * TLB check -> slow path
2455 * notdirty_mem_write
2456 * write to RAM
2457 * mark dirty
2458 * clear dirty flag
2459 * TLB check -> fast path
2460 * read memory
2461 * write to RAM
2462 *
2463 * by pushing the migration thread's memory read after the vCPU thread has
2464 * written the memory.
2465 */
86cf9e15
PD
2466 if (replay_mode == REPLAY_MODE_NONE) {
2467 /*
2468 * VGA can make calls to this function while updating the screen.
2469 * In record/replay mode this causes a deadlock, because
2470 * run_on_cpu waits for rr mutex. Therefore no races are possible
2471 * in this case and no need for making run_on_cpu when
f18d403f 2472 * record/replay is enabled.
86cf9e15
PD
2473 */
2474 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2475 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2476 }
9458a9a1
PB
2477}
2478
1d71148e 2479static void tcg_commit(MemoryListener *listener)
50c1e149 2480{
32857f4d
PM
2481 CPUAddressSpace *cpuas;
2482 AddressSpaceDispatch *d;
117712c3 2483
f28d0dfd 2484 assert(tcg_enabled());
117712c3
AK
2485 /* since each CPU stores ram addresses in its TLB cache, we must
2486 reset the modified entries */
32857f4d
PM
2487 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2488 cpu_reloading_memory_map();
2489 /* The CPU and TLB are protected by the iothread lock.
2490 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2491 * may have split the RCU critical section.
2492 */
66a6df1d 2493 d = address_space_to_dispatch(cpuas->as);
d73415a3 2494 qatomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2495 tlb_flush(cpuas->cpu);
50c1e149
AK
2496}
2497
62152b8a
AK
2498static void memory_map_init(void)
2499{
7267c094 2500 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2501
57271d63 2502 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2503 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2504
7267c094 2505 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2506 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2507 65536);
7dca8043 2508 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2509}
2510
2511MemoryRegion *get_system_memory(void)
2512{
2513 return system_memory;
2514}
2515
309cb471
AK
2516MemoryRegion *get_system_io(void)
2517{
2518 return system_io;
2519}
2520
845b6214 2521static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2522 hwaddr length)
51d7a9eb 2523{
e87f7778 2524 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2525 addr += memory_region_get_ram_addr(mr);
2526
e87f7778
PB
2527 /* No early return if dirty_log_mask is or becomes 0, because
2528 * cpu_physical_memory_set_dirty_range will still call
2529 * xen_modified_memory.
2530 */
2531 if (dirty_log_mask) {
2532 dirty_log_mask =
2533 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2534 }
2535 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 2536 assert(tcg_enabled());
e506ad6a 2537 tb_invalidate_phys_range(addr, addr + length - 1);
e87f7778 2538 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2539 }
e87f7778 2540 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2541}
2542
047be4ed
SH
2543void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2544{
2545 /*
2546 * In principle this function would work on other memory region types too,
2547 * but the ROM device use case is the only one where this operation is
2548 * necessary. Other memory regions should use the
2549 * address_space_read/write() APIs.
2550 */
2551 assert(memory_region_is_romd(mr));
2552
2553 invalidate_and_set_dirty(mr, addr, size);
2554}
2555
3123f93d 2556int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2557{
e1622f4b 2558 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2559
2560 /* Regions are assumed to support 1-4 byte accesses unless
2561 otherwise specified. */
23326164
RH
2562 if (access_size_max == 0) {
2563 access_size_max = 4;
2564 }
2565
2566 /* Bound the maximum access by the alignment of the address. */
2567 if (!mr->ops->impl.unaligned) {
2568 unsigned align_size_max = addr & -addr;
2569 if (align_size_max != 0 && align_size_max < access_size_max) {
2570 access_size_max = align_size_max;
2571 }
82f2563f 2572 }
23326164
RH
2573
2574 /* Don't attempt accesses larger than the maximum. */
2575 if (l > access_size_max) {
2576 l = access_size_max;
82f2563f 2577 }
6554f5c0 2578 l = pow2floor(l);
23326164
RH
2579
2580 return l;
82f2563f
PB
2581}
2582
3123f93d 2583bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2584{
4840f10e
JK
2585 bool release_lock = false;
2586
37921851 2587 if (!qemu_mutex_iothread_locked()) {
4840f10e 2588 qemu_mutex_lock_iothread();
4840f10e
JK
2589 release_lock = true;
2590 }
125b3806
PB
2591 if (mr->flush_coalesced_mmio) {
2592 qemu_flush_coalesced_mmio_buffer();
2593 }
4840f10e
JK
2594
2595 return release_lock;
125b3806
PB
2596}
2597
3ab6fdc9
PMD
2598/**
2599 * flatview_access_allowed
2600 * @mr: #MemoryRegion to be accessed
2601 * @attrs: memory transaction attributes
2602 * @addr: address within that memory region
2603 * @len: the number of bytes to access
2604 *
2605 * Check if a memory transaction is allowed.
2606 *
2607 * Returns: true if transaction is allowed, false if denied.
2608 */
2609static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2610 hwaddr addr, hwaddr len)
2611{
2612 if (likely(!attrs.memory)) {
2613 return true;
2614 }
2615 if (memory_region_is_ram(mr)) {
2616 return true;
2617 }
2618 qemu_log_mask(LOG_GUEST_ERROR,
2619 "Invalid access to non-RAM device at "
2620 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2621 "region '%s'\n", addr, len, memory_region_name(mr));
2622 return false;
2623}
2624
a203ac70 2625/* Called within RCU critical section. */
16620684
AK
2626static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2627 MemTxAttrs attrs,
a152be43 2628 const void *ptr,
0c249ff7 2629 hwaddr len, hwaddr addr1,
16620684 2630 hwaddr l, MemoryRegion *mr)
13eb76e0 2631{
20804676 2632 uint8_t *ram_ptr;
791af8c8 2633 uint64_t val;
3b643495 2634 MemTxResult result = MEMTX_OK;
4840f10e 2635 bool release_lock = false;
a152be43 2636 const uint8_t *buf = ptr;
3b46e624 2637
a203ac70 2638 for (;;) {
3ab6fdc9
PMD
2639 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2640 result |= MEMTX_ACCESS_ERROR;
2641 /* Keep going. */
2642 } else if (!memory_access_is_direct(mr, true)) {
eb7eeb88
PB
2643 release_lock |= prepare_mmio_access(mr);
2644 l = memory_access_size(mr, l, addr1);
2645 /* XXX: could force current_cpu to NULL to avoid
2646 potential bugs */
9bf825bf 2647 val = ldn_he_p(buf, l);
3d9e7c3e 2648 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 2649 size_memop(l), attrs);
13eb76e0 2650 } else {
eb7eeb88 2651 /* RAM case */
20804676 2652 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
4a73aee8 2653 memmove(ram_ptr, buf, l);
eb7eeb88 2654 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2655 }
4840f10e
JK
2656
2657 if (release_lock) {
2658 qemu_mutex_unlock_iothread();
2659 release_lock = false;
2660 }
2661
13eb76e0
FB
2662 len -= l;
2663 buf += l;
2664 addr += l;
a203ac70
PB
2665
2666 if (!len) {
2667 break;
2668 }
2669
2670 l = len;
efa99a2f 2671 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 2672 }
fd8aaa76 2673
3b643495 2674 return result;
13eb76e0 2675}
8df1cd07 2676
4c6ebbb3 2677/* Called from RCU critical section. */
16620684 2678static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
a152be43 2679 const void *buf, hwaddr len)
ac1970fb 2680{
eb7eeb88 2681 hwaddr l;
eb7eeb88
PB
2682 hwaddr addr1;
2683 MemoryRegion *mr;
eb7eeb88 2684
4c6ebbb3 2685 l = len;
efa99a2f 2686 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3ab6fdc9
PMD
2687 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2688 return MEMTX_ACCESS_ERROR;
2689 }
58e74682
PMD
2690 return flatview_write_continue(fv, addr, attrs, buf, len,
2691 addr1, l, mr);
a203ac70
PB
2692}
2693
2694/* Called within RCU critical section. */
16620684 2695MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
a152be43 2696 MemTxAttrs attrs, void *ptr,
0c249ff7 2697 hwaddr len, hwaddr addr1, hwaddr l,
16620684 2698 MemoryRegion *mr)
a203ac70 2699{
20804676 2700 uint8_t *ram_ptr;
a203ac70
PB
2701 uint64_t val;
2702 MemTxResult result = MEMTX_OK;
2703 bool release_lock = false;
a152be43 2704 uint8_t *buf = ptr;
eb7eeb88 2705
7cac7fea 2706 fuzz_dma_read_cb(addr, len, mr);
a203ac70 2707 for (;;) {
3ab6fdc9
PMD
2708 if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2709 result |= MEMTX_ACCESS_ERROR;
2710 /* Keep going. */
2711 } else if (!memory_access_is_direct(mr, false)) {
eb7eeb88
PB
2712 /* I/O case */
2713 release_lock |= prepare_mmio_access(mr);
2714 l = memory_access_size(mr, l, addr1);
3d9e7c3e 2715 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
2716 size_memop(l), attrs);
2717 stn_he_p(buf, l, val);
eb7eeb88
PB
2718 } else {
2719 /* RAM case */
20804676
PMD
2720 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2721 memcpy(buf, ram_ptr, l);
eb7eeb88
PB
2722 }
2723
2724 if (release_lock) {
2725 qemu_mutex_unlock_iothread();
2726 release_lock = false;
2727 }
2728
2729 len -= l;
2730 buf += l;
2731 addr += l;
a203ac70
PB
2732
2733 if (!len) {
2734 break;
2735 }
2736
2737 l = len;
efa99a2f 2738 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
2739 }
2740
2741 return result;
2742}
2743
b2a44fca
PB
2744/* Called from RCU critical section. */
2745static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
a152be43 2746 MemTxAttrs attrs, void *buf, hwaddr len)
a203ac70
PB
2747{
2748 hwaddr l;
2749 hwaddr addr1;
2750 MemoryRegion *mr;
eb7eeb88 2751
b2a44fca 2752 l = len;
efa99a2f 2753 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3ab6fdc9
PMD
2754 if (!flatview_access_allowed(mr, attrs, addr, len)) {
2755 return MEMTX_ACCESS_ERROR;
2756 }
b2a44fca
PB
2757 return flatview_read_continue(fv, addr, attrs, buf, len,
2758 addr1, l, mr);
ac1970fb
AK
2759}
2760
b2a44fca 2761MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
daa3dda4 2762 MemTxAttrs attrs, void *buf, hwaddr len)
b2a44fca
PB
2763{
2764 MemTxResult result = MEMTX_OK;
2765 FlatView *fv;
2766
2767 if (len > 0) {
694ea274 2768 RCU_READ_LOCK_GUARD();
b2a44fca
PB
2769 fv = address_space_to_flatview(as);
2770 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
2771 }
2772
2773 return result;
2774}
2775
4c6ebbb3
PB
2776MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2777 MemTxAttrs attrs,
daa3dda4 2778 const void *buf, hwaddr len)
4c6ebbb3
PB
2779{
2780 MemTxResult result = MEMTX_OK;
2781 FlatView *fv;
2782
2783 if (len > 0) {
694ea274 2784 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
2785 fv = address_space_to_flatview(as);
2786 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
2787 }
2788
2789 return result;
2790}
2791
db84fd97 2792MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
daa3dda4 2793 void *buf, hwaddr len, bool is_write)
db84fd97
PB
2794{
2795 if (is_write) {
2796 return address_space_write(as, addr, attrs, buf, len);
2797 } else {
2798 return address_space_read_full(as, addr, attrs, buf, len);
2799 }
2800}
2801
75f01c68
PMD
2802MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2803 uint8_t c, hwaddr len, MemTxAttrs attrs)
2804{
2805#define FILLBUF_SIZE 512
2806 uint8_t fillbuf[FILLBUF_SIZE];
2807 int l;
2808 MemTxResult error = MEMTX_OK;
2809
2810 memset(fillbuf, c, FILLBUF_SIZE);
2811 while (len > 0) {
2812 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2813 error |= address_space_write(as, addr, attrs, fillbuf, l);
2814 len -= l;
2815 addr += l;
2816 }
2817
2818 return error;
2819}
2820
d7ef71ef 2821void cpu_physical_memory_rw(hwaddr addr, void *buf,
28c80bfe 2822 hwaddr len, bool is_write)
ac1970fb 2823{
5c9eb028
PM
2824 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2825 buf, len, is_write);
ac1970fb
AK
2826}
2827
582b55a9
AG
2828enum write_rom_type {
2829 WRITE_DATA,
2830 FLUSH_CACHE,
2831};
2832
75693e14
PM
2833static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2834 hwaddr addr,
2835 MemTxAttrs attrs,
daa3dda4 2836 const void *ptr,
0c249ff7 2837 hwaddr len,
75693e14 2838 enum write_rom_type type)
d0ecd2aa 2839{
149f54b5 2840 hwaddr l;
20804676 2841 uint8_t *ram_ptr;
149f54b5 2842 hwaddr addr1;
5c8a00ce 2843 MemoryRegion *mr;
daa3dda4 2844 const uint8_t *buf = ptr;
3b46e624 2845
694ea274 2846 RCU_READ_LOCK_GUARD();
d0ecd2aa 2847 while (len > 0) {
149f54b5 2848 l = len;
75693e14 2849 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 2850
5c8a00ce
PB
2851 if (!(memory_region_is_ram(mr) ||
2852 memory_region_is_romd(mr))) {
b242e0e0 2853 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2854 } else {
d0ecd2aa 2855 /* ROM/RAM case */
20804676 2856 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2857 switch (type) {
2858 case WRITE_DATA:
20804676 2859 memcpy(ram_ptr, buf, l);
845b6214 2860 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2861 break;
2862 case FLUSH_CACHE:
1da8de39 2863 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
582b55a9
AG
2864 break;
2865 }
d0ecd2aa
FB
2866 }
2867 len -= l;
2868 buf += l;
2869 addr += l;
2870 }
75693e14 2871 return MEMTX_OK;
d0ecd2aa
FB
2872}
2873
582b55a9 2874/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
2875MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2876 MemTxAttrs attrs,
daa3dda4 2877 const void *buf, hwaddr len)
582b55a9 2878{
3c8133f9
PM
2879 return address_space_write_rom_internal(as, addr, attrs,
2880 buf, len, WRITE_DATA);
582b55a9
AG
2881}
2882
0c249ff7 2883void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
2884{
2885 /*
2886 * This function should do the same thing as an icache flush that was
2887 * triggered from within the guest. For TCG we are always cache coherent,
2888 * so there is no need to flush anything. For KVM / Xen we need to flush
2889 * the host's instruction cache at least.
2890 */
2891 if (tcg_enabled()) {
2892 return;
2893 }
2894
75693e14
PM
2895 address_space_write_rom_internal(&address_space_memory,
2896 start, MEMTXATTRS_UNSPECIFIED,
2897 NULL, len, FLUSH_CACHE);
582b55a9
AG
2898}
2899
6d16c2f8 2900typedef struct {
d3e71559 2901 MemoryRegion *mr;
6d16c2f8 2902 void *buffer;
a8170e5e
AK
2903 hwaddr addr;
2904 hwaddr len;
c2cba0ff 2905 bool in_use;
6d16c2f8
AL
2906} BounceBuffer;
2907
2908static BounceBuffer bounce;
2909
ba223c29 2910typedef struct MapClient {
e95205e1 2911 QEMUBH *bh;
72cf2d4f 2912 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2913} MapClient;
2914
38e047b5 2915QemuMutex map_client_list_lock;
b58deb34 2916static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 2917 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2918
e95205e1
FZ
2919static void cpu_unregister_map_client_do(MapClient *client)
2920{
2921 QLIST_REMOVE(client, link);
2922 g_free(client);
2923}
2924
33b6c2ed
FZ
2925static void cpu_notify_map_clients_locked(void)
2926{
2927 MapClient *client;
2928
2929 while (!QLIST_EMPTY(&map_client_list)) {
2930 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2931 qemu_bh_schedule(client->bh);
2932 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2933 }
2934}
2935
e95205e1 2936void cpu_register_map_client(QEMUBH *bh)
ba223c29 2937{
7267c094 2938 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2939
38e047b5 2940 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2941 client->bh = bh;
72cf2d4f 2942 QLIST_INSERT_HEAD(&map_client_list, client, link);
33828ca1
PB
2943 /* Write map_client_list before reading in_use. */
2944 smp_mb();
d73415a3 2945 if (!qatomic_read(&bounce.in_use)) {
33b6c2ed
FZ
2946 cpu_notify_map_clients_locked();
2947 }
38e047b5 2948 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2949}
2950
38e047b5 2951void cpu_exec_init_all(void)
ba223c29 2952{
38e047b5 2953 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
2954 /* The data structures we set up here depend on knowing the page size,
2955 * so no more changes can be made after this point.
2956 * In an ideal world, nothing we did before we had finished the
2957 * machine setup would care about the target page size, and we could
2958 * do this much later, rather than requiring board models to state
2959 * up front what their requirements are.
2960 */
2961 finalize_target_page_bits();
38e047b5 2962 io_mem_init();
680a4783 2963 memory_map_init();
38e047b5 2964 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2965}
2966
e95205e1 2967void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2968{
2969 MapClient *client;
2970
e95205e1
FZ
2971 qemu_mutex_lock(&map_client_list_lock);
2972 QLIST_FOREACH(client, &map_client_list, link) {
2973 if (client->bh == bh) {
2974 cpu_unregister_map_client_do(client);
2975 break;
2976 }
ba223c29 2977 }
e95205e1 2978 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2979}
2980
2981static void cpu_notify_map_clients(void)
2982{
38e047b5 2983 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2984 cpu_notify_map_clients_locked();
38e047b5 2985 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2986}
2987
0c249ff7 2988static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2989 bool is_write, MemTxAttrs attrs)
51644ab7 2990{
5c8a00ce 2991 MemoryRegion *mr;
51644ab7
PB
2992 hwaddr l, xlat;
2993
2994 while (len > 0) {
2995 l = len;
efa99a2f 2996 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
2997 if (!memory_access_is_direct(mr, is_write)) {
2998 l = memory_access_size(mr, l, addr);
eace72b7 2999 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3000 return false;
3001 }
3002 }
3003
3004 len -= l;
3005 addr += l;
3006 }
3007 return true;
3008}
3009
16620684 3010bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3011 hwaddr len, bool is_write,
fddffa42 3012 MemTxAttrs attrs)
16620684 3013{
11e732a5 3014 FlatView *fv;
11e732a5 3015
694ea274 3016 RCU_READ_LOCK_GUARD();
11e732a5 3017 fv = address_space_to_flatview(as);
58e74682 3018 return flatview_access_valid(fv, addr, len, is_write, attrs);
16620684
AK
3019}
3020
715c31ec 3021static hwaddr
16620684 3022flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3023 hwaddr target_len,
3024 MemoryRegion *mr, hwaddr base, hwaddr len,
3025 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3026{
3027 hwaddr done = 0;
3028 hwaddr xlat;
3029 MemoryRegion *this_mr;
3030
3031 for (;;) {
3032 target_len -= len;
3033 addr += len;
3034 done += len;
3035 if (target_len == 0) {
3036 return done;
3037 }
3038
3039 len = target_len;
16620684 3040 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3041 &len, is_write, attrs);
715c31ec
PB
3042 if (this_mr != mr || xlat != base + done) {
3043 return done;
3044 }
3045 }
3046}
3047
6d16c2f8
AL
3048/* Map a physical memory region into a host virtual address.
3049 * May map a subset of the requested range, given by and returned in *plen.
3050 * May return NULL if resources needed to perform the mapping are exhausted.
3051 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3052 * Use cpu_register_map_client() to know when retrying the map operation is
3053 * likely to succeed.
6d16c2f8 3054 */
ac1970fb 3055void *address_space_map(AddressSpace *as,
a8170e5e
AK
3056 hwaddr addr,
3057 hwaddr *plen,
f26404fb
PM
3058 bool is_write,
3059 MemTxAttrs attrs)
6d16c2f8 3060{
a8170e5e 3061 hwaddr len = *plen;
715c31ec
PB
3062 hwaddr l, xlat;
3063 MemoryRegion *mr;
ad0c60fa 3064 FlatView *fv;
6d16c2f8 3065
e3127ae0
PB
3066 if (len == 0) {
3067 return NULL;
3068 }
38bee5dc 3069
e3127ae0 3070 l = len;
694ea274 3071 RCU_READ_LOCK_GUARD();
ad0c60fa 3072 fv = address_space_to_flatview(as);
efa99a2f 3073 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3074
e3127ae0 3075 if (!memory_access_is_direct(mr, is_write)) {
d73415a3 3076 if (qatomic_xchg(&bounce.in_use, true)) {
77f55eac 3077 *plen = 0;
e3127ae0 3078 return NULL;
6d16c2f8 3079 }
e85d9db5
KW
3080 /* Avoid unbounded allocations */
3081 l = MIN(l, TARGET_PAGE_SIZE);
3082 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3083 bounce.addr = addr;
3084 bounce.len = l;
d3e71559
PB
3085
3086 memory_region_ref(mr);
3087 bounce.mr = mr;
e3127ae0 3088 if (!is_write) {
16620684 3089 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3090 bounce.buffer, l);
8ab934f9 3091 }
6d16c2f8 3092
e3127ae0
PB
3093 *plen = l;
3094 return bounce.buffer;
3095 }
3096
e3127ae0 3097
d3e71559 3098 memory_region_ref(mr);
16620684 3099 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3100 l, is_write, attrs);
fc1c8344 3101 fuzz_dma_read_cb(addr, *plen, mr);
66997c42 3102 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
6d16c2f8
AL
3103}
3104
ac1970fb 3105/* Unmaps a memory region previously mapped by address_space_map().
ae5883ab 3106 * Will also mark the memory as dirty if is_write is true. access_len gives
6d16c2f8
AL
3107 * the amount of memory that was actually read or written by the caller.
3108 */
a8170e5e 3109void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
ae5883ab 3110 bool is_write, hwaddr access_len)
6d16c2f8
AL
3111{
3112 if (buffer != bounce.buffer) {
d3e71559
PB
3113 MemoryRegion *mr;
3114 ram_addr_t addr1;
3115
07bdaa41 3116 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3117 assert(mr != NULL);
6d16c2f8 3118 if (is_write) {
845b6214 3119 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3120 }
868bb33f 3121 if (xen_enabled()) {
e41d7c69 3122 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3123 }
d3e71559 3124 memory_region_unref(mr);
6d16c2f8
AL
3125 return;
3126 }
3127 if (is_write) {
5c9eb028
PM
3128 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3129 bounce.buffer, access_len);
6d16c2f8 3130 }
f8a83245 3131 qemu_vfree(bounce.buffer);
6d16c2f8 3132 bounce.buffer = NULL;
d3e71559 3133 memory_region_unref(bounce.mr);
33828ca1 3134 /* Clear in_use before reading map_client_list. */
06831001 3135 qatomic_set_mb(&bounce.in_use, false);
ba223c29 3136 cpu_notify_map_clients();
6d16c2f8 3137}
d0ecd2aa 3138
a8170e5e
AK
3139void *cpu_physical_memory_map(hwaddr addr,
3140 hwaddr *plen,
28c80bfe 3141 bool is_write)
ac1970fb 3142{
f26404fb
PM
3143 return address_space_map(&address_space_memory, addr, plen, is_write,
3144 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3145}
3146
a8170e5e 3147void cpu_physical_memory_unmap(void *buffer, hwaddr len,
28c80bfe 3148 bool is_write, hwaddr access_len)
ac1970fb
AK
3149{
3150 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3151}
3152
0ce265ff
PB
3153#define ARG1_DECL AddressSpace *as
3154#define ARG1 as
3155#define SUFFIX
3156#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3157#define RCU_READ_LOCK(...) rcu_read_lock()
3158#define RCU_READ_UNLOCK(...) rcu_read_unlock()
139c1837 3159#include "memory_ldst.c.inc"
1e78bcc1 3160
1f4e496e
PB
3161int64_t address_space_cache_init(MemoryRegionCache *cache,
3162 AddressSpace *as,
3163 hwaddr addr,
3164 hwaddr len,
3165 bool is_write)
3166{
48564041
PB
3167 AddressSpaceDispatch *d;
3168 hwaddr l;
3169 MemoryRegion *mr;
4bfb024b 3170 Int128 diff;
48564041
PB
3171
3172 assert(len > 0);
3173
3174 l = len;
3175 cache->fv = address_space_get_flatview(as);
3176 d = flatview_to_dispatch(cache->fv);
3177 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3178
4bfb024b
PB
3179 /*
3180 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3181 * Take that into account to compute how many bytes are there between
3182 * cache->xlat and the end of the section.
3183 */
3184 diff = int128_sub(cache->mrs.size,
48805df9 3185 int128_make64(cache->xlat - cache->mrs.offset_within_region));
4bfb024b
PB
3186 l = int128_get64(int128_min(diff, int128_make64(l)));
3187
48564041
PB
3188 mr = cache->mrs.mr;
3189 memory_region_ref(mr);
3190 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3191 /* We don't care about the memory attributes here as we're only
3192 * doing this if we found actual RAM, which behaves the same
3193 * regardless of attributes; so UNSPECIFIED is fine.
3194 */
48564041 3195 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3196 cache->xlat, l, is_write,
3197 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3198 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3199 } else {
3200 cache->ptr = NULL;
3201 }
3202
3203 cache->len = l;
3204 cache->is_write = is_write;
3205 return l;
1f4e496e
PB
3206}
3207
3208void address_space_cache_invalidate(MemoryRegionCache *cache,
3209 hwaddr addr,
3210 hwaddr access_len)
3211{
48564041
PB
3212 assert(cache->is_write);
3213 if (likely(cache->ptr)) {
3214 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3215 }
1f4e496e
PB
3216}
3217
3218void address_space_cache_destroy(MemoryRegionCache *cache)
3219{
48564041
PB
3220 if (!cache->mrs.mr) {
3221 return;
3222 }
3223
3224 if (xen_enabled()) {
3225 xen_invalidate_map_cache_entry(cache->ptr);
3226 }
3227 memory_region_unref(cache->mrs.mr);
3228 flatview_unref(cache->fv);
3229 cache->mrs.mr = NULL;
3230 cache->fv = NULL;
3231}
3232
3233/* Called from RCU critical section. This function has the same
3234 * semantics as address_space_translate, but it only works on a
3235 * predefined range of a MemoryRegion that was mapped with
3236 * address_space_cache_init.
3237 */
3238static inline MemoryRegion *address_space_translate_cached(
3239 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3240 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3241{
3242 MemoryRegionSection section;
3243 MemoryRegion *mr;
3244 IOMMUMemoryRegion *iommu_mr;
3245 AddressSpace *target_as;
3246
3247 assert(!cache->ptr);
3248 *xlat = addr + cache->xlat;
3249
3250 mr = cache->mrs.mr;
3251 iommu_mr = memory_region_get_iommu(mr);
3252 if (!iommu_mr) {
3253 /* MMIO region. */
3254 return mr;
3255 }
3256
3257 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3258 NULL, is_write, true,
2f7b009c 3259 &target_as, attrs);
48564041
PB
3260 return section.mr;
3261}
3262
3263/* Called from RCU critical section. address_space_read_cached uses this
3264 * out of line function when the target is an MMIO or IOMMU region.
3265 */
38df19fa 3266MemTxResult
48564041 3267address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3268 void *buf, hwaddr len)
48564041
PB
3269{
3270 hwaddr addr1, l;
3271 MemoryRegion *mr;
3272
3273 l = len;
bc6b1cec
PM
3274 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3275 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3276 return flatview_read_continue(cache->fv,
3277 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3278 addr1, l, mr);
48564041
PB
3279}
3280
3281/* Called from RCU critical section. address_space_write_cached uses this
3282 * out of line function when the target is an MMIO or IOMMU region.
3283 */
38df19fa 3284MemTxResult
48564041 3285address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3286 const void *buf, hwaddr len)
48564041
PB
3287{
3288 hwaddr addr1, l;
3289 MemoryRegion *mr;
3290
3291 l = len;
bc6b1cec
PM
3292 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3293 MEMTXATTRS_UNSPECIFIED);
38df19fa
PMD
3294 return flatview_write_continue(cache->fv,
3295 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3296 addr1, l, mr);
1f4e496e
PB
3297}
3298
3299#define ARG1_DECL MemoryRegionCache *cache
3300#define ARG1 cache
48564041
PB
3301#define SUFFIX _cached_slow
3302#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3303#define RCU_READ_LOCK() ((void)0)
3304#define RCU_READ_UNLOCK() ((void)0)
139c1837 3305#include "memory_ldst.c.inc"
1f4e496e 3306
5e2972fd 3307/* virtual memory access for debug (includes writing to ROM) */
73842ef0
PMD
3308int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3309 void *ptr, size_t len, bool is_write)
13eb76e0 3310{
a8170e5e 3311 hwaddr phys_addr;
73842ef0 3312 vaddr l, page;
d7ef71ef 3313 uint8_t *buf = ptr;
13eb76e0 3314
79ca7a1b 3315 cpu_synchronize_state(cpu);
13eb76e0 3316 while (len > 0) {
5232e4c7
PM
3317 int asidx;
3318 MemTxAttrs attrs;
ddfc8b96 3319 MemTxResult res;
5232e4c7 3320
13eb76e0 3321 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3322 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3323 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3324 /* if no physical page mapped, return an error */
3325 if (phys_addr == -1)
3326 return -1;
3327 l = (page + TARGET_PAGE_SIZE) - addr;
3328 if (l > len)
3329 l = len;
5e2972fd 3330 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3331 if (is_write) {
ddfc8b96
PMD
3332 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3333 attrs, buf, l);
2e38847b 3334 } else {
ddfc8b96
PMD
3335 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3336 attrs, buf, l);
3337 }
3338 if (res != MEMTX_OK) {
3339 return -1;
2e38847b 3340 }
13eb76e0
FB
3341 len -= l;
3342 buf += l;
3343 addr += l;
3344 }
3345 return 0;
3346}
038629a6
DDAG
3347
3348/*
3349 * Allows code that needs to deal with migration bitmaps etc to still be built
3350 * target independent.
3351 */
20afaed9 3352size_t qemu_target_page_size(void)
038629a6 3353{
20afaed9 3354 return TARGET_PAGE_SIZE;
038629a6
DDAG
3355}
3356
46d702b1
JQ
3357int qemu_target_page_bits(void)
3358{
3359 return TARGET_PAGE_BITS;
3360}
3361
3362int qemu_target_page_bits_min(void)
3363{
3364 return TARGET_PAGE_BITS_MIN;
3365}
8e4a424b 3366
62c5e181
JQ
3367/* Convert target pages to MiB (2**20). */
3368size_t qemu_target_pages_to_MiB(size_t pages)
3369{
3370 int page_bits = TARGET_PAGE_BITS;
3371
3372 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3373 g_assert(page_bits < 20);
3374
3375 return pages >> (20 - page_bits);
3376}
3377
a8170e5e 3378bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3379{
5c8a00ce 3380 MemoryRegion*mr;
149f54b5 3381 hwaddr l = 1;
76f35538 3382
694ea274 3383 RCU_READ_LOCK_GUARD();
5c8a00ce 3384 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3385 phys_addr, &phys_addr, &l, false,
3386 MEMTXATTRS_UNSPECIFIED);
76f35538 3387
66997c42 3388 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
76f35538 3389}
bd2fa51f 3390
e3807054 3391int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3392{
3393 RAMBlock *block;
e3807054 3394 int ret = 0;
bd2fa51f 3395
694ea274 3396 RCU_READ_LOCK_GUARD();
99e15582 3397 RAMBLOCK_FOREACH(block) {
754cb9c0 3398 ret = func(block, opaque);
e3807054
DDAG
3399 if (ret) {
3400 break;
3401 }
bd2fa51f 3402 }
e3807054 3403 return ret;
bd2fa51f 3404}
d3a5038c
DDAG
3405
3406/*
3407 * Unmap pages of memory from start to start+length such that
3408 * they a) read as 0, b) Trigger whatever fault mechanism
3409 * the OS provides for postcopy.
3410 * The pages must be unmapped by the end of the function.
3411 * Returns: 0 on success, none-0 on failure
3412 *
3413 */
3414int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3415{
3416 int ret = -1;
3417
3418 uint8_t *host_startaddr = rb->host + start;
3419
619bd31d 3420 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
d3a5038c
DDAG
3421 error_report("ram_block_discard_range: Unaligned start address: %p",
3422 host_startaddr);
3423 goto err;
3424 }
3425
dcdc4607 3426 if ((start + length) <= rb->max_length) {
db144f70 3427 bool need_madvise, need_fallocate;
619bd31d 3428 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
72821d93
WY
3429 error_report("ram_block_discard_range: Unaligned length: %zx",
3430 length);
d3a5038c
DDAG
3431 goto err;
3432 }
3433
3434 errno = ENOTSUP; /* If we are missing MADVISE etc */
3435
db144f70
DDAG
3436 /* The logic here is messy;
3437 * madvise DONTNEED fails for hugepages
3438 * fallocate works on hugepages and shmem
cdfa56c5 3439 * shared anonymous memory requires madvise REMOVE
db144f70
DDAG
3440 */
3441 need_madvise = (rb->page_size == qemu_host_page_size);
3442 need_fallocate = rb->fd != -1;
3443 if (need_fallocate) {
3444 /* For a file, this causes the area of the file to be zero'd
3445 * if read, and for hugetlbfs also causes it to be unmapped
3446 * so a userfault will trigger.
e2fa71f5
DDAG
3447 */
3448#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3449 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3450 start, length);
db144f70
DDAG
3451 if (ret) {
3452 ret = -errno;
3453 error_report("ram_block_discard_range: Failed to fallocate "
3454 "%s:%" PRIx64 " +%zx (%d)",
3455 rb->idstr, start, length, ret);
3456 goto err;
3457 }
3458#else
3459 ret = -ENOSYS;
3460 error_report("ram_block_discard_range: fallocate not available/file"
3461 "%s:%" PRIx64 " +%zx (%d)",
3462 rb->idstr, start, length, ret);
3463 goto err;
e2fa71f5
DDAG
3464#endif
3465 }
db144f70
DDAG
3466 if (need_madvise) {
3467 /* For normal RAM this causes it to be unmapped,
3468 * for shared memory it causes the local mapping to disappear
3469 * and to fall back on the file contents (which we just
3470 * fallocate'd away).
3471 */
3472#if defined(CONFIG_MADVISE)
cdfa56c5
DH
3473 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3474 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3475 } else {
3476 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3477 }
db144f70
DDAG
3478 if (ret) {
3479 ret = -errno;
3480 error_report("ram_block_discard_range: Failed to discard range "
3481 "%s:%" PRIx64 " +%zx (%d)",
3482 rb->idstr, start, length, ret);
3483 goto err;
3484 }
3485#else
3486 ret = -ENOSYS;
3487 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3488 "%s:%" PRIx64 " +%zx (%d)",
3489 rb->idstr, start, length, ret);
db144f70
DDAG
3490 goto err;
3491#endif
d3a5038c 3492 }
db144f70
DDAG
3493 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3494 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3495 } else {
3496 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3497 "/%zx/" RAM_ADDR_FMT")",
dcdc4607 3498 rb->idstr, start, length, rb->max_length);
d3a5038c
DDAG
3499 }
3500
3501err:
3502 return ret;
3503}
3504
a4de8552
JH
3505bool ramblock_is_pmem(RAMBlock *rb)
3506{
3507 return rb->flags & RAM_PMEM;
3508}
3509
b6b71cb5 3510static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
3511{
3512 if (start == end - 1) {
b6b71cb5 3513 qemu_printf("\t%3d ", start);
5e8fd947 3514 } else {
b6b71cb5 3515 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 3516 }
b6b71cb5 3517 qemu_printf(" skip=%d ", skip);
5e8fd947 3518 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 3519 qemu_printf(" ptr=NIL");
5e8fd947 3520 } else if (!skip) {
b6b71cb5 3521 qemu_printf(" ptr=#%d", ptr);
5e8fd947 3522 } else {
b6b71cb5 3523 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 3524 }
b6b71cb5 3525 qemu_printf("\n");
5e8fd947
AK
3526}
3527
3528#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3529 int128_sub((size), int128_one())) : 0)
3530
b6b71cb5 3531void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
3532{
3533 int i;
3534
b6b71cb5
MA
3535 qemu_printf(" Dispatch\n");
3536 qemu_printf(" Physical sections\n");
5e8fd947
AK
3537
3538 for (i = 0; i < d->map.sections_nb; ++i) {
3539 MemoryRegionSection *s = d->map.sections + i;
3540 const char *names[] = { " [unassigned]", " [not dirty]",
3541 " [ROM]", " [watch]" };
3542
883f2c59 3543 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
b6b71cb5 3544 " %s%s%s%s%s",
5e8fd947
AK
3545 i,
3546 s->offset_within_address_space,
f9c307c3 3547 s->offset_within_address_space + MR_SIZE(s->size),
5e8fd947
AK
3548 s->mr->name ? s->mr->name : "(noname)",
3549 i < ARRAY_SIZE(names) ? names[i] : "",
3550 s->mr == root ? " [ROOT]" : "",
3551 s == d->mru_section ? " [MRU]" : "",
3552 s->mr->is_iommu ? " [iommu]" : "");
3553
3554 if (s->mr->alias) {
b6b71cb5 3555 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
3556 s->mr->alias->name : "noname");
3557 }
b6b71cb5 3558 qemu_printf("\n");
5e8fd947
AK
3559 }
3560
b6b71cb5 3561 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
3562 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3563 for (i = 0; i < d->map.nodes_nb; ++i) {
3564 int j, jprev;
3565 PhysPageEntry prev;
3566 Node *n = d->map.nodes + i;
3567
b6b71cb5 3568 qemu_printf(" [%d]\n", i);
5e8fd947
AK
3569
3570 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3571 PhysPageEntry *pe = *n + j;
3572
3573 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3574 continue;
3575 }
3576
b6b71cb5 3577 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
3578
3579 jprev = j;
3580 prev = *pe;
3581 }
3582
3583 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 3584 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
3585 }
3586 }
3587}
3588
7e6d32eb 3589/* Require any discards to work. */
98da491d 3590static unsigned int ram_block_discard_required_cnt;
7e6d32eb
DH
3591/* Require only coordinated discards to work. */
3592static unsigned int ram_block_coordinated_discard_required_cnt;
3593/* Disable any discards. */
98da491d 3594static unsigned int ram_block_discard_disabled_cnt;
7e6d32eb
DH
3595/* Disable only uncoordinated discards. */
3596static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
98da491d
DH
3597static QemuMutex ram_block_discard_disable_mutex;
3598
3599static void ram_block_discard_disable_mutex_lock(void)
3600{
3601 static gsize initialized;
3602
3603 if (g_once_init_enter(&initialized)) {
3604 qemu_mutex_init(&ram_block_discard_disable_mutex);
3605 g_once_init_leave(&initialized, 1);
3606 }
3607 qemu_mutex_lock(&ram_block_discard_disable_mutex);
3608}
3609
3610static void ram_block_discard_disable_mutex_unlock(void)
3611{
3612 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3613}
d24f31db
DH
3614
3615int ram_block_discard_disable(bool state)
3616{
98da491d 3617 int ret = 0;
d24f31db 3618
98da491d 3619 ram_block_discard_disable_mutex_lock();
d24f31db 3620 if (!state) {
98da491d 3621 ram_block_discard_disabled_cnt--;
7e6d32eb
DH
3622 } else if (ram_block_discard_required_cnt ||
3623 ram_block_coordinated_discard_required_cnt) {
3624 ret = -EBUSY;
98da491d 3625 } else {
7e6d32eb
DH
3626 ram_block_discard_disabled_cnt++;
3627 }
3628 ram_block_discard_disable_mutex_unlock();
3629 return ret;
3630}
3631
3632int ram_block_uncoordinated_discard_disable(bool state)
3633{
3634 int ret = 0;
3635
3636 ram_block_discard_disable_mutex_lock();
3637 if (!state) {
3638 ram_block_uncoordinated_discard_disabled_cnt--;
3639 } else if (ram_block_discard_required_cnt) {
98da491d 3640 ret = -EBUSY;
7e6d32eb
DH
3641 } else {
3642 ram_block_uncoordinated_discard_disabled_cnt++;
d24f31db 3643 }
98da491d
DH
3644 ram_block_discard_disable_mutex_unlock();
3645 return ret;
d24f31db
DH
3646}
3647
3648int ram_block_discard_require(bool state)
3649{
98da491d 3650 int ret = 0;
d24f31db 3651
98da491d 3652 ram_block_discard_disable_mutex_lock();
d24f31db 3653 if (!state) {
98da491d 3654 ram_block_discard_required_cnt--;
7e6d32eb
DH
3655 } else if (ram_block_discard_disabled_cnt ||
3656 ram_block_uncoordinated_discard_disabled_cnt) {
3657 ret = -EBUSY;
98da491d 3658 } else {
7e6d32eb
DH
3659 ram_block_discard_required_cnt++;
3660 }
3661 ram_block_discard_disable_mutex_unlock();
3662 return ret;
3663}
3664
3665int ram_block_coordinated_discard_require(bool state)
3666{
3667 int ret = 0;
3668
3669 ram_block_discard_disable_mutex_lock();
3670 if (!state) {
3671 ram_block_coordinated_discard_required_cnt--;
3672 } else if (ram_block_discard_disabled_cnt) {
98da491d 3673 ret = -EBUSY;
7e6d32eb
DH
3674 } else {
3675 ram_block_coordinated_discard_required_cnt++;
d24f31db 3676 }
98da491d
DH
3677 ram_block_discard_disable_mutex_unlock();
3678 return ret;
d24f31db
DH
3679}
3680
3681bool ram_block_discard_is_disabled(void)
3682{
7e6d32eb
DH
3683 return qatomic_read(&ram_block_discard_disabled_cnt) ||
3684 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
d24f31db
DH
3685}
3686
3687bool ram_block_discard_is_required(void)
3688{
7e6d32eb
DH
3689 return qatomic_read(&ram_block_discard_required_cnt) ||
3690 qatomic_read(&ram_block_coordinated_discard_required_cnt);
d24f31db 3691}