]>
Commit | Line | Data |
---|---|---|
0be034bc RH |
1 | /* |
2 | * Helpers for integer and multimedia instructions. | |
3 | * | |
4 | * Copyright (c) 2007 Jocelyn Mayer | |
5 | * | |
6 | * This library is free software; you can redistribute it and/or | |
7 | * modify it under the terms of the GNU Lesser General Public | |
8 | * License as published by the Free Software Foundation; either | |
9 | * version 2 of the License, or (at your option) any later version. | |
10 | * | |
11 | * This library is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | * Lesser General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU Lesser General Public | |
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | |
18 | */ | |
19 | ||
20 | #include "cpu.h" | |
21 | #include "helper.h" | |
1de7afc9 | 22 | #include "qemu/host-utils.h" |
0be034bc RH |
23 | |
24 | ||
0be034bc RH |
25 | uint64_t helper_ctpop(uint64_t arg) |
26 | { | |
27 | return ctpop64(arg); | |
28 | } | |
29 | ||
30 | uint64_t helper_ctlz(uint64_t arg) | |
31 | { | |
32 | return clz64(arg); | |
33 | } | |
34 | ||
35 | uint64_t helper_cttz(uint64_t arg) | |
36 | { | |
37 | return ctz64(arg); | |
38 | } | |
39 | ||
40 | static inline uint64_t byte_zap(uint64_t op, uint8_t mskb) | |
41 | { | |
42 | uint64_t mask; | |
43 | ||
44 | mask = 0; | |
45 | mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL; | |
46 | mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL; | |
47 | mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL; | |
48 | mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL; | |
49 | mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL; | |
50 | mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL; | |
51 | mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL; | |
52 | mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL; | |
53 | ||
54 | return op & ~mask; | |
55 | } | |
56 | ||
57 | uint64_t helper_zap(uint64_t val, uint64_t mask) | |
58 | { | |
59 | return byte_zap(val, mask); | |
60 | } | |
61 | ||
62 | uint64_t helper_zapnot(uint64_t val, uint64_t mask) | |
63 | { | |
64 | return byte_zap(val, ~mask); | |
65 | } | |
66 | ||
67 | uint64_t helper_cmpbge(uint64_t op1, uint64_t op2) | |
68 | { | |
69 | uint8_t opa, opb, res; | |
70 | int i; | |
71 | ||
72 | res = 0; | |
73 | for (i = 0; i < 8; i++) { | |
74 | opa = op1 >> (i * 8); | |
75 | opb = op2 >> (i * 8); | |
76 | if (opa >= opb) { | |
77 | res |= 1 << i; | |
78 | } | |
79 | } | |
80 | return res; | |
81 | } | |
82 | ||
83 | uint64_t helper_minub8(uint64_t op1, uint64_t op2) | |
84 | { | |
85 | uint64_t res = 0; | |
86 | uint8_t opa, opb, opr; | |
87 | int i; | |
88 | ||
89 | for (i = 0; i < 8; ++i) { | |
90 | opa = op1 >> (i * 8); | |
91 | opb = op2 >> (i * 8); | |
92 | opr = opa < opb ? opa : opb; | |
93 | res |= (uint64_t)opr << (i * 8); | |
94 | } | |
95 | return res; | |
96 | } | |
97 | ||
98 | uint64_t helper_minsb8(uint64_t op1, uint64_t op2) | |
99 | { | |
100 | uint64_t res = 0; | |
101 | int8_t opa, opb; | |
102 | uint8_t opr; | |
103 | int i; | |
104 | ||
105 | for (i = 0; i < 8; ++i) { | |
106 | opa = op1 >> (i * 8); | |
107 | opb = op2 >> (i * 8); | |
108 | opr = opa < opb ? opa : opb; | |
109 | res |= (uint64_t)opr << (i * 8); | |
110 | } | |
111 | return res; | |
112 | } | |
113 | ||
114 | uint64_t helper_minuw4(uint64_t op1, uint64_t op2) | |
115 | { | |
116 | uint64_t res = 0; | |
117 | uint16_t opa, opb, opr; | |
118 | int i; | |
119 | ||
120 | for (i = 0; i < 4; ++i) { | |
121 | opa = op1 >> (i * 16); | |
122 | opb = op2 >> (i * 16); | |
123 | opr = opa < opb ? opa : opb; | |
124 | res |= (uint64_t)opr << (i * 16); | |
125 | } | |
126 | return res; | |
127 | } | |
128 | ||
129 | uint64_t helper_minsw4(uint64_t op1, uint64_t op2) | |
130 | { | |
131 | uint64_t res = 0; | |
132 | int16_t opa, opb; | |
133 | uint16_t opr; | |
134 | int i; | |
135 | ||
136 | for (i = 0; i < 4; ++i) { | |
137 | opa = op1 >> (i * 16); | |
138 | opb = op2 >> (i * 16); | |
139 | opr = opa < opb ? opa : opb; | |
140 | res |= (uint64_t)opr << (i * 16); | |
141 | } | |
142 | return res; | |
143 | } | |
144 | ||
145 | uint64_t helper_maxub8(uint64_t op1, uint64_t op2) | |
146 | { | |
147 | uint64_t res = 0; | |
148 | uint8_t opa, opb, opr; | |
149 | int i; | |
150 | ||
151 | for (i = 0; i < 8; ++i) { | |
152 | opa = op1 >> (i * 8); | |
153 | opb = op2 >> (i * 8); | |
154 | opr = opa > opb ? opa : opb; | |
155 | res |= (uint64_t)opr << (i * 8); | |
156 | } | |
157 | return res; | |
158 | } | |
159 | ||
160 | uint64_t helper_maxsb8(uint64_t op1, uint64_t op2) | |
161 | { | |
162 | uint64_t res = 0; | |
163 | int8_t opa, opb; | |
164 | uint8_t opr; | |
165 | int i; | |
166 | ||
167 | for (i = 0; i < 8; ++i) { | |
168 | opa = op1 >> (i * 8); | |
169 | opb = op2 >> (i * 8); | |
170 | opr = opa > opb ? opa : opb; | |
171 | res |= (uint64_t)opr << (i * 8); | |
172 | } | |
173 | return res; | |
174 | } | |
175 | ||
176 | uint64_t helper_maxuw4(uint64_t op1, uint64_t op2) | |
177 | { | |
178 | uint64_t res = 0; | |
179 | uint16_t opa, opb, opr; | |
180 | int i; | |
181 | ||
182 | for (i = 0; i < 4; ++i) { | |
183 | opa = op1 >> (i * 16); | |
184 | opb = op2 >> (i * 16); | |
185 | opr = opa > opb ? opa : opb; | |
186 | res |= (uint64_t)opr << (i * 16); | |
187 | } | |
188 | return res; | |
189 | } | |
190 | ||
191 | uint64_t helper_maxsw4(uint64_t op1, uint64_t op2) | |
192 | { | |
193 | uint64_t res = 0; | |
194 | int16_t opa, opb; | |
195 | uint16_t opr; | |
196 | int i; | |
197 | ||
198 | for (i = 0; i < 4; ++i) { | |
199 | opa = op1 >> (i * 16); | |
200 | opb = op2 >> (i * 16); | |
201 | opr = opa > opb ? opa : opb; | |
202 | res |= (uint64_t)opr << (i * 16); | |
203 | } | |
204 | return res; | |
205 | } | |
206 | ||
207 | uint64_t helper_perr(uint64_t op1, uint64_t op2) | |
208 | { | |
209 | uint64_t res = 0; | |
210 | uint8_t opa, opb, opr; | |
211 | int i; | |
212 | ||
213 | for (i = 0; i < 8; ++i) { | |
214 | opa = op1 >> (i * 8); | |
215 | opb = op2 >> (i * 8); | |
216 | if (opa >= opb) { | |
217 | opr = opa - opb; | |
218 | } else { | |
219 | opr = opb - opa; | |
220 | } | |
221 | res += opr; | |
222 | } | |
223 | return res; | |
224 | } | |
225 | ||
226 | uint64_t helper_pklb(uint64_t op1) | |
227 | { | |
228 | return (op1 & 0xff) | ((op1 >> 24) & 0xff00); | |
229 | } | |
230 | ||
231 | uint64_t helper_pkwb(uint64_t op1) | |
232 | { | |
233 | return ((op1 & 0xff) | |
234 | | ((op1 >> 8) & 0xff00) | |
235 | | ((op1 >> 16) & 0xff0000) | |
236 | | ((op1 >> 24) & 0xff000000)); | |
237 | } | |
238 | ||
239 | uint64_t helper_unpkbl(uint64_t op1) | |
240 | { | |
241 | return (op1 & 0xff) | ((op1 & 0xff00) << 24); | |
242 | } | |
243 | ||
244 | uint64_t helper_unpkbw(uint64_t op1) | |
245 | { | |
246 | return ((op1 & 0xff) | |
247 | | ((op1 & 0xff00) << 8) | |
248 | | ((op1 & 0xff0000) << 16) | |
249 | | ((op1 & 0xff000000) << 24)); | |
250 | } | |
2958620f RH |
251 | |
252 | uint64_t helper_addqv(CPUAlphaState *env, uint64_t op1, uint64_t op2) | |
253 | { | |
254 | uint64_t tmp = op1; | |
255 | op1 += op2; | |
256 | if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) { | |
257 | arith_excp(env, GETPC(), EXC_M_IOV, 0); | |
258 | } | |
259 | return op1; | |
260 | } | |
261 | ||
262 | uint64_t helper_addlv(CPUAlphaState *env, uint64_t op1, uint64_t op2) | |
263 | { | |
264 | uint64_t tmp = op1; | |
265 | op1 = (uint32_t)(op1 + op2); | |
266 | if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) { | |
267 | arith_excp(env, GETPC(), EXC_M_IOV, 0); | |
268 | } | |
269 | return op1; | |
270 | } | |
271 | ||
272 | uint64_t helper_subqv(CPUAlphaState *env, uint64_t op1, uint64_t op2) | |
273 | { | |
274 | uint64_t res; | |
275 | res = op1 - op2; | |
276 | if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) { | |
277 | arith_excp(env, GETPC(), EXC_M_IOV, 0); | |
278 | } | |
279 | return res; | |
280 | } | |
281 | ||
282 | uint64_t helper_sublv(CPUAlphaState *env, uint64_t op1, uint64_t op2) | |
283 | { | |
284 | uint32_t res; | |
285 | res = op1 - op2; | |
286 | if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) { | |
287 | arith_excp(env, GETPC(), EXC_M_IOV, 0); | |
288 | } | |
289 | return res; | |
290 | } | |
291 | ||
292 | uint64_t helper_mullv(CPUAlphaState *env, uint64_t op1, uint64_t op2) | |
293 | { | |
294 | int64_t res = (int64_t)op1 * (int64_t)op2; | |
295 | ||
296 | if (unlikely((int32_t)res != res)) { | |
297 | arith_excp(env, GETPC(), EXC_M_IOV, 0); | |
298 | } | |
299 | return (int64_t)((int32_t)res); | |
300 | } | |
301 | ||
302 | uint64_t helper_mulqv(CPUAlphaState *env, uint64_t op1, uint64_t op2) | |
303 | { | |
304 | uint64_t tl, th; | |
305 | ||
306 | muls64(&tl, &th, op1, op2); | |
307 | /* If th != 0 && th != -1, then we had an overflow */ | |
308 | if (unlikely((th + 1) > 1)) { | |
309 | arith_excp(env, GETPC(), EXC_M_IOV, 0); | |
310 | } | |
311 | return tl; | |
312 | } |