]> git.proxmox.com Git - qemu.git/blame - target-alpha/int_helper.c
target-openrisc: Remove unnecessary code generated by jump instructions
[qemu.git] / target-alpha / int_helper.c
CommitLineData
0be034bc
RH
1/*
2 * Helpers for integer and multimedia instructions.
3 *
4 * Copyright (c) 2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "cpu.h"
21#include "helper.h"
1de7afc9 22#include "qemu/host-utils.h"
0be034bc
RH
23
24
0be034bc
RH
25uint64_t helper_ctpop(uint64_t arg)
26{
27 return ctpop64(arg);
28}
29
30uint64_t helper_ctlz(uint64_t arg)
31{
32 return clz64(arg);
33}
34
35uint64_t helper_cttz(uint64_t arg)
36{
37 return ctz64(arg);
38}
39
40static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
41{
42 uint64_t mask;
43
44 mask = 0;
45 mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
46 mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
47 mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
48 mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
49 mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
50 mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
51 mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
52 mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
53
54 return op & ~mask;
55}
56
57uint64_t helper_zap(uint64_t val, uint64_t mask)
58{
59 return byte_zap(val, mask);
60}
61
62uint64_t helper_zapnot(uint64_t val, uint64_t mask)
63{
64 return byte_zap(val, ~mask);
65}
66
67uint64_t helper_cmpbge(uint64_t op1, uint64_t op2)
68{
69 uint8_t opa, opb, res;
70 int i;
71
72 res = 0;
73 for (i = 0; i < 8; i++) {
74 opa = op1 >> (i * 8);
75 opb = op2 >> (i * 8);
76 if (opa >= opb) {
77 res |= 1 << i;
78 }
79 }
80 return res;
81}
82
83uint64_t helper_minub8(uint64_t op1, uint64_t op2)
84{
85 uint64_t res = 0;
86 uint8_t opa, opb, opr;
87 int i;
88
89 for (i = 0; i < 8; ++i) {
90 opa = op1 >> (i * 8);
91 opb = op2 >> (i * 8);
92 opr = opa < opb ? opa : opb;
93 res |= (uint64_t)opr << (i * 8);
94 }
95 return res;
96}
97
98uint64_t helper_minsb8(uint64_t op1, uint64_t op2)
99{
100 uint64_t res = 0;
101 int8_t opa, opb;
102 uint8_t opr;
103 int i;
104
105 for (i = 0; i < 8; ++i) {
106 opa = op1 >> (i * 8);
107 opb = op2 >> (i * 8);
108 opr = opa < opb ? opa : opb;
109 res |= (uint64_t)opr << (i * 8);
110 }
111 return res;
112}
113
114uint64_t helper_minuw4(uint64_t op1, uint64_t op2)
115{
116 uint64_t res = 0;
117 uint16_t opa, opb, opr;
118 int i;
119
120 for (i = 0; i < 4; ++i) {
121 opa = op1 >> (i * 16);
122 opb = op2 >> (i * 16);
123 opr = opa < opb ? opa : opb;
124 res |= (uint64_t)opr << (i * 16);
125 }
126 return res;
127}
128
129uint64_t helper_minsw4(uint64_t op1, uint64_t op2)
130{
131 uint64_t res = 0;
132 int16_t opa, opb;
133 uint16_t opr;
134 int i;
135
136 for (i = 0; i < 4; ++i) {
137 opa = op1 >> (i * 16);
138 opb = op2 >> (i * 16);
139 opr = opa < opb ? opa : opb;
140 res |= (uint64_t)opr << (i * 16);
141 }
142 return res;
143}
144
145uint64_t helper_maxub8(uint64_t op1, uint64_t op2)
146{
147 uint64_t res = 0;
148 uint8_t opa, opb, opr;
149 int i;
150
151 for (i = 0; i < 8; ++i) {
152 opa = op1 >> (i * 8);
153 opb = op2 >> (i * 8);
154 opr = opa > opb ? opa : opb;
155 res |= (uint64_t)opr << (i * 8);
156 }
157 return res;
158}
159
160uint64_t helper_maxsb8(uint64_t op1, uint64_t op2)
161{
162 uint64_t res = 0;
163 int8_t opa, opb;
164 uint8_t opr;
165 int i;
166
167 for (i = 0; i < 8; ++i) {
168 opa = op1 >> (i * 8);
169 opb = op2 >> (i * 8);
170 opr = opa > opb ? opa : opb;
171 res |= (uint64_t)opr << (i * 8);
172 }
173 return res;
174}
175
176uint64_t helper_maxuw4(uint64_t op1, uint64_t op2)
177{
178 uint64_t res = 0;
179 uint16_t opa, opb, opr;
180 int i;
181
182 for (i = 0; i < 4; ++i) {
183 opa = op1 >> (i * 16);
184 opb = op2 >> (i * 16);
185 opr = opa > opb ? opa : opb;
186 res |= (uint64_t)opr << (i * 16);
187 }
188 return res;
189}
190
191uint64_t helper_maxsw4(uint64_t op1, uint64_t op2)
192{
193 uint64_t res = 0;
194 int16_t opa, opb;
195 uint16_t opr;
196 int i;
197
198 for (i = 0; i < 4; ++i) {
199 opa = op1 >> (i * 16);
200 opb = op2 >> (i * 16);
201 opr = opa > opb ? opa : opb;
202 res |= (uint64_t)opr << (i * 16);
203 }
204 return res;
205}
206
207uint64_t helper_perr(uint64_t op1, uint64_t op2)
208{
209 uint64_t res = 0;
210 uint8_t opa, opb, opr;
211 int i;
212
213 for (i = 0; i < 8; ++i) {
214 opa = op1 >> (i * 8);
215 opb = op2 >> (i * 8);
216 if (opa >= opb) {
217 opr = opa - opb;
218 } else {
219 opr = opb - opa;
220 }
221 res += opr;
222 }
223 return res;
224}
225
226uint64_t helper_pklb(uint64_t op1)
227{
228 return (op1 & 0xff) | ((op1 >> 24) & 0xff00);
229}
230
231uint64_t helper_pkwb(uint64_t op1)
232{
233 return ((op1 & 0xff)
234 | ((op1 >> 8) & 0xff00)
235 | ((op1 >> 16) & 0xff0000)
236 | ((op1 >> 24) & 0xff000000));
237}
238
239uint64_t helper_unpkbl(uint64_t op1)
240{
241 return (op1 & 0xff) | ((op1 & 0xff00) << 24);
242}
243
244uint64_t helper_unpkbw(uint64_t op1)
245{
246 return ((op1 & 0xff)
247 | ((op1 & 0xff00) << 8)
248 | ((op1 & 0xff0000) << 16)
249 | ((op1 & 0xff000000) << 24));
250}
2958620f
RH
251
252uint64_t helper_addqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
253{
254 uint64_t tmp = op1;
255 op1 += op2;
256 if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
257 arith_excp(env, GETPC(), EXC_M_IOV, 0);
258 }
259 return op1;
260}
261
262uint64_t helper_addlv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
263{
264 uint64_t tmp = op1;
265 op1 = (uint32_t)(op1 + op2);
266 if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
267 arith_excp(env, GETPC(), EXC_M_IOV, 0);
268 }
269 return op1;
270}
271
272uint64_t helper_subqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
273{
274 uint64_t res;
275 res = op1 - op2;
276 if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
277 arith_excp(env, GETPC(), EXC_M_IOV, 0);
278 }
279 return res;
280}
281
282uint64_t helper_sublv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
283{
284 uint32_t res;
285 res = op1 - op2;
286 if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
287 arith_excp(env, GETPC(), EXC_M_IOV, 0);
288 }
289 return res;
290}
291
292uint64_t helper_mullv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
293{
294 int64_t res = (int64_t)op1 * (int64_t)op2;
295
296 if (unlikely((int32_t)res != res)) {
297 arith_excp(env, GETPC(), EXC_M_IOV, 0);
298 }
299 return (int64_t)((int32_t)res);
300}
301
302uint64_t helper_mulqv(CPUAlphaState *env, uint64_t op1, uint64_t op2)
303{
304 uint64_t tl, th;
305
306 muls64(&tl, &th, op1, op2);
307 /* If th != 0 && th != -1, then we had an overflow */
308 if (unlikely((th + 1) > 1)) {
309 arith_excp(env, GETPC(), EXC_M_IOV, 0);
310 }
311 return tl;
312}