]> git.proxmox.com Git - qemu.git/blame - target-alpha/op_helper.c
Revert "Get rid of _t suffix"
[qemu.git] / target-alpha / op_helper.c
CommitLineData
4c9649a9
JM
1/*
2 * Alpha emulation cpu micro-operations helpers for qemu.
5fafdf24 3 *
4c9649a9
JM
4 * Copyright (c) 2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
4c9649a9
JM
18 */
19
20#include "exec.h"
603fccce 21#include "host-utils.h"
4c9649a9 22#include "softfloat.h"
a7812ae4 23#include "helper.h"
4c9649a9 24
4c9649a9
JM
25void helper_tb_flush (void)
26{
75fc9c0c 27 tb_flush(env);
4c9649a9
JM
28}
29
4c9649a9
JM
30/*****************************************************************************/
31/* Exceptions processing helpers */
6ad02592 32void helper_excp (int excp, int error)
4c9649a9
JM
33{
34 env->exception_index = excp;
35 env->error_code = error;
36 cpu_loop_exit();
37}
38
6ad02592 39uint64_t helper_load_pcc (void)
4c9649a9
JM
40{
41 /* XXX: TODO */
6ad02592 42 return 0;
4c9649a9
JM
43}
44
f18cd223 45uint64_t helper_load_fpcr (void)
4c9649a9 46{
f18cd223 47 uint64_t ret = 0;
4c9649a9 48#ifdef CONFIG_SOFTFLOAT
f18cd223 49 ret |= env->fp_status.float_exception_flags << 52;
4c9649a9 50 if (env->fp_status.float_exception_flags)
f18cd223 51 ret |= 1ULL << 63;
4c9649a9
JM
52 env->ipr[IPR_EXC_SUM] &= ~0x3E:
53 env->ipr[IPR_EXC_SUM] |= env->fp_status.float_exception_flags << 1;
54#endif
55 switch (env->fp_status.float_rounding_mode) {
56 case float_round_nearest_even:
f18cd223 57 ret |= 2ULL << 58;
4c9649a9
JM
58 break;
59 case float_round_down:
f18cd223 60 ret |= 1ULL << 58;
4c9649a9
JM
61 break;
62 case float_round_up:
f18cd223 63 ret |= 3ULL << 58;
4c9649a9
JM
64 break;
65 case float_round_to_zero:
66 break;
67 }
f18cd223 68 return ret;
4c9649a9
JM
69}
70
f18cd223 71void helper_store_fpcr (uint64_t val)
4c9649a9
JM
72{
73#ifdef CONFIG_SOFTFLOAT
f18cd223 74 set_float_exception_flags((val >> 52) & 0x3F, &FP_STATUS);
4c9649a9 75#endif
f18cd223 76 switch ((val >> 58) & 3) {
4c9649a9
JM
77 case 0:
78 set_float_rounding_mode(float_round_to_zero, &FP_STATUS);
79 break;
80 case 1:
81 set_float_rounding_mode(float_round_down, &FP_STATUS);
82 break;
83 case 2:
84 set_float_rounding_mode(float_round_nearest_even, &FP_STATUS);
85 break;
86 case 3:
87 set_float_rounding_mode(float_round_up, &FP_STATUS);
88 break;
89 }
90}
91
c227f099 92static spinlock_t intr_cpu_lock = SPIN_LOCK_UNLOCKED;
4c9649a9 93
6ad02592 94uint64_t helper_rs(void)
4c9649a9 95{
6ad02592
AJ
96 uint64_t tmp;
97
98 spin_lock(&intr_cpu_lock);
99 tmp = env->intr_flag;
100 env->intr_flag = 1;
101 spin_unlock(&intr_cpu_lock);
102
103 return tmp;
4c9649a9
JM
104}
105
6ad02592 106uint64_t helper_rc(void)
4c9649a9 107{
6ad02592
AJ
108 uint64_t tmp;
109
110 spin_lock(&intr_cpu_lock);
111 tmp = env->intr_flag;
112 env->intr_flag = 0;
113 spin_unlock(&intr_cpu_lock);
114
115 return tmp;
4c9649a9
JM
116}
117
04acd307 118uint64_t helper_addqv (uint64_t op1, uint64_t op2)
4c9649a9 119{
04acd307
AJ
120 uint64_t tmp = op1;
121 op1 += op2;
122 if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
4c9649a9
JM
123 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
124 }
04acd307 125 return op1;
4c9649a9
JM
126}
127
04acd307 128uint64_t helper_addlv (uint64_t op1, uint64_t op2)
4c9649a9 129{
04acd307
AJ
130 uint64_t tmp = op1;
131 op1 = (uint32_t)(op1 + op2);
132 if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
4c9649a9
JM
133 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
134 }
04acd307 135 return op1;
4c9649a9
JM
136}
137
04acd307 138uint64_t helper_subqv (uint64_t op1, uint64_t op2)
4c9649a9 139{
ecbb5ea1
AJ
140 uint64_t res;
141 res = op1 - op2;
142 if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
4c9649a9
JM
143 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
144 }
ecbb5ea1 145 return res;
4c9649a9
JM
146}
147
04acd307 148uint64_t helper_sublv (uint64_t op1, uint64_t op2)
4c9649a9 149{
ecbb5ea1
AJ
150 uint32_t res;
151 res = op1 - op2;
152 if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
4c9649a9
JM
153 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
154 }
ecbb5ea1 155 return res;
4c9649a9
JM
156}
157
04acd307 158uint64_t helper_mullv (uint64_t op1, uint64_t op2)
4c9649a9 159{
04acd307 160 int64_t res = (int64_t)op1 * (int64_t)op2;
4c9649a9
JM
161
162 if (unlikely((int32_t)res != res)) {
163 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
164 }
04acd307 165 return (int64_t)((int32_t)res);
4c9649a9
JM
166}
167
04acd307 168uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
4c9649a9 169{
e14fe0a9
JM
170 uint64_t tl, th;
171
04acd307 172 muls64(&tl, &th, op1, op2);
e14fe0a9
JM
173 /* If th != 0 && th != -1, then we had an overflow */
174 if (unlikely((th + 1) > 1)) {
4c9649a9
JM
175 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
176 }
04acd307
AJ
177 return tl;
178}
179
180uint64_t helper_umulh (uint64_t op1, uint64_t op2)
181{
182 uint64_t tl, th;
183
184 mulu64(&tl, &th, op1, op2);
185 return th;
4c9649a9
JM
186}
187
ae8ecd42 188uint64_t helper_ctpop (uint64_t arg)
4c9649a9 189{
ae8ecd42 190 return ctpop64(arg);
4c9649a9
JM
191}
192
ae8ecd42 193uint64_t helper_ctlz (uint64_t arg)
4c9649a9 194{
ae8ecd42 195 return clz64(arg);
4c9649a9
JM
196}
197
ae8ecd42 198uint64_t helper_cttz (uint64_t arg)
4c9649a9 199{
ae8ecd42 200 return ctz64(arg);
4c9649a9
JM
201}
202
636aa200 203static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
4c9649a9
JM
204{
205 uint64_t mask;
206
207 mask = 0;
208 mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
209 mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
210 mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
211 mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
212 mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
213 mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
214 mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
215 mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
216
217 return op & ~mask;
218}
219
b3249f63 220uint64_t helper_mskbl(uint64_t val, uint64_t mask)
4c9649a9 221{
b3249f63 222 return byte_zap(val, 0x01 << (mask & 7));
4c9649a9
JM
223}
224
b3249f63 225uint64_t helper_insbl(uint64_t val, uint64_t mask)
4c9649a9 226{
b3249f63
AJ
227 val <<= (mask & 7) * 8;
228 return byte_zap(val, ~(0x01 << (mask & 7)));
4c9649a9
JM
229}
230
b3249f63 231uint64_t helper_mskwl(uint64_t val, uint64_t mask)
4c9649a9 232{
b3249f63 233 return byte_zap(val, 0x03 << (mask & 7));
4c9649a9
JM
234}
235
b3249f63 236uint64_t helper_inswl(uint64_t val, uint64_t mask)
4c9649a9 237{
b3249f63
AJ
238 val <<= (mask & 7) * 8;
239 return byte_zap(val, ~(0x03 << (mask & 7)));
4c9649a9
JM
240}
241
b3249f63 242uint64_t helper_mskll(uint64_t val, uint64_t mask)
4c9649a9 243{
b3249f63 244 return byte_zap(val, 0x0F << (mask & 7));
4c9649a9
JM
245}
246
b3249f63 247uint64_t helper_insll(uint64_t val, uint64_t mask)
4c9649a9 248{
b3249f63
AJ
249 val <<= (mask & 7) * 8;
250 return byte_zap(val, ~(0x0F << (mask & 7)));
4c9649a9
JM
251}
252
b3249f63 253uint64_t helper_zap(uint64_t val, uint64_t mask)
4c9649a9 254{
b3249f63 255 return byte_zap(val, mask);
4c9649a9
JM
256}
257
b3249f63 258uint64_t helper_zapnot(uint64_t val, uint64_t mask)
4c9649a9 259{
b3249f63 260 return byte_zap(val, ~mask);
4c9649a9
JM
261}
262
b3249f63 263uint64_t helper_mskql(uint64_t val, uint64_t mask)
4c9649a9 264{
b3249f63 265 return byte_zap(val, 0xFF << (mask & 7));
4c9649a9
JM
266}
267
b3249f63 268uint64_t helper_insql(uint64_t val, uint64_t mask)
4c9649a9 269{
b3249f63
AJ
270 val <<= (mask & 7) * 8;
271 return byte_zap(val, ~(0xFF << (mask & 7)));
4c9649a9
JM
272}
273
b3249f63 274uint64_t helper_mskwh(uint64_t val, uint64_t mask)
4c9649a9 275{
b3249f63 276 return byte_zap(val, (0x03 << (mask & 7)) >> 8);
4c9649a9
JM
277}
278
b3249f63 279uint64_t helper_inswh(uint64_t val, uint64_t mask)
4c9649a9 280{
b3249f63
AJ
281 val >>= 64 - ((mask & 7) * 8);
282 return byte_zap(val, ~((0x03 << (mask & 7)) >> 8));
4c9649a9
JM
283}
284
b3249f63 285uint64_t helper_msklh(uint64_t val, uint64_t mask)
4c9649a9 286{
b3249f63 287 return byte_zap(val, (0x0F << (mask & 7)) >> 8);
4c9649a9
JM
288}
289
b3249f63 290uint64_t helper_inslh(uint64_t val, uint64_t mask)
4c9649a9 291{
b3249f63
AJ
292 val >>= 64 - ((mask & 7) * 8);
293 return byte_zap(val, ~((0x0F << (mask & 7)) >> 8));
4c9649a9
JM
294}
295
b3249f63 296uint64_t helper_mskqh(uint64_t val, uint64_t mask)
4c9649a9 297{
b3249f63 298 return byte_zap(val, (0xFF << (mask & 7)) >> 8);
4c9649a9
JM
299}
300
b3249f63 301uint64_t helper_insqh(uint64_t val, uint64_t mask)
4c9649a9 302{
b3249f63
AJ
303 val >>= 64 - ((mask & 7) * 8);
304 return byte_zap(val, ~((0xFF << (mask & 7)) >> 8));
4c9649a9
JM
305}
306
04acd307 307uint64_t helper_cmpbge (uint64_t op1, uint64_t op2)
4c9649a9
JM
308{
309 uint8_t opa, opb, res;
310 int i;
311
312 res = 0;
970d622e 313 for (i = 0; i < 8; i++) {
04acd307
AJ
314 opa = op1 >> (i * 8);
315 opb = op2 >> (i * 8);
4c9649a9
JM
316 if (opa >= opb)
317 res |= 1 << i;
318 }
04acd307 319 return res;
4c9649a9
JM
320}
321
f18cd223
AJ
322/* Floating point helpers */
323
324/* F floating (VAX) */
636aa200 325static inline uint64_t float32_to_f(float32 fa)
4c9649a9 326{
f18cd223 327 uint64_t r, exp, mant, sig;
e2eb2798 328 CPU_FloatU a;
f18cd223 329
e2eb2798
AJ
330 a.f = fa;
331 sig = ((uint64_t)a.l & 0x80000000) << 32;
332 exp = (a.l >> 23) & 0xff;
333 mant = ((uint64_t)a.l & 0x007fffff) << 29;
f18cd223
AJ
334
335 if (exp == 255) {
336 /* NaN or infinity */
337 r = 1; /* VAX dirty zero */
338 } else if (exp == 0) {
339 if (mant == 0) {
340 /* Zero */
341 r = 0;
342 } else {
343 /* Denormalized */
344 r = sig | ((exp + 1) << 52) | mant;
345 }
346 } else {
347 if (exp >= 253) {
348 /* Overflow */
349 r = 1; /* VAX dirty zero */
350 } else {
351 r = sig | ((exp + 2) << 52);
352 }
353 }
354
355 return r;
4c9649a9
JM
356}
357
636aa200 358static inline float32 f_to_float32(uint64_t a)
4c9649a9 359{
e2eb2798
AJ
360 uint32_t exp, mant_sig;
361 CPU_FloatU r;
f18cd223
AJ
362
363 exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
364 mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
365
366 if (unlikely(!exp && mant_sig)) {
367 /* Reserved operands / Dirty zero */
368 helper_excp(EXCP_OPCDEC, 0);
369 }
370
371 if (exp < 3) {
372 /* Underflow */
e2eb2798 373 r.l = 0;
f18cd223 374 } else {
e2eb2798 375 r.l = ((exp - 2) << 23) | mant_sig;
f18cd223
AJ
376 }
377
e2eb2798 378 return r.f;
4c9649a9
JM
379}
380
f18cd223 381uint32_t helper_f_to_memory (uint64_t a)
4c9649a9 382{
f18cd223
AJ
383 uint32_t r;
384 r = (a & 0x00001fffe0000000ull) >> 13;
385 r |= (a & 0x07ffe00000000000ull) >> 45;
386 r |= (a & 0xc000000000000000ull) >> 48;
387 return r;
388}
4c9649a9 389
f18cd223
AJ
390uint64_t helper_memory_to_f (uint32_t a)
391{
392 uint64_t r;
393 r = ((uint64_t)(a & 0x0000c000)) << 48;
394 r |= ((uint64_t)(a & 0x003fffff)) << 45;
395 r |= ((uint64_t)(a & 0xffff0000)) << 13;
396 if (!(a & 0x00004000))
397 r |= 0x7ll << 59;
398 return r;
4c9649a9
JM
399}
400
f18cd223 401uint64_t helper_addf (uint64_t a, uint64_t b)
4c9649a9 402{
f18cd223 403 float32 fa, fb, fr;
4c9649a9 404
f18cd223
AJ
405 fa = f_to_float32(a);
406 fb = f_to_float32(b);
407 fr = float32_add(fa, fb, &FP_STATUS);
408 return float32_to_f(fr);
4c9649a9
JM
409}
410
f18cd223 411uint64_t helper_subf (uint64_t a, uint64_t b)
4c9649a9 412{
f18cd223 413 float32 fa, fb, fr;
4c9649a9 414
f18cd223
AJ
415 fa = f_to_float32(a);
416 fb = f_to_float32(b);
417 fr = float32_sub(fa, fb, &FP_STATUS);
418 return float32_to_f(fr);
4c9649a9
JM
419}
420
f18cd223 421uint64_t helper_mulf (uint64_t a, uint64_t b)
4c9649a9 422{
f18cd223 423 float32 fa, fb, fr;
4c9649a9 424
f18cd223
AJ
425 fa = f_to_float32(a);
426 fb = f_to_float32(b);
427 fr = float32_mul(fa, fb, &FP_STATUS);
428 return float32_to_f(fr);
4c9649a9
JM
429}
430
f18cd223 431uint64_t helper_divf (uint64_t a, uint64_t b)
4c9649a9 432{
f18cd223 433 float32 fa, fb, fr;
4c9649a9 434
f18cd223
AJ
435 fa = f_to_float32(a);
436 fb = f_to_float32(b);
437 fr = float32_div(fa, fb, &FP_STATUS);
438 return float32_to_f(fr);
4c9649a9
JM
439}
440
f18cd223 441uint64_t helper_sqrtf (uint64_t t)
4c9649a9 442{
f18cd223
AJ
443 float32 ft, fr;
444
445 ft = f_to_float32(t);
446 fr = float32_sqrt(ft, &FP_STATUS);
447 return float32_to_f(fr);
4c9649a9
JM
448}
449
f18cd223
AJ
450
451/* G floating (VAX) */
636aa200 452static inline uint64_t float64_to_g(float64 fa)
4c9649a9 453{
e2eb2798
AJ
454 uint64_t r, exp, mant, sig;
455 CPU_DoubleU a;
4c9649a9 456
e2eb2798
AJ
457 a.d = fa;
458 sig = a.ll & 0x8000000000000000ull;
459 exp = (a.ll >> 52) & 0x7ff;
460 mant = a.ll & 0x000fffffffffffffull;
f18cd223
AJ
461
462 if (exp == 2047) {
463 /* NaN or infinity */
464 r = 1; /* VAX dirty zero */
465 } else if (exp == 0) {
466 if (mant == 0) {
467 /* Zero */
468 r = 0;
469 } else {
470 /* Denormalized */
471 r = sig | ((exp + 1) << 52) | mant;
472 }
473 } else {
474 if (exp >= 2045) {
475 /* Overflow */
476 r = 1; /* VAX dirty zero */
477 } else {
478 r = sig | ((exp + 2) << 52);
479 }
480 }
481
482 return r;
4c9649a9
JM
483}
484
636aa200 485static inline float64 g_to_float64(uint64_t a)
4c9649a9 486{
e2eb2798
AJ
487 uint64_t exp, mant_sig;
488 CPU_DoubleU r;
f18cd223
AJ
489
490 exp = (a >> 52) & 0x7ff;
491 mant_sig = a & 0x800fffffffffffffull;
492
493 if (!exp && mant_sig) {
494 /* Reserved operands / Dirty zero */
495 helper_excp(EXCP_OPCDEC, 0);
496 }
4c9649a9 497
f18cd223
AJ
498 if (exp < 3) {
499 /* Underflow */
e2eb2798 500 r.ll = 0;
f18cd223 501 } else {
e2eb2798 502 r.ll = ((exp - 2) << 52) | mant_sig;
f18cd223
AJ
503 }
504
e2eb2798 505 return r.d;
4c9649a9
JM
506}
507
f18cd223 508uint64_t helper_g_to_memory (uint64_t a)
4c9649a9 509{
f18cd223
AJ
510 uint64_t r;
511 r = (a & 0x000000000000ffffull) << 48;
512 r |= (a & 0x00000000ffff0000ull) << 16;
513 r |= (a & 0x0000ffff00000000ull) >> 16;
514 r |= (a & 0xffff000000000000ull) >> 48;
515 return r;
516}
4c9649a9 517
f18cd223
AJ
518uint64_t helper_memory_to_g (uint64_t a)
519{
520 uint64_t r;
521 r = (a & 0x000000000000ffffull) << 48;
522 r |= (a & 0x00000000ffff0000ull) << 16;
523 r |= (a & 0x0000ffff00000000ull) >> 16;
524 r |= (a & 0xffff000000000000ull) >> 48;
525 return r;
4c9649a9
JM
526}
527
f18cd223 528uint64_t helper_addg (uint64_t a, uint64_t b)
4c9649a9 529{
f18cd223 530 float64 fa, fb, fr;
4c9649a9 531
f18cd223
AJ
532 fa = g_to_float64(a);
533 fb = g_to_float64(b);
534 fr = float64_add(fa, fb, &FP_STATUS);
535 return float64_to_g(fr);
4c9649a9
JM
536}
537
f18cd223 538uint64_t helper_subg (uint64_t a, uint64_t b)
4c9649a9 539{
f18cd223 540 float64 fa, fb, fr;
4c9649a9 541
f18cd223
AJ
542 fa = g_to_float64(a);
543 fb = g_to_float64(b);
544 fr = float64_sub(fa, fb, &FP_STATUS);
545 return float64_to_g(fr);
4c9649a9
JM
546}
547
f18cd223 548uint64_t helper_mulg (uint64_t a, uint64_t b)
4c9649a9 549{
f18cd223 550 float64 fa, fb, fr;
4c9649a9 551
f18cd223
AJ
552 fa = g_to_float64(a);
553 fb = g_to_float64(b);
554 fr = float64_mul(fa, fb, &FP_STATUS);
555 return float64_to_g(fr);
4c9649a9
JM
556}
557
f18cd223 558uint64_t helper_divg (uint64_t a, uint64_t b)
4c9649a9 559{
f18cd223 560 float64 fa, fb, fr;
4c9649a9 561
f18cd223
AJ
562 fa = g_to_float64(a);
563 fb = g_to_float64(b);
564 fr = float64_div(fa, fb, &FP_STATUS);
565 return float64_to_g(fr);
566}
567
568uint64_t helper_sqrtg (uint64_t a)
569{
570 float64 fa, fr;
4c9649a9 571
f18cd223
AJ
572 fa = g_to_float64(a);
573 fr = float64_sqrt(fa, &FP_STATUS);
574 return float64_to_g(fr);
4c9649a9
JM
575}
576
f18cd223
AJ
577
578/* S floating (single) */
636aa200 579static inline uint64_t float32_to_s(float32 fa)
4c9649a9 580{
e2eb2798 581 CPU_FloatU a;
f18cd223 582 uint64_t r;
4c9649a9 583
e2eb2798 584 a.f = fa;
4c9649a9 585
e2eb2798
AJ
586 r = (((uint64_t)(a.l & 0xc0000000)) << 32) | (((uint64_t)(a.l & 0x3fffffff)) << 29);
587 if (((a.l & 0x7f800000) != 0x7f800000) && (!(a.l & 0x40000000)))
f18cd223
AJ
588 r |= 0x7ll << 59;
589 return r;
4c9649a9
JM
590}
591
636aa200 592static inline float32 s_to_float32(uint64_t a)
4c9649a9 593{
e2eb2798
AJ
594 CPU_FloatU r;
595 r.l = ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
596 return r.f;
f18cd223 597}
4c9649a9 598
f18cd223
AJ
599uint32_t helper_s_to_memory (uint64_t a)
600{
601 /* Memory format is the same as float32 */
602 float32 fa = s_to_float32(a);
603 return *(uint32_t*)(&fa);
604}
4c9649a9 605
f18cd223
AJ
606uint64_t helper_memory_to_s (uint32_t a)
607{
608 /* Memory format is the same as float32 */
609 return float32_to_s(*(float32*)(&a));
4c9649a9
JM
610}
611
f18cd223 612uint64_t helper_adds (uint64_t a, uint64_t b)
4c9649a9 613{
f18cd223 614 float32 fa, fb, fr;
4c9649a9 615
f18cd223
AJ
616 fa = s_to_float32(a);
617 fb = s_to_float32(b);
618 fr = float32_add(fa, fb, &FP_STATUS);
619 return float32_to_s(fr);
4c9649a9
JM
620}
621
f18cd223 622uint64_t helper_subs (uint64_t a, uint64_t b)
4c9649a9 623{
f18cd223 624 float32 fa, fb, fr;
4c9649a9 625
f18cd223
AJ
626 fa = s_to_float32(a);
627 fb = s_to_float32(b);
628 fr = float32_sub(fa, fb, &FP_STATUS);
629 return float32_to_s(fr);
4c9649a9
JM
630}
631
f18cd223 632uint64_t helper_muls (uint64_t a, uint64_t b)
4c9649a9 633{
f18cd223 634 float32 fa, fb, fr;
4c9649a9 635
f18cd223
AJ
636 fa = s_to_float32(a);
637 fb = s_to_float32(b);
638 fr = float32_mul(fa, fb, &FP_STATUS);
639 return float32_to_s(fr);
4c9649a9
JM
640}
641
f18cd223 642uint64_t helper_divs (uint64_t a, uint64_t b)
4c9649a9 643{
f18cd223 644 float32 fa, fb, fr;
4c9649a9 645
f18cd223
AJ
646 fa = s_to_float32(a);
647 fb = s_to_float32(b);
648 fr = float32_div(fa, fb, &FP_STATUS);
649 return float32_to_s(fr);
4c9649a9
JM
650}
651
f18cd223 652uint64_t helper_sqrts (uint64_t a)
4c9649a9 653{
f18cd223 654 float32 fa, fr;
4c9649a9 655
f18cd223
AJ
656 fa = s_to_float32(a);
657 fr = float32_sqrt(fa, &FP_STATUS);
658 return float32_to_s(fr);
4c9649a9
JM
659}
660
f18cd223
AJ
661
662/* T floating (double) */
636aa200 663static inline float64 t_to_float64(uint64_t a)
4c9649a9 664{
f18cd223 665 /* Memory format is the same as float64 */
e2eb2798
AJ
666 CPU_DoubleU r;
667 r.ll = a;
668 return r.d;
4c9649a9
JM
669}
670
636aa200 671static inline uint64_t float64_to_t(float64 fa)
4c9649a9 672{
f18cd223 673 /* Memory format is the same as float64 */
e2eb2798
AJ
674 CPU_DoubleU r;
675 r.d = fa;
676 return r.ll;
f18cd223 677}
4c9649a9 678
f18cd223
AJ
679uint64_t helper_addt (uint64_t a, uint64_t b)
680{
681 float64 fa, fb, fr;
4c9649a9 682
f18cd223
AJ
683 fa = t_to_float64(a);
684 fb = t_to_float64(b);
685 fr = float64_add(fa, fb, &FP_STATUS);
686 return float64_to_t(fr);
4c9649a9
JM
687}
688
f18cd223 689uint64_t helper_subt (uint64_t a, uint64_t b)
4c9649a9 690{
f18cd223 691 float64 fa, fb, fr;
4c9649a9 692
f18cd223
AJ
693 fa = t_to_float64(a);
694 fb = t_to_float64(b);
695 fr = float64_sub(fa, fb, &FP_STATUS);
696 return float64_to_t(fr);
4c9649a9
JM
697}
698
f18cd223 699uint64_t helper_mult (uint64_t a, uint64_t b)
4c9649a9 700{
f18cd223 701 float64 fa, fb, fr;
4c9649a9 702
f18cd223
AJ
703 fa = t_to_float64(a);
704 fb = t_to_float64(b);
705 fr = float64_mul(fa, fb, &FP_STATUS);
706 return float64_to_t(fr);
4c9649a9
JM
707}
708
f18cd223 709uint64_t helper_divt (uint64_t a, uint64_t b)
4c9649a9 710{
f18cd223 711 float64 fa, fb, fr;
4c9649a9 712
f18cd223
AJ
713 fa = t_to_float64(a);
714 fb = t_to_float64(b);
715 fr = float64_div(fa, fb, &FP_STATUS);
716 return float64_to_t(fr);
4c9649a9
JM
717}
718
f18cd223 719uint64_t helper_sqrtt (uint64_t a)
4c9649a9 720{
f18cd223 721 float64 fa, fr;
4c9649a9 722
f18cd223
AJ
723 fa = t_to_float64(a);
724 fr = float64_sqrt(fa, &FP_STATUS);
725 return float64_to_t(fr);
4c9649a9
JM
726}
727
4c9649a9 728
f18cd223
AJ
729/* Sign copy */
730uint64_t helper_cpys(uint64_t a, uint64_t b)
731{
732 return (a & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
4c9649a9
JM
733}
734
f18cd223 735uint64_t helper_cpysn(uint64_t a, uint64_t b)
4c9649a9 736{
f18cd223
AJ
737 return ((~a) & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL);
738}
4c9649a9 739
f18cd223
AJ
740uint64_t helper_cpyse(uint64_t a, uint64_t b)
741{
742 return (a & 0xFFF0000000000000ULL) | (b & ~0xFFF0000000000000ULL);
4c9649a9
JM
743}
744
f18cd223
AJ
745
746/* Comparisons */
747uint64_t helper_cmptun (uint64_t a, uint64_t b)
4c9649a9 748{
f18cd223 749 float64 fa, fb;
4c9649a9 750
f18cd223
AJ
751 fa = t_to_float64(a);
752 fb = t_to_float64(b);
753
754 if (float64_is_nan(fa) || float64_is_nan(fb))
755 return 0x4000000000000000ULL;
756 else
757 return 0;
4c9649a9
JM
758}
759
f18cd223 760uint64_t helper_cmpteq(uint64_t a, uint64_t b)
4c9649a9 761{
f18cd223 762 float64 fa, fb;
4c9649a9 763
f18cd223
AJ
764 fa = t_to_float64(a);
765 fb = t_to_float64(b);
766
767 if (float64_eq(fa, fb, &FP_STATUS))
768 return 0x4000000000000000ULL;
769 else
770 return 0;
4c9649a9
JM
771}
772
f18cd223 773uint64_t helper_cmptle(uint64_t a, uint64_t b)
4c9649a9 774{
f18cd223 775 float64 fa, fb;
4c9649a9 776
f18cd223
AJ
777 fa = t_to_float64(a);
778 fb = t_to_float64(b);
779
780 if (float64_le(fa, fb, &FP_STATUS))
781 return 0x4000000000000000ULL;
782 else
783 return 0;
4c9649a9
JM
784}
785
f18cd223 786uint64_t helper_cmptlt(uint64_t a, uint64_t b)
4c9649a9 787{
f18cd223 788 float64 fa, fb;
4c9649a9 789
f18cd223
AJ
790 fa = t_to_float64(a);
791 fb = t_to_float64(b);
792
793 if (float64_lt(fa, fb, &FP_STATUS))
794 return 0x4000000000000000ULL;
795 else
796 return 0;
4c9649a9
JM
797}
798
f18cd223 799uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
4c9649a9 800{
f18cd223 801 float64 fa, fb;
4c9649a9 802
f18cd223
AJ
803 fa = g_to_float64(a);
804 fb = g_to_float64(b);
805
806 if (float64_eq(fa, fb, &FP_STATUS))
807 return 0x4000000000000000ULL;
808 else
809 return 0;
4c9649a9
JM
810}
811
f18cd223 812uint64_t helper_cmpgle(uint64_t a, uint64_t b)
4c9649a9 813{
f18cd223
AJ
814 float64 fa, fb;
815
816 fa = g_to_float64(a);
817 fb = g_to_float64(b);
4c9649a9 818
f18cd223
AJ
819 if (float64_le(fa, fb, &FP_STATUS))
820 return 0x4000000000000000ULL;
821 else
822 return 0;
4c9649a9
JM
823}
824
f18cd223 825uint64_t helper_cmpglt(uint64_t a, uint64_t b)
4c9649a9 826{
f18cd223
AJ
827 float64 fa, fb;
828
829 fa = g_to_float64(a);
830 fb = g_to_float64(b);
4c9649a9 831
f18cd223
AJ
832 if (float64_lt(fa, fb, &FP_STATUS))
833 return 0x4000000000000000ULL;
834 else
835 return 0;
4c9649a9
JM
836}
837
f18cd223 838uint64_t helper_cmpfeq (uint64_t a)
4c9649a9 839{
f18cd223 840 return !(a & 0x7FFFFFFFFFFFFFFFULL);
4c9649a9
JM
841}
842
f18cd223 843uint64_t helper_cmpfne (uint64_t a)
4c9649a9 844{
f18cd223
AJ
845 return (a & 0x7FFFFFFFFFFFFFFFULL);
846}
4c9649a9 847
f18cd223
AJ
848uint64_t helper_cmpflt (uint64_t a)
849{
850 return (a & 0x8000000000000000ULL) && (a & 0x7FFFFFFFFFFFFFFFULL);
4c9649a9
JM
851}
852
f18cd223 853uint64_t helper_cmpfle (uint64_t a)
4c9649a9 854{
f18cd223 855 return (a & 0x8000000000000000ULL) || !(a & 0x7FFFFFFFFFFFFFFFULL);
4c9649a9
JM
856}
857
f18cd223 858uint64_t helper_cmpfgt (uint64_t a)
4c9649a9 859{
f18cd223
AJ
860 return !(a & 0x8000000000000000ULL) && (a & 0x7FFFFFFFFFFFFFFFULL);
861}
4c9649a9 862
f18cd223
AJ
863uint64_t helper_cmpfge (uint64_t a)
864{
865 return !(a & 0x8000000000000000ULL) || !(a & 0x7FFFFFFFFFFFFFFFULL);
4c9649a9
JM
866}
867
f18cd223
AJ
868
869/* Floating point format conversion */
870uint64_t helper_cvtts (uint64_t a)
4c9649a9 871{
f18cd223
AJ
872 float64 fa;
873 float32 fr;
4c9649a9 874
f18cd223
AJ
875 fa = t_to_float64(a);
876 fr = float64_to_float32(fa, &FP_STATUS);
877 return float32_to_s(fr);
4c9649a9
JM
878}
879
f18cd223 880uint64_t helper_cvtst (uint64_t a)
4c9649a9 881{
f18cd223
AJ
882 float32 fa;
883 float64 fr;
884
885 fa = s_to_float32(a);
886 fr = float32_to_float64(fa, &FP_STATUS);
887 return float64_to_t(fr);
4c9649a9
JM
888}
889
f18cd223 890uint64_t helper_cvtqs (uint64_t a)
4c9649a9 891{
f18cd223
AJ
892 float32 fr = int64_to_float32(a, &FP_STATUS);
893 return float32_to_s(fr);
4c9649a9
JM
894}
895
f18cd223 896uint64_t helper_cvttq (uint64_t a)
4c9649a9 897{
f18cd223
AJ
898 float64 fa = t_to_float64(a);
899 return float64_to_int64_round_to_zero(fa, &FP_STATUS);
900}
4c9649a9 901
f18cd223
AJ
902uint64_t helper_cvtqt (uint64_t a)
903{
904 float64 fr = int64_to_float64(a, &FP_STATUS);
905 return float64_to_t(fr);
4c9649a9
JM
906}
907
f18cd223 908uint64_t helper_cvtqf (uint64_t a)
4c9649a9 909{
f18cd223
AJ
910 float32 fr = int64_to_float32(a, &FP_STATUS);
911 return float32_to_f(fr);
4c9649a9
JM
912}
913
f18cd223 914uint64_t helper_cvtgf (uint64_t a)
4c9649a9 915{
f18cd223
AJ
916 float64 fa;
917 float32 fr;
918
919 fa = g_to_float64(a);
920 fr = float64_to_float32(fa, &FP_STATUS);
921 return float32_to_f(fr);
4c9649a9
JM
922}
923
f18cd223 924uint64_t helper_cvtgq (uint64_t a)
4c9649a9 925{
f18cd223
AJ
926 float64 fa = g_to_float64(a);
927 return float64_to_int64_round_to_zero(fa, &FP_STATUS);
4c9649a9
JM
928}
929
f18cd223 930uint64_t helper_cvtqg (uint64_t a)
4c9649a9 931{
f18cd223
AJ
932 float64 fr;
933 fr = int64_to_float64(a, &FP_STATUS);
934 return float64_to_g(fr);
4c9649a9
JM
935}
936
f18cd223 937uint64_t helper_cvtlq (uint64_t a)
4c9649a9 938{
f18cd223 939 return (int64_t)((int32_t)((a >> 32) | ((a >> 29) & 0x3FFFFFFF)));
4c9649a9
JM
940}
941
636aa200 942static inline uint64_t __helper_cvtql(uint64_t a, int s, int v)
4c9649a9 943{
f18cd223
AJ
944 uint64_t r;
945
946 r = ((uint64_t)(a & 0xC0000000)) << 32;
947 r |= ((uint64_t)(a & 0x7FFFFFFF)) << 29;
948
949 if (v && (int64_t)((int32_t)r) != (int64_t)r) {
950 helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW);
951 }
952 if (s) {
953 /* TODO */
954 }
955 return r;
4c9649a9
JM
956}
957
f18cd223 958uint64_t helper_cvtql (uint64_t a)
4c9649a9 959{
f18cd223 960 return __helper_cvtql(a, 0, 0);
4c9649a9
JM
961}
962
f18cd223 963uint64_t helper_cvtqlv (uint64_t a)
4c9649a9 964{
f18cd223 965 return __helper_cvtql(a, 0, 1);
4c9649a9
JM
966}
967
f18cd223 968uint64_t helper_cvtqlsv (uint64_t a)
4c9649a9 969{
f18cd223 970 return __helper_cvtql(a, 1, 1);
4c9649a9
JM
971}
972
8bb6e981 973/* PALcode support special instructions */
4c9649a9 974#if !defined (CONFIG_USER_ONLY)
8bb6e981
AJ
975void helper_hw_rei (void)
976{
977 env->pc = env->ipr[IPR_EXC_ADDR] & ~3;
978 env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1;
979 /* XXX: re-enable interrupts and memory mapping */
980}
981
982void helper_hw_ret (uint64_t a)
983{
984 env->pc = a & ~3;
985 env->ipr[IPR_EXC_ADDR] = a & 1;
986 /* XXX: re-enable interrupts and memory mapping */
987}
988
989uint64_t helper_mfpr (int iprn, uint64_t val)
990{
991 uint64_t tmp;
992
993 if (cpu_alpha_mfpr(env, iprn, &tmp) == 0)
994 val = tmp;
995
996 return val;
997}
998
999void helper_mtpr (int iprn, uint64_t val)
4c9649a9 1000{
8bb6e981
AJ
1001 cpu_alpha_mtpr(env, iprn, val, NULL);
1002}
4c9649a9 1003
8bb6e981
AJ
1004void helper_set_alt_mode (void)
1005{
1006 env->saved_mode = env->ps & 0xC;
1007 env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC);
4c9649a9
JM
1008}
1009
8bb6e981 1010void helper_restore_mode (void)
4c9649a9 1011{
8bb6e981 1012 env->ps = (env->ps & ~0xC) | env->saved_mode;
4c9649a9 1013}
8bb6e981 1014
4c9649a9
JM
1015#endif
1016
1017/*****************************************************************************/
1018/* Softmmu support */
1019#if !defined (CONFIG_USER_ONLY)
1020
4c9649a9
JM
1021/* XXX: the two following helpers are pure hacks.
1022 * Hopefully, we emulate the PALcode, then we should never see
1023 * HW_LD / HW_ST instructions.
1024 */
8bb6e981 1025uint64_t helper_ld_virt_to_phys (uint64_t virtaddr)
4c9649a9
JM
1026{
1027 uint64_t tlb_addr, physaddr;
6ebbf390 1028 int index, mmu_idx;
4c9649a9
JM
1029 void *retaddr;
1030
6ebbf390 1031 mmu_idx = cpu_mmu_index(env);
8bb6e981 1032 index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4c9649a9 1033 redo:
6ebbf390 1034 tlb_addr = env->tlb_table[mmu_idx][index].addr_read;
8bb6e981 1035 if ((virtaddr & TARGET_PAGE_MASK) ==
4c9649a9 1036 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
8bb6e981 1037 physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
4c9649a9
JM
1038 } else {
1039 /* the page is not in the TLB : fill it */
1040 retaddr = GETPC();
8bb6e981 1041 tlb_fill(virtaddr, 0, mmu_idx, retaddr);
4c9649a9
JM
1042 goto redo;
1043 }
8bb6e981 1044 return physaddr;
4c9649a9
JM
1045}
1046
8bb6e981 1047uint64_t helper_st_virt_to_phys (uint64_t virtaddr)
4c9649a9
JM
1048{
1049 uint64_t tlb_addr, physaddr;
6ebbf390 1050 int index, mmu_idx;
4c9649a9
JM
1051 void *retaddr;
1052
6ebbf390 1053 mmu_idx = cpu_mmu_index(env);
8bb6e981 1054 index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4c9649a9 1055 redo:
6ebbf390 1056 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
8bb6e981 1057 if ((virtaddr & TARGET_PAGE_MASK) ==
4c9649a9 1058 (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
8bb6e981 1059 physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend;
4c9649a9
JM
1060 } else {
1061 /* the page is not in the TLB : fill it */
1062 retaddr = GETPC();
8bb6e981 1063 tlb_fill(virtaddr, 1, mmu_idx, retaddr);
4c9649a9
JM
1064 goto redo;
1065 }
8bb6e981
AJ
1066 return physaddr;
1067}
1068
1069void helper_ldl_raw(uint64_t t0, uint64_t t1)
1070{
1071 ldl_raw(t1, t0);
1072}
1073
1074void helper_ldq_raw(uint64_t t0, uint64_t t1)
1075{
1076 ldq_raw(t1, t0);
1077}
1078
1079void helper_ldl_l_raw(uint64_t t0, uint64_t t1)
1080{
1081 env->lock = t1;
1082 ldl_raw(t1, t0);
1083}
1084
1085void helper_ldq_l_raw(uint64_t t0, uint64_t t1)
1086{
1087 env->lock = t1;
1088 ldl_raw(t1, t0);
1089}
1090
1091void helper_ldl_kernel(uint64_t t0, uint64_t t1)
1092{
1093 ldl_kernel(t1, t0);
1094}
1095
1096void helper_ldq_kernel(uint64_t t0, uint64_t t1)
1097{
1098 ldq_kernel(t1, t0);
1099}
1100
1101void helper_ldl_data(uint64_t t0, uint64_t t1)
1102{
1103 ldl_data(t1, t0);
1104}
1105
1106void helper_ldq_data(uint64_t t0, uint64_t t1)
1107{
1108 ldq_data(t1, t0);
1109}
1110
1111void helper_stl_raw(uint64_t t0, uint64_t t1)
1112{
1113 stl_raw(t1, t0);
1114}
1115
1116void helper_stq_raw(uint64_t t0, uint64_t t1)
1117{
1118 stq_raw(t1, t0);
1119}
1120
1121uint64_t helper_stl_c_raw(uint64_t t0, uint64_t t1)
1122{
1123 uint64_t ret;
1124
1125 if (t1 == env->lock) {
1126 stl_raw(t1, t0);
1127 ret = 0;
1128 } else
1129 ret = 1;
1130
1131 env->lock = 1;
1132
1133 return ret;
1134}
1135
1136uint64_t helper_stq_c_raw(uint64_t t0, uint64_t t1)
1137{
1138 uint64_t ret;
1139
1140 if (t1 == env->lock) {
1141 stq_raw(t1, t0);
1142 ret = 0;
1143 } else
1144 ret = 1;
1145
1146 env->lock = 1;
1147
1148 return ret;
4c9649a9
JM
1149}
1150
1151#define MMUSUFFIX _mmu
1152
1153#define SHIFT 0
1154#include "softmmu_template.h"
1155
1156#define SHIFT 1
1157#include "softmmu_template.h"
1158
1159#define SHIFT 2
1160#include "softmmu_template.h"
1161
1162#define SHIFT 3
1163#include "softmmu_template.h"
1164
1165/* try to fill the TLB and return an exception if error. If retaddr is
1166 NULL, it means that the function was called in C code (i.e. not
1167 from generated code or from helper.c) */
1168/* XXX: fix it to restore all registers */
6ebbf390 1169void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4c9649a9
JM
1170{
1171 TranslationBlock *tb;
1172 CPUState *saved_env;
44f8625d 1173 unsigned long pc;
4c9649a9
JM
1174 int ret;
1175
1176 /* XXX: hack to restore env in all cases, even if not called from
1177 generated code */
1178 saved_env = env;
1179 env = cpu_single_env;
6ebbf390 1180 ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4c9649a9
JM
1181 if (!likely(ret == 0)) {
1182 if (likely(retaddr)) {
1183 /* now we have a real cpu fault */
44f8625d 1184 pc = (unsigned long)retaddr;
4c9649a9
JM
1185 tb = tb_find_pc(pc);
1186 if (likely(tb)) {
1187 /* the PC is inside the translated code. It means that we have
1188 a virtual CPU fault */
1189 cpu_restore_state(tb, env, pc, NULL);
1190 }
1191 }
1192 /* Exception index and error code are already set */
1193 cpu_loop_exit();
1194 }
1195 env = saved_env;
1196}
1197
1198#endif