]> git.proxmox.com Git - qemu.git/blame - target-arm/cpu.h
target-arm: Export cpu_env
[qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3cf1e035
FB
22#define TARGET_LONG_BITS 32
23
9042c0e2
TS
24#define ELF_MACHINE EM_ARM
25
9349b4f9 26#define CPUArchState struct CPUARMState
c2764719 27
9a78eead
SW
28#include "config.h"
29#include "qemu-common.h"
022c62cb 30#include "exec/cpu-defs.h"
2c0262af 31
6b4c305c 32#include "fpu/softfloat.h"
53cd6637 33
1fddef4b
FB
34#define TARGET_HAS_ICE 1
35
b8a9e8f1
FB
36#define EXCP_UDEF 1 /* undefined instruction */
37#define EXCP_SWI 2 /* software interrupt */
38#define EXCP_PREFETCH_ABORT 3
39#define EXCP_DATA_ABORT 4
b5ff1b31
FB
40#define EXCP_IRQ 5
41#define EXCP_FIQ 6
06c949e6 42#define EXCP_BKPT 7
9ee6e8bb 43#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 44#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 45#define EXCP_STREX 10
9ee6e8bb
PB
46
47#define ARMV7M_EXCP_RESET 1
48#define ARMV7M_EXCP_NMI 2
49#define ARMV7M_EXCP_HARD 3
50#define ARMV7M_EXCP_MEM 4
51#define ARMV7M_EXCP_BUS 5
52#define ARMV7M_EXCP_USAGE 6
53#define ARMV7M_EXCP_SVC 11
54#define ARMV7M_EXCP_DEBUG 12
55#define ARMV7M_EXCP_PENDSV 14
56#define ARMV7M_EXCP_SYSTICK 15
2c0262af 57
403946c0
RH
58/* ARM-specific interrupt pending bits. */
59#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
60
7c1840b6
PM
61/* Meanings of the ARMCPU object's two inbound GPIO lines */
62#define ARM_CPU_IRQ 0
63#define ARM_CPU_FIQ 1
403946c0 64
c1713132
AZ
65typedef void ARMWriteCPFunc(void *opaque, int cp_info,
66 int srcreg, int operand, uint32_t value);
67typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
68 int dstreg, int operand);
69
f93eb9ff
AZ
70struct arm_boot_info;
71
6ebbf390
JM
72#define NB_MMU_MODES 2
73
b7bcbe95
FB
74/* We currently assume float and double are IEEE single and double
75 precision respectively.
76 Doing runtime conversions is tricky because VFP registers may contain
77 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
78 s<2n> maps to the least significant half of d<n>
79 s<2n+1> maps to the most significant half of d<n>
80 */
b7bcbe95 81
55d284af
PM
82/* CPU state for each instance of a generic timer (in cp15 c14) */
83typedef struct ARMGenericTimer {
84 uint64_t cval; /* Timer CompareValue register */
85 uint32_t ctl; /* Timer Control register */
86} ARMGenericTimer;
87
88#define GTIMER_PHYS 0
89#define GTIMER_VIRT 1
90#define NUM_GTIMERS 2
91
92/* Scale factor for generic timers, ie number of ns per tick.
93 * This gives a 62.5MHz timer.
94 */
95#define GTIMER_SCALE 16
96
2c0262af 97typedef struct CPUARMState {
b5ff1b31 98 /* Regs for current mode. */
2c0262af 99 uint32_t regs[16];
b90372ad 100 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 101 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
102 the whole CPSR. */
103 uint32_t uncached_cpsr;
104 uint32_t spsr;
105
106 /* Banked registers. */
107 uint32_t banked_spsr[6];
108 uint32_t banked_r13[6];
109 uint32_t banked_r14[6];
3b46e624 110
b5ff1b31
FB
111 /* These hold r8-r12. */
112 uint32_t usr_regs[5];
113 uint32_t fiq_regs[5];
3b46e624 114
2c0262af
FB
115 /* cpsr flag cache for faster execution */
116 uint32_t CF; /* 0 or 1 */
117 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
118 uint32_t NF; /* N is bit 31. All other bits are undefined. */
119 uint32_t ZF; /* Z set if zero. */
99c475ab 120 uint32_t QF; /* 0 or 1 */
9ee6e8bb 121 uint32_t GE; /* cpsr[19:16] */
b26eefb6 122 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 123 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 124
b5ff1b31
FB
125 /* System control coprocessor (cp15) */
126 struct {
40f137e1 127 uint32_t c0_cpuid;
a49ea279 128 uint32_t c0_cssel; /* Cache size selection. */
b5ff1b31
FB
129 uint32_t c1_sys; /* System control register. */
130 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 131 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 132 uint32_t c1_scr; /* secure config register. */
9ee6e8bb 133 uint32_t c2_base0; /* MMU translation table base 0. */
891a2fe7
PM
134 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
135 uint32_t c2_base1; /* MMU translation table base 0. */
136 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
b2fa1797
PB
137 uint32_t c2_control; /* MMU translation table base control. */
138 uint32_t c2_mask; /* MMU translation table base selection mask. */
139 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
140 uint32_t c2_data; /* MPU data cachable bits. */
141 uint32_t c2_insn; /* MPU instruction cachable bits. */
142 uint32_t c3; /* MMU domain access control register
143 MPU write buffer control. */
b5ff1b31
FB
144 uint32_t c5_insn; /* Fault status registers. */
145 uint32_t c5_data;
ce819861 146 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
147 uint32_t c6_insn; /* Fault address registers. */
148 uint32_t c6_data;
f8bf8606 149 uint32_t c7_par; /* Translation result. */
891a2fe7 150 uint32_t c7_par_hi; /* Translation result, high 32 bits */
b5ff1b31
FB
151 uint32_t c9_insn; /* Cache lockdown registers. */
152 uint32_t c9_data;
74594c9d
PM
153 uint32_t c9_pmcr; /* performance monitor control register */
154 uint32_t c9_pmcnten; /* perf monitor counter enables */
155 uint32_t c9_pmovsr; /* perf monitor overflow status */
156 uint32_t c9_pmxevtyper; /* perf monitor event type */
157 uint32_t c9_pmuserenr; /* perf monitor user enable */
158 uint32_t c9_pminten; /* perf monitor interrupt enables */
b5ff1b31
FB
159 uint32_t c13_fcse; /* FCSE PID. */
160 uint32_t c13_context; /* Context ID. */
9ee6e8bb
PB
161 uint32_t c13_tls1; /* User RW Thread register. */
162 uint32_t c13_tls2; /* User RO Thread register. */
163 uint32_t c13_tls3; /* Privileged Thread register. */
55d284af
PM
164 uint32_t c14_cntfrq; /* Counter Frequency register */
165 uint32_t c14_cntkctl; /* Timer Control register */
166 ARMGenericTimer c14_timer[NUM_GTIMERS];
c1713132 167 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
168 uint32_t c15_ticonfig; /* TI925T configuration byte. */
169 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
170 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
171 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
172 uint32_t c15_config_base_address; /* SCU base address. */
173 uint32_t c15_diagnostic; /* diagnostic register */
174 uint32_t c15_power_diagnostic;
175 uint32_t c15_power_control; /* power control */
b5ff1b31 176 } cp15;
40f137e1 177
9ee6e8bb
PB
178 struct {
179 uint32_t other_sp;
180 uint32_t vecbase;
181 uint32_t basepri;
182 uint32_t control;
183 int current_sp;
184 int exception;
185 int pending_exception;
9ee6e8bb
PB
186 } v7m;
187
fe1479c3
PB
188 /* Thumb-2 EE state. */
189 uint32_t teecr;
190 uint32_t teehbr;
191
b7bcbe95
FB
192 /* VFP coprocessor state. */
193 struct {
9ee6e8bb 194 float64 regs[32];
b7bcbe95 195
40f137e1 196 uint32_t xregs[16];
b7bcbe95
FB
197 /* We store these fpcsr fields separately for convenience. */
198 int vec_len;
199 int vec_stride;
200
9ee6e8bb
PB
201 /* scratch space when Tn are not sufficient. */
202 uint32_t scratch[8];
3b46e624 203
3a492f3a
PM
204 /* fp_status is the "normal" fp status. standard_fp_status retains
205 * values corresponding to the ARM "Standard FPSCR Value", ie
206 * default-NaN, flush-to-zero, round-to-nearest and is used by
207 * any operations (generally Neon) which the architecture defines
208 * as controlled by the standard FPSCR value rather than the FPSCR.
209 *
210 * To avoid having to transfer exception bits around, we simply
211 * say that the FPSCR cumulative exception flags are the logical
212 * OR of the flags in the two fp statuses. This relies on the
213 * only thing which needs to read the exception flags being
214 * an explicit FPSCR read.
215 */
53cd6637 216 float_status fp_status;
3a492f3a 217 float_status standard_fp_status;
b7bcbe95 218 } vfp;
426f5abc
PB
219 uint32_t exclusive_addr;
220 uint32_t exclusive_val;
221 uint32_t exclusive_high;
9ee6e8bb 222#if defined(CONFIG_USER_ONLY)
426f5abc
PB
223 uint32_t exclusive_test;
224 uint32_t exclusive_info;
9ee6e8bb 225#endif
b7bcbe95 226
18c9b560
AZ
227 /* iwMMXt coprocessor state. */
228 struct {
229 uint64_t regs[16];
230 uint64_t val;
231
232 uint32_t cregs[16];
233 } iwmmxt;
234
d8fd2954
PB
235 /* For mixed endian mode. */
236 bool bswap_code;
237
ce4defa0
PB
238#if defined(CONFIG_USER_ONLY)
239 /* For usermode syscall translation. */
240 int eabi;
241#endif
242
a316d335
FB
243 CPU_COMMON
244
9d551997 245 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 246
581be094 247 /* Internal CPU feature flags. */
918f5dca 248 uint64_t features;
581be094 249
983fe826 250 void *nvic;
462a8bc6 251 const struct arm_boot_info *boot_info;
2c0262af
FB
252} CPUARMState;
253
778c3a06
AF
254#include "cpu-qom.h"
255
256ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 257void arm_translate_init(void);
14969266 258void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
2c0262af 259int cpu_arm_exec(CPUARMState *s);
494b00c7 260int bank_number(int mode);
b5ff1b31 261void switch_mode(CPUARMState *, int);
9ee6e8bb 262uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 263
2c0262af
FB
264/* you can call this signal handler from your SIGBUS and SIGSEGV
265 signal handlers to inform the virtual CPU of exceptions. non zero
266 is returned if the signal was handled by the virtual CPU. */
5fafdf24 267int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 268 void *puc);
84a031c6 269int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 270 int mmu_idx);
0b5c1ce8 271#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 272
78dbbbe4
PM
273#define CPSR_M (0x1fU)
274#define CPSR_T (1U << 5)
275#define CPSR_F (1U << 6)
276#define CPSR_I (1U << 7)
277#define CPSR_A (1U << 8)
278#define CPSR_E (1U << 9)
279#define CPSR_IT_2_7 (0xfc00U)
280#define CPSR_GE (0xfU << 16)
281#define CPSR_RESERVED (0xfU << 20)
282#define CPSR_J (1U << 24)
283#define CPSR_IT_0_1 (3U << 25)
284#define CPSR_Q (1U << 27)
285#define CPSR_V (1U << 28)
286#define CPSR_C (1U << 29)
287#define CPSR_Z (1U << 30)
288#define CPSR_N (1U << 31)
9ee6e8bb
PB
289#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
290
291#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
292#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
293/* Bits writable in user mode. */
294#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
295/* Execution state bits. MRS read as zero, MSR writes ignored. */
296#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 297
b5ff1b31 298/* Return the current CPSR value. */
2f4a40e5
AZ
299uint32_t cpsr_read(CPUARMState *env);
300/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
301void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
302
303/* Return the current xPSR value. */
304static inline uint32_t xpsr_read(CPUARMState *env)
305{
306 int ZF;
6fbe23d5
PB
307 ZF = (env->ZF == 0);
308 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
309 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
310 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
311 | ((env->condexec_bits & 0xfc) << 8)
312 | env->v7m.exception;
b5ff1b31
FB
313}
314
9ee6e8bb
PB
315/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
316static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
317{
9ee6e8bb 318 if (mask & CPSR_NZCV) {
6fbe23d5
PB
319 env->ZF = (~val) & CPSR_Z;
320 env->NF = val;
9ee6e8bb
PB
321 env->CF = (val >> 29) & 1;
322 env->VF = (val << 3) & 0x80000000;
323 }
324 if (mask & CPSR_Q)
325 env->QF = ((val & CPSR_Q) != 0);
326 if (mask & (1 << 24))
327 env->thumb = ((val & (1 << 24)) != 0);
328 if (mask & CPSR_IT_0_1) {
329 env->condexec_bits &= ~3;
330 env->condexec_bits |= (val >> 25) & 3;
331 }
332 if (mask & CPSR_IT_2_7) {
333 env->condexec_bits &= 3;
334 env->condexec_bits |= (val >> 8) & 0xfc;
335 }
336 if (mask & 0x1ff) {
337 env->v7m.exception = val & 0x1ff;
338 }
339}
340
01653295
PM
341/* Return the current FPSCR value. */
342uint32_t vfp_get_fpscr(CPUARMState *env);
343void vfp_set_fpscr(CPUARMState *env, uint32_t val);
344
b5ff1b31
FB
345enum arm_cpu_mode {
346 ARM_CPU_MODE_USR = 0x10,
347 ARM_CPU_MODE_FIQ = 0x11,
348 ARM_CPU_MODE_IRQ = 0x12,
349 ARM_CPU_MODE_SVC = 0x13,
350 ARM_CPU_MODE_ABT = 0x17,
351 ARM_CPU_MODE_UND = 0x1b,
352 ARM_CPU_MODE_SYS = 0x1f
353};
354
40f137e1
PB
355/* VFP system registers. */
356#define ARM_VFP_FPSID 0
357#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
358#define ARM_VFP_MVFR1 6
359#define ARM_VFP_MVFR0 7
40f137e1
PB
360#define ARM_VFP_FPEXC 8
361#define ARM_VFP_FPINST 9
362#define ARM_VFP_FPINST2 10
363
18c9b560
AZ
364/* iwMMXt coprocessor control registers. */
365#define ARM_IWMMXT_wCID 0
366#define ARM_IWMMXT_wCon 1
367#define ARM_IWMMXT_wCSSF 2
368#define ARM_IWMMXT_wCASF 3
369#define ARM_IWMMXT_wCGR0 8
370#define ARM_IWMMXT_wCGR1 9
371#define ARM_IWMMXT_wCGR2 10
372#define ARM_IWMMXT_wCGR3 11
373
ce854d7c
BC
374/* If adding a feature bit which corresponds to a Linux ELF
375 * HWCAP bit, remember to update the feature-bit-to-hwcap
376 * mapping in linux-user/elfload.c:get_elf_hwcap().
377 */
40f137e1
PB
378enum arm_features {
379 ARM_FEATURE_VFP,
c1713132
AZ
380 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
381 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 382 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
383 ARM_FEATURE_V6,
384 ARM_FEATURE_V6K,
385 ARM_FEATURE_V7,
386 ARM_FEATURE_THUMB2,
c3d2689d 387 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 388 ARM_FEATURE_VFP3,
60011498 389 ARM_FEATURE_VFP_FP16,
9ee6e8bb 390 ARM_FEATURE_NEON,
47789990 391 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 392 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 393 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 394 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
395 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
396 ARM_FEATURE_V4T,
397 ARM_FEATURE_V5,
5bc95aa2 398 ARM_FEATURE_STRONGARM,
906879a9 399 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 400 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 401 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 402 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 403 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 404 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
405 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
406 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
407 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 408 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
409 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
410 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
81e69fb0 411 ARM_FEATURE_V8,
40f137e1
PB
412};
413
414static inline int arm_feature(CPUARMState *env, int feature)
415{
918f5dca 416 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
417}
418
9a78eead 419void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 420
9ee6e8bb
PB
421/* Interface between CPU and Interrupt controller. */
422void armv7m_nvic_set_pending(void *opaque, int irq);
423int armv7m_nvic_acknowledge_irq(void *opaque);
424void armv7m_nvic_complete_irq(void *opaque, int irq);
425
4b6a83fb
PM
426/* Interface for defining coprocessor registers.
427 * Registers are defined in tables of arm_cp_reginfo structs
428 * which are passed to define_arm_cp_regs().
429 */
430
431/* When looking up a coprocessor register we look for it
432 * via an integer which encodes all of:
433 * coprocessor number
434 * Crn, Crm, opc1, opc2 fields
435 * 32 or 64 bit register (ie is it accessed via MRC/MCR
436 * or via MRRC/MCRR?)
437 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
438 * (In this case crn and opc2 should be zero.)
439 */
440#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
441 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
442 ((crm) << 7) | ((opc1) << 3) | (opc2))
443
721fae12
PM
444/* Note that these must line up with the KVM/ARM register
445 * ID field definitions (kvm.c will check this, but we
446 * can't just use the KVM defines here as the kvm headers
447 * are unavailable to non-KVM-specific files)
448 */
449#define CP_REG_SIZE_SHIFT 52
450#define CP_REG_SIZE_MASK 0x00f0000000000000ULL
451#define CP_REG_SIZE_U32 0x0020000000000000ULL
452#define CP_REG_SIZE_U64 0x0030000000000000ULL
453#define CP_REG_ARM 0x4000000000000000ULL
454
455/* Convert a full 64 bit KVM register ID to the truncated 32 bit
456 * version used as a key for the coprocessor register hashtable
457 */
458static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
459{
460 uint32_t cpregid = kvmid;
461 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
462 cpregid |= (1 << 15);
463 }
464 return cpregid;
465}
466
467/* Convert a truncated 32 bit hashtable key into the full
468 * 64 bit KVM register ID.
469 */
470static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
471{
472 uint64_t kvmid = cpregid & ~(1 << 15);
473 if (cpregid & (1 << 15)) {
474 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
475 } else {
476 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
477 }
478 return kvmid;
479}
480
4b6a83fb
PM
481/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
482 * special-behaviour cp reg and bits [15..8] indicate what behaviour
483 * it has. Otherwise it is a simple cp reg, where CONST indicates that
484 * TCG can assume the value to be constant (ie load at translate time)
485 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
486 * indicates that the TB should not be ended after a write to this register
487 * (the default is that the TB ends after cp writes). OVERRIDE permits
488 * a register definition to override a previous definition for the
489 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
490 * old must have the OVERRIDE bit set.
7023ec7e
PM
491 * NO_MIGRATE indicates that this register should be ignored for migration;
492 * (eg because any state is accessed via some other coprocessor register).
2452731c
PM
493 * IO indicates that this register does I/O and therefore its accesses
494 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
495 * registers which implement clocks or timers require this.
4b6a83fb
PM
496 */
497#define ARM_CP_SPECIAL 1
498#define ARM_CP_CONST 2
499#define ARM_CP_64BIT 4
500#define ARM_CP_SUPPRESS_TB_END 8
501#define ARM_CP_OVERRIDE 16
7023ec7e 502#define ARM_CP_NO_MIGRATE 32
2452731c 503#define ARM_CP_IO 64
4b6a83fb
PM
504#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
505#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
506#define ARM_LAST_SPECIAL ARM_CP_WFI
507/* Used only as a terminator for ARMCPRegInfo lists */
508#define ARM_CP_SENTINEL 0xffff
509/* Mask of only the flag bits in a type field */
2452731c 510#define ARM_CP_FLAG_MASK 0x7f
4b6a83fb
PM
511
512/* Return true if cptype is a valid type field. This is used to try to
513 * catch errors where the sentinel has been accidentally left off the end
514 * of a list of registers.
515 */
516static inline bool cptype_valid(int cptype)
517{
518 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
519 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 520 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
521}
522
523/* Access rights:
524 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
525 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
526 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
527 * (ie any of the privileged modes in Secure state, or Monitor mode).
528 * If a register is accessible in one privilege level it's always accessible
529 * in higher privilege levels too. Since "Secure PL1" also follows this rule
530 * (ie anything visible in PL2 is visible in S-PL1, some things are only
531 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
532 * terminology a little and call this PL3.
533 *
534 * If access permissions for a register are more complex than can be
535 * described with these bits, then use a laxer set of restrictions, and
536 * do the more restrictive/complex check inside a helper function.
537 */
538#define PL3_R 0x80
539#define PL3_W 0x40
540#define PL2_R (0x20 | PL3_R)
541#define PL2_W (0x10 | PL3_W)
542#define PL1_R (0x08 | PL2_R)
543#define PL1_W (0x04 | PL2_W)
544#define PL0_R (0x02 | PL1_R)
545#define PL0_W (0x01 | PL1_W)
546
547#define PL3_RW (PL3_R | PL3_W)
548#define PL2_RW (PL2_R | PL2_W)
549#define PL1_RW (PL1_R | PL1_W)
550#define PL0_RW (PL0_R | PL0_W)
551
552static inline int arm_current_pl(CPUARMState *env)
553{
554 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
555 return 0;
556 }
557 /* We don't currently implement the Virtualization or TrustZone
558 * extensions, so PL2 and PL3 don't exist for us.
559 */
560 return 1;
561}
562
563typedef struct ARMCPRegInfo ARMCPRegInfo;
564
565/* Access functions for coprocessor registers. These should return
566 * 0 on success, or one of the EXCP_* constants if access should cause
567 * an exception (in which case *value is not written).
568 */
569typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
570 uint64_t *value);
571typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
572 uint64_t value);
573/* Hook function for register reset */
574typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
575
576#define CP_ANY 0xff
577
578/* Definition of an ARM coprocessor register */
579struct ARMCPRegInfo {
580 /* Name of register (useful mainly for debugging, need not be unique) */
581 const char *name;
582 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
583 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
584 * 'wildcard' field -- any value of that field in the MRC/MCR insn
585 * will be decoded to this register. The register read and write
586 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
587 * used by the program, so it is possible to register a wildcard and
588 * then behave differently on read/write if necessary.
589 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
590 * must both be zero.
591 */
592 uint8_t cp;
593 uint8_t crn;
594 uint8_t crm;
595 uint8_t opc1;
596 uint8_t opc2;
597 /* Register type: ARM_CP_* bits/values */
598 int type;
599 /* Access rights: PL*_[RW] */
600 int access;
601 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
602 * this register was defined: can be used to hand data through to the
603 * register read/write functions, since they are passed the ARMCPRegInfo*.
604 */
605 void *opaque;
606 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
607 * fieldoffset is non-zero, the reset value of the register.
608 */
609 uint64_t resetvalue;
610 /* Offset of the field in CPUARMState for this register. This is not
611 * needed if either:
612 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
613 * 2. both readfn and writefn are specified
614 */
615 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
616 /* Function for handling reads of this register. If NULL, then reads
617 * will be done by loading from the offset into CPUARMState specified
618 * by fieldoffset.
619 */
620 CPReadFn *readfn;
621 /* Function for handling writes of this register. If NULL, then writes
622 * will be done by writing to the offset into CPUARMState specified
623 * by fieldoffset.
624 */
625 CPWriteFn *writefn;
7023ec7e
PM
626 /* Function for doing a "raw" read; used when we need to copy
627 * coprocessor state to the kernel for KVM or out for
628 * migration. This only needs to be provided if there is also a
629 * readfn and it makes an access permission check.
630 */
631 CPReadFn *raw_readfn;
632 /* Function for doing a "raw" write; used when we need to copy KVM
633 * kernel coprocessor state into userspace, or for inbound
634 * migration. This only needs to be provided if there is also a
635 * writefn and it makes an access permission check or masks out
636 * "unwritable" bits or has write-one-to-clear or similar behaviour.
637 */
638 CPWriteFn *raw_writefn;
4b6a83fb
PM
639 /* Function for resetting the register. If NULL, then reset will be done
640 * by writing resetvalue to the field specified in fieldoffset. If
641 * fieldoffset is 0 then no reset will be done.
642 */
643 CPResetFn *resetfn;
644};
645
646/* Macros which are lvalues for the field in CPUARMState for the
647 * ARMCPRegInfo *ri.
648 */
649#define CPREG_FIELD32(env, ri) \
650 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
651#define CPREG_FIELD64(env, ri) \
652 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
653
654#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
655
656void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
657 const ARMCPRegInfo *regs, void *opaque);
658void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
659 const ARMCPRegInfo *regs, void *opaque);
660static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
661{
662 define_arm_cp_regs_with_opaque(cpu, regs, 0);
663}
664static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
665{
666 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
667}
668const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
669
670/* CPWriteFn that can be used to implement writes-ignored behaviour */
671int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
672 uint64_t value);
673/* CPReadFn that can be used for read-as-zero behaviour */
674int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
675
676static inline bool cp_access_ok(CPUARMState *env,
677 const ARMCPRegInfo *ri, int isread)
678{
679 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
680}
681
721fae12
PM
682/**
683 * write_list_to_cpustate
684 * @cpu: ARMCPU
685 *
686 * For each register listed in the ARMCPU cpreg_indexes list, write
687 * its value from the cpreg_values list into the ARMCPUState structure.
688 * This updates TCG's working data structures from KVM data or
689 * from incoming migration state.
690 *
691 * Returns: true if all register values were updated correctly,
692 * false if some register was unknown or could not be written.
693 * Note that we do not stop early on failure -- we will attempt
694 * writing all registers in the list.
695 */
696bool write_list_to_cpustate(ARMCPU *cpu);
697
698/**
699 * write_cpustate_to_list:
700 * @cpu: ARMCPU
701 *
702 * For each register listed in the ARMCPU cpreg_indexes list, write
703 * its value from the ARMCPUState structure into the cpreg_values list.
704 * This is used to copy info from TCG's working data structures into
705 * KVM or for outbound migration.
706 *
707 * Returns: true if all register values were read correctly,
708 * false if some register was unknown or could not be read.
709 * Note that we do not stop early on failure -- we will attempt
710 * reading all registers in the list.
711 */
712bool write_cpustate_to_list(ARMCPU *cpu);
713
9ee6e8bb
PB
714/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
715 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
716 conventional cores (ie. Application or Realtime profile). */
717
718#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 719
9ee6e8bb
PB
720#define ARM_CPUID_TI915T 0x54029152
721#define ARM_CPUID_TI925T 0x54029252
40f137e1 722
b5ff1b31 723#if defined(CONFIG_USER_ONLY)
2c0262af 724#define TARGET_PAGE_BITS 12
b5ff1b31
FB
725#else
726/* The ARM MMU allows 1k pages. */
727/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 728 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
729#define TARGET_PAGE_BITS 10
730#endif
9467d44c 731
3cc0cd61 732#define TARGET_PHYS_ADDR_SPACE_BITS 40
52705890
RH
733#define TARGET_VIRT_ADDR_SPACE_BITS 32
734
ad37ad5b
PM
735static inline CPUARMState *cpu_init(const char *cpu_model)
736{
737 ARMCPU *cpu = cpu_arm_init(cpu_model);
738 if (cpu) {
739 return &cpu->env;
740 }
741 return NULL;
742}
743
9467d44c
TS
744#define cpu_exec cpu_arm_exec
745#define cpu_gen_code cpu_arm_gen_code
746#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 747#define cpu_list arm_cpu_list
9467d44c 748
6ebbf390
JM
749/* MMU modes definitions */
750#define MMU_MODE0_SUFFIX _kernel
751#define MMU_MODE1_SUFFIX _user
752#define MMU_USER_IDX 1
0ecb72a5 753static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
754{
755 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
756}
757
022c62cb 758#include "exec/cpu-all.h"
622ed360 759
a1705768
PM
760/* Bit usage in the TB flags field: */
761#define ARM_TBFLAG_THUMB_SHIFT 0
762#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
763#define ARM_TBFLAG_VECLEN_SHIFT 1
764#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
765#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
766#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
767#define ARM_TBFLAG_PRIV_SHIFT 6
768#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
769#define ARM_TBFLAG_VFPEN_SHIFT 7
770#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
771#define ARM_TBFLAG_CONDEXEC_SHIFT 8
772#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
773#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
774#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
775/* Bits 31..17 are currently unused. */
a1705768
PM
776
777/* some convenience accessor macros */
778#define ARM_TBFLAG_THUMB(F) \
779 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
780#define ARM_TBFLAG_VECLEN(F) \
781 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
782#define ARM_TBFLAG_VECSTRIDE(F) \
783 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
784#define ARM_TBFLAG_PRIV(F) \
785 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
786#define ARM_TBFLAG_VFPEN(F) \
787 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
788#define ARM_TBFLAG_CONDEXEC(F) \
789 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
790#define ARM_TBFLAG_BSWAP_CODE(F) \
791 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 792
0ecb72a5 793static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
794 target_ulong *cs_base, int *flags)
795{
05ed9a99 796 int privmode;
6b917547
AL
797 *pc = env->regs[15];
798 *cs_base = 0;
a1705768
PM
799 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
800 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
801 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
d8fd2954
PB
802 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
803 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
05ed9a99
PM
804 if (arm_feature(env, ARM_FEATURE_M)) {
805 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
806 } else {
807 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
808 }
809 if (privmode) {
a1705768
PM
810 *flags |= ARM_TBFLAG_PRIV_MASK;
811 }
812 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
813 *flags |= ARM_TBFLAG_VFPEN_MASK;
814 }
6b917547
AL
815}
816
3993c6bd 817static inline bool cpu_has_work(CPUState *cpu)
f081c76c 818{
259186a7 819 return cpu->interrupt_request &
f081c76c
BS
820 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
821}
822
022c62cb 823#include "exec/exec-all.h"
f081c76c 824
d8fd2954 825/* Load an instruction and return it in the standard little-endian order */
d31dd73e
BS
826static inline uint32_t arm_ldl_code(CPUARMState *env, uint32_t addr,
827 bool do_swap)
d8fd2954 828{
d31dd73e 829 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
830 if (do_swap) {
831 return bswap32(insn);
832 }
833 return insn;
834}
835
836/* Ditto, for a halfword (Thumb) instruction */
d31dd73e
BS
837static inline uint16_t arm_lduw_code(CPUARMState *env, uint32_t addr,
838 bool do_swap)
d8fd2954 839{
d31dd73e 840 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
841 if (do_swap) {
842 return bswap16(insn);
843 }
844 return insn;
845}
846
2c0262af 847#endif