]> git.proxmox.com Git - qemu.git/blame - target-arm/cpu.h
target-arm: Convert final ID registers
[qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3cf1e035
FB
22#define TARGET_LONG_BITS 32
23
9042c0e2
TS
24#define ELF_MACHINE EM_ARM
25
9349b4f9 26#define CPUArchState struct CPUARMState
c2764719 27
9a78eead
SW
28#include "config.h"
29#include "qemu-common.h"
2c0262af
FB
30#include "cpu-defs.h"
31
53cd6637
FB
32#include "softfloat.h"
33
1fddef4b
FB
34#define TARGET_HAS_ICE 1
35
b8a9e8f1
FB
36#define EXCP_UDEF 1 /* undefined instruction */
37#define EXCP_SWI 2 /* software interrupt */
38#define EXCP_PREFETCH_ABORT 3
39#define EXCP_DATA_ABORT 4
b5ff1b31
FB
40#define EXCP_IRQ 5
41#define EXCP_FIQ 6
06c949e6 42#define EXCP_BKPT 7
9ee6e8bb 43#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 44#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 45#define EXCP_STREX 10
9ee6e8bb
PB
46
47#define ARMV7M_EXCP_RESET 1
48#define ARMV7M_EXCP_NMI 2
49#define ARMV7M_EXCP_HARD 3
50#define ARMV7M_EXCP_MEM 4
51#define ARMV7M_EXCP_BUS 5
52#define ARMV7M_EXCP_USAGE 6
53#define ARMV7M_EXCP_SVC 11
54#define ARMV7M_EXCP_DEBUG 12
55#define ARMV7M_EXCP_PENDSV 14
56#define ARMV7M_EXCP_SYSTICK 15
2c0262af 57
403946c0
RH
58/* ARM-specific interrupt pending bits. */
59#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
60
61
c1713132
AZ
62typedef void ARMWriteCPFunc(void *opaque, int cp_info,
63 int srcreg, int operand, uint32_t value);
64typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
65 int dstreg, int operand);
66
f93eb9ff
AZ
67struct arm_boot_info;
68
6ebbf390
JM
69#define NB_MMU_MODES 2
70
b7bcbe95
FB
71/* We currently assume float and double are IEEE single and double
72 precision respectively.
73 Doing runtime conversions is tricky because VFP registers may contain
74 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
75 s<2n> maps to the least significant half of d<n>
76 s<2n+1> maps to the most significant half of d<n>
77 */
b7bcbe95 78
2c0262af 79typedef struct CPUARMState {
b5ff1b31 80 /* Regs for current mode. */
2c0262af 81 uint32_t regs[16];
b5ff1b31 82 /* Frequently accessed CPSR bits are stored separately for efficiently.
d37aca66 83 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
84 the whole CPSR. */
85 uint32_t uncached_cpsr;
86 uint32_t spsr;
87
88 /* Banked registers. */
89 uint32_t banked_spsr[6];
90 uint32_t banked_r13[6];
91 uint32_t banked_r14[6];
3b46e624 92
b5ff1b31
FB
93 /* These hold r8-r12. */
94 uint32_t usr_regs[5];
95 uint32_t fiq_regs[5];
3b46e624 96
2c0262af
FB
97 /* cpsr flag cache for faster execution */
98 uint32_t CF; /* 0 or 1 */
99 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
100 uint32_t NF; /* N is bit 31. All other bits are undefined. */
101 uint32_t ZF; /* Z set if zero. */
99c475ab 102 uint32_t QF; /* 0 or 1 */
9ee6e8bb 103 uint32_t GE; /* cpsr[19:16] */
b26eefb6 104 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 105 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 106
b5ff1b31
FB
107 /* System control coprocessor (cp15) */
108 struct {
40f137e1 109 uint32_t c0_cpuid;
c1713132 110 uint32_t c0_cachetype;
a49ea279 111 uint32_t c0_cssel; /* Cache size selection. */
b5ff1b31
FB
112 uint32_t c1_sys; /* System control register. */
113 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 114 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 115 uint32_t c1_scr; /* secure config register. */
9ee6e8bb
PB
116 uint32_t c2_base0; /* MMU translation table base 0. */
117 uint32_t c2_base1; /* MMU translation table base 1. */
b2fa1797
PB
118 uint32_t c2_control; /* MMU translation table base control. */
119 uint32_t c2_mask; /* MMU translation table base selection mask. */
120 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
121 uint32_t c2_data; /* MPU data cachable bits. */
122 uint32_t c2_insn; /* MPU instruction cachable bits. */
123 uint32_t c3; /* MMU domain access control register
124 MPU write buffer control. */
b5ff1b31
FB
125 uint32_t c5_insn; /* Fault status registers. */
126 uint32_t c5_data;
ce819861 127 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
128 uint32_t c6_insn; /* Fault address registers. */
129 uint32_t c6_data;
f8bf8606 130 uint32_t c7_par; /* Translation result. */
b5ff1b31
FB
131 uint32_t c9_insn; /* Cache lockdown registers. */
132 uint32_t c9_data;
74594c9d
PM
133 uint32_t c9_pmcr; /* performance monitor control register */
134 uint32_t c9_pmcnten; /* perf monitor counter enables */
135 uint32_t c9_pmovsr; /* perf monitor overflow status */
136 uint32_t c9_pmxevtyper; /* perf monitor event type */
137 uint32_t c9_pmuserenr; /* perf monitor user enable */
138 uint32_t c9_pminten; /* perf monitor interrupt enables */
b5ff1b31
FB
139 uint32_t c13_fcse; /* FCSE PID. */
140 uint32_t c13_context; /* Context ID. */
9ee6e8bb
PB
141 uint32_t c13_tls1; /* User RW Thread register. */
142 uint32_t c13_tls2; /* User RO Thread register. */
143 uint32_t c13_tls3; /* Privileged Thread register. */
c1713132 144 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
145 uint32_t c15_ticonfig; /* TI925T configuration byte. */
146 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
147 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
148 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
149 uint32_t c15_config_base_address; /* SCU base address. */
150 uint32_t c15_diagnostic; /* diagnostic register */
151 uint32_t c15_power_diagnostic;
152 uint32_t c15_power_control; /* power control */
b5ff1b31 153 } cp15;
40f137e1 154
9ee6e8bb
PB
155 struct {
156 uint32_t other_sp;
157 uint32_t vecbase;
158 uint32_t basepri;
159 uint32_t control;
160 int current_sp;
161 int exception;
162 int pending_exception;
9ee6e8bb
PB
163 } v7m;
164
fe1479c3
PB
165 /* Thumb-2 EE state. */
166 uint32_t teecr;
167 uint32_t teehbr;
168
b7bcbe95
FB
169 /* VFP coprocessor state. */
170 struct {
9ee6e8bb 171 float64 regs[32];
b7bcbe95 172
40f137e1 173 uint32_t xregs[16];
b7bcbe95
FB
174 /* We store these fpcsr fields separately for convenience. */
175 int vec_len;
176 int vec_stride;
177
9ee6e8bb
PB
178 /* scratch space when Tn are not sufficient. */
179 uint32_t scratch[8];
3b46e624 180
3a492f3a
PM
181 /* fp_status is the "normal" fp status. standard_fp_status retains
182 * values corresponding to the ARM "Standard FPSCR Value", ie
183 * default-NaN, flush-to-zero, round-to-nearest and is used by
184 * any operations (generally Neon) which the architecture defines
185 * as controlled by the standard FPSCR value rather than the FPSCR.
186 *
187 * To avoid having to transfer exception bits around, we simply
188 * say that the FPSCR cumulative exception flags are the logical
189 * OR of the flags in the two fp statuses. This relies on the
190 * only thing which needs to read the exception flags being
191 * an explicit FPSCR read.
192 */
53cd6637 193 float_status fp_status;
3a492f3a 194 float_status standard_fp_status;
b7bcbe95 195 } vfp;
426f5abc
PB
196 uint32_t exclusive_addr;
197 uint32_t exclusive_val;
198 uint32_t exclusive_high;
9ee6e8bb 199#if defined(CONFIG_USER_ONLY)
426f5abc
PB
200 uint32_t exclusive_test;
201 uint32_t exclusive_info;
9ee6e8bb 202#endif
b7bcbe95 203
18c9b560
AZ
204 /* iwMMXt coprocessor state. */
205 struct {
206 uint64_t regs[16];
207 uint64_t val;
208
209 uint32_t cregs[16];
210 } iwmmxt;
211
d8fd2954
PB
212 /* For mixed endian mode. */
213 bool bswap_code;
214
ce4defa0
PB
215#if defined(CONFIG_USER_ONLY)
216 /* For usermode syscall translation. */
217 int eabi;
218#endif
219
a316d335
FB
220 CPU_COMMON
221
9d551997 222 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 223
581be094
PM
224 /* Internal CPU feature flags. */
225 uint32_t features;
226
983fe826 227 void *nvic;
462a8bc6 228 const struct arm_boot_info *boot_info;
2c0262af
FB
229} CPUARMState;
230
778c3a06
AF
231#include "cpu-qom.h"
232
233ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 234void arm_translate_init(void);
2c0262af 235int cpu_arm_exec(CPUARMState *s);
b5ff1b31
FB
236void do_interrupt(CPUARMState *);
237void switch_mode(CPUARMState *, int);
9ee6e8bb 238uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 239
2c0262af
FB
240/* you can call this signal handler from your SIGBUS and SIGSEGV
241 signal handlers to inform the virtual CPU of exceptions. non zero
242 is returned if the signal was handled by the virtual CPU. */
5fafdf24 243int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 244 void *puc);
84a031c6 245int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 246 int mmu_idx);
0b5c1ce8 247#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 248
fbb4a2e3
PB
249static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
250{
251 env->cp15.c13_tls2 = newtls;
252}
9ee6e8bb 253
b5ff1b31
FB
254#define CPSR_M (0x1f)
255#define CPSR_T (1 << 5)
256#define CPSR_F (1 << 6)
257#define CPSR_I (1 << 7)
258#define CPSR_A (1 << 8)
259#define CPSR_E (1 << 9)
260#define CPSR_IT_2_7 (0xfc00)
9ee6e8bb
PB
261#define CPSR_GE (0xf << 16)
262#define CPSR_RESERVED (0xf << 20)
b5ff1b31
FB
263#define CPSR_J (1 << 24)
264#define CPSR_IT_0_1 (3 << 25)
265#define CPSR_Q (1 << 27)
9ee6e8bb
PB
266#define CPSR_V (1 << 28)
267#define CPSR_C (1 << 29)
268#define CPSR_Z (1 << 30)
269#define CPSR_N (1 << 31)
270#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
271
272#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
273#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
274/* Bits writable in user mode. */
275#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
276/* Execution state bits. MRS read as zero, MSR writes ignored. */
277#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 278
b5ff1b31 279/* Return the current CPSR value. */
2f4a40e5
AZ
280uint32_t cpsr_read(CPUARMState *env);
281/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
282void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
283
284/* Return the current xPSR value. */
285static inline uint32_t xpsr_read(CPUARMState *env)
286{
287 int ZF;
6fbe23d5
PB
288 ZF = (env->ZF == 0);
289 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
290 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
291 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
292 | ((env->condexec_bits & 0xfc) << 8)
293 | env->v7m.exception;
b5ff1b31
FB
294}
295
9ee6e8bb
PB
296/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
297static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
298{
9ee6e8bb 299 if (mask & CPSR_NZCV) {
6fbe23d5
PB
300 env->ZF = (~val) & CPSR_Z;
301 env->NF = val;
9ee6e8bb
PB
302 env->CF = (val >> 29) & 1;
303 env->VF = (val << 3) & 0x80000000;
304 }
305 if (mask & CPSR_Q)
306 env->QF = ((val & CPSR_Q) != 0);
307 if (mask & (1 << 24))
308 env->thumb = ((val & (1 << 24)) != 0);
309 if (mask & CPSR_IT_0_1) {
310 env->condexec_bits &= ~3;
311 env->condexec_bits |= (val >> 25) & 3;
312 }
313 if (mask & CPSR_IT_2_7) {
314 env->condexec_bits &= 3;
315 env->condexec_bits |= (val >> 8) & 0xfc;
316 }
317 if (mask & 0x1ff) {
318 env->v7m.exception = val & 0x1ff;
319 }
320}
321
01653295
PM
322/* Return the current FPSCR value. */
323uint32_t vfp_get_fpscr(CPUARMState *env);
324void vfp_set_fpscr(CPUARMState *env, uint32_t val);
325
b5ff1b31
FB
326enum arm_cpu_mode {
327 ARM_CPU_MODE_USR = 0x10,
328 ARM_CPU_MODE_FIQ = 0x11,
329 ARM_CPU_MODE_IRQ = 0x12,
330 ARM_CPU_MODE_SVC = 0x13,
331 ARM_CPU_MODE_ABT = 0x17,
332 ARM_CPU_MODE_UND = 0x1b,
333 ARM_CPU_MODE_SYS = 0x1f
334};
335
40f137e1
PB
336/* VFP system registers. */
337#define ARM_VFP_FPSID 0
338#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
339#define ARM_VFP_MVFR1 6
340#define ARM_VFP_MVFR0 7
40f137e1
PB
341#define ARM_VFP_FPEXC 8
342#define ARM_VFP_FPINST 9
343#define ARM_VFP_FPINST2 10
344
18c9b560
AZ
345/* iwMMXt coprocessor control registers. */
346#define ARM_IWMMXT_wCID 0
347#define ARM_IWMMXT_wCon 1
348#define ARM_IWMMXT_wCSSF 2
349#define ARM_IWMMXT_wCASF 3
350#define ARM_IWMMXT_wCGR0 8
351#define ARM_IWMMXT_wCGR1 9
352#define ARM_IWMMXT_wCGR2 10
353#define ARM_IWMMXT_wCGR3 11
354
ce854d7c
BC
355/* If adding a feature bit which corresponds to a Linux ELF
356 * HWCAP bit, remember to update the feature-bit-to-hwcap
357 * mapping in linux-user/elfload.c:get_elf_hwcap().
358 */
40f137e1
PB
359enum arm_features {
360 ARM_FEATURE_VFP,
c1713132
AZ
361 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
362 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 363 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
364 ARM_FEATURE_V6,
365 ARM_FEATURE_V6K,
366 ARM_FEATURE_V7,
367 ARM_FEATURE_THUMB2,
c3d2689d 368 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 369 ARM_FEATURE_VFP3,
60011498 370 ARM_FEATURE_VFP_FP16,
9ee6e8bb 371 ARM_FEATURE_NEON,
47789990 372 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 373 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 374 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 375 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
376 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
377 ARM_FEATURE_V4T,
378 ARM_FEATURE_V5,
5bc95aa2 379 ARM_FEATURE_STRONGARM,
906879a9 380 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 381 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 382 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 383 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 384 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 385 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
386 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
387 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
388 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 389 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
40f137e1
PB
390};
391
392static inline int arm_feature(CPUARMState *env, int feature)
393{
394 return (env->features & (1u << feature)) != 0;
395}
396
9a78eead 397void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 398
9ee6e8bb
PB
399/* Interface between CPU and Interrupt controller. */
400void armv7m_nvic_set_pending(void *opaque, int irq);
401int armv7m_nvic_acknowledge_irq(void *opaque);
402void armv7m_nvic_complete_irq(void *opaque, int irq);
403
4b6a83fb
PM
404/* Interface for defining coprocessor registers.
405 * Registers are defined in tables of arm_cp_reginfo structs
406 * which are passed to define_arm_cp_regs().
407 */
408
409/* When looking up a coprocessor register we look for it
410 * via an integer which encodes all of:
411 * coprocessor number
412 * Crn, Crm, opc1, opc2 fields
413 * 32 or 64 bit register (ie is it accessed via MRC/MCR
414 * or via MRRC/MCRR?)
415 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
416 * (In this case crn and opc2 should be zero.)
417 */
418#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
419 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
420 ((crm) << 7) | ((opc1) << 3) | (opc2))
421
422#define DECODE_CPREG_CRN(enc) (((enc) >> 7) & 0xf)
423
424/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
425 * special-behaviour cp reg and bits [15..8] indicate what behaviour
426 * it has. Otherwise it is a simple cp reg, where CONST indicates that
427 * TCG can assume the value to be constant (ie load at translate time)
428 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
429 * indicates that the TB should not be ended after a write to this register
430 * (the default is that the TB ends after cp writes). OVERRIDE permits
431 * a register definition to override a previous definition for the
432 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
433 * old must have the OVERRIDE bit set.
434 */
435#define ARM_CP_SPECIAL 1
436#define ARM_CP_CONST 2
437#define ARM_CP_64BIT 4
438#define ARM_CP_SUPPRESS_TB_END 8
439#define ARM_CP_OVERRIDE 16
440#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
441#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
442#define ARM_LAST_SPECIAL ARM_CP_WFI
443/* Used only as a terminator for ARMCPRegInfo lists */
444#define ARM_CP_SENTINEL 0xffff
445/* Mask of only the flag bits in a type field */
446#define ARM_CP_FLAG_MASK 0x1f
447
448/* Return true if cptype is a valid type field. This is used to try to
449 * catch errors where the sentinel has been accidentally left off the end
450 * of a list of registers.
451 */
452static inline bool cptype_valid(int cptype)
453{
454 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
455 || ((cptype & ARM_CP_SPECIAL) &&
456 (cptype <= ARM_LAST_SPECIAL));
457}
458
459/* Access rights:
460 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
461 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
462 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
463 * (ie any of the privileged modes in Secure state, or Monitor mode).
464 * If a register is accessible in one privilege level it's always accessible
465 * in higher privilege levels too. Since "Secure PL1" also follows this rule
466 * (ie anything visible in PL2 is visible in S-PL1, some things are only
467 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
468 * terminology a little and call this PL3.
469 *
470 * If access permissions for a register are more complex than can be
471 * described with these bits, then use a laxer set of restrictions, and
472 * do the more restrictive/complex check inside a helper function.
473 */
474#define PL3_R 0x80
475#define PL3_W 0x40
476#define PL2_R (0x20 | PL3_R)
477#define PL2_W (0x10 | PL3_W)
478#define PL1_R (0x08 | PL2_R)
479#define PL1_W (0x04 | PL2_W)
480#define PL0_R (0x02 | PL1_R)
481#define PL0_W (0x01 | PL1_W)
482
483#define PL3_RW (PL3_R | PL3_W)
484#define PL2_RW (PL2_R | PL2_W)
485#define PL1_RW (PL1_R | PL1_W)
486#define PL0_RW (PL0_R | PL0_W)
487
488static inline int arm_current_pl(CPUARMState *env)
489{
490 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
491 return 0;
492 }
493 /* We don't currently implement the Virtualization or TrustZone
494 * extensions, so PL2 and PL3 don't exist for us.
495 */
496 return 1;
497}
498
499typedef struct ARMCPRegInfo ARMCPRegInfo;
500
501/* Access functions for coprocessor registers. These should return
502 * 0 on success, or one of the EXCP_* constants if access should cause
503 * an exception (in which case *value is not written).
504 */
505typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
506 uint64_t *value);
507typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
508 uint64_t value);
509/* Hook function for register reset */
510typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
511
512#define CP_ANY 0xff
513
514/* Definition of an ARM coprocessor register */
515struct ARMCPRegInfo {
516 /* Name of register (useful mainly for debugging, need not be unique) */
517 const char *name;
518 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
519 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
520 * 'wildcard' field -- any value of that field in the MRC/MCR insn
521 * will be decoded to this register. The register read and write
522 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
523 * used by the program, so it is possible to register a wildcard and
524 * then behave differently on read/write if necessary.
525 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
526 * must both be zero.
527 */
528 uint8_t cp;
529 uint8_t crn;
530 uint8_t crm;
531 uint8_t opc1;
532 uint8_t opc2;
533 /* Register type: ARM_CP_* bits/values */
534 int type;
535 /* Access rights: PL*_[RW] */
536 int access;
537 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
538 * this register was defined: can be used to hand data through to the
539 * register read/write functions, since they are passed the ARMCPRegInfo*.
540 */
541 void *opaque;
542 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
543 * fieldoffset is non-zero, the reset value of the register.
544 */
545 uint64_t resetvalue;
546 /* Offset of the field in CPUARMState for this register. This is not
547 * needed if either:
548 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
549 * 2. both readfn and writefn are specified
550 */
551 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
552 /* Function for handling reads of this register. If NULL, then reads
553 * will be done by loading from the offset into CPUARMState specified
554 * by fieldoffset.
555 */
556 CPReadFn *readfn;
557 /* Function for handling writes of this register. If NULL, then writes
558 * will be done by writing to the offset into CPUARMState specified
559 * by fieldoffset.
560 */
561 CPWriteFn *writefn;
562 /* Function for resetting the register. If NULL, then reset will be done
563 * by writing resetvalue to the field specified in fieldoffset. If
564 * fieldoffset is 0 then no reset will be done.
565 */
566 CPResetFn *resetfn;
567};
568
569/* Macros which are lvalues for the field in CPUARMState for the
570 * ARMCPRegInfo *ri.
571 */
572#define CPREG_FIELD32(env, ri) \
573 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
574#define CPREG_FIELD64(env, ri) \
575 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
576
577#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
578
579void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
580 const ARMCPRegInfo *regs, void *opaque);
581void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
582 const ARMCPRegInfo *regs, void *opaque);
583static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
584{
585 define_arm_cp_regs_with_opaque(cpu, regs, 0);
586}
587static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
588{
589 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
590}
591const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
592
593/* CPWriteFn that can be used to implement writes-ignored behaviour */
594int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
595 uint64_t value);
596/* CPReadFn that can be used for read-as-zero behaviour */
597int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
598
599static inline bool cp_access_ok(CPUARMState *env,
600 const ARMCPRegInfo *ri, int isread)
601{
602 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
603}
604
9ee6e8bb
PB
605/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
606 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
607 conventional cores (ie. Application or Realtime profile). */
608
609#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
610#define ARM_CPUID(env) (env->cp15.c0_cpuid)
611
612#define ARM_CPUID_ARM1026 0x4106a262
613#define ARM_CPUID_ARM926 0x41069265
614#define ARM_CPUID_ARM946 0x41059461
615#define ARM_CPUID_TI915T 0x54029152
616#define ARM_CPUID_TI925T 0x54029252
5bc95aa2
DES
617#define ARM_CPUID_SA1100 0x4401A11B
618#define ARM_CPUID_SA1110 0x6901B119
9ee6e8bb
PB
619#define ARM_CPUID_PXA250 0x69052100
620#define ARM_CPUID_PXA255 0x69052d00
621#define ARM_CPUID_PXA260 0x69052903
622#define ARM_CPUID_PXA261 0x69052d05
623#define ARM_CPUID_PXA262 0x69052d06
624#define ARM_CPUID_PXA270 0x69054110
625#define ARM_CPUID_PXA270_A0 0x69054110
626#define ARM_CPUID_PXA270_A1 0x69054111
627#define ARM_CPUID_PXA270_B0 0x69054112
628#define ARM_CPUID_PXA270_B1 0x69054113
629#define ARM_CPUID_PXA270_C0 0x69054114
630#define ARM_CPUID_PXA270_C5 0x69054117
631#define ARM_CPUID_ARM1136 0x4117b363
827df9f3 632#define ARM_CPUID_ARM1136_R2 0x4107b362
7807eed9 633#define ARM_CPUID_ARM1176 0x410fb767
9ee6e8bb
PB
634#define ARM_CPUID_ARM11MPCORE 0x410fb022
635#define ARM_CPUID_CORTEXA8 0x410fc080
10055562 636#define ARM_CPUID_CORTEXA9 0x410fc090
0b03bdfc 637#define ARM_CPUID_CORTEXA15 0x412fc0f1
9ee6e8bb
PB
638#define ARM_CPUID_CORTEXM3 0x410fc231
639#define ARM_CPUID_ANY 0xffffffff
40f137e1 640
b5ff1b31 641#if defined(CONFIG_USER_ONLY)
2c0262af 642#define TARGET_PAGE_BITS 12
b5ff1b31
FB
643#else
644/* The ARM MMU allows 1k pages. */
645/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 646 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
647#define TARGET_PAGE_BITS 10
648#endif
9467d44c 649
52705890
RH
650#define TARGET_PHYS_ADDR_SPACE_BITS 32
651#define TARGET_VIRT_ADDR_SPACE_BITS 32
652
ad37ad5b
PM
653static inline CPUARMState *cpu_init(const char *cpu_model)
654{
655 ARMCPU *cpu = cpu_arm_init(cpu_model);
656 if (cpu) {
657 return &cpu->env;
658 }
659 return NULL;
660}
661
9467d44c
TS
662#define cpu_exec cpu_arm_exec
663#define cpu_gen_code cpu_arm_gen_code
664#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 665#define cpu_list arm_cpu_list
9467d44c 666
2be27624 667#define CPU_SAVE_VERSION 6
9ee6e8bb 668
6ebbf390
JM
669/* MMU modes definitions */
670#define MMU_MODE0_SUFFIX _kernel
671#define MMU_MODE1_SUFFIX _user
672#define MMU_USER_IDX 1
0ecb72a5 673static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
674{
675 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
676}
677
6e68e076 678#if defined(CONFIG_USER_ONLY)
0ecb72a5 679static inline void cpu_clone_regs(CPUARMState *env, target_ulong newsp)
6e68e076 680{
f8ed7070 681 if (newsp)
6e68e076
PB
682 env->regs[13] = newsp;
683 env->regs[0] = 0;
684}
685#endif
686
2c0262af 687#include "cpu-all.h"
622ed360 688
a1705768
PM
689/* Bit usage in the TB flags field: */
690#define ARM_TBFLAG_THUMB_SHIFT 0
691#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
692#define ARM_TBFLAG_VECLEN_SHIFT 1
693#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
694#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
695#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
696#define ARM_TBFLAG_PRIV_SHIFT 6
697#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
698#define ARM_TBFLAG_VFPEN_SHIFT 7
699#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
700#define ARM_TBFLAG_CONDEXEC_SHIFT 8
701#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
702#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
703#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
704/* Bits 31..17 are currently unused. */
a1705768
PM
705
706/* some convenience accessor macros */
707#define ARM_TBFLAG_THUMB(F) \
708 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
709#define ARM_TBFLAG_VECLEN(F) \
710 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
711#define ARM_TBFLAG_VECSTRIDE(F) \
712 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
713#define ARM_TBFLAG_PRIV(F) \
714 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
715#define ARM_TBFLAG_VFPEN(F) \
716 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
717#define ARM_TBFLAG_CONDEXEC(F) \
718 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
719#define ARM_TBFLAG_BSWAP_CODE(F) \
720 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 721
0ecb72a5 722static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
723 target_ulong *cs_base, int *flags)
724{
05ed9a99 725 int privmode;
6b917547
AL
726 *pc = env->regs[15];
727 *cs_base = 0;
a1705768
PM
728 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
729 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
730 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
d8fd2954
PB
731 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
732 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
05ed9a99
PM
733 if (arm_feature(env, ARM_FEATURE_M)) {
734 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
735 } else {
736 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
737 }
738 if (privmode) {
a1705768
PM
739 *flags |= ARM_TBFLAG_PRIV_MASK;
740 }
741 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
742 *flags |= ARM_TBFLAG_VFPEN_MASK;
743 }
6b917547
AL
744}
745
0ecb72a5 746static inline bool cpu_has_work(CPUARMState *env)
f081c76c
BS
747{
748 return env->interrupt_request &
749 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
750}
751
752#include "exec-all.h"
753
0ecb72a5 754static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
f081c76c
BS
755{
756 env->regs[15] = tb->pc;
757}
758
d8fd2954
PB
759/* Load an instruction and return it in the standard little-endian order */
760static inline uint32_t arm_ldl_code(uint32_t addr, bool do_swap)
761{
762 uint32_t insn = ldl_code(addr);
763 if (do_swap) {
764 return bswap32(insn);
765 }
766 return insn;
767}
768
769/* Ditto, for a halfword (Thumb) instruction */
770static inline uint16_t arm_lduw_code(uint32_t addr, bool do_swap)
771{
772 uint16_t insn = lduw_code(addr);
773 if (do_swap) {
774 return bswap16(insn);
775 }
776 return insn;
777}
778
2c0262af 779#endif