]> git.proxmox.com Git - qemu.git/blame - target-arm/cpu.h
target-arm: mark up cpregs for no-migrate or raw access
[qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3cf1e035
FB
22#define TARGET_LONG_BITS 32
23
9042c0e2
TS
24#define ELF_MACHINE EM_ARM
25
9349b4f9 26#define CPUArchState struct CPUARMState
c2764719 27
9a78eead
SW
28#include "config.h"
29#include "qemu-common.h"
022c62cb 30#include "exec/cpu-defs.h"
2c0262af 31
6b4c305c 32#include "fpu/softfloat.h"
53cd6637 33
1fddef4b
FB
34#define TARGET_HAS_ICE 1
35
b8a9e8f1
FB
36#define EXCP_UDEF 1 /* undefined instruction */
37#define EXCP_SWI 2 /* software interrupt */
38#define EXCP_PREFETCH_ABORT 3
39#define EXCP_DATA_ABORT 4
b5ff1b31
FB
40#define EXCP_IRQ 5
41#define EXCP_FIQ 6
06c949e6 42#define EXCP_BKPT 7
9ee6e8bb 43#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 44#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 45#define EXCP_STREX 10
9ee6e8bb
PB
46
47#define ARMV7M_EXCP_RESET 1
48#define ARMV7M_EXCP_NMI 2
49#define ARMV7M_EXCP_HARD 3
50#define ARMV7M_EXCP_MEM 4
51#define ARMV7M_EXCP_BUS 5
52#define ARMV7M_EXCP_USAGE 6
53#define ARMV7M_EXCP_SVC 11
54#define ARMV7M_EXCP_DEBUG 12
55#define ARMV7M_EXCP_PENDSV 14
56#define ARMV7M_EXCP_SYSTICK 15
2c0262af 57
403946c0
RH
58/* ARM-specific interrupt pending bits. */
59#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
60
61
c1713132
AZ
62typedef void ARMWriteCPFunc(void *opaque, int cp_info,
63 int srcreg, int operand, uint32_t value);
64typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
65 int dstreg, int operand);
66
f93eb9ff
AZ
67struct arm_boot_info;
68
6ebbf390
JM
69#define NB_MMU_MODES 2
70
b7bcbe95
FB
71/* We currently assume float and double are IEEE single and double
72 precision respectively.
73 Doing runtime conversions is tricky because VFP registers may contain
74 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
75 s<2n> maps to the least significant half of d<n>
76 s<2n+1> maps to the most significant half of d<n>
77 */
b7bcbe95 78
2c0262af 79typedef struct CPUARMState {
b5ff1b31 80 /* Regs for current mode. */
2c0262af 81 uint32_t regs[16];
b90372ad 82 /* Frequently accessed CPSR bits are stored separately for efficiency.
d37aca66 83 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
84 the whole CPSR. */
85 uint32_t uncached_cpsr;
86 uint32_t spsr;
87
88 /* Banked registers. */
89 uint32_t banked_spsr[6];
90 uint32_t banked_r13[6];
91 uint32_t banked_r14[6];
3b46e624 92
b5ff1b31
FB
93 /* These hold r8-r12. */
94 uint32_t usr_regs[5];
95 uint32_t fiq_regs[5];
3b46e624 96
2c0262af
FB
97 /* cpsr flag cache for faster execution */
98 uint32_t CF; /* 0 or 1 */
99 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
100 uint32_t NF; /* N is bit 31. All other bits are undefined. */
101 uint32_t ZF; /* Z set if zero. */
99c475ab 102 uint32_t QF; /* 0 or 1 */
9ee6e8bb 103 uint32_t GE; /* cpsr[19:16] */
b26eefb6 104 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 105 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 106
b5ff1b31
FB
107 /* System control coprocessor (cp15) */
108 struct {
40f137e1 109 uint32_t c0_cpuid;
a49ea279 110 uint32_t c0_cssel; /* Cache size selection. */
b5ff1b31
FB
111 uint32_t c1_sys; /* System control register. */
112 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 113 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 114 uint32_t c1_scr; /* secure config register. */
9ee6e8bb 115 uint32_t c2_base0; /* MMU translation table base 0. */
891a2fe7
PM
116 uint32_t c2_base0_hi; /* MMU translation table base 0, high 32 bits */
117 uint32_t c2_base1; /* MMU translation table base 0. */
118 uint32_t c2_base1_hi; /* MMU translation table base 1, high 32 bits */
b2fa1797
PB
119 uint32_t c2_control; /* MMU translation table base control. */
120 uint32_t c2_mask; /* MMU translation table base selection mask. */
121 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
122 uint32_t c2_data; /* MPU data cachable bits. */
123 uint32_t c2_insn; /* MPU instruction cachable bits. */
124 uint32_t c3; /* MMU domain access control register
125 MPU write buffer control. */
b5ff1b31
FB
126 uint32_t c5_insn; /* Fault status registers. */
127 uint32_t c5_data;
ce819861 128 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
129 uint32_t c6_insn; /* Fault address registers. */
130 uint32_t c6_data;
f8bf8606 131 uint32_t c7_par; /* Translation result. */
891a2fe7 132 uint32_t c7_par_hi; /* Translation result, high 32 bits */
b5ff1b31
FB
133 uint32_t c9_insn; /* Cache lockdown registers. */
134 uint32_t c9_data;
74594c9d
PM
135 uint32_t c9_pmcr; /* performance monitor control register */
136 uint32_t c9_pmcnten; /* perf monitor counter enables */
137 uint32_t c9_pmovsr; /* perf monitor overflow status */
138 uint32_t c9_pmxevtyper; /* perf monitor event type */
139 uint32_t c9_pmuserenr; /* perf monitor user enable */
140 uint32_t c9_pminten; /* perf monitor interrupt enables */
b5ff1b31
FB
141 uint32_t c13_fcse; /* FCSE PID. */
142 uint32_t c13_context; /* Context ID. */
9ee6e8bb
PB
143 uint32_t c13_tls1; /* User RW Thread register. */
144 uint32_t c13_tls2; /* User RO Thread register. */
145 uint32_t c13_tls3; /* Privileged Thread register. */
c1713132 146 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
147 uint32_t c15_ticonfig; /* TI925T configuration byte. */
148 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
149 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
150 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
151 uint32_t c15_config_base_address; /* SCU base address. */
152 uint32_t c15_diagnostic; /* diagnostic register */
153 uint32_t c15_power_diagnostic;
154 uint32_t c15_power_control; /* power control */
b5ff1b31 155 } cp15;
40f137e1 156
9ee6e8bb
PB
157 struct {
158 uint32_t other_sp;
159 uint32_t vecbase;
160 uint32_t basepri;
161 uint32_t control;
162 int current_sp;
163 int exception;
164 int pending_exception;
9ee6e8bb
PB
165 } v7m;
166
fe1479c3
PB
167 /* Thumb-2 EE state. */
168 uint32_t teecr;
169 uint32_t teehbr;
170
b7bcbe95
FB
171 /* VFP coprocessor state. */
172 struct {
9ee6e8bb 173 float64 regs[32];
b7bcbe95 174
40f137e1 175 uint32_t xregs[16];
b7bcbe95
FB
176 /* We store these fpcsr fields separately for convenience. */
177 int vec_len;
178 int vec_stride;
179
9ee6e8bb
PB
180 /* scratch space when Tn are not sufficient. */
181 uint32_t scratch[8];
3b46e624 182
3a492f3a
PM
183 /* fp_status is the "normal" fp status. standard_fp_status retains
184 * values corresponding to the ARM "Standard FPSCR Value", ie
185 * default-NaN, flush-to-zero, round-to-nearest and is used by
186 * any operations (generally Neon) which the architecture defines
187 * as controlled by the standard FPSCR value rather than the FPSCR.
188 *
189 * To avoid having to transfer exception bits around, we simply
190 * say that the FPSCR cumulative exception flags are the logical
191 * OR of the flags in the two fp statuses. This relies on the
192 * only thing which needs to read the exception flags being
193 * an explicit FPSCR read.
194 */
53cd6637 195 float_status fp_status;
3a492f3a 196 float_status standard_fp_status;
b7bcbe95 197 } vfp;
426f5abc
PB
198 uint32_t exclusive_addr;
199 uint32_t exclusive_val;
200 uint32_t exclusive_high;
9ee6e8bb 201#if defined(CONFIG_USER_ONLY)
426f5abc
PB
202 uint32_t exclusive_test;
203 uint32_t exclusive_info;
9ee6e8bb 204#endif
b7bcbe95 205
18c9b560
AZ
206 /* iwMMXt coprocessor state. */
207 struct {
208 uint64_t regs[16];
209 uint64_t val;
210
211 uint32_t cregs[16];
212 } iwmmxt;
213
d8fd2954
PB
214 /* For mixed endian mode. */
215 bool bswap_code;
216
ce4defa0
PB
217#if defined(CONFIG_USER_ONLY)
218 /* For usermode syscall translation. */
219 int eabi;
220#endif
221
a316d335
FB
222 CPU_COMMON
223
9d551997 224 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 225
581be094 226 /* Internal CPU feature flags. */
918f5dca 227 uint64_t features;
581be094 228
983fe826 229 void *nvic;
462a8bc6 230 const struct arm_boot_info *boot_info;
2c0262af
FB
231} CPUARMState;
232
778c3a06
AF
233#include "cpu-qom.h"
234
235ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 236void arm_translate_init(void);
14969266 237void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
2c0262af 238int cpu_arm_exec(CPUARMState *s);
494b00c7 239int bank_number(int mode);
b5ff1b31 240void switch_mode(CPUARMState *, int);
9ee6e8bb 241uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 242
2c0262af
FB
243/* you can call this signal handler from your SIGBUS and SIGSEGV
244 signal handlers to inform the virtual CPU of exceptions. non zero
245 is returned if the signal was handled by the virtual CPU. */
5fafdf24 246int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 247 void *puc);
84a031c6 248int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 249 int mmu_idx);
0b5c1ce8 250#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 251
fbb4a2e3
PB
252static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
253{
254 env->cp15.c13_tls2 = newtls;
255}
9ee6e8bb 256
b5ff1b31
FB
257#define CPSR_M (0x1f)
258#define CPSR_T (1 << 5)
259#define CPSR_F (1 << 6)
260#define CPSR_I (1 << 7)
261#define CPSR_A (1 << 8)
262#define CPSR_E (1 << 9)
263#define CPSR_IT_2_7 (0xfc00)
9ee6e8bb
PB
264#define CPSR_GE (0xf << 16)
265#define CPSR_RESERVED (0xf << 20)
b5ff1b31
FB
266#define CPSR_J (1 << 24)
267#define CPSR_IT_0_1 (3 << 25)
268#define CPSR_Q (1 << 27)
9ee6e8bb
PB
269#define CPSR_V (1 << 28)
270#define CPSR_C (1 << 29)
271#define CPSR_Z (1 << 30)
272#define CPSR_N (1 << 31)
273#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
274
275#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
276#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
277/* Bits writable in user mode. */
278#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
279/* Execution state bits. MRS read as zero, MSR writes ignored. */
280#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 281
b5ff1b31 282/* Return the current CPSR value. */
2f4a40e5
AZ
283uint32_t cpsr_read(CPUARMState *env);
284/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
285void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
286
287/* Return the current xPSR value. */
288static inline uint32_t xpsr_read(CPUARMState *env)
289{
290 int ZF;
6fbe23d5
PB
291 ZF = (env->ZF == 0);
292 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
293 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
294 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
295 | ((env->condexec_bits & 0xfc) << 8)
296 | env->v7m.exception;
b5ff1b31
FB
297}
298
9ee6e8bb
PB
299/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
300static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
301{
9ee6e8bb 302 if (mask & CPSR_NZCV) {
6fbe23d5
PB
303 env->ZF = (~val) & CPSR_Z;
304 env->NF = val;
9ee6e8bb
PB
305 env->CF = (val >> 29) & 1;
306 env->VF = (val << 3) & 0x80000000;
307 }
308 if (mask & CPSR_Q)
309 env->QF = ((val & CPSR_Q) != 0);
310 if (mask & (1 << 24))
311 env->thumb = ((val & (1 << 24)) != 0);
312 if (mask & CPSR_IT_0_1) {
313 env->condexec_bits &= ~3;
314 env->condexec_bits |= (val >> 25) & 3;
315 }
316 if (mask & CPSR_IT_2_7) {
317 env->condexec_bits &= 3;
318 env->condexec_bits |= (val >> 8) & 0xfc;
319 }
320 if (mask & 0x1ff) {
321 env->v7m.exception = val & 0x1ff;
322 }
323}
324
01653295
PM
325/* Return the current FPSCR value. */
326uint32_t vfp_get_fpscr(CPUARMState *env);
327void vfp_set_fpscr(CPUARMState *env, uint32_t val);
328
b5ff1b31
FB
329enum arm_cpu_mode {
330 ARM_CPU_MODE_USR = 0x10,
331 ARM_CPU_MODE_FIQ = 0x11,
332 ARM_CPU_MODE_IRQ = 0x12,
333 ARM_CPU_MODE_SVC = 0x13,
334 ARM_CPU_MODE_ABT = 0x17,
335 ARM_CPU_MODE_UND = 0x1b,
336 ARM_CPU_MODE_SYS = 0x1f
337};
338
40f137e1
PB
339/* VFP system registers. */
340#define ARM_VFP_FPSID 0
341#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
342#define ARM_VFP_MVFR1 6
343#define ARM_VFP_MVFR0 7
40f137e1
PB
344#define ARM_VFP_FPEXC 8
345#define ARM_VFP_FPINST 9
346#define ARM_VFP_FPINST2 10
347
18c9b560
AZ
348/* iwMMXt coprocessor control registers. */
349#define ARM_IWMMXT_wCID 0
350#define ARM_IWMMXT_wCon 1
351#define ARM_IWMMXT_wCSSF 2
352#define ARM_IWMMXT_wCASF 3
353#define ARM_IWMMXT_wCGR0 8
354#define ARM_IWMMXT_wCGR1 9
355#define ARM_IWMMXT_wCGR2 10
356#define ARM_IWMMXT_wCGR3 11
357
ce854d7c
BC
358/* If adding a feature bit which corresponds to a Linux ELF
359 * HWCAP bit, remember to update the feature-bit-to-hwcap
360 * mapping in linux-user/elfload.c:get_elf_hwcap().
361 */
40f137e1
PB
362enum arm_features {
363 ARM_FEATURE_VFP,
c1713132
AZ
364 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
365 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 366 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
367 ARM_FEATURE_V6,
368 ARM_FEATURE_V6K,
369 ARM_FEATURE_V7,
370 ARM_FEATURE_THUMB2,
c3d2689d 371 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 372 ARM_FEATURE_VFP3,
60011498 373 ARM_FEATURE_VFP_FP16,
9ee6e8bb 374 ARM_FEATURE_NEON,
47789990 375 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 376 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 377 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 378 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
379 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
380 ARM_FEATURE_V4T,
381 ARM_FEATURE_V5,
5bc95aa2 382 ARM_FEATURE_STRONGARM,
906879a9 383 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 384 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 385 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 386 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 387 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 388 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
389 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
390 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
391 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 392 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
393 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
394 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
40f137e1
PB
395};
396
397static inline int arm_feature(CPUARMState *env, int feature)
398{
918f5dca 399 return (env->features & (1ULL << feature)) != 0;
40f137e1
PB
400}
401
9a78eead 402void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 403
9ee6e8bb
PB
404/* Interface between CPU and Interrupt controller. */
405void armv7m_nvic_set_pending(void *opaque, int irq);
406int armv7m_nvic_acknowledge_irq(void *opaque);
407void armv7m_nvic_complete_irq(void *opaque, int irq);
408
4b6a83fb
PM
409/* Interface for defining coprocessor registers.
410 * Registers are defined in tables of arm_cp_reginfo structs
411 * which are passed to define_arm_cp_regs().
412 */
413
414/* When looking up a coprocessor register we look for it
415 * via an integer which encodes all of:
416 * coprocessor number
417 * Crn, Crm, opc1, opc2 fields
418 * 32 or 64 bit register (ie is it accessed via MRC/MCR
419 * or via MRRC/MCRR?)
420 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
421 * (In this case crn and opc2 should be zero.)
422 */
423#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
424 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
425 ((crm) << 7) | ((opc1) << 3) | (opc2))
426
4b6a83fb
PM
427/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
428 * special-behaviour cp reg and bits [15..8] indicate what behaviour
429 * it has. Otherwise it is a simple cp reg, where CONST indicates that
430 * TCG can assume the value to be constant (ie load at translate time)
431 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
432 * indicates that the TB should not be ended after a write to this register
433 * (the default is that the TB ends after cp writes). OVERRIDE permits
434 * a register definition to override a previous definition for the
435 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
436 * old must have the OVERRIDE bit set.
7023ec7e
PM
437 * NO_MIGRATE indicates that this register should be ignored for migration;
438 * (eg because any state is accessed via some other coprocessor register).
4b6a83fb
PM
439 */
440#define ARM_CP_SPECIAL 1
441#define ARM_CP_CONST 2
442#define ARM_CP_64BIT 4
443#define ARM_CP_SUPPRESS_TB_END 8
444#define ARM_CP_OVERRIDE 16
7023ec7e 445#define ARM_CP_NO_MIGRATE 32
4b6a83fb
PM
446#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
447#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
448#define ARM_LAST_SPECIAL ARM_CP_WFI
449/* Used only as a terminator for ARMCPRegInfo lists */
450#define ARM_CP_SENTINEL 0xffff
451/* Mask of only the flag bits in a type field */
7023ec7e 452#define ARM_CP_FLAG_MASK 0x3f
4b6a83fb
PM
453
454/* Return true if cptype is a valid type field. This is used to try to
455 * catch errors where the sentinel has been accidentally left off the end
456 * of a list of registers.
457 */
458static inline bool cptype_valid(int cptype)
459{
460 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
461 || ((cptype & ARM_CP_SPECIAL) &&
34affeef 462 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
4b6a83fb
PM
463}
464
465/* Access rights:
466 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
467 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
468 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
469 * (ie any of the privileged modes in Secure state, or Monitor mode).
470 * If a register is accessible in one privilege level it's always accessible
471 * in higher privilege levels too. Since "Secure PL1" also follows this rule
472 * (ie anything visible in PL2 is visible in S-PL1, some things are only
473 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
474 * terminology a little and call this PL3.
475 *
476 * If access permissions for a register are more complex than can be
477 * described with these bits, then use a laxer set of restrictions, and
478 * do the more restrictive/complex check inside a helper function.
479 */
480#define PL3_R 0x80
481#define PL3_W 0x40
482#define PL2_R (0x20 | PL3_R)
483#define PL2_W (0x10 | PL3_W)
484#define PL1_R (0x08 | PL2_R)
485#define PL1_W (0x04 | PL2_W)
486#define PL0_R (0x02 | PL1_R)
487#define PL0_W (0x01 | PL1_W)
488
489#define PL3_RW (PL3_R | PL3_W)
490#define PL2_RW (PL2_R | PL2_W)
491#define PL1_RW (PL1_R | PL1_W)
492#define PL0_RW (PL0_R | PL0_W)
493
494static inline int arm_current_pl(CPUARMState *env)
495{
496 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
497 return 0;
498 }
499 /* We don't currently implement the Virtualization or TrustZone
500 * extensions, so PL2 and PL3 don't exist for us.
501 */
502 return 1;
503}
504
505typedef struct ARMCPRegInfo ARMCPRegInfo;
506
507/* Access functions for coprocessor registers. These should return
508 * 0 on success, or one of the EXCP_* constants if access should cause
509 * an exception (in which case *value is not written).
510 */
511typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
512 uint64_t *value);
513typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
514 uint64_t value);
515/* Hook function for register reset */
516typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
517
518#define CP_ANY 0xff
519
520/* Definition of an ARM coprocessor register */
521struct ARMCPRegInfo {
522 /* Name of register (useful mainly for debugging, need not be unique) */
523 const char *name;
524 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
525 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
526 * 'wildcard' field -- any value of that field in the MRC/MCR insn
527 * will be decoded to this register. The register read and write
528 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
529 * used by the program, so it is possible to register a wildcard and
530 * then behave differently on read/write if necessary.
531 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
532 * must both be zero.
533 */
534 uint8_t cp;
535 uint8_t crn;
536 uint8_t crm;
537 uint8_t opc1;
538 uint8_t opc2;
539 /* Register type: ARM_CP_* bits/values */
540 int type;
541 /* Access rights: PL*_[RW] */
542 int access;
543 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
544 * this register was defined: can be used to hand data through to the
545 * register read/write functions, since they are passed the ARMCPRegInfo*.
546 */
547 void *opaque;
548 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
549 * fieldoffset is non-zero, the reset value of the register.
550 */
551 uint64_t resetvalue;
552 /* Offset of the field in CPUARMState for this register. This is not
553 * needed if either:
554 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
555 * 2. both readfn and writefn are specified
556 */
557 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
558 /* Function for handling reads of this register. If NULL, then reads
559 * will be done by loading from the offset into CPUARMState specified
560 * by fieldoffset.
561 */
562 CPReadFn *readfn;
563 /* Function for handling writes of this register. If NULL, then writes
564 * will be done by writing to the offset into CPUARMState specified
565 * by fieldoffset.
566 */
567 CPWriteFn *writefn;
7023ec7e
PM
568 /* Function for doing a "raw" read; used when we need to copy
569 * coprocessor state to the kernel for KVM or out for
570 * migration. This only needs to be provided if there is also a
571 * readfn and it makes an access permission check.
572 */
573 CPReadFn *raw_readfn;
574 /* Function for doing a "raw" write; used when we need to copy KVM
575 * kernel coprocessor state into userspace, or for inbound
576 * migration. This only needs to be provided if there is also a
577 * writefn and it makes an access permission check or masks out
578 * "unwritable" bits or has write-one-to-clear or similar behaviour.
579 */
580 CPWriteFn *raw_writefn;
4b6a83fb
PM
581 /* Function for resetting the register. If NULL, then reset will be done
582 * by writing resetvalue to the field specified in fieldoffset. If
583 * fieldoffset is 0 then no reset will be done.
584 */
585 CPResetFn *resetfn;
586};
587
588/* Macros which are lvalues for the field in CPUARMState for the
589 * ARMCPRegInfo *ri.
590 */
591#define CPREG_FIELD32(env, ri) \
592 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
593#define CPREG_FIELD64(env, ri) \
594 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
595
596#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
597
598void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
599 const ARMCPRegInfo *regs, void *opaque);
600void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
601 const ARMCPRegInfo *regs, void *opaque);
602static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
603{
604 define_arm_cp_regs_with_opaque(cpu, regs, 0);
605}
606static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
607{
608 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
609}
610const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
611
612/* CPWriteFn that can be used to implement writes-ignored behaviour */
613int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
614 uint64_t value);
615/* CPReadFn that can be used for read-as-zero behaviour */
616int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
617
618static inline bool cp_access_ok(CPUARMState *env,
619 const ARMCPRegInfo *ri, int isread)
620{
621 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
622}
623
9ee6e8bb
PB
624/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
625 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
626 conventional cores (ie. Application or Realtime profile). */
627
628#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 629
9ee6e8bb
PB
630#define ARM_CPUID_TI915T 0x54029152
631#define ARM_CPUID_TI925T 0x54029252
40f137e1 632
b5ff1b31 633#if defined(CONFIG_USER_ONLY)
2c0262af 634#define TARGET_PAGE_BITS 12
b5ff1b31
FB
635#else
636/* The ARM MMU allows 1k pages. */
637/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 638 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
639#define TARGET_PAGE_BITS 10
640#endif
9467d44c 641
3cc0cd61 642#define TARGET_PHYS_ADDR_SPACE_BITS 40
52705890
RH
643#define TARGET_VIRT_ADDR_SPACE_BITS 32
644
ad37ad5b
PM
645static inline CPUARMState *cpu_init(const char *cpu_model)
646{
647 ARMCPU *cpu = cpu_arm_init(cpu_model);
648 if (cpu) {
649 return &cpu->env;
650 }
651 return NULL;
652}
653
9467d44c
TS
654#define cpu_exec cpu_arm_exec
655#define cpu_gen_code cpu_arm_gen_code
656#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 657#define cpu_list arm_cpu_list
9467d44c 658
6ebbf390
JM
659/* MMU modes definitions */
660#define MMU_MODE0_SUFFIX _kernel
661#define MMU_MODE1_SUFFIX _user
662#define MMU_USER_IDX 1
0ecb72a5 663static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
664{
665 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
666}
667
6e68e076 668#if defined(CONFIG_USER_ONLY)
0ecb72a5 669static inline void cpu_clone_regs(CPUARMState *env, target_ulong newsp)
6e68e076 670{
f8ed7070 671 if (newsp)
6e68e076
PB
672 env->regs[13] = newsp;
673 env->regs[0] = 0;
674}
675#endif
676
022c62cb 677#include "exec/cpu-all.h"
622ed360 678
a1705768
PM
679/* Bit usage in the TB flags field: */
680#define ARM_TBFLAG_THUMB_SHIFT 0
681#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
682#define ARM_TBFLAG_VECLEN_SHIFT 1
683#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
684#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
685#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
686#define ARM_TBFLAG_PRIV_SHIFT 6
687#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
688#define ARM_TBFLAG_VFPEN_SHIFT 7
689#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
690#define ARM_TBFLAG_CONDEXEC_SHIFT 8
691#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
692#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
693#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
694/* Bits 31..17 are currently unused. */
a1705768
PM
695
696/* some convenience accessor macros */
697#define ARM_TBFLAG_THUMB(F) \
698 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
699#define ARM_TBFLAG_VECLEN(F) \
700 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
701#define ARM_TBFLAG_VECSTRIDE(F) \
702 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
703#define ARM_TBFLAG_PRIV(F) \
704 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
705#define ARM_TBFLAG_VFPEN(F) \
706 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
707#define ARM_TBFLAG_CONDEXEC(F) \
708 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
709#define ARM_TBFLAG_BSWAP_CODE(F) \
710 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 711
0ecb72a5 712static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
713 target_ulong *cs_base, int *flags)
714{
05ed9a99 715 int privmode;
6b917547
AL
716 *pc = env->regs[15];
717 *cs_base = 0;
a1705768
PM
718 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
719 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
720 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
d8fd2954
PB
721 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
722 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
05ed9a99
PM
723 if (arm_feature(env, ARM_FEATURE_M)) {
724 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
725 } else {
726 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
727 }
728 if (privmode) {
a1705768
PM
729 *flags |= ARM_TBFLAG_PRIV_MASK;
730 }
731 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
732 *flags |= ARM_TBFLAG_VFPEN_MASK;
733 }
6b917547
AL
734}
735
3993c6bd 736static inline bool cpu_has_work(CPUState *cpu)
f081c76c 737{
259186a7 738 return cpu->interrupt_request &
f081c76c
BS
739 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
740}
741
022c62cb 742#include "exec/exec-all.h"
f081c76c 743
0ecb72a5 744static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
f081c76c
BS
745{
746 env->regs[15] = tb->pc;
747}
748
d8fd2954 749/* Load an instruction and return it in the standard little-endian order */
d31dd73e
BS
750static inline uint32_t arm_ldl_code(CPUARMState *env, uint32_t addr,
751 bool do_swap)
d8fd2954 752{
d31dd73e 753 uint32_t insn = cpu_ldl_code(env, addr);
d8fd2954
PB
754 if (do_swap) {
755 return bswap32(insn);
756 }
757 return insn;
758}
759
760/* Ditto, for a halfword (Thumb) instruction */
d31dd73e
BS
761static inline uint16_t arm_lduw_code(CPUARMState *env, uint32_t addr,
762 bool do_swap)
d8fd2954 763{
d31dd73e 764 uint16_t insn = cpu_lduw_code(env, addr);
d8fd2954
PB
765 if (do_swap) {
766 return bswap16(insn);
767 }
768 return insn;
769}
770
2c0262af 771#endif