]> git.proxmox.com Git - qemu.git/blame - target-arm/cpu.h
target-arm: Implement privileged-execute-never (PXN)
[qemu.git] / target-arm / cpu.h
CommitLineData
2c0262af
FB
1/*
2 * ARM virtual CPU header
5fafdf24 3 *
2c0262af
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
2c0262af
FB
18 */
19#ifndef CPU_ARM_H
20#define CPU_ARM_H
21
3cf1e035
FB
22#define TARGET_LONG_BITS 32
23
9042c0e2
TS
24#define ELF_MACHINE EM_ARM
25
9349b4f9 26#define CPUArchState struct CPUARMState
c2764719 27
9a78eead
SW
28#include "config.h"
29#include "qemu-common.h"
2c0262af
FB
30#include "cpu-defs.h"
31
53cd6637
FB
32#include "softfloat.h"
33
1fddef4b
FB
34#define TARGET_HAS_ICE 1
35
b8a9e8f1
FB
36#define EXCP_UDEF 1 /* undefined instruction */
37#define EXCP_SWI 2 /* software interrupt */
38#define EXCP_PREFETCH_ABORT 3
39#define EXCP_DATA_ABORT 4
b5ff1b31
FB
40#define EXCP_IRQ 5
41#define EXCP_FIQ 6
06c949e6 42#define EXCP_BKPT 7
9ee6e8bb 43#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
fbb4a2e3 44#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
426f5abc 45#define EXCP_STREX 10
9ee6e8bb
PB
46
47#define ARMV7M_EXCP_RESET 1
48#define ARMV7M_EXCP_NMI 2
49#define ARMV7M_EXCP_HARD 3
50#define ARMV7M_EXCP_MEM 4
51#define ARMV7M_EXCP_BUS 5
52#define ARMV7M_EXCP_USAGE 6
53#define ARMV7M_EXCP_SVC 11
54#define ARMV7M_EXCP_DEBUG 12
55#define ARMV7M_EXCP_PENDSV 14
56#define ARMV7M_EXCP_SYSTICK 15
2c0262af 57
403946c0
RH
58/* ARM-specific interrupt pending bits. */
59#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
60
61
c1713132
AZ
62typedef void ARMWriteCPFunc(void *opaque, int cp_info,
63 int srcreg, int operand, uint32_t value);
64typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
65 int dstreg, int operand);
66
f93eb9ff
AZ
67struct arm_boot_info;
68
6ebbf390
JM
69#define NB_MMU_MODES 2
70
b7bcbe95
FB
71/* We currently assume float and double are IEEE single and double
72 precision respectively.
73 Doing runtime conversions is tricky because VFP registers may contain
74 integer values (eg. as the result of a FTOSI instruction).
8e96005d
FB
75 s<2n> maps to the least significant half of d<n>
76 s<2n+1> maps to the most significant half of d<n>
77 */
b7bcbe95 78
2c0262af 79typedef struct CPUARMState {
b5ff1b31 80 /* Regs for current mode. */
2c0262af 81 uint32_t regs[16];
b5ff1b31 82 /* Frequently accessed CPSR bits are stored separately for efficiently.
d37aca66 83 This contains all the other bits. Use cpsr_{read,write} to access
b5ff1b31
FB
84 the whole CPSR. */
85 uint32_t uncached_cpsr;
86 uint32_t spsr;
87
88 /* Banked registers. */
89 uint32_t banked_spsr[6];
90 uint32_t banked_r13[6];
91 uint32_t banked_r14[6];
3b46e624 92
b5ff1b31
FB
93 /* These hold r8-r12. */
94 uint32_t usr_regs[5];
95 uint32_t fiq_regs[5];
3b46e624 96
2c0262af
FB
97 /* cpsr flag cache for faster execution */
98 uint32_t CF; /* 0 or 1 */
99 uint32_t VF; /* V is the bit 31. All other bits are undefined */
6fbe23d5
PB
100 uint32_t NF; /* N is bit 31. All other bits are undefined. */
101 uint32_t ZF; /* Z set if zero. */
99c475ab 102 uint32_t QF; /* 0 or 1 */
9ee6e8bb 103 uint32_t GE; /* cpsr[19:16] */
b26eefb6 104 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
9ee6e8bb 105 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
2c0262af 106
b5ff1b31
FB
107 /* System control coprocessor (cp15) */
108 struct {
40f137e1 109 uint32_t c0_cpuid;
a49ea279 110 uint32_t c0_cssel; /* Cache size selection. */
b5ff1b31
FB
111 uint32_t c1_sys; /* System control register. */
112 uint32_t c1_coproc; /* Coprocessor access register. */
610c3c8a 113 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
2be27624 114 uint32_t c1_scr; /* secure config register. */
9ee6e8bb
PB
115 uint32_t c2_base0; /* MMU translation table base 0. */
116 uint32_t c2_base1; /* MMU translation table base 1. */
b2fa1797
PB
117 uint32_t c2_control; /* MMU translation table base control. */
118 uint32_t c2_mask; /* MMU translation table base selection mask. */
119 uint32_t c2_base_mask; /* MMU translation table base 0 mask. */
ce819861
PB
120 uint32_t c2_data; /* MPU data cachable bits. */
121 uint32_t c2_insn; /* MPU instruction cachable bits. */
122 uint32_t c3; /* MMU domain access control register
123 MPU write buffer control. */
b5ff1b31
FB
124 uint32_t c5_insn; /* Fault status registers. */
125 uint32_t c5_data;
ce819861 126 uint32_t c6_region[8]; /* MPU base/size registers. */
b5ff1b31
FB
127 uint32_t c6_insn; /* Fault address registers. */
128 uint32_t c6_data;
f8bf8606 129 uint32_t c7_par; /* Translation result. */
b5ff1b31
FB
130 uint32_t c9_insn; /* Cache lockdown registers. */
131 uint32_t c9_data;
74594c9d
PM
132 uint32_t c9_pmcr; /* performance monitor control register */
133 uint32_t c9_pmcnten; /* perf monitor counter enables */
134 uint32_t c9_pmovsr; /* perf monitor overflow status */
135 uint32_t c9_pmxevtyper; /* perf monitor event type */
136 uint32_t c9_pmuserenr; /* perf monitor user enable */
137 uint32_t c9_pminten; /* perf monitor interrupt enables */
b5ff1b31
FB
138 uint32_t c13_fcse; /* FCSE PID. */
139 uint32_t c13_context; /* Context ID. */
9ee6e8bb
PB
140 uint32_t c13_tls1; /* User RW Thread register. */
141 uint32_t c13_tls2; /* User RO Thread register. */
142 uint32_t c13_tls3; /* Privileged Thread register. */
c1713132 143 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
c3d2689d
AZ
144 uint32_t c15_ticonfig; /* TI925T configuration byte. */
145 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
146 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
147 uint32_t c15_threadid; /* TI debugger thread-ID. */
7da362d0
ML
148 uint32_t c15_config_base_address; /* SCU base address. */
149 uint32_t c15_diagnostic; /* diagnostic register */
150 uint32_t c15_power_diagnostic;
151 uint32_t c15_power_control; /* power control */
b5ff1b31 152 } cp15;
40f137e1 153
9ee6e8bb
PB
154 struct {
155 uint32_t other_sp;
156 uint32_t vecbase;
157 uint32_t basepri;
158 uint32_t control;
159 int current_sp;
160 int exception;
161 int pending_exception;
9ee6e8bb
PB
162 } v7m;
163
fe1479c3
PB
164 /* Thumb-2 EE state. */
165 uint32_t teecr;
166 uint32_t teehbr;
167
b7bcbe95
FB
168 /* VFP coprocessor state. */
169 struct {
9ee6e8bb 170 float64 regs[32];
b7bcbe95 171
40f137e1 172 uint32_t xregs[16];
b7bcbe95
FB
173 /* We store these fpcsr fields separately for convenience. */
174 int vec_len;
175 int vec_stride;
176
9ee6e8bb
PB
177 /* scratch space when Tn are not sufficient. */
178 uint32_t scratch[8];
3b46e624 179
3a492f3a
PM
180 /* fp_status is the "normal" fp status. standard_fp_status retains
181 * values corresponding to the ARM "Standard FPSCR Value", ie
182 * default-NaN, flush-to-zero, round-to-nearest and is used by
183 * any operations (generally Neon) which the architecture defines
184 * as controlled by the standard FPSCR value rather than the FPSCR.
185 *
186 * To avoid having to transfer exception bits around, we simply
187 * say that the FPSCR cumulative exception flags are the logical
188 * OR of the flags in the two fp statuses. This relies on the
189 * only thing which needs to read the exception flags being
190 * an explicit FPSCR read.
191 */
53cd6637 192 float_status fp_status;
3a492f3a 193 float_status standard_fp_status;
b7bcbe95 194 } vfp;
426f5abc
PB
195 uint32_t exclusive_addr;
196 uint32_t exclusive_val;
197 uint32_t exclusive_high;
9ee6e8bb 198#if defined(CONFIG_USER_ONLY)
426f5abc
PB
199 uint32_t exclusive_test;
200 uint32_t exclusive_info;
9ee6e8bb 201#endif
b7bcbe95 202
18c9b560
AZ
203 /* iwMMXt coprocessor state. */
204 struct {
205 uint64_t regs[16];
206 uint64_t val;
207
208 uint32_t cregs[16];
209 } iwmmxt;
210
d8fd2954
PB
211 /* For mixed endian mode. */
212 bool bswap_code;
213
ce4defa0
PB
214#if defined(CONFIG_USER_ONLY)
215 /* For usermode syscall translation. */
216 int eabi;
217#endif
218
a316d335
FB
219 CPU_COMMON
220
9d551997 221 /* These fields after the common ones so they are preserved on reset. */
9ba8c3f4 222
581be094
PM
223 /* Internal CPU feature flags. */
224 uint32_t features;
225
983fe826 226 void *nvic;
462a8bc6 227 const struct arm_boot_info *boot_info;
2c0262af
FB
228} CPUARMState;
229
778c3a06
AF
230#include "cpu-qom.h"
231
232ARMCPU *cpu_arm_init(const char *cpu_model);
b26eefb6 233void arm_translate_init(void);
2c0262af 234int cpu_arm_exec(CPUARMState *s);
b5ff1b31
FB
235void do_interrupt(CPUARMState *);
236void switch_mode(CPUARMState *, int);
9ee6e8bb 237uint32_t do_arm_semihosting(CPUARMState *env);
b5ff1b31 238
2c0262af
FB
239/* you can call this signal handler from your SIGBUS and SIGSEGV
240 signal handlers to inform the virtual CPU of exceptions. non zero
241 is returned if the signal was handled by the virtual CPU. */
5fafdf24 242int cpu_arm_signal_handler(int host_signum, void *pinfo,
2c0262af 243 void *puc);
84a031c6 244int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
97b348e7 245 int mmu_idx);
0b5c1ce8 246#define cpu_handle_mmu_fault cpu_arm_handle_mmu_fault
2c0262af 247
fbb4a2e3
PB
248static inline void cpu_set_tls(CPUARMState *env, target_ulong newtls)
249{
250 env->cp15.c13_tls2 = newtls;
251}
9ee6e8bb 252
b5ff1b31
FB
253#define CPSR_M (0x1f)
254#define CPSR_T (1 << 5)
255#define CPSR_F (1 << 6)
256#define CPSR_I (1 << 7)
257#define CPSR_A (1 << 8)
258#define CPSR_E (1 << 9)
259#define CPSR_IT_2_7 (0xfc00)
9ee6e8bb
PB
260#define CPSR_GE (0xf << 16)
261#define CPSR_RESERVED (0xf << 20)
b5ff1b31
FB
262#define CPSR_J (1 << 24)
263#define CPSR_IT_0_1 (3 << 25)
264#define CPSR_Q (1 << 27)
9ee6e8bb
PB
265#define CPSR_V (1 << 28)
266#define CPSR_C (1 << 29)
267#define CPSR_Z (1 << 30)
268#define CPSR_N (1 << 31)
269#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
270
271#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
272#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
273/* Bits writable in user mode. */
274#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
275/* Execution state bits. MRS read as zero, MSR writes ignored. */
276#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
b5ff1b31 277
b5ff1b31 278/* Return the current CPSR value. */
2f4a40e5
AZ
279uint32_t cpsr_read(CPUARMState *env);
280/* Set the CPSR. Note that some bits of mask must be all-set or all-clear. */
281void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
9ee6e8bb
PB
282
283/* Return the current xPSR value. */
284static inline uint32_t xpsr_read(CPUARMState *env)
285{
286 int ZF;
6fbe23d5
PB
287 ZF = (env->ZF == 0);
288 return (env->NF & 0x80000000) | (ZF << 30)
9ee6e8bb
PB
289 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
290 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
291 | ((env->condexec_bits & 0xfc) << 8)
292 | env->v7m.exception;
b5ff1b31
FB
293}
294
9ee6e8bb
PB
295/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
296static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
297{
9ee6e8bb 298 if (mask & CPSR_NZCV) {
6fbe23d5
PB
299 env->ZF = (~val) & CPSR_Z;
300 env->NF = val;
9ee6e8bb
PB
301 env->CF = (val >> 29) & 1;
302 env->VF = (val << 3) & 0x80000000;
303 }
304 if (mask & CPSR_Q)
305 env->QF = ((val & CPSR_Q) != 0);
306 if (mask & (1 << 24))
307 env->thumb = ((val & (1 << 24)) != 0);
308 if (mask & CPSR_IT_0_1) {
309 env->condexec_bits &= ~3;
310 env->condexec_bits |= (val >> 25) & 3;
311 }
312 if (mask & CPSR_IT_2_7) {
313 env->condexec_bits &= 3;
314 env->condexec_bits |= (val >> 8) & 0xfc;
315 }
316 if (mask & 0x1ff) {
317 env->v7m.exception = val & 0x1ff;
318 }
319}
320
01653295
PM
321/* Return the current FPSCR value. */
322uint32_t vfp_get_fpscr(CPUARMState *env);
323void vfp_set_fpscr(CPUARMState *env, uint32_t val);
324
b5ff1b31
FB
325enum arm_cpu_mode {
326 ARM_CPU_MODE_USR = 0x10,
327 ARM_CPU_MODE_FIQ = 0x11,
328 ARM_CPU_MODE_IRQ = 0x12,
329 ARM_CPU_MODE_SVC = 0x13,
330 ARM_CPU_MODE_ABT = 0x17,
331 ARM_CPU_MODE_UND = 0x1b,
332 ARM_CPU_MODE_SYS = 0x1f
333};
334
40f137e1
PB
335/* VFP system registers. */
336#define ARM_VFP_FPSID 0
337#define ARM_VFP_FPSCR 1
9ee6e8bb
PB
338#define ARM_VFP_MVFR1 6
339#define ARM_VFP_MVFR0 7
40f137e1
PB
340#define ARM_VFP_FPEXC 8
341#define ARM_VFP_FPINST 9
342#define ARM_VFP_FPINST2 10
343
18c9b560
AZ
344/* iwMMXt coprocessor control registers. */
345#define ARM_IWMMXT_wCID 0
346#define ARM_IWMMXT_wCon 1
347#define ARM_IWMMXT_wCSSF 2
348#define ARM_IWMMXT_wCASF 3
349#define ARM_IWMMXT_wCGR0 8
350#define ARM_IWMMXT_wCGR1 9
351#define ARM_IWMMXT_wCGR2 10
352#define ARM_IWMMXT_wCGR3 11
353
ce854d7c
BC
354/* If adding a feature bit which corresponds to a Linux ELF
355 * HWCAP bit, remember to update the feature-bit-to-hwcap
356 * mapping in linux-user/elfload.c:get_elf_hwcap().
357 */
40f137e1
PB
358enum arm_features {
359 ARM_FEATURE_VFP,
c1713132
AZ
360 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
361 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
ce819861 362 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
9ee6e8bb
PB
363 ARM_FEATURE_V6,
364 ARM_FEATURE_V6K,
365 ARM_FEATURE_V7,
366 ARM_FEATURE_THUMB2,
c3d2689d 367 ARM_FEATURE_MPU, /* Only has Memory Protection Unit, not full MMU. */
9ee6e8bb 368 ARM_FEATURE_VFP3,
60011498 369 ARM_FEATURE_VFP_FP16,
9ee6e8bb 370 ARM_FEATURE_NEON,
47789990 371 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
9ee6e8bb 372 ARM_FEATURE_M, /* Microcontroller profile. */
fe1479c3 373 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
e1bbf446 374 ARM_FEATURE_THUMB2EE,
be5e7a76
DES
375 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
376 ARM_FEATURE_V4T,
377 ARM_FEATURE_V5,
5bc95aa2 378 ARM_FEATURE_STRONGARM,
906879a9 379 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
b8b8ea05 380 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
da97f52c 381 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
0383ac00 382 ARM_FEATURE_GENERIC_TIMER,
06ed5d66 383 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1047b9d7 384 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
c4804214
PM
385 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
386 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
387 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
81bdde9d 388 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
de9b05b8
PM
389 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
390 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
40f137e1
PB
391};
392
393static inline int arm_feature(CPUARMState *env, int feature)
394{
395 return (env->features & (1u << feature)) != 0;
396}
397
9a78eead 398void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
40f137e1 399
9ee6e8bb
PB
400/* Interface between CPU and Interrupt controller. */
401void armv7m_nvic_set_pending(void *opaque, int irq);
402int armv7m_nvic_acknowledge_irq(void *opaque);
403void armv7m_nvic_complete_irq(void *opaque, int irq);
404
4b6a83fb
PM
405/* Interface for defining coprocessor registers.
406 * Registers are defined in tables of arm_cp_reginfo structs
407 * which are passed to define_arm_cp_regs().
408 */
409
410/* When looking up a coprocessor register we look for it
411 * via an integer which encodes all of:
412 * coprocessor number
413 * Crn, Crm, opc1, opc2 fields
414 * 32 or 64 bit register (ie is it accessed via MRC/MCR
415 * or via MRRC/MCRR?)
416 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
417 * (In this case crn and opc2 should be zero.)
418 */
419#define ENCODE_CP_REG(cp, is64, crn, crm, opc1, opc2) \
420 (((cp) << 16) | ((is64) << 15) | ((crn) << 11) | \
421 ((crm) << 7) | ((opc1) << 3) | (opc2))
422
423#define DECODE_CPREG_CRN(enc) (((enc) >> 7) & 0xf)
424
425/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
426 * special-behaviour cp reg and bits [15..8] indicate what behaviour
427 * it has. Otherwise it is a simple cp reg, where CONST indicates that
428 * TCG can assume the value to be constant (ie load at translate time)
429 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
430 * indicates that the TB should not be ended after a write to this register
431 * (the default is that the TB ends after cp writes). OVERRIDE permits
432 * a register definition to override a previous definition for the
433 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
434 * old must have the OVERRIDE bit set.
435 */
436#define ARM_CP_SPECIAL 1
437#define ARM_CP_CONST 2
438#define ARM_CP_64BIT 4
439#define ARM_CP_SUPPRESS_TB_END 8
440#define ARM_CP_OVERRIDE 16
441#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
442#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
443#define ARM_LAST_SPECIAL ARM_CP_WFI
444/* Used only as a terminator for ARMCPRegInfo lists */
445#define ARM_CP_SENTINEL 0xffff
446/* Mask of only the flag bits in a type field */
447#define ARM_CP_FLAG_MASK 0x1f
448
449/* Return true if cptype is a valid type field. This is used to try to
450 * catch errors where the sentinel has been accidentally left off the end
451 * of a list of registers.
452 */
453static inline bool cptype_valid(int cptype)
454{
455 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
456 || ((cptype & ARM_CP_SPECIAL) &&
457 (cptype <= ARM_LAST_SPECIAL));
458}
459
460/* Access rights:
461 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
462 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
463 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
464 * (ie any of the privileged modes in Secure state, or Monitor mode).
465 * If a register is accessible in one privilege level it's always accessible
466 * in higher privilege levels too. Since "Secure PL1" also follows this rule
467 * (ie anything visible in PL2 is visible in S-PL1, some things are only
468 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
469 * terminology a little and call this PL3.
470 *
471 * If access permissions for a register are more complex than can be
472 * described with these bits, then use a laxer set of restrictions, and
473 * do the more restrictive/complex check inside a helper function.
474 */
475#define PL3_R 0x80
476#define PL3_W 0x40
477#define PL2_R (0x20 | PL3_R)
478#define PL2_W (0x10 | PL3_W)
479#define PL1_R (0x08 | PL2_R)
480#define PL1_W (0x04 | PL2_W)
481#define PL0_R (0x02 | PL1_R)
482#define PL0_W (0x01 | PL1_W)
483
484#define PL3_RW (PL3_R | PL3_W)
485#define PL2_RW (PL2_R | PL2_W)
486#define PL1_RW (PL1_R | PL1_W)
487#define PL0_RW (PL0_R | PL0_W)
488
489static inline int arm_current_pl(CPUARMState *env)
490{
491 if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_USR) {
492 return 0;
493 }
494 /* We don't currently implement the Virtualization or TrustZone
495 * extensions, so PL2 and PL3 don't exist for us.
496 */
497 return 1;
498}
499
500typedef struct ARMCPRegInfo ARMCPRegInfo;
501
502/* Access functions for coprocessor registers. These should return
503 * 0 on success, or one of the EXCP_* constants if access should cause
504 * an exception (in which case *value is not written).
505 */
506typedef int CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque,
507 uint64_t *value);
508typedef int CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
509 uint64_t value);
510/* Hook function for register reset */
511typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
512
513#define CP_ANY 0xff
514
515/* Definition of an ARM coprocessor register */
516struct ARMCPRegInfo {
517 /* Name of register (useful mainly for debugging, need not be unique) */
518 const char *name;
519 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
520 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
521 * 'wildcard' field -- any value of that field in the MRC/MCR insn
522 * will be decoded to this register. The register read and write
523 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
524 * used by the program, so it is possible to register a wildcard and
525 * then behave differently on read/write if necessary.
526 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
527 * must both be zero.
528 */
529 uint8_t cp;
530 uint8_t crn;
531 uint8_t crm;
532 uint8_t opc1;
533 uint8_t opc2;
534 /* Register type: ARM_CP_* bits/values */
535 int type;
536 /* Access rights: PL*_[RW] */
537 int access;
538 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
539 * this register was defined: can be used to hand data through to the
540 * register read/write functions, since they are passed the ARMCPRegInfo*.
541 */
542 void *opaque;
543 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
544 * fieldoffset is non-zero, the reset value of the register.
545 */
546 uint64_t resetvalue;
547 /* Offset of the field in CPUARMState for this register. This is not
548 * needed if either:
549 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
550 * 2. both readfn and writefn are specified
551 */
552 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
553 /* Function for handling reads of this register. If NULL, then reads
554 * will be done by loading from the offset into CPUARMState specified
555 * by fieldoffset.
556 */
557 CPReadFn *readfn;
558 /* Function for handling writes of this register. If NULL, then writes
559 * will be done by writing to the offset into CPUARMState specified
560 * by fieldoffset.
561 */
562 CPWriteFn *writefn;
563 /* Function for resetting the register. If NULL, then reset will be done
564 * by writing resetvalue to the field specified in fieldoffset. If
565 * fieldoffset is 0 then no reset will be done.
566 */
567 CPResetFn *resetfn;
568};
569
570/* Macros which are lvalues for the field in CPUARMState for the
571 * ARMCPRegInfo *ri.
572 */
573#define CPREG_FIELD32(env, ri) \
574 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
575#define CPREG_FIELD64(env, ri) \
576 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
577
578#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
579
580void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
581 const ARMCPRegInfo *regs, void *opaque);
582void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
583 const ARMCPRegInfo *regs, void *opaque);
584static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
585{
586 define_arm_cp_regs_with_opaque(cpu, regs, 0);
587}
588static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
589{
590 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
591}
592const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp);
593
594/* CPWriteFn that can be used to implement writes-ignored behaviour */
595int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t value);
597/* CPReadFn that can be used for read-as-zero behaviour */
598int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value);
599
600static inline bool cp_access_ok(CPUARMState *env,
601 const ARMCPRegInfo *ri, int isread)
602{
603 return (ri->access >> ((arm_current_pl(env) * 2) + isread)) & 1;
604}
605
9ee6e8bb
PB
606/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
607 Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
608 conventional cores (ie. Application or Realtime profile). */
609
610#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
9ee6e8bb 611
9ee6e8bb
PB
612#define ARM_CPUID_TI915T 0x54029152
613#define ARM_CPUID_TI925T 0x54029252
40f137e1 614
b5ff1b31 615#if defined(CONFIG_USER_ONLY)
2c0262af 616#define TARGET_PAGE_BITS 12
b5ff1b31
FB
617#else
618/* The ARM MMU allows 1k pages. */
619/* ??? Linux doesn't actually use these, and they're deprecated in recent
82d17978 620 architecture revisions. Maybe a configure option to disable them. */
b5ff1b31
FB
621#define TARGET_PAGE_BITS 10
622#endif
9467d44c 623
3cc0cd61 624#define TARGET_PHYS_ADDR_SPACE_BITS 40
52705890
RH
625#define TARGET_VIRT_ADDR_SPACE_BITS 32
626
ad37ad5b
PM
627static inline CPUARMState *cpu_init(const char *cpu_model)
628{
629 ARMCPU *cpu = cpu_arm_init(cpu_model);
630 if (cpu) {
631 return &cpu->env;
632 }
633 return NULL;
634}
635
9467d44c
TS
636#define cpu_exec cpu_arm_exec
637#define cpu_gen_code cpu_arm_gen_code
638#define cpu_signal_handler cpu_arm_signal_handler
c732abe2 639#define cpu_list arm_cpu_list
9467d44c 640
b22af022 641#define CPU_SAVE_VERSION 7
9ee6e8bb 642
6ebbf390
JM
643/* MMU modes definitions */
644#define MMU_MODE0_SUFFIX _kernel
645#define MMU_MODE1_SUFFIX _user
646#define MMU_USER_IDX 1
0ecb72a5 647static inline int cpu_mmu_index (CPUARMState *env)
6ebbf390
JM
648{
649 return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
650}
651
6e68e076 652#if defined(CONFIG_USER_ONLY)
0ecb72a5 653static inline void cpu_clone_regs(CPUARMState *env, target_ulong newsp)
6e68e076 654{
f8ed7070 655 if (newsp)
6e68e076
PB
656 env->regs[13] = newsp;
657 env->regs[0] = 0;
658}
659#endif
660
2c0262af 661#include "cpu-all.h"
622ed360 662
a1705768
PM
663/* Bit usage in the TB flags field: */
664#define ARM_TBFLAG_THUMB_SHIFT 0
665#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
666#define ARM_TBFLAG_VECLEN_SHIFT 1
667#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
668#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
669#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
670#define ARM_TBFLAG_PRIV_SHIFT 6
671#define ARM_TBFLAG_PRIV_MASK (1 << ARM_TBFLAG_PRIV_SHIFT)
672#define ARM_TBFLAG_VFPEN_SHIFT 7
673#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
674#define ARM_TBFLAG_CONDEXEC_SHIFT 8
675#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
676#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
677#define ARM_TBFLAG_BSWAP_CODE_MASK (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
678/* Bits 31..17 are currently unused. */
a1705768
PM
679
680/* some convenience accessor macros */
681#define ARM_TBFLAG_THUMB(F) \
682 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
683#define ARM_TBFLAG_VECLEN(F) \
684 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
685#define ARM_TBFLAG_VECSTRIDE(F) \
686 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
687#define ARM_TBFLAG_PRIV(F) \
688 (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
689#define ARM_TBFLAG_VFPEN(F) \
690 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
691#define ARM_TBFLAG_CONDEXEC(F) \
692 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
d8fd2954
PB
693#define ARM_TBFLAG_BSWAP_CODE(F) \
694 (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
a1705768 695
0ecb72a5 696static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
6b917547
AL
697 target_ulong *cs_base, int *flags)
698{
05ed9a99 699 int privmode;
6b917547
AL
700 *pc = env->regs[15];
701 *cs_base = 0;
a1705768
PM
702 *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
703 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
704 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
d8fd2954
PB
705 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
706 | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
05ed9a99
PM
707 if (arm_feature(env, ARM_FEATURE_M)) {
708 privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
709 } else {
710 privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
711 }
712 if (privmode) {
a1705768
PM
713 *flags |= ARM_TBFLAG_PRIV_MASK;
714 }
715 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
716 *flags |= ARM_TBFLAG_VFPEN_MASK;
717 }
6b917547
AL
718}
719
0ecb72a5 720static inline bool cpu_has_work(CPUARMState *env)
f081c76c
BS
721{
722 return env->interrupt_request &
723 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB);
724}
725
726#include "exec-all.h"
727
0ecb72a5 728static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
f081c76c
BS
729{
730 env->regs[15] = tb->pc;
731}
732
d8fd2954
PB
733/* Load an instruction and return it in the standard little-endian order */
734static inline uint32_t arm_ldl_code(uint32_t addr, bool do_swap)
735{
736 uint32_t insn = ldl_code(addr);
737 if (do_swap) {
738 return bswap32(insn);
739 }
740 return insn;
741}
742
743/* Ditto, for a halfword (Thumb) instruction */
744static inline uint16_t arm_lduw_code(uint32_t addr, bool do_swap)
745{
746 uint16_t insn = lduw_code(addr);
747 if (do_swap) {
748 return bswap16(insn);
749 }
750 return insn;
751}
752
2c0262af 753#endif