]> git.proxmox.com Git - qemu.git/blame - target-arm/neon_helper.c
Correct spelling of licensed
[qemu.git] / target-arm / neon_helper.c
CommitLineData
e677137d
PB
1/*
2 * ARM NEON vector operations.
3 *
4 * Copyright (c) 2007, 2008 CodeSourcery.
5 * Written by Paul Brook
6 *
8e31bf38 7 * This code is licensed under the GNU GPL v2.
e677137d 8 */
ad69471c
PB
9#include <stdlib.h>
10#include <stdio.h>
11
12#include "cpu.h"
02da0b2d 13#include "exec-all.h"
7b59220e 14#include "helper.h"
ad69471c
PB
15
16#define SIGNBIT (uint32_t)0x80000000
17#define SIGNBIT64 ((uint64_t)1 << 63)
18
19#define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] = CPSR_Q
20
ad69471c
PB
21#define NEON_TYPE1(name, type) \
22typedef struct \
23{ \
24 type v1; \
25} neon_##name;
e2542fe2 26#ifdef HOST_WORDS_BIGENDIAN
ad69471c
PB
27#define NEON_TYPE2(name, type) \
28typedef struct \
29{ \
30 type v2; \
31 type v1; \
32} neon_##name;
33#define NEON_TYPE4(name, type) \
34typedef struct \
35{ \
36 type v4; \
37 type v3; \
38 type v2; \
39 type v1; \
40} neon_##name;
41#else
42#define NEON_TYPE2(name, type) \
43typedef struct \
44{ \
45 type v1; \
46 type v2; \
47} neon_##name;
48#define NEON_TYPE4(name, type) \
49typedef struct \
50{ \
51 type v1; \
52 type v2; \
53 type v3; \
54 type v4; \
55} neon_##name;
56#endif
57
58NEON_TYPE4(s8, int8_t)
59NEON_TYPE4(u8, uint8_t)
60NEON_TYPE2(s16, int16_t)
61NEON_TYPE2(u16, uint16_t)
62NEON_TYPE1(s32, int32_t)
63NEON_TYPE1(u32, uint32_t)
64#undef NEON_TYPE4
65#undef NEON_TYPE2
66#undef NEON_TYPE1
67
68/* Copy from a uint32_t to a vector structure type. */
69#define NEON_UNPACK(vtype, dest, val) do { \
70 union { \
71 vtype v; \
72 uint32_t i; \
73 } conv_u; \
74 conv_u.i = (val); \
75 dest = conv_u.v; \
76 } while(0)
77
78/* Copy from a vector structure type to a uint32_t. */
79#define NEON_PACK(vtype, dest, val) do { \
80 union { \
81 vtype v; \
82 uint32_t i; \
83 } conv_u; \
84 conv_u.v = (val); \
85 dest = conv_u.i; \
86 } while(0)
87
88#define NEON_DO1 \
89 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
90#define NEON_DO2 \
91 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
92 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
93#define NEON_DO4 \
94 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
95 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
96 NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
97 NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
98
99#define NEON_VOP_BODY(vtype, n) \
100{ \
101 uint32_t res; \
102 vtype vsrc1; \
103 vtype vsrc2; \
104 vtype vdest; \
105 NEON_UNPACK(vtype, vsrc1, arg1); \
106 NEON_UNPACK(vtype, vsrc2, arg2); \
107 NEON_DO##n; \
108 NEON_PACK(vtype, res, vdest); \
109 return res; \
110}
111
112#define NEON_VOP(name, vtype, n) \
113uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
114NEON_VOP_BODY(vtype, n)
115
02da0b2d
PM
116#define NEON_VOP_ENV(name, vtype, n) \
117uint32_t HELPER(glue(neon_,name))(CPUState *env, uint32_t arg1, uint32_t arg2) \
118NEON_VOP_BODY(vtype, n)
119
ad69471c
PB
120/* Pairwise operations. */
121/* For 32-bit elements each segment only contains a single element, so
122 the elementwise and pairwise operations are the same. */
123#define NEON_PDO2 \
124 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
125 NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
126#define NEON_PDO4 \
127 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
128 NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
129 NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
130 NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
131
132#define NEON_POP(name, vtype, n) \
133uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
134{ \
135 uint32_t res; \
136 vtype vsrc1; \
137 vtype vsrc2; \
138 vtype vdest; \
139 NEON_UNPACK(vtype, vsrc1, arg1); \
140 NEON_UNPACK(vtype, vsrc2, arg2); \
141 NEON_PDO##n; \
142 NEON_PACK(vtype, res, vdest); \
143 return res; \
144}
145
146/* Unary operators. */
147#define NEON_VOP1(name, vtype, n) \
148uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
149{ \
150 vtype vsrc1; \
151 vtype vdest; \
152 NEON_UNPACK(vtype, vsrc1, arg); \
153 NEON_DO##n; \
154 NEON_PACK(vtype, arg, vdest); \
155 return arg; \
156}
157
158
159#define NEON_USAT(dest, src1, src2, type) do { \
160 uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
161 if (tmp != (type)tmp) { \
162 SET_QC(); \
163 dest = ~0; \
164 } else { \
165 dest = tmp; \
166 }} while(0)
167#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
02da0b2d 168NEON_VOP_ENV(qadd_u8, neon_u8, 4)
ad69471c
PB
169#undef NEON_FN
170#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
02da0b2d 171NEON_VOP_ENV(qadd_u16, neon_u16, 2)
ad69471c
PB
172#undef NEON_FN
173#undef NEON_USAT
174
02da0b2d 175uint32_t HELPER(neon_qadd_u32)(CPUState *env, uint32_t a, uint32_t b)
72902672
CL
176{
177 uint32_t res = a + b;
178 if (res < a) {
179 SET_QC();
180 res = ~0;
181 }
182 return res;
183}
184
02da0b2d 185uint64_t HELPER(neon_qadd_u64)(CPUState *env, uint64_t src1, uint64_t src2)
72902672
CL
186{
187 uint64_t res;
188
189 res = src1 + src2;
190 if (res < src1) {
191 SET_QC();
192 res = ~(uint64_t)0;
193 }
194 return res;
195}
196
ad69471c
PB
197#define NEON_SSAT(dest, src1, src2, type) do { \
198 int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
199 if (tmp != (type)tmp) { \
200 SET_QC(); \
201 if (src2 > 0) { \
202 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
203 } else { \
204 tmp = 1 << (sizeof(type) * 8 - 1); \
205 } \
206 } \
207 dest = tmp; \
208 } while(0)
209#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
02da0b2d 210NEON_VOP_ENV(qadd_s8, neon_s8, 4)
ad69471c
PB
211#undef NEON_FN
212#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
02da0b2d 213NEON_VOP_ENV(qadd_s16, neon_s16, 2)
ad69471c
PB
214#undef NEON_FN
215#undef NEON_SSAT
216
02da0b2d 217uint32_t HELPER(neon_qadd_s32)(CPUState *env, uint32_t a, uint32_t b)
72902672
CL
218{
219 uint32_t res = a + b;
220 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
221 SET_QC();
222 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
223 }
224 return res;
225}
226
02da0b2d 227uint64_t HELPER(neon_qadd_s64)(CPUState *env, uint64_t src1, uint64_t src2)
72902672
CL
228{
229 uint64_t res;
230
231 res = src1 + src2;
232 if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
233 SET_QC();
234 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
235 }
236 return res;
237}
238
ad69471c
PB
239#define NEON_USAT(dest, src1, src2, type) do { \
240 uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
241 if (tmp != (type)tmp) { \
242 SET_QC(); \
243 dest = 0; \
244 } else { \
245 dest = tmp; \
246 }} while(0)
247#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
02da0b2d 248NEON_VOP_ENV(qsub_u8, neon_u8, 4)
ad69471c
PB
249#undef NEON_FN
250#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
02da0b2d 251NEON_VOP_ENV(qsub_u16, neon_u16, 2)
ad69471c
PB
252#undef NEON_FN
253#undef NEON_USAT
254
02da0b2d 255uint32_t HELPER(neon_qsub_u32)(CPUState *env, uint32_t a, uint32_t b)
72902672
CL
256{
257 uint32_t res = a - b;
258 if (res > a) {
259 SET_QC();
260 res = 0;
261 }
262 return res;
263}
264
02da0b2d 265uint64_t HELPER(neon_qsub_u64)(CPUState *env, uint64_t src1, uint64_t src2)
72902672
CL
266{
267 uint64_t res;
268
269 if (src1 < src2) {
270 SET_QC();
271 res = 0;
272 } else {
273 res = src1 - src2;
274 }
275 return res;
276}
277
ad69471c
PB
278#define NEON_SSAT(dest, src1, src2, type) do { \
279 int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
280 if (tmp != (type)tmp) { \
281 SET_QC(); \
282 if (src2 < 0) { \
283 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
284 } else { \
285 tmp = 1 << (sizeof(type) * 8 - 1); \
286 } \
287 } \
288 dest = tmp; \
289 } while(0)
290#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
02da0b2d 291NEON_VOP_ENV(qsub_s8, neon_s8, 4)
ad69471c
PB
292#undef NEON_FN
293#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
02da0b2d 294NEON_VOP_ENV(qsub_s16, neon_s16, 2)
ad69471c
PB
295#undef NEON_FN
296#undef NEON_SSAT
297
02da0b2d 298uint32_t HELPER(neon_qsub_s32)(CPUState *env, uint32_t a, uint32_t b)
72902672
CL
299{
300 uint32_t res = a - b;
301 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
302 SET_QC();
303 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
304 }
305 return res;
306}
307
02da0b2d 308uint64_t HELPER(neon_qsub_s64)(CPUState *env, uint64_t src1, uint64_t src2)
72902672
CL
309{
310 uint64_t res;
311
312 res = src1 - src2;
313 if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
314 SET_QC();
315 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
316 }
317 return res;
318}
319
ad69471c
PB
320#define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
321NEON_VOP(hadd_s8, neon_s8, 4)
322NEON_VOP(hadd_u8, neon_u8, 4)
323NEON_VOP(hadd_s16, neon_s16, 2)
324NEON_VOP(hadd_u16, neon_u16, 2)
325#undef NEON_FN
326
327int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
328{
329 int32_t dest;
330
331 dest = (src1 >> 1) + (src2 >> 1);
332 if (src1 & src2 & 1)
333 dest++;
334 return dest;
335}
336
337uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
338{
339 uint32_t dest;
340
341 dest = (src1 >> 1) + (src2 >> 1);
342 if (src1 & src2 & 1)
343 dest++;
344 return dest;
345}
346
347#define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
348NEON_VOP(rhadd_s8, neon_s8, 4)
349NEON_VOP(rhadd_u8, neon_u8, 4)
350NEON_VOP(rhadd_s16, neon_s16, 2)
351NEON_VOP(rhadd_u16, neon_u16, 2)
352#undef NEON_FN
353
354int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
355{
356 int32_t dest;
357
358 dest = (src1 >> 1) + (src2 >> 1);
359 if ((src1 | src2) & 1)
360 dest++;
361 return dest;
362}
363
364uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
365{
366 uint32_t dest;
367
368 dest = (src1 >> 1) + (src2 >> 1);
369 if ((src1 | src2) & 1)
370 dest++;
371 return dest;
372}
373
374#define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
375NEON_VOP(hsub_s8, neon_s8, 4)
376NEON_VOP(hsub_u8, neon_u8, 4)
377NEON_VOP(hsub_s16, neon_s16, 2)
378NEON_VOP(hsub_u16, neon_u16, 2)
379#undef NEON_FN
380
381int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
382{
383 int32_t dest;
384
385 dest = (src1 >> 1) - (src2 >> 1);
386 if ((~src1) & src2 & 1)
387 dest--;
388 return dest;
389}
390
391uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
392{
393 uint32_t dest;
394
395 dest = (src1 >> 1) - (src2 >> 1);
396 if ((~src1) & src2 & 1)
397 dest--;
398 return dest;
399}
400
401#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
402NEON_VOP(cgt_s8, neon_s8, 4)
403NEON_VOP(cgt_u8, neon_u8, 4)
404NEON_VOP(cgt_s16, neon_s16, 2)
405NEON_VOP(cgt_u16, neon_u16, 2)
406NEON_VOP(cgt_s32, neon_s32, 1)
407NEON_VOP(cgt_u32, neon_u32, 1)
408#undef NEON_FN
409
410#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
411NEON_VOP(cge_s8, neon_s8, 4)
412NEON_VOP(cge_u8, neon_u8, 4)
413NEON_VOP(cge_s16, neon_s16, 2)
414NEON_VOP(cge_u16, neon_u16, 2)
415NEON_VOP(cge_s32, neon_s32, 1)
416NEON_VOP(cge_u32, neon_u32, 1)
417#undef NEON_FN
418
419#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
420NEON_VOP(min_s8, neon_s8, 4)
421NEON_VOP(min_u8, neon_u8, 4)
422NEON_VOP(min_s16, neon_s16, 2)
423NEON_VOP(min_u16, neon_u16, 2)
424NEON_VOP(min_s32, neon_s32, 1)
425NEON_VOP(min_u32, neon_u32, 1)
426NEON_POP(pmin_s8, neon_s8, 4)
427NEON_POP(pmin_u8, neon_u8, 4)
428NEON_POP(pmin_s16, neon_s16, 2)
429NEON_POP(pmin_u16, neon_u16, 2)
430#undef NEON_FN
431
432#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
433NEON_VOP(max_s8, neon_s8, 4)
434NEON_VOP(max_u8, neon_u8, 4)
435NEON_VOP(max_s16, neon_s16, 2)
436NEON_VOP(max_u16, neon_u16, 2)
437NEON_VOP(max_s32, neon_s32, 1)
438NEON_VOP(max_u32, neon_u32, 1)
439NEON_POP(pmax_s8, neon_s8, 4)
440NEON_POP(pmax_u8, neon_u8, 4)
441NEON_POP(pmax_s16, neon_s16, 2)
442NEON_POP(pmax_u16, neon_u16, 2)
443#undef NEON_FN
444
445#define NEON_FN(dest, src1, src2) \
446 dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
447NEON_VOP(abd_s8, neon_s8, 4)
448NEON_VOP(abd_u8, neon_u8, 4)
449NEON_VOP(abd_s16, neon_s16, 2)
450NEON_VOP(abd_u16, neon_u16, 2)
451NEON_VOP(abd_s32, neon_s32, 1)
452NEON_VOP(abd_u32, neon_u32, 1)
453#undef NEON_FN
454
455#define NEON_FN(dest, src1, src2) do { \
456 int8_t tmp; \
457 tmp = (int8_t)src2; \
50f67e95
JR
458 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
459 tmp <= -(ssize_t)sizeof(src1) * 8) { \
ad69471c
PB
460 dest = 0; \
461 } else if (tmp < 0) { \
462 dest = src1 >> -tmp; \
463 } else { \
464 dest = src1 << tmp; \
465 }} while (0)
466NEON_VOP(shl_u8, neon_u8, 4)
467NEON_VOP(shl_u16, neon_u16, 2)
468NEON_VOP(shl_u32, neon_u32, 1)
469#undef NEON_FN
470
471uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
472{
473 int8_t shift = (int8_t)shiftop;
474 if (shift >= 64 || shift <= -64) {
475 val = 0;
476 } else if (shift < 0) {
477 val >>= -shift;
478 } else {
479 val <<= shift;
480 }
481 return val;
482}
483
484#define NEON_FN(dest, src1, src2) do { \
485 int8_t tmp; \
486 tmp = (int8_t)src2; \
50f67e95 487 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
ad69471c 488 dest = 0; \
50f67e95 489 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
ad69471c
PB
490 dest = src1 >> (sizeof(src1) * 8 - 1); \
491 } else if (tmp < 0) { \
492 dest = src1 >> -tmp; \
493 } else { \
494 dest = src1 << tmp; \
495 }} while (0)
496NEON_VOP(shl_s8, neon_s8, 4)
497NEON_VOP(shl_s16, neon_s16, 2)
498NEON_VOP(shl_s32, neon_s32, 1)
499#undef NEON_FN
500
501uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
502{
503 int8_t shift = (int8_t)shiftop;
504 int64_t val = valop;
505 if (shift >= 64) {
506 val = 0;
507 } else if (shift <= -64) {
508 val >>= 63;
509 } else if (shift < 0) {
510 val >>= -shift;
511 } else {
512 val <<= shift;
513 }
514 return val;
515}
516
517#define NEON_FN(dest, src1, src2) do { \
518 int8_t tmp; \
519 tmp = (int8_t)src2; \
0670a7b6
PM
520 if ((tmp >= (ssize_t)sizeof(src1) * 8) \
521 || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
ad69471c 522 dest = 0; \
ad69471c
PB
523 } else if (tmp < 0) { \
524 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
525 } else { \
526 dest = src1 << tmp; \
527 }} while (0)
528NEON_VOP(rshl_s8, neon_s8, 4)
529NEON_VOP(rshl_s16, neon_s16, 2)
ad69471c
PB
530#undef NEON_FN
531
4bd4ee07
CL
532/* The addition of the rounding constant may overflow, so we use an
533 * intermediate 64 bits accumulator. */
534uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
535{
536 int32_t dest;
537 int32_t val = (int32_t)valop;
538 int8_t shift = (int8_t)shiftop;
539 if ((shift >= 32) || (shift <= -32)) {
540 dest = 0;
541 } else if (shift < 0) {
542 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
543 dest = big_dest >> -shift;
544 } else {
545 dest = val << shift;
546 }
547 return dest;
548}
549
550/* Handling addition overflow with 64 bits inputs values is more
551 * tricky than with 32 bits values. */
ad69471c
PB
552uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
553{
554 int8_t shift = (int8_t)shiftop;
555 int64_t val = valop;
0670a7b6 556 if ((shift >= 64) || (shift <= -64)) {
ad69471c 557 val = 0;
ad69471c 558 } else if (shift < 0) {
4bd4ee07
CL
559 val >>= (-shift - 1);
560 if (val == INT64_MAX) {
561 /* In this case, it means that the rounding constant is 1,
562 * and the addition would overflow. Return the actual
563 * result directly. */
564 val = 0x4000000000000000LL;
565 } else {
566 val++;
567 val >>= 1;
568 }
ad69471c
PB
569 } else {
570 val <<= shift;
571 }
572 return val;
573}
574
575#define NEON_FN(dest, src1, src2) do { \
576 int8_t tmp; \
577 tmp = (int8_t)src2; \
50f67e95
JR
578 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
579 tmp < -(ssize_t)sizeof(src1) * 8) { \
ad69471c 580 dest = 0; \
50f67e95 581 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
b6c63b98 582 dest = src1 >> (-tmp - 1); \
ad69471c
PB
583 } else if (tmp < 0) { \
584 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
585 } else { \
586 dest = src1 << tmp; \
587 }} while (0)
588NEON_VOP(rshl_u8, neon_u8, 4)
589NEON_VOP(rshl_u16, neon_u16, 2)
ad69471c
PB
590#undef NEON_FN
591
4bd4ee07
CL
592/* The addition of the rounding constant may overflow, so we use an
593 * intermediate 64 bits accumulator. */
594uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
595{
596 uint32_t dest;
597 int8_t shift = (int8_t)shiftop;
598 if (shift >= 32 || shift < -32) {
599 dest = 0;
600 } else if (shift == -32) {
601 dest = val >> 31;
602 } else if (shift < 0) {
603 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
604 dest = big_dest >> -shift;
605 } else {
606 dest = val << shift;
607 }
608 return dest;
609}
610
611/* Handling addition overflow with 64 bits inputs values is more
612 * tricky than with 32 bits values. */
ad69471c
PB
613uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
614{
615 int8_t shift = (uint8_t)shiftop;
51e3930f 616 if (shift >= 64 || shift < -64) {
ad69471c
PB
617 val = 0;
618 } else if (shift == -64) {
619 /* Rounding a 1-bit result just preserves that bit. */
620 val >>= 63;
4bd4ee07
CL
621 } else if (shift < 0) {
622 val >>= (-shift - 1);
623 if (val == UINT64_MAX) {
624 /* In this case, it means that the rounding constant is 1,
625 * and the addition would overflow. Return the actual
626 * result directly. */
627 val = 0x8000000000000000ULL;
628 } else {
629 val++;
630 val >>= 1;
631 }
ad69471c
PB
632 } else {
633 val <<= shift;
634 }
635 return val;
636}
637
638#define NEON_FN(dest, src1, src2) do { \
639 int8_t tmp; \
640 tmp = (int8_t)src2; \
50f67e95 641 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
ad69471c
PB
642 if (src1) { \
643 SET_QC(); \
644 dest = ~0; \
645 } else { \
646 dest = 0; \
647 } \
50f67e95 648 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
ad69471c
PB
649 dest = 0; \
650 } else if (tmp < 0) { \
651 dest = src1 >> -tmp; \
652 } else { \
653 dest = src1 << tmp; \
654 if ((dest >> tmp) != src1) { \
655 SET_QC(); \
656 dest = ~0; \
657 } \
658 }} while (0)
02da0b2d
PM
659NEON_VOP_ENV(qshl_u8, neon_u8, 4)
660NEON_VOP_ENV(qshl_u16, neon_u16, 2)
661NEON_VOP_ENV(qshl_u32, neon_u32, 1)
ad69471c
PB
662#undef NEON_FN
663
02da0b2d 664uint64_t HELPER(neon_qshl_u64)(CPUState *env, uint64_t val, uint64_t shiftop)
ad69471c
PB
665{
666 int8_t shift = (int8_t)shiftop;
667 if (shift >= 64) {
668 if (val) {
669 val = ~(uint64_t)0;
670 SET_QC();
ad69471c
PB
671 }
672 } else if (shift <= -64) {
673 val = 0;
674 } else if (shift < 0) {
675 val >>= -shift;
676 } else {
677 uint64_t tmp = val;
678 val <<= shift;
679 if ((val >> shift) != tmp) {
680 SET_QC();
681 val = ~(uint64_t)0;
682 }
683 }
684 return val;
685}
686
687#define NEON_FN(dest, src1, src2) do { \
688 int8_t tmp; \
689 tmp = (int8_t)src2; \
50f67e95 690 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
a5d88f3e 691 if (src1) { \
ad69471c 692 SET_QC(); \
a5d88f3e
PM
693 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
694 if (src1 > 0) { \
695 dest--; \
696 } \
697 } else { \
698 dest = src1; \
699 } \
50f67e95 700 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
ad69471c
PB
701 dest = src1 >> 31; \
702 } else if (tmp < 0) { \
703 dest = src1 >> -tmp; \
704 } else { \
705 dest = src1 << tmp; \
706 if ((dest >> tmp) != src1) { \
707 SET_QC(); \
a5d88f3e
PM
708 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
709 if (src1 > 0) { \
710 dest--; \
711 } \
ad69471c
PB
712 } \
713 }} while (0)
02da0b2d
PM
714NEON_VOP_ENV(qshl_s8, neon_s8, 4)
715NEON_VOP_ENV(qshl_s16, neon_s16, 2)
716NEON_VOP_ENV(qshl_s32, neon_s32, 1)
ad69471c
PB
717#undef NEON_FN
718
02da0b2d 719uint64_t HELPER(neon_qshl_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
ad69471c
PB
720{
721 int8_t shift = (uint8_t)shiftop;
722 int64_t val = valop;
723 if (shift >= 64) {
724 if (val) {
725 SET_QC();
eb7a3d79 726 val = (val >> 63) ^ ~SIGNBIT64;
ad69471c 727 }
4c9b70ae 728 } else if (shift <= -64) {
ad69471c
PB
729 val >>= 63;
730 } else if (shift < 0) {
731 val >>= -shift;
732 } else {
733 int64_t tmp = val;
734 val <<= shift;
735 if ((val >> shift) != tmp) {
736 SET_QC();
737 val = (tmp >> 63) ^ ~SIGNBIT64;
738 }
739 }
740 return val;
741}
742
4ca4502c
JR
743#define NEON_FN(dest, src1, src2) do { \
744 if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
745 SET_QC(); \
746 dest = 0; \
747 } else { \
748 int8_t tmp; \
749 tmp = (int8_t)src2; \
750 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
751 if (src1) { \
752 SET_QC(); \
753 dest = ~0; \
754 } else { \
755 dest = 0; \
756 } \
757 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
758 dest = 0; \
759 } else if (tmp < 0) { \
760 dest = src1 >> -tmp; \
761 } else { \
762 dest = src1 << tmp; \
763 if ((dest >> tmp) != src1) { \
764 SET_QC(); \
765 dest = ~0; \
766 } \
767 } \
768 }} while (0)
02da0b2d
PM
769NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
770NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
4ca4502c
JR
771#undef NEON_FN
772
02da0b2d 773uint32_t HELPER(neon_qshlu_s32)(CPUState *env, uint32_t valop, uint32_t shiftop)
4ca4502c
JR
774{
775 if ((int32_t)valop < 0) {
776 SET_QC();
777 return 0;
778 }
02da0b2d 779 return helper_neon_qshl_u32(env, valop, shiftop);
4ca4502c
JR
780}
781
02da0b2d 782uint64_t HELPER(neon_qshlu_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
4ca4502c
JR
783{
784 if ((int64_t)valop < 0) {
785 SET_QC();
786 return 0;
787 }
02da0b2d 788 return helper_neon_qshl_u64(env, valop, shiftop);
4ca4502c 789}
ad69471c
PB
790
791/* FIXME: This is wrong. */
792#define NEON_FN(dest, src1, src2) do { \
793 int8_t tmp; \
794 tmp = (int8_t)src2; \
33ebc293
PM
795 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
796 if (src1) { \
797 SET_QC(); \
798 dest = ~0; \
799 } else { \
800 dest = 0; \
801 } \
802 } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
803 dest = 0; \
804 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
805 dest = src1 >> (sizeof(src1) * 8 - 1); \
806 } else if (tmp < 0) { \
ad69471c
PB
807 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
808 } else { \
809 dest = src1 << tmp; \
810 if ((dest >> tmp) != src1) { \
811 SET_QC(); \
812 dest = ~0; \
813 } \
814 }} while (0)
02da0b2d
PM
815NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
816NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
ad69471c
PB
817#undef NEON_FN
818
4bd4ee07
CL
819/* The addition of the rounding constant may overflow, so we use an
820 * intermediate 64 bits accumulator. */
02da0b2d 821uint32_t HELPER(neon_qrshl_u32)(CPUState *env, uint32_t val, uint32_t shiftop)
4bd4ee07
CL
822{
823 uint32_t dest;
824 int8_t shift = (int8_t)shiftop;
33ebc293
PM
825 if (shift >= 32) {
826 if (val) {
827 SET_QC();
828 dest = ~0;
829 } else {
830 dest = 0;
831 }
832 } else if (shift < -32) {
833 dest = 0;
834 } else if (shift == -32) {
835 dest = val >> 31;
836 } else if (shift < 0) {
4bd4ee07
CL
837 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
838 dest = big_dest >> -shift;
839 } else {
840 dest = val << shift;
841 if ((dest >> shift) != val) {
842 SET_QC();
843 dest = ~0;
844 }
845 }
846 return dest;
847}
848
849/* Handling addition overflow with 64 bits inputs values is more
850 * tricky than with 32 bits values. */
02da0b2d 851uint64_t HELPER(neon_qrshl_u64)(CPUState *env, uint64_t val, uint64_t shiftop)
ad69471c
PB
852{
853 int8_t shift = (int8_t)shiftop;
33ebc293
PM
854 if (shift >= 64) {
855 if (val) {
856 SET_QC();
857 val = ~0;
858 }
859 } else if (shift < -64) {
860 val = 0;
861 } else if (shift == -64) {
862 val >>= 63;
863 } else if (shift < 0) {
4bd4ee07
CL
864 val >>= (-shift - 1);
865 if (val == UINT64_MAX) {
866 /* In this case, it means that the rounding constant is 1,
867 * and the addition would overflow. Return the actual
868 * result directly. */
869 val = 0x8000000000000000ULL;
870 } else {
871 val++;
872 val >>= 1;
873 }
ad69471c
PB
874 } else { \
875 uint64_t tmp = val;
876 val <<= shift;
877 if ((val >> shift) != tmp) {
878 SET_QC();
879 val = ~0;
880 }
881 }
882 return val;
883}
884
885#define NEON_FN(dest, src1, src2) do { \
886 int8_t tmp; \
887 tmp = (int8_t)src2; \
7b6ecf5b
PM
888 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
889 if (src1) { \
890 SET_QC(); \
891 dest = (1 << (sizeof(src1) * 8 - 1)); \
892 if (src1 > 0) { \
893 dest--; \
894 } \
895 } else { \
896 dest = 0; \
897 } \
898 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
899 dest = 0; \
900 } else if (tmp < 0) { \
ad69471c
PB
901 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
902 } else { \
903 dest = src1 << tmp; \
904 if ((dest >> tmp) != src1) { \
905 SET_QC(); \
960e623b
PM
906 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
907 if (src1 > 0) { \
908 dest--; \
909 } \
ad69471c
PB
910 } \
911 }} while (0)
02da0b2d
PM
912NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
913NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
ad69471c
PB
914#undef NEON_FN
915
4bd4ee07
CL
916/* The addition of the rounding constant may overflow, so we use an
917 * intermediate 64 bits accumulator. */
02da0b2d 918uint32_t HELPER(neon_qrshl_s32)(CPUState *env, uint32_t valop, uint32_t shiftop)
4bd4ee07
CL
919{
920 int32_t dest;
921 int32_t val = (int32_t)valop;
922 int8_t shift = (int8_t)shiftop;
7b6ecf5b
PM
923 if (shift >= 32) {
924 if (val) {
925 SET_QC();
926 dest = (val >> 31) ^ ~SIGNBIT;
927 } else {
928 dest = 0;
929 }
930 } else if (shift <= -32) {
931 dest = 0;
932 } else if (shift < 0) {
4bd4ee07
CL
933 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
934 dest = big_dest >> -shift;
935 } else {
936 dest = val << shift;
937 if ((dest >> shift) != val) {
938 SET_QC();
939 dest = (val >> 31) ^ ~SIGNBIT;
940 }
941 }
942 return dest;
943}
944
945/* Handling addition overflow with 64 bits inputs values is more
946 * tricky than with 32 bits values. */
02da0b2d 947uint64_t HELPER(neon_qrshl_s64)(CPUState *env, uint64_t valop, uint64_t shiftop)
ad69471c
PB
948{
949 int8_t shift = (uint8_t)shiftop;
950 int64_t val = valop;
951
7b6ecf5b
PM
952 if (shift >= 64) {
953 if (val) {
954 SET_QC();
955 val = (val >> 63) ^ ~SIGNBIT64;
956 }
957 } else if (shift <= -64) {
958 val = 0;
959 } else if (shift < 0) {
4bd4ee07
CL
960 val >>= (-shift - 1);
961 if (val == INT64_MAX) {
962 /* In this case, it means that the rounding constant is 1,
963 * and the addition would overflow. Return the actual
964 * result directly. */
965 val = 0x4000000000000000ULL;
966 } else {
967 val++;
968 val >>= 1;
969 }
ad69471c 970 } else {
4bd4ee07 971 int64_t tmp = val;
ad69471c
PB
972 val <<= shift;
973 if ((val >> shift) != tmp) {
974 SET_QC();
4bd4ee07 975 val = (tmp >> 63) ^ ~SIGNBIT64;
ad69471c
PB
976 }
977 }
978 return val;
979}
980
981uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
982{
983 uint32_t mask;
984 mask = (a ^ b) & 0x80808080u;
985 a &= ~0x80808080u;
986 b &= ~0x80808080u;
987 return (a + b) ^ mask;
988}
989
990uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
991{
992 uint32_t mask;
993 mask = (a ^ b) & 0x80008000u;
994 a &= ~0x80008000u;
995 b &= ~0x80008000u;
996 return (a + b) ^ mask;
997}
998
999#define NEON_FN(dest, src1, src2) dest = src1 + src2
1000NEON_POP(padd_u8, neon_u8, 4)
1001NEON_POP(padd_u16, neon_u16, 2)
1002#undef NEON_FN
1003
1004#define NEON_FN(dest, src1, src2) dest = src1 - src2
1005NEON_VOP(sub_u8, neon_u8, 4)
1006NEON_VOP(sub_u16, neon_u16, 2)
1007#undef NEON_FN
1008
1009#define NEON_FN(dest, src1, src2) dest = src1 * src2
1010NEON_VOP(mul_u8, neon_u8, 4)
1011NEON_VOP(mul_u16, neon_u16, 2)
1012#undef NEON_FN
1013
1654b2d6 1014/* Polynomial multiplication is like integer multiplication except the
ad69471c
PB
1015 partial products are XORed, not added. */
1016uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1017{
1018 uint32_t mask;
1019 uint32_t result;
1020 result = 0;
1021 while (op1) {
1022 mask = 0;
1023 if (op1 & 1)
1024 mask |= 0xff;
1025 if (op1 & (1 << 8))
1026 mask |= (0xff << 8);
1027 if (op1 & (1 << 16))
1028 mask |= (0xff << 16);
1029 if (op1 & (1 << 24))
1030 mask |= (0xff << 24);
1031 result ^= op2 & mask;
1032 op1 = (op1 >> 1) & 0x7f7f7f7f;
1033 op2 = (op2 << 1) & 0xfefefefe;
1034 }
1035 return result;
1036}
1037
e5ca24cb
PM
1038uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1039{
1040 uint64_t result = 0;
1041 uint64_t mask;
1042 uint64_t op2ex = op2;
1043 op2ex = (op2ex & 0xff) |
1044 ((op2ex & 0xff00) << 8) |
1045 ((op2ex & 0xff0000) << 16) |
1046 ((op2ex & 0xff000000) << 24);
1047 while (op1) {
1048 mask = 0;
1049 if (op1 & 1) {
1050 mask |= 0xffff;
1051 }
1052 if (op1 & (1 << 8)) {
1053 mask |= (0xffffU << 16);
1054 }
1055 if (op1 & (1 << 16)) {
1056 mask |= (0xffffULL << 32);
1057 }
1058 if (op1 & (1 << 24)) {
1059 mask |= (0xffffULL << 48);
1060 }
1061 result ^= op2ex & mask;
1062 op1 = (op1 >> 1) & 0x7f7f7f7f;
1063 op2ex <<= 1;
1064 }
1065 return result;
1066}
1067
ad69471c
PB
1068#define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1069NEON_VOP(tst_u8, neon_u8, 4)
1070NEON_VOP(tst_u16, neon_u16, 2)
1071NEON_VOP(tst_u32, neon_u32, 1)
1072#undef NEON_FN
1073
1074#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1075NEON_VOP(ceq_u8, neon_u8, 4)
1076NEON_VOP(ceq_u16, neon_u16, 2)
1077NEON_VOP(ceq_u32, neon_u32, 1)
1078#undef NEON_FN
1079
1080#define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1081NEON_VOP1(abs_s8, neon_s8, 4)
1082NEON_VOP1(abs_s16, neon_s16, 2)
1083#undef NEON_FN
1084
1085/* Count Leading Sign/Zero Bits. */
1086static inline int do_clz8(uint8_t x)
1087{
1088 int n;
1089 for (n = 8; x; n--)
1090 x >>= 1;
1091 return n;
1092}
1093
1094static inline int do_clz16(uint16_t x)
1095{
1096 int n;
1097 for (n = 16; x; n--)
1098 x >>= 1;
1099 return n;
1100}
1101
1102#define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1103NEON_VOP1(clz_u8, neon_u8, 4)
1104#undef NEON_FN
1105
1106#define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1107NEON_VOP1(clz_u16, neon_u16, 2)
1108#undef NEON_FN
1109
1110#define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1111NEON_VOP1(cls_s8, neon_s8, 4)
1112#undef NEON_FN
1113
1114#define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1115NEON_VOP1(cls_s16, neon_s16, 2)
1116#undef NEON_FN
1117
1118uint32_t HELPER(neon_cls_s32)(uint32_t x)
1119{
1120 int count;
1121 if ((int32_t)x < 0)
1122 x = ~x;
1123 for (count = 32; x; count--)
1124 x = x >> 1;
1125 return count - 1;
1126}
1127
1128/* Bit count. */
1129uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1130{
1131 x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
1132 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
1133 x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
1134 return x;
1135}
1136
1137#define NEON_QDMULH16(dest, src1, src2, round) do { \
1138 uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1139 if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1140 SET_QC(); \
1141 tmp = (tmp >> 31) ^ ~SIGNBIT; \
46eece9d
JR
1142 } else { \
1143 tmp <<= 1; \
ad69471c 1144 } \
ad69471c
PB
1145 if (round) { \
1146 int32_t old = tmp; \
1147 tmp += 1 << 15; \
1148 if ((int32_t)tmp < old) { \
1149 SET_QC(); \
1150 tmp = SIGNBIT - 1; \
1151 } \
1152 } \
1153 dest = tmp >> 16; \
1154 } while(0)
1155#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
02da0b2d 1156NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
ad69471c
PB
1157#undef NEON_FN
1158#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
02da0b2d 1159NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
ad69471c
PB
1160#undef NEON_FN
1161#undef NEON_QDMULH16
1162
1163#define NEON_QDMULH32(dest, src1, src2, round) do { \
1164 uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1165 if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1166 SET_QC(); \
1167 tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1168 } else { \
1169 tmp <<= 1; \
1170 } \
1171 if (round) { \
1172 int64_t old = tmp; \
1173 tmp += (int64_t)1 << 31; \
1174 if ((int64_t)tmp < old) { \
1175 SET_QC(); \
1176 tmp = SIGNBIT64 - 1; \
1177 } \
1178 } \
1179 dest = tmp >> 32; \
1180 } while(0)
1181#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
02da0b2d 1182NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
ad69471c
PB
1183#undef NEON_FN
1184#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
02da0b2d 1185NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
ad69471c
PB
1186#undef NEON_FN
1187#undef NEON_QDMULH32
1188
1189uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1190{
1191 return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1192 | ((x >> 24) & 0xff000000u);
1193}
1194
1195uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1196{
1197 return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1198}
1199
1200uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1201{
1202 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1203 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1204}
1205
1206uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1207{
1208 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1209}
1210
1211uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1212{
1213 x &= 0xff80ff80ff80ff80ull;
1214 x += 0x0080008000800080ull;
1215 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1216 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1217}
1218
1219uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1220{
1221 x &= 0xffff8000ffff8000ull;
1222 x += 0x0000800000008000ull;
1223 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1224}
1225
02da0b2d 1226uint32_t HELPER(neon_unarrow_sat8)(CPUState *env, uint64_t x)
af1bbf30
JR
1227{
1228 uint16_t s;
1229 uint8_t d;
1230 uint32_t res = 0;
1231#define SAT8(n) \
1232 s = x >> n; \
1233 if (s & 0x8000) { \
1234 SET_QC(); \
1235 } else { \
1236 if (s > 0xff) { \
1237 d = 0xff; \
1238 SET_QC(); \
1239 } else { \
1240 d = s; \
1241 } \
1242 res |= (uint32_t)d << (n / 2); \
1243 }
1244
1245 SAT8(0);
1246 SAT8(16);
1247 SAT8(32);
1248 SAT8(48);
1249#undef SAT8
1250 return res;
1251}
1252
02da0b2d 1253uint32_t HELPER(neon_narrow_sat_u8)(CPUState *env, uint64_t x)
ad69471c
PB
1254{
1255 uint16_t s;
1256 uint8_t d;
1257 uint32_t res = 0;
1258#define SAT8(n) \
1259 s = x >> n; \
1260 if (s > 0xff) { \
1261 d = 0xff; \
1262 SET_QC(); \
1263 } else { \
1264 d = s; \
1265 } \
1266 res |= (uint32_t)d << (n / 2);
1267
1268 SAT8(0);
1269 SAT8(16);
1270 SAT8(32);
1271 SAT8(48);
1272#undef SAT8
1273 return res;
1274}
1275
02da0b2d 1276uint32_t HELPER(neon_narrow_sat_s8)(CPUState *env, uint64_t x)
ad69471c
PB
1277{
1278 int16_t s;
1279 uint8_t d;
1280 uint32_t res = 0;
1281#define SAT8(n) \
1282 s = x >> n; \
1283 if (s != (int8_t)s) { \
1284 d = (s >> 15) ^ 0x7f; \
1285 SET_QC(); \
1286 } else { \
1287 d = s; \
1288 } \
1289 res |= (uint32_t)d << (n / 2);
1290
1291 SAT8(0);
1292 SAT8(16);
1293 SAT8(32);
1294 SAT8(48);
1295#undef SAT8
1296 return res;
1297}
1298
02da0b2d 1299uint32_t HELPER(neon_unarrow_sat16)(CPUState *env, uint64_t x)
af1bbf30
JR
1300{
1301 uint32_t high;
1302 uint32_t low;
1303 low = x;
1304 if (low & 0x80000000) {
1305 low = 0;
1306 SET_QC();
1307 } else if (low > 0xffff) {
1308 low = 0xffff;
1309 SET_QC();
1310 }
1311 high = x >> 32;
1312 if (high & 0x80000000) {
1313 high = 0;
1314 SET_QC();
1315 } else if (high > 0xffff) {
1316 high = 0xffff;
1317 SET_QC();
1318 }
1319 return low | (high << 16);
1320}
1321
02da0b2d 1322uint32_t HELPER(neon_narrow_sat_u16)(CPUState *env, uint64_t x)
ad69471c
PB
1323{
1324 uint32_t high;
1325 uint32_t low;
1326 low = x;
1327 if (low > 0xffff) {
1328 low = 0xffff;
1329 SET_QC();
1330 }
1331 high = x >> 32;
1332 if (high > 0xffff) {
1333 high = 0xffff;
1334 SET_QC();
1335 }
1336 return low | (high << 16);
1337}
1338
02da0b2d 1339uint32_t HELPER(neon_narrow_sat_s16)(CPUState *env, uint64_t x)
ad69471c
PB
1340{
1341 int32_t low;
1342 int32_t high;
1343 low = x;
1344 if (low != (int16_t)low) {
1345 low = (low >> 31) ^ 0x7fff;
1346 SET_QC();
1347 }
1348 high = x >> 32;
1349 if (high != (int16_t)high) {
1350 high = (high >> 31) ^ 0x7fff;
1351 SET_QC();
1352 }
1353 return (uint16_t)low | (high << 16);
1354}
1355
02da0b2d 1356uint32_t HELPER(neon_unarrow_sat32)(CPUState *env, uint64_t x)
af1bbf30
JR
1357{
1358 if (x & 0x8000000000000000ull) {
1359 SET_QC();
1360 return 0;
1361 }
1362 if (x > 0xffffffffu) {
1363 SET_QC();
1364 return 0xffffffffu;
1365 }
1366 return x;
1367}
1368
02da0b2d 1369uint32_t HELPER(neon_narrow_sat_u32)(CPUState *env, uint64_t x)
ad69471c
PB
1370{
1371 if (x > 0xffffffffu) {
1372 SET_QC();
1373 return 0xffffffffu;
1374 }
1375 return x;
1376}
1377
02da0b2d 1378uint32_t HELPER(neon_narrow_sat_s32)(CPUState *env, uint64_t x)
ad69471c
PB
1379{
1380 if ((int64_t)x != (int32_t)x) {
1381 SET_QC();
cc2212c2 1382 return ((int64_t)x >> 63) ^ 0x7fffffff;
ad69471c
PB
1383 }
1384 return x;
1385}
1386
1387uint64_t HELPER(neon_widen_u8)(uint32_t x)
1388{
1389 uint64_t tmp;
1390 uint64_t ret;
1391 ret = (uint8_t)x;
1392 tmp = (uint8_t)(x >> 8);
1393 ret |= tmp << 16;
1394 tmp = (uint8_t)(x >> 16);
1395 ret |= tmp << 32;
1396 tmp = (uint8_t)(x >> 24);
1397 ret |= tmp << 48;
1398 return ret;
1399}
1400
1401uint64_t HELPER(neon_widen_s8)(uint32_t x)
1402{
1403 uint64_t tmp;
1404 uint64_t ret;
1405 ret = (uint16_t)(int8_t)x;
1406 tmp = (uint16_t)(int8_t)(x >> 8);
1407 ret |= tmp << 16;
1408 tmp = (uint16_t)(int8_t)(x >> 16);
1409 ret |= tmp << 32;
1410 tmp = (uint16_t)(int8_t)(x >> 24);
1411 ret |= tmp << 48;
1412 return ret;
1413}
1414
1415uint64_t HELPER(neon_widen_u16)(uint32_t x)
1416{
1417 uint64_t high = (uint16_t)(x >> 16);
1418 return ((uint16_t)x) | (high << 32);
1419}
1420
1421uint64_t HELPER(neon_widen_s16)(uint32_t x)
1422{
1423 uint64_t high = (int16_t)(x >> 16);
1424 return ((uint32_t)(int16_t)x) | (high << 32);
1425}
1426
1427uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1428{
1429 uint64_t mask;
1430 mask = (a ^ b) & 0x8000800080008000ull;
1431 a &= ~0x8000800080008000ull;
1432 b &= ~0x8000800080008000ull;
1433 return (a + b) ^ mask;
1434}
1435
1436uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1437{
1438 uint64_t mask;
1439 mask = (a ^ b) & 0x8000000080000000ull;
1440 a &= ~0x8000000080000000ull;
1441 b &= ~0x8000000080000000ull;
1442 return (a + b) ^ mask;
1443}
1444
1445uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1446{
1447 uint64_t tmp;
1448 uint64_t tmp2;
1449
1450 tmp = a & 0x0000ffff0000ffffull;
1451 tmp += (a >> 16) & 0x0000ffff0000ffffull;
1452 tmp2 = b & 0xffff0000ffff0000ull;
1453 tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1454 return ( tmp & 0xffff)
1455 | ((tmp >> 16) & 0xffff0000ull)
1456 | ((tmp2 << 16) & 0xffff00000000ull)
1457 | ( tmp2 & 0xffff000000000000ull);
1458}
1459
1460uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1461{
1462 uint32_t low = a + (a >> 32);
1463 uint32_t high = b + (b >> 32);
1464 return low + ((uint64_t)high << 32);
1465}
1466
1467uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1468{
1469 uint64_t mask;
1470 mask = (a ^ ~b) & 0x8000800080008000ull;
1471 a |= 0x8000800080008000ull;
1472 b &= ~0x8000800080008000ull;
1473 return (a - b) ^ mask;
1474}
1475
1476uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1477{
1478 uint64_t mask;
1479 mask = (a ^ ~b) & 0x8000000080000000ull;
1480 a |= 0x8000000080000000ull;
1481 b &= ~0x8000000080000000ull;
1482 return (a - b) ^ mask;
1483}
1484
02da0b2d 1485uint64_t HELPER(neon_addl_saturate_s32)(CPUState *env, uint64_t a, uint64_t b)
ad69471c
PB
1486{
1487 uint32_t x, y;
1488 uint32_t low, high;
1489
1490 x = a;
1491 y = b;
1492 low = x + y;
1493 if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1494 SET_QC();
1495 low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1496 }
1497 x = a >> 32;
1498 y = b >> 32;
1499 high = x + y;
1500 if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1501 SET_QC();
1502 high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1503 }
1504 return low | ((uint64_t)high << 32);
1505}
1506
02da0b2d 1507uint64_t HELPER(neon_addl_saturate_s64)(CPUState *env, uint64_t a, uint64_t b)
ad69471c
PB
1508{
1509 uint64_t result;
1510
1511 result = a + b;
1512 if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1513 SET_QC();
1514 result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1515 }
1516 return result;
1517}
1518
4d9ad7f7
PM
1519/* We have to do the arithmetic in a larger type than
1520 * the input type, because for example with a signed 32 bit
1521 * op the absolute difference can overflow a signed 32 bit value.
1522 */
1523#define DO_ABD(dest, x, y, intype, arithtype) do { \
1524 arithtype tmp_x = (intype)(x); \
1525 arithtype tmp_y = (intype)(y); \
ad69471c
PB
1526 dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1527 } while(0)
1528
1529uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1530{
1531 uint64_t tmp;
1532 uint64_t result;
4d9ad7f7
PM
1533 DO_ABD(result, a, b, uint8_t, uint32_t);
1534 DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
ad69471c 1535 result |= tmp << 16;
4d9ad7f7 1536 DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
ad69471c 1537 result |= tmp << 32;
4d9ad7f7 1538 DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
ad69471c
PB
1539 result |= tmp << 48;
1540 return result;
1541}
1542
1543uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1544{
1545 uint64_t tmp;
1546 uint64_t result;
4d9ad7f7
PM
1547 DO_ABD(result, a, b, int8_t, int32_t);
1548 DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
ad69471c 1549 result |= tmp << 16;
4d9ad7f7 1550 DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
ad69471c 1551 result |= tmp << 32;
4d9ad7f7 1552 DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
ad69471c
PB
1553 result |= tmp << 48;
1554 return result;
1555}
1556
1557uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1558{
1559 uint64_t tmp;
1560 uint64_t result;
4d9ad7f7
PM
1561 DO_ABD(result, a, b, uint16_t, uint32_t);
1562 DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
ad69471c
PB
1563 return result | (tmp << 32);
1564}
1565
1566uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1567{
1568 uint64_t tmp;
1569 uint64_t result;
4d9ad7f7
PM
1570 DO_ABD(result, a, b, int16_t, int32_t);
1571 DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
ad69471c
PB
1572 return result | (tmp << 32);
1573}
1574
1575uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1576{
1577 uint64_t result;
4d9ad7f7 1578 DO_ABD(result, a, b, uint32_t, uint64_t);
ad69471c
PB
1579 return result;
1580}
1581
1582uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1583{
1584 uint64_t result;
4d9ad7f7 1585 DO_ABD(result, a, b, int32_t, int64_t);
ad69471c
PB
1586 return result;
1587}
1588#undef DO_ABD
1589
1590/* Widening multiply. Named type is the source type. */
1591#define DO_MULL(dest, x, y, type1, type2) do { \
1592 type1 tmp_x = x; \
1593 type1 tmp_y = y; \
1594 dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1595 } while(0)
1596
1597uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1598{
1599 uint64_t tmp;
1600 uint64_t result;
1601
1602 DO_MULL(result, a, b, uint8_t, uint16_t);
1603 DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1604 result |= tmp << 16;
1605 DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1606 result |= tmp << 32;
1607 DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1608 result |= tmp << 48;
1609 return result;
1610}
1611
1612uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1613{
1614 uint64_t tmp;
1615 uint64_t result;
1616
1617 DO_MULL(result, a, b, int8_t, uint16_t);
1618 DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1619 result |= tmp << 16;
1620 DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1621 result |= tmp << 32;
1622 DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1623 result |= tmp << 48;
1624 return result;
1625}
1626
1627uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1628{
1629 uint64_t tmp;
1630 uint64_t result;
1631
1632 DO_MULL(result, a, b, uint16_t, uint32_t);
1633 DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1634 return result | (tmp << 32);
1635}
1636
1637uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1638{
1639 uint64_t tmp;
1640 uint64_t result;
1641
1642 DO_MULL(result, a, b, int16_t, uint32_t);
1643 DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1644 return result | (tmp << 32);
1645}
1646
1647uint64_t HELPER(neon_negl_u16)(uint64_t x)
1648{
1649 uint16_t tmp;
1650 uint64_t result;
1651 result = (uint16_t)-x;
1652 tmp = -(x >> 16);
1653 result |= (uint64_t)tmp << 16;
1654 tmp = -(x >> 32);
1655 result |= (uint64_t)tmp << 32;
1656 tmp = -(x >> 48);
1657 result |= (uint64_t)tmp << 48;
1658 return result;
1659}
1660
ad69471c
PB
1661uint64_t HELPER(neon_negl_u32)(uint64_t x)
1662{
1663 uint32_t low = -x;
1664 uint32_t high = -(x >> 32);
1665 return low | ((uint64_t)high << 32);
1666}
1667
1668/* FIXME: There should be a native op for this. */
1669uint64_t HELPER(neon_negl_u64)(uint64_t x)
1670{
1671 return -x;
1672}
1673
1674/* Saturnating sign manuipulation. */
1675/* ??? Make these use NEON_VOP1 */
1676#define DO_QABS8(x) do { \
1677 if (x == (int8_t)0x80) { \
1678 x = 0x7f; \
1679 SET_QC(); \
1680 } else if (x < 0) { \
1681 x = -x; \
1682 }} while (0)
02da0b2d 1683uint32_t HELPER(neon_qabs_s8)(CPUState *env, uint32_t x)
ad69471c
PB
1684{
1685 neon_s8 vec;
1686 NEON_UNPACK(neon_s8, vec, x);
1687 DO_QABS8(vec.v1);
1688 DO_QABS8(vec.v2);
1689 DO_QABS8(vec.v3);
1690 DO_QABS8(vec.v4);
1691 NEON_PACK(neon_s8, x, vec);
1692 return x;
1693}
1694#undef DO_QABS8
1695
1696#define DO_QNEG8(x) do { \
1697 if (x == (int8_t)0x80) { \
1698 x = 0x7f; \
1699 SET_QC(); \
1700 } else { \
1701 x = -x; \
1702 }} while (0)
02da0b2d 1703uint32_t HELPER(neon_qneg_s8)(CPUState *env, uint32_t x)
ad69471c
PB
1704{
1705 neon_s8 vec;
1706 NEON_UNPACK(neon_s8, vec, x);
1707 DO_QNEG8(vec.v1);
1708 DO_QNEG8(vec.v2);
1709 DO_QNEG8(vec.v3);
1710 DO_QNEG8(vec.v4);
1711 NEON_PACK(neon_s8, x, vec);
1712 return x;
1713}
1714#undef DO_QNEG8
1715
1716#define DO_QABS16(x) do { \
1717 if (x == (int16_t)0x8000) { \
1718 x = 0x7fff; \
1719 SET_QC(); \
1720 } else if (x < 0) { \
1721 x = -x; \
1722 }} while (0)
02da0b2d 1723uint32_t HELPER(neon_qabs_s16)(CPUState *env, uint32_t x)
ad69471c
PB
1724{
1725 neon_s16 vec;
1726 NEON_UNPACK(neon_s16, vec, x);
1727 DO_QABS16(vec.v1);
1728 DO_QABS16(vec.v2);
1729 NEON_PACK(neon_s16, x, vec);
1730 return x;
1731}
1732#undef DO_QABS16
1733
1734#define DO_QNEG16(x) do { \
1735 if (x == (int16_t)0x8000) { \
1736 x = 0x7fff; \
1737 SET_QC(); \
1738 } else { \
1739 x = -x; \
1740 }} while (0)
02da0b2d 1741uint32_t HELPER(neon_qneg_s16)(CPUState *env, uint32_t x)
ad69471c
PB
1742{
1743 neon_s16 vec;
1744 NEON_UNPACK(neon_s16, vec, x);
1745 DO_QNEG16(vec.v1);
1746 DO_QNEG16(vec.v2);
1747 NEON_PACK(neon_s16, x, vec);
1748 return x;
1749}
1750#undef DO_QNEG16
1751
02da0b2d 1752uint32_t HELPER(neon_qabs_s32)(CPUState *env, uint32_t x)
ad69471c
PB
1753{
1754 if (x == SIGNBIT) {
1755 SET_QC();
1756 x = ~SIGNBIT;
1757 } else if ((int32_t)x < 0) {
1758 x = -x;
1759 }
1760 return x;
1761}
1762
02da0b2d 1763uint32_t HELPER(neon_qneg_s32)(CPUState *env, uint32_t x)
ad69471c
PB
1764{
1765 if (x == SIGNBIT) {
1766 SET_QC();
1767 x = ~SIGNBIT;
1768 } else {
1769 x = -x;
1770 }
1771 return x;
1772}
1773
1774/* NEON Float helpers. */
aa47cfdd 1775uint32_t HELPER(neon_min_f32)(uint32_t a, uint32_t b, void *fpstp)
ad69471c 1776{
aa47cfdd
PM
1777 float_status *fpst = fpstp;
1778 return float32_val(float32_min(make_float32(a), make_float32(b), fpst));
ad69471c
PB
1779}
1780
aa47cfdd 1781uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b, void *fpstp)
ad69471c 1782{
aa47cfdd
PM
1783 float_status *fpst = fpstp;
1784 return float32_val(float32_max(make_float32(a), make_float32(b), fpst));
ad69471c
PB
1785}
1786
aa47cfdd 1787uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
ad69471c 1788{
aa47cfdd 1789 float_status *fpst = fpstp;
51d85267
PM
1790 float32 f0 = make_float32(a);
1791 float32 f1 = make_float32(b);
aa47cfdd 1792 return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
ad69471c
PB
1793}
1794
cab565c4
PM
1795/* Floating point comparisons produce an integer result.
1796 * Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
1797 * Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
1798 */
aa47cfdd 1799uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
cab565c4 1800{
aa47cfdd
PM
1801 float_status *fpst = fpstp;
1802 return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
cab565c4
PM
1803}
1804
aa47cfdd 1805uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
cab565c4 1806{
aa47cfdd
PM
1807 float_status *fpst = fpstp;
1808 return -float32_le(make_float32(b), make_float32(a), fpst);
ad69471c
PB
1809}
1810
aa47cfdd 1811uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
cab565c4 1812{
aa47cfdd
PM
1813 float_status *fpst = fpstp;
1814 return -float32_lt(make_float32(b), make_float32(a), fpst);
cab565c4 1815}
ad69471c 1816
aa47cfdd 1817uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
ad69471c 1818{
aa47cfdd 1819 float_status *fpst = fpstp;
51d85267
PM
1820 float32 f0 = float32_abs(make_float32(a));
1821 float32 f1 = float32_abs(make_float32(b));
aa47cfdd 1822 return -float32_le(f1, f0, fpst);
ad69471c
PB
1823}
1824
aa47cfdd 1825uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
ad69471c 1826{
aa47cfdd 1827 float_status *fpst = fpstp;
51d85267
PM
1828 float32 f0 = float32_abs(make_float32(a));
1829 float32 f1 = float32_abs(make_float32(b));
aa47cfdd 1830 return -float32_lt(f1, f0, fpst);
ad69471c 1831}
02acedf9
PM
1832
1833#define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
1834
02da0b2d 1835void HELPER(neon_qunzip8)(CPUState *env, uint32_t rd, uint32_t rm)
02acedf9
PM
1836{
1837 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1838 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1839 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1840 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1841 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
1842 | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
1843 | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
1844 | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
1845 uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
1846 | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
1847 | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1848 | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
1849 uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
1850 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
1851 | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
1852 | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
1853 uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
1854 | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
1855 | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
1856 | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1857 env->vfp.regs[rm] = make_float64(m0);
1858 env->vfp.regs[rm + 1] = make_float64(m1);
1859 env->vfp.regs[rd] = make_float64(d0);
1860 env->vfp.regs[rd + 1] = make_float64(d1);
1861}
1862
02da0b2d 1863void HELPER(neon_qunzip16)(CPUState *env, uint32_t rd, uint32_t rm)
02acedf9
PM
1864{
1865 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1866 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1867 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1868 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1869 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
1870 | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
1871 uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
1872 | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
1873 uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
1874 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
1875 uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
1876 | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1877 env->vfp.regs[rm] = make_float64(m0);
1878 env->vfp.regs[rm + 1] = make_float64(m1);
1879 env->vfp.regs[rd] = make_float64(d0);
1880 env->vfp.regs[rd + 1] = make_float64(d1);
1881}
1882
02da0b2d 1883void HELPER(neon_qunzip32)(CPUState *env, uint32_t rd, uint32_t rm)
02acedf9
PM
1884{
1885 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1886 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1887 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1888 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1889 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
1890 uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1891 uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
1892 uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1893 env->vfp.regs[rm] = make_float64(m0);
1894 env->vfp.regs[rm + 1] = make_float64(m1);
1895 env->vfp.regs[rd] = make_float64(d0);
1896 env->vfp.regs[rd + 1] = make_float64(d1);
1897}
1898
02da0b2d 1899void HELPER(neon_unzip8)(CPUState *env, uint32_t rd, uint32_t rm)
02acedf9
PM
1900{
1901 uint64_t zm = float64_val(env->vfp.regs[rm]);
1902 uint64_t zd = float64_val(env->vfp.regs[rd]);
1903 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
1904 | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
1905 | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1906 | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
1907 uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
1908 | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
1909 | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
1910 | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1911 env->vfp.regs[rm] = make_float64(m0);
1912 env->vfp.regs[rd] = make_float64(d0);
1913}
1914
02da0b2d 1915void HELPER(neon_unzip16)(CPUState *env, uint32_t rd, uint32_t rm)
02acedf9
PM
1916{
1917 uint64_t zm = float64_val(env->vfp.regs[rm]);
1918 uint64_t zd = float64_val(env->vfp.regs[rd]);
1919 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
1920 | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
1921 uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
1922 | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
1923 env->vfp.regs[rm] = make_float64(m0);
1924 env->vfp.regs[rd] = make_float64(d0);
1925}
d68a6f3a 1926
02da0b2d 1927void HELPER(neon_qzip8)(CPUState *env, uint32_t rd, uint32_t rm)
d68a6f3a
PM
1928{
1929 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1930 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1931 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1932 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1933 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
1934 | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
1935 | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
1936 | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
1937 uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
1938 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
1939 | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
1940 | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
1941 uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
1942 | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
1943 | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1944 | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
1945 uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
1946 | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
1947 | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
1948 | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1949 env->vfp.regs[rm] = make_float64(m0);
1950 env->vfp.regs[rm + 1] = make_float64(m1);
1951 env->vfp.regs[rd] = make_float64(d0);
1952 env->vfp.regs[rd + 1] = make_float64(d1);
1953}
1954
02da0b2d 1955void HELPER(neon_qzip16)(CPUState *env, uint32_t rd, uint32_t rm)
d68a6f3a
PM
1956{
1957 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1958 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1959 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1960 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1961 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
1962 | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
1963 uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
1964 | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
1965 uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
1966 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
1967 uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
1968 | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1969 env->vfp.regs[rm] = make_float64(m0);
1970 env->vfp.regs[rm + 1] = make_float64(m1);
1971 env->vfp.regs[rd] = make_float64(d0);
1972 env->vfp.regs[rd + 1] = make_float64(d1);
1973}
1974
02da0b2d 1975void HELPER(neon_qzip32)(CPUState *env, uint32_t rd, uint32_t rm)
d68a6f3a
PM
1976{
1977 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1978 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1979 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1980 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1981 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
1982 uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
1983 uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1984 uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1985 env->vfp.regs[rm] = make_float64(m0);
1986 env->vfp.regs[rm + 1] = make_float64(m1);
1987 env->vfp.regs[rd] = make_float64(d0);
1988 env->vfp.regs[rd + 1] = make_float64(d1);
1989}
1990
02da0b2d 1991void HELPER(neon_zip8)(CPUState *env, uint32_t rd, uint32_t rm)
d68a6f3a
PM
1992{
1993 uint64_t zm = float64_val(env->vfp.regs[rm]);
1994 uint64_t zd = float64_val(env->vfp.regs[rd]);
1995 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
1996 | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
1997 | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1998 | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
1999 uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
2000 | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2001 | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2002 | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2003 env->vfp.regs[rm] = make_float64(m0);
2004 env->vfp.regs[rd] = make_float64(d0);
2005}
2006
02da0b2d 2007void HELPER(neon_zip16)(CPUState *env, uint32_t rd, uint32_t rm)
d68a6f3a
PM
2008{
2009 uint64_t zm = float64_val(env->vfp.regs[rm]);
2010 uint64_t zd = float64_val(env->vfp.regs[rd]);
2011 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2012 | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2013 uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2014 | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2015 env->vfp.regs[rm] = make_float64(m0);
2016 env->vfp.regs[rd] = make_float64(d0);
2017}