]> git.proxmox.com Git - qemu.git/blame - target-i386/kvm.c
target-s390: Convert CLC
[qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
9c17d615
PB
24#include "sysemu/sysemu.h"
25#include "sysemu/kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
022c62cb 28#include "exec/gdbstub.h"
1de7afc9
PB
29#include "qemu/host-utils.h"
30#include "qemu/config-file.h"
4c5b10b7 31#include "hw/pc.h"
408392b3 32#include "hw/apic.h"
022c62cb 33#include "exec/ioport.h"
eab70139 34#include "hyperv.h"
a2cb15b0 35#include "hw/pci/pci.h"
05330448
AL
36
37//#define DEBUG_KVM
38
39#ifdef DEBUG_KVM
8c0d577e 40#define DPRINTF(fmt, ...) \
05330448
AL
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42#else
8c0d577e 43#define DPRINTF(fmt, ...) \
05330448
AL
44 do { } while (0)
45#endif
46
1a03675d
GC
47#define MSR_KVM_WALL_CLOCK 0x11
48#define MSR_KVM_SYSTEM_TIME 0x12
49
c0532a76
MT
50#ifndef BUS_MCEERR_AR
51#define BUS_MCEERR_AR 4
52#endif
53#ifndef BUS_MCEERR_AO
54#define BUS_MCEERR_AO 5
55#endif
56
94a8d39a
JK
57const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62};
25d2e361 63
c3a3a7d3
JK
64static bool has_msr_star;
65static bool has_msr_hsave_pa;
f28558d3 66static bool has_msr_tsc_adjust;
aa82ba54 67static bool has_msr_tsc_deadline;
c5999bfc 68static bool has_msr_async_pf_en;
bc9a839d 69static bool has_msr_pv_eoi_en;
21e87c46 70static bool has_msr_misc_enable;
25d2e361 71static int lm_capable_kernel;
b827df58 72
1d31f66b
PM
73bool kvm_allows_irq0_override(void)
74{
75 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
76}
77
b827df58
AK
78static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
79{
80 struct kvm_cpuid2 *cpuid;
81 int r, size;
82
83 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 84 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
85 cpuid->nent = max;
86 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
87 if (r == 0 && cpuid->nent >= max) {
88 r = -E2BIG;
89 }
b827df58
AK
90 if (r < 0) {
91 if (r == -E2BIG) {
7267c094 92 g_free(cpuid);
b827df58
AK
93 return NULL;
94 } else {
95 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
96 strerror(-r));
97 exit(1);
98 }
99 }
100 return cpuid;
101}
102
dd87f8a6
EH
103/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
104 * for all entries.
105 */
106static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
107{
108 struct kvm_cpuid2 *cpuid;
109 int max = 1;
110 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
111 max *= 2;
112 }
113 return cpuid;
114}
115
0c31b744
GC
116struct kvm_para_features {
117 int cap;
118 int feature;
119} para_features[] = {
120 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
121 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
122 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 123 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
124 { -1, -1 }
125};
126
ba9bc59e 127static int get_para_features(KVMState *s)
0c31b744
GC
128{
129 int i, features = 0;
130
131 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 132 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
133 features |= (1 << para_features[i].feature);
134 }
135 }
136
137 return features;
138}
0c31b744
GC
139
140
829ae2f9
EH
141/* Returns the value for a specific register on the cpuid entry
142 */
143static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
144{
145 uint32_t ret = 0;
146 switch (reg) {
147 case R_EAX:
148 ret = entry->eax;
149 break;
150 case R_EBX:
151 ret = entry->ebx;
152 break;
153 case R_ECX:
154 ret = entry->ecx;
155 break;
156 case R_EDX:
157 ret = entry->edx;
158 break;
159 }
160 return ret;
161}
162
4fb73f1d
EH
163/* Find matching entry for function/index on kvm_cpuid2 struct
164 */
165static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
166 uint32_t function,
167 uint32_t index)
168{
169 int i;
170 for (i = 0; i < cpuid->nent; ++i) {
171 if (cpuid->entries[i].function == function &&
172 cpuid->entries[i].index == index) {
173 return &cpuid->entries[i];
174 }
175 }
176 /* not found: */
177 return NULL;
178}
179
ba9bc59e 180uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 181 uint32_t index, int reg)
b827df58
AK
182{
183 struct kvm_cpuid2 *cpuid;
b827df58
AK
184 uint32_t ret = 0;
185 uint32_t cpuid_1_edx;
8c723b79 186 bool found = false;
b827df58 187
dd87f8a6 188 cpuid = get_supported_cpuid(s);
b827df58 189
4fb73f1d
EH
190 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
191 if (entry) {
192 found = true;
193 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
194 }
195
7b46e5ce
EH
196 /* Fixups for the data returned by KVM, below */
197
c2acb022
EH
198 if (function == 1 && reg == R_EDX) {
199 /* KVM before 2.6.30 misreports the following features */
200 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
201 } else if (function == 1 && reg == R_ECX) {
202 /* We can set the hypervisor flag, even if KVM does not return it on
203 * GET_SUPPORTED_CPUID
204 */
205 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
206 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
207 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
208 * and the irqchip is in the kernel.
209 */
210 if (kvm_irqchip_in_kernel() &&
211 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
212 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
213 }
41e5e76d
EH
214
215 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
216 * without the in-kernel irqchip
217 */
218 if (!kvm_irqchip_in_kernel()) {
219 ret &= ~CPUID_EXT_X2APIC;
b827df58 220 }
c2acb022
EH
221 } else if (function == 0x80000001 && reg == R_EDX) {
222 /* On Intel, kvm returns cpuid according to the Intel spec,
223 * so add missing bits according to the AMD spec:
224 */
225 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
226 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
b827df58
AK
227 }
228
7267c094 229 g_free(cpuid);
b827df58 230
0c31b744 231 /* fallback for older kernels */
8c723b79 232 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 233 ret = get_para_features(s);
b9bec74b 234 }
0c31b744
GC
235
236 return ret;
bb0300dc 237}
bb0300dc 238
3c85e74f
HY
239typedef struct HWPoisonPage {
240 ram_addr_t ram_addr;
241 QLIST_ENTRY(HWPoisonPage) list;
242} HWPoisonPage;
243
244static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
245 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
246
247static void kvm_unpoison_all(void *param)
248{
249 HWPoisonPage *page, *next_page;
250
251 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
252 QLIST_REMOVE(page, list);
253 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 254 g_free(page);
3c85e74f
HY
255 }
256}
257
3c85e74f
HY
258static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
259{
260 HWPoisonPage *page;
261
262 QLIST_FOREACH(page, &hwpoison_page_list, list) {
263 if (page->ram_addr == ram_addr) {
264 return;
265 }
266 }
7267c094 267 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
268 page->ram_addr = ram_addr;
269 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
270}
271
e7701825
MT
272static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
273 int *max_banks)
274{
275 int r;
276
14a09518 277 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
278 if (r > 0) {
279 *max_banks = r;
280 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
281 }
282 return -ENOSYS;
283}
284
bee615d4 285static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 286{
bee615d4 287 CPUX86State *env = &cpu->env;
c34d440a
JK
288 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
289 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
290 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 291
c34d440a
JK
292 if (code == BUS_MCEERR_AR) {
293 status |= MCI_STATUS_AR | 0x134;
294 mcg_status |= MCG_STATUS_EIPV;
295 } else {
296 status |= 0xc0;
297 mcg_status |= MCG_STATUS_RIPV;
419fb20a 298 }
8c5cf3b6 299 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
c34d440a
JK
300 (MCM_ADDR_PHYS << 6) | 0xc,
301 cpu_x86_support_mca_broadcast(env) ?
302 MCE_INJECT_BROADCAST : 0);
419fb20a 303}
419fb20a
JK
304
305static void hardware_memory_error(void)
306{
307 fprintf(stderr, "Hardware memory error!\n");
308 exit(1);
309}
310
20d695a9 311int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 312{
20d695a9
AF
313 X86CPU *cpu = X86_CPU(c);
314 CPUX86State *env = &cpu->env;
419fb20a 315 ram_addr_t ram_addr;
a8170e5e 316 hwaddr paddr;
419fb20a
JK
317
318 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
319 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
320 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
a60f24b5 321 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
419fb20a
JK
322 fprintf(stderr, "Hardware memory error for memory used by "
323 "QEMU itself instead of guest system!\n");
324 /* Hope we are lucky for AO MCE */
325 if (code == BUS_MCEERR_AO) {
326 return 0;
327 } else {
328 hardware_memory_error();
329 }
330 }
3c85e74f 331 kvm_hwpoison_page_add(ram_addr);
bee615d4 332 kvm_mce_inject(cpu, paddr, code);
e56ff191 333 } else {
419fb20a
JK
334 if (code == BUS_MCEERR_AO) {
335 return 0;
336 } else if (code == BUS_MCEERR_AR) {
337 hardware_memory_error();
338 } else {
339 return 1;
340 }
341 }
342 return 0;
343}
344
345int kvm_arch_on_sigbus(int code, void *addr)
346{
419fb20a 347 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 348 ram_addr_t ram_addr;
a8170e5e 349 hwaddr paddr;
419fb20a
JK
350
351 /* Hope we are lucky for AO MCE */
c34d440a 352 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
a60f24b5
AF
353 !kvm_physical_memory_addr_from_host(CPU(first_cpu)->kvm_state,
354 addr, &paddr)) {
419fb20a
JK
355 fprintf(stderr, "Hardware memory error for memory used by "
356 "QEMU itself instead of guest system!: %p\n", addr);
357 return 0;
358 }
3c85e74f 359 kvm_hwpoison_page_add(ram_addr);
bee615d4 360 kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
e56ff191 361 } else {
419fb20a
JK
362 if (code == BUS_MCEERR_AO) {
363 return 0;
364 } else if (code == BUS_MCEERR_AR) {
365 hardware_memory_error();
366 } else {
367 return 1;
368 }
369 }
370 return 0;
371}
e7701825 372
1bc22652 373static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 374{
1bc22652
AF
375 CPUX86State *env = &cpu->env;
376
ab443475
JK
377 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
378 unsigned int bank, bank_num = env->mcg_cap & 0xff;
379 struct kvm_x86_mce mce;
380
381 env->exception_injected = -1;
382
383 /*
384 * There must be at least one bank in use if an MCE is pending.
385 * Find it and use its values for the event injection.
386 */
387 for (bank = 0; bank < bank_num; bank++) {
388 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
389 break;
390 }
391 }
392 assert(bank < bank_num);
393
394 mce.bank = bank;
395 mce.status = env->mce_banks[bank * 4 + 1];
396 mce.mcg_status = env->mcg_status;
397 mce.addr = env->mce_banks[bank * 4 + 2];
398 mce.misc = env->mce_banks[bank * 4 + 3];
399
1bc22652 400 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 401 }
ab443475
JK
402 return 0;
403}
404
1dfb4dd9 405static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 406{
317ac620 407 CPUX86State *env = opaque;
b8cc45d6
GC
408
409 if (running) {
410 env->tsc_valid = false;
411 }
412}
413
20d695a9 414int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
415{
416 struct {
486bd5a2
AL
417 struct kvm_cpuid2 cpuid;
418 struct kvm_cpuid_entry2 entries[100];
541dc0d4 419 } QEMU_PACKED cpuid_data;
20d695a9
AF
420 X86CPU *cpu = X86_CPU(cs);
421 CPUX86State *env = &cpu->env;
486bd5a2 422 uint32_t limit, i, j, cpuid_i;
a33609ca 423 uint32_t unused;
bb0300dc 424 struct kvm_cpuid_entry2 *c;
bb0300dc 425 uint32_t signature[3];
e7429073 426 int r;
05330448
AL
427
428 cpuid_i = 0;
429
bb0300dc 430 /* Paravirtualization CPUIDs */
bb0300dc
GN
431 c = &cpuid_data.entries[cpuid_i++];
432 memset(c, 0, sizeof(*c));
433 c->function = KVM_CPUID_SIGNATURE;
eab70139
VR
434 if (!hyperv_enabled()) {
435 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
436 c->eax = 0;
437 } else {
438 memcpy(signature, "Microsoft Hv", 12);
439 c->eax = HYPERV_CPUID_MIN;
440 }
bb0300dc
GN
441 c->ebx = signature[0];
442 c->ecx = signature[1];
443 c->edx = signature[2];
444
445 c = &cpuid_data.entries[cpuid_i++];
446 memset(c, 0, sizeof(*c));
447 c->function = KVM_CPUID_FEATURES;
ea85c9e4 448 c->eax = env->cpuid_kvm_features;
0c31b744 449
eab70139
VR
450 if (hyperv_enabled()) {
451 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
452 c->eax = signature[0];
453
454 c = &cpuid_data.entries[cpuid_i++];
455 memset(c, 0, sizeof(*c));
456 c->function = HYPERV_CPUID_VERSION;
457 c->eax = 0x00001bbc;
458 c->ebx = 0x00060001;
459
460 c = &cpuid_data.entries[cpuid_i++];
461 memset(c, 0, sizeof(*c));
462 c->function = HYPERV_CPUID_FEATURES;
463 if (hyperv_relaxed_timing_enabled()) {
464 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
465 }
466 if (hyperv_vapic_recommended()) {
467 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
468 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
469 }
470
471 c = &cpuid_data.entries[cpuid_i++];
472 memset(c, 0, sizeof(*c));
473 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
474 if (hyperv_relaxed_timing_enabled()) {
475 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
476 }
477 if (hyperv_vapic_recommended()) {
478 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
479 }
480 c->ebx = hyperv_get_spinlock_retries();
481
482 c = &cpuid_data.entries[cpuid_i++];
483 memset(c, 0, sizeof(*c));
484 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
485 c->eax = 0x40;
486 c->ebx = 0x40;
487
488 c = &cpuid_data.entries[cpuid_i++];
489 memset(c, 0, sizeof(*c));
490 c->function = KVM_CPUID_SIGNATURE_NEXT;
491 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
492 c->eax = 0;
493 c->ebx = signature[0];
494 c->ecx = signature[1];
495 c->edx = signature[2];
496 }
497
0c31b744 498 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 499
bc9a839d
MT
500 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
501
a33609ca 502 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
503
504 for (i = 0; i <= limit; i++) {
bb0300dc 505 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
506
507 switch (i) {
a36b1029
AL
508 case 2: {
509 /* Keep reading function 2 till all the input is received */
510 int times;
511
a36b1029 512 c->function = i;
a33609ca
AL
513 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
514 KVM_CPUID_FLAG_STATE_READ_NEXT;
515 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
516 times = c->eax & 0xff;
a36b1029
AL
517
518 for (j = 1; j < times; ++j) {
a33609ca 519 c = &cpuid_data.entries[cpuid_i++];
a36b1029 520 c->function = i;
a33609ca
AL
521 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
522 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
523 }
524 break;
525 }
486bd5a2
AL
526 case 4:
527 case 0xb:
528 case 0xd:
529 for (j = 0; ; j++) {
31e8c696
AP
530 if (i == 0xd && j == 64) {
531 break;
532 }
486bd5a2
AL
533 c->function = i;
534 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
535 c->index = j;
a33609ca 536 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 537
b9bec74b 538 if (i == 4 && c->eax == 0) {
486bd5a2 539 break;
b9bec74b
JK
540 }
541 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 542 break;
b9bec74b
JK
543 }
544 if (i == 0xd && c->eax == 0) {
31e8c696 545 continue;
b9bec74b 546 }
a33609ca 547 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
548 }
549 break;
550 default:
486bd5a2 551 c->function = i;
a33609ca
AL
552 c->flags = 0;
553 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
554 break;
555 }
05330448 556 }
a33609ca 557 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
558
559 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 560 c = &cpuid_data.entries[cpuid_i++];
05330448 561
05330448 562 c->function = i;
a33609ca
AL
563 c->flags = 0;
564 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
565 }
566
b3baa152 567 /* Call Centaur's CPUID instructions they are supported. */
568 if (env->cpuid_xlevel2 > 0) {
b3baa152 569 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
570
571 for (i = 0xC0000000; i <= limit; i++) {
572 c = &cpuid_data.entries[cpuid_i++];
573
574 c->function = i;
575 c->flags = 0;
576 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
577 }
578 }
579
05330448
AL
580 cpuid_data.cpuid.nent = cpuid_i;
581
e7701825
MT
582 if (((env->cpuid_version >> 8)&0xF) >= 6
583 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
a60f24b5 584 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
e7701825
MT
585 uint64_t mcg_cap;
586 int banks;
32a42024 587 int ret;
e7701825 588
a60f24b5 589 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
590 if (ret < 0) {
591 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
592 return ret;
e7701825 593 }
75d49497
JK
594
595 if (banks > MCE_BANKS_DEF) {
596 banks = MCE_BANKS_DEF;
597 }
598 mcg_cap &= MCE_CAP_DEF;
599 mcg_cap |= banks;
1bc22652 600 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
75d49497
JK
601 if (ret < 0) {
602 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
603 return ret;
604 }
605
606 env->mcg_cap = mcg_cap;
e7701825 607 }
e7701825 608
b8cc45d6
GC
609 qemu_add_vm_change_state_handler(cpu_update_state, env);
610
7e680753 611 cpuid_data.cpuid.padding = 0;
1bc22652 612 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
613 if (r) {
614 return r;
615 }
e7429073 616
a60f24b5 617 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
e7429073 618 if (r && env->tsc_khz) {
1bc22652 619 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
e7429073
JR
620 if (r < 0) {
621 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
622 return r;
623 }
624 }
e7429073 625
fabacc0f
JK
626 if (kvm_has_xsave()) {
627 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
628 }
629
e7429073 630 return 0;
05330448
AL
631}
632
20d695a9 633void kvm_arch_reset_vcpu(CPUState *cs)
caa5af0f 634{
20d695a9
AF
635 X86CPU *cpu = X86_CPU(cs);
636 CPUX86State *env = &cpu->env;
dd673288 637
e73223a5 638 env->exception_injected = -1;
0e607a80 639 env->interrupt_injected = -1;
1a5e9d2f 640 env->xcr0 = 1;
ddced198 641 if (kvm_irqchip_in_kernel()) {
dd673288 642 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
643 KVM_MP_STATE_UNINITIALIZED;
644 } else {
645 env->mp_state = KVM_MP_STATE_RUNNABLE;
646 }
caa5af0f
JK
647}
648
c3a3a7d3 649static int kvm_get_supported_msrs(KVMState *s)
05330448 650{
75b10c43 651 static int kvm_supported_msrs;
c3a3a7d3 652 int ret = 0;
05330448
AL
653
654 /* first time */
75b10c43 655 if (kvm_supported_msrs == 0) {
05330448
AL
656 struct kvm_msr_list msr_list, *kvm_msr_list;
657
75b10c43 658 kvm_supported_msrs = -1;
05330448
AL
659
660 /* Obtain MSR list from KVM. These are the MSRs that we must
661 * save/restore */
4c9f7372 662 msr_list.nmsrs = 0;
c3a3a7d3 663 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 664 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 665 return ret;
6fb6d245 666 }
d9db889f
JK
667 /* Old kernel modules had a bug and could write beyond the provided
668 memory. Allocate at least a safe amount of 1K. */
7267c094 669 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
670 msr_list.nmsrs *
671 sizeof(msr_list.indices[0])));
05330448 672
55308450 673 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 674 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
675 if (ret >= 0) {
676 int i;
677
678 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
679 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 680 has_msr_star = true;
75b10c43
MT
681 continue;
682 }
683 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 684 has_msr_hsave_pa = true;
75b10c43 685 continue;
05330448 686 }
f28558d3
WA
687 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
688 has_msr_tsc_adjust = true;
689 continue;
690 }
aa82ba54
LJ
691 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
692 has_msr_tsc_deadline = true;
693 continue;
694 }
21e87c46
AK
695 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
696 has_msr_misc_enable = true;
697 continue;
698 }
05330448
AL
699 }
700 }
701
7267c094 702 g_free(kvm_msr_list);
05330448
AL
703 }
704
c3a3a7d3 705 return ret;
05330448
AL
706}
707
cad1e282 708int kvm_arch_init(KVMState *s)
20420430 709{
39d6960a 710 QemuOptsList *list = qemu_find_opts("machine");
11076198 711 uint64_t identity_base = 0xfffbc000;
39d6960a 712 uint64_t shadow_mem;
20420430 713 int ret;
25d2e361 714 struct utsname utsname;
20420430 715
c3a3a7d3 716 ret = kvm_get_supported_msrs(s);
20420430 717 if (ret < 0) {
20420430
SY
718 return ret;
719 }
25d2e361
MT
720
721 uname(&utsname);
722 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
723
4c5b10b7 724 /*
11076198
JK
725 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
726 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
727 * Since these must be part of guest physical memory, we need to allocate
728 * them, both by setting their start addresses in the kernel and by
729 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
730 *
731 * Older KVM versions may not support setting the identity map base. In
732 * that case we need to stick with the default, i.e. a 256K maximum BIOS
733 * size.
4c5b10b7 734 */
11076198
JK
735 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
736 /* Allows up to 16M BIOSes. */
737 identity_base = 0xfeffc000;
738
739 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
740 if (ret < 0) {
741 return ret;
742 }
4c5b10b7 743 }
e56ff191 744
11076198
JK
745 /* Set TSS base one page after EPT identity map. */
746 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
747 if (ret < 0) {
748 return ret;
749 }
750
11076198
JK
751 /* Tell fw_cfg to notify the BIOS to reserve the range. */
752 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 753 if (ret < 0) {
11076198 754 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
755 return ret;
756 }
3c85e74f 757 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 758
39d6960a
JK
759 if (!QTAILQ_EMPTY(&list->head)) {
760 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
761 "kvm_shadow_mem", -1);
762 if (shadow_mem != -1) {
763 shadow_mem /= 4096;
764 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
765 if (ret < 0) {
766 return ret;
767 }
768 }
769 }
11076198 770 return 0;
05330448 771}
b9bec74b 772
05330448
AL
773static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
774{
775 lhs->selector = rhs->selector;
776 lhs->base = rhs->base;
777 lhs->limit = rhs->limit;
778 lhs->type = 3;
779 lhs->present = 1;
780 lhs->dpl = 3;
781 lhs->db = 0;
782 lhs->s = 1;
783 lhs->l = 0;
784 lhs->g = 0;
785 lhs->avl = 0;
786 lhs->unusable = 0;
787}
788
789static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
790{
791 unsigned flags = rhs->flags;
792 lhs->selector = rhs->selector;
793 lhs->base = rhs->base;
794 lhs->limit = rhs->limit;
795 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
796 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 797 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
798 lhs->db = (flags >> DESC_B_SHIFT) & 1;
799 lhs->s = (flags & DESC_S_MASK) != 0;
800 lhs->l = (flags >> DESC_L_SHIFT) & 1;
801 lhs->g = (flags & DESC_G_MASK) != 0;
802 lhs->avl = (flags & DESC_AVL_MASK) != 0;
803 lhs->unusable = 0;
7e680753 804 lhs->padding = 0;
05330448
AL
805}
806
807static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
808{
809 lhs->selector = rhs->selector;
810 lhs->base = rhs->base;
811 lhs->limit = rhs->limit;
b9bec74b
JK
812 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
813 (rhs->present * DESC_P_MASK) |
814 (rhs->dpl << DESC_DPL_SHIFT) |
815 (rhs->db << DESC_B_SHIFT) |
816 (rhs->s * DESC_S_MASK) |
817 (rhs->l << DESC_L_SHIFT) |
818 (rhs->g * DESC_G_MASK) |
819 (rhs->avl * DESC_AVL_MASK);
05330448
AL
820}
821
822static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
823{
b9bec74b 824 if (set) {
05330448 825 *kvm_reg = *qemu_reg;
b9bec74b 826 } else {
05330448 827 *qemu_reg = *kvm_reg;
b9bec74b 828 }
05330448
AL
829}
830
1bc22652 831static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 832{
1bc22652 833 CPUX86State *env = &cpu->env;
05330448
AL
834 struct kvm_regs regs;
835 int ret = 0;
836
837 if (!set) {
1bc22652 838 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 839 if (ret < 0) {
05330448 840 return ret;
b9bec74b 841 }
05330448
AL
842 }
843
844 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
845 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
846 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
847 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
848 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
849 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
850 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
851 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
852#ifdef TARGET_X86_64
853 kvm_getput_reg(&regs.r8, &env->regs[8], set);
854 kvm_getput_reg(&regs.r9, &env->regs[9], set);
855 kvm_getput_reg(&regs.r10, &env->regs[10], set);
856 kvm_getput_reg(&regs.r11, &env->regs[11], set);
857 kvm_getput_reg(&regs.r12, &env->regs[12], set);
858 kvm_getput_reg(&regs.r13, &env->regs[13], set);
859 kvm_getput_reg(&regs.r14, &env->regs[14], set);
860 kvm_getput_reg(&regs.r15, &env->regs[15], set);
861#endif
862
863 kvm_getput_reg(&regs.rflags, &env->eflags, set);
864 kvm_getput_reg(&regs.rip, &env->eip, set);
865
b9bec74b 866 if (set) {
1bc22652 867 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 868 }
05330448
AL
869
870 return ret;
871}
872
1bc22652 873static int kvm_put_fpu(X86CPU *cpu)
05330448 874{
1bc22652 875 CPUX86State *env = &cpu->env;
05330448
AL
876 struct kvm_fpu fpu;
877 int i;
878
879 memset(&fpu, 0, sizeof fpu);
880 fpu.fsw = env->fpus & ~(7 << 11);
881 fpu.fsw |= (env->fpstt & 7) << 11;
882 fpu.fcw = env->fpuc;
42cc8fa6
JK
883 fpu.last_opcode = env->fpop;
884 fpu.last_ip = env->fpip;
885 fpu.last_dp = env->fpdp;
b9bec74b
JK
886 for (i = 0; i < 8; ++i) {
887 fpu.ftwx |= (!env->fptags[i]) << i;
888 }
05330448
AL
889 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
890 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
891 fpu.mxcsr = env->mxcsr;
892
1bc22652 893 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
894}
895
6b42494b
JK
896#define XSAVE_FCW_FSW 0
897#define XSAVE_FTW_FOP 1
f1665b21
SY
898#define XSAVE_CWD_RIP 2
899#define XSAVE_CWD_RDP 4
900#define XSAVE_MXCSR 6
901#define XSAVE_ST_SPACE 8
902#define XSAVE_XMM_SPACE 40
903#define XSAVE_XSTATE_BV 128
904#define XSAVE_YMMH_SPACE 144
f1665b21 905
1bc22652 906static int kvm_put_xsave(X86CPU *cpu)
f1665b21 907{
1bc22652 908 CPUX86State *env = &cpu->env;
fabacc0f 909 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 910 uint16_t cwd, swd, twd;
fabacc0f 911 int i, r;
f1665b21 912
b9bec74b 913 if (!kvm_has_xsave()) {
1bc22652 914 return kvm_put_fpu(cpu);
b9bec74b 915 }
f1665b21 916
f1665b21 917 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 918 twd = 0;
f1665b21
SY
919 swd = env->fpus & ~(7 << 11);
920 swd |= (env->fpstt & 7) << 11;
921 cwd = env->fpuc;
b9bec74b 922 for (i = 0; i < 8; ++i) {
f1665b21 923 twd |= (!env->fptags[i]) << i;
b9bec74b 924 }
6b42494b
JK
925 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
926 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
927 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
928 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
929 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
930 sizeof env->fpregs);
931 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
932 sizeof env->xmm_regs);
933 xsave->region[XSAVE_MXCSR] = env->mxcsr;
934 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
935 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
936 sizeof env->ymmh_regs);
1bc22652 937 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
0f53994f 938 return r;
f1665b21
SY
939}
940
1bc22652 941static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 942{
1bc22652 943 CPUX86State *env = &cpu->env;
f1665b21
SY
944 struct kvm_xcrs xcrs;
945
b9bec74b 946 if (!kvm_has_xcrs()) {
f1665b21 947 return 0;
b9bec74b 948 }
f1665b21
SY
949
950 xcrs.nr_xcrs = 1;
951 xcrs.flags = 0;
952 xcrs.xcrs[0].xcr = 0;
953 xcrs.xcrs[0].value = env->xcr0;
1bc22652 954 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
955}
956
1bc22652 957static int kvm_put_sregs(X86CPU *cpu)
05330448 958{
1bc22652 959 CPUX86State *env = &cpu->env;
05330448
AL
960 struct kvm_sregs sregs;
961
0e607a80
JK
962 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
963 if (env->interrupt_injected >= 0) {
964 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
965 (uint64_t)1 << (env->interrupt_injected % 64);
966 }
05330448
AL
967
968 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
969 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
970 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
971 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
972 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
973 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
974 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 975 } else {
b9bec74b
JK
976 set_seg(&sregs.cs, &env->segs[R_CS]);
977 set_seg(&sregs.ds, &env->segs[R_DS]);
978 set_seg(&sregs.es, &env->segs[R_ES]);
979 set_seg(&sregs.fs, &env->segs[R_FS]);
980 set_seg(&sregs.gs, &env->segs[R_GS]);
981 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
982 }
983
984 set_seg(&sregs.tr, &env->tr);
985 set_seg(&sregs.ldt, &env->ldt);
986
987 sregs.idt.limit = env->idt.limit;
988 sregs.idt.base = env->idt.base;
7e680753 989 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
990 sregs.gdt.limit = env->gdt.limit;
991 sregs.gdt.base = env->gdt.base;
7e680753 992 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
993
994 sregs.cr0 = env->cr[0];
995 sregs.cr2 = env->cr[2];
996 sregs.cr3 = env->cr[3];
997 sregs.cr4 = env->cr[4];
998
4a942cea
BS
999 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1000 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
1001
1002 sregs.efer = env->efer;
1003
1bc22652 1004 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
1005}
1006
1007static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1008 uint32_t index, uint64_t value)
1009{
1010 entry->index = index;
1011 entry->data = value;
1012}
1013
1bc22652 1014static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 1015{
1bc22652 1016 CPUX86State *env = &cpu->env;
05330448
AL
1017 struct {
1018 struct kvm_msrs info;
1019 struct kvm_msr_entry entries[100];
1020 } msr_data;
1021 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 1022 int n = 0;
05330448
AL
1023
1024 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1025 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1026 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 1027 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 1028 if (has_msr_star) {
b9bec74b
JK
1029 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1030 }
c3a3a7d3 1031 if (has_msr_hsave_pa) {
75b10c43 1032 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1033 }
f28558d3
WA
1034 if (has_msr_tsc_adjust) {
1035 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1036 }
aa82ba54
LJ
1037 if (has_msr_tsc_deadline) {
1038 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1039 }
21e87c46
AK
1040 if (has_msr_misc_enable) {
1041 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1042 env->msr_ia32_misc_enable);
1043 }
05330448 1044#ifdef TARGET_X86_64
25d2e361
MT
1045 if (lm_capable_kernel) {
1046 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1047 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1048 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1049 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1050 }
05330448 1051#endif
ea643051 1052 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
1053 /*
1054 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1055 * writeback. Until this is fixed, we only write the offset to SMP
1056 * guests after migration, desynchronizing the VCPUs, but avoiding
1057 * huge jump-backs that would occur without any writeback at all.
1058 */
1059 if (smp_cpus == 1 || env->tsc != 0) {
1060 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1061 }
ff5c186b
JK
1062 }
1063 /*
1064 * The following paravirtual MSRs have side effects on the guest or are
1065 * too heavy for normal writeback. Limit them to reset or full state
1066 * updates.
1067 */
1068 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
1069 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1070 env->system_time_msr);
1071 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1072 if (has_msr_async_pf_en) {
1073 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1074 env->async_pf_en_msr);
1075 }
bc9a839d
MT
1076 if (has_msr_pv_eoi_en) {
1077 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1078 env->pv_eoi_en_msr);
1079 }
eab70139
VR
1080 if (hyperv_hypercall_available()) {
1081 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1082 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1083 }
1084 if (hyperv_vapic_recommended()) {
1085 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1086 }
ea643051 1087 }
57780495 1088 if (env->mcg_cap) {
d8da8574 1089 int i;
b9bec74b 1090
c34d440a
JK
1091 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1092 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1093 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1094 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1095 }
1096 }
1a03675d 1097
05330448
AL
1098 msr_data.info.nmsrs = n;
1099
1bc22652 1100 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
05330448
AL
1101
1102}
1103
1104
1bc22652 1105static int kvm_get_fpu(X86CPU *cpu)
05330448 1106{
1bc22652 1107 CPUX86State *env = &cpu->env;
05330448
AL
1108 struct kvm_fpu fpu;
1109 int i, ret;
1110
1bc22652 1111 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 1112 if (ret < 0) {
05330448 1113 return ret;
b9bec74b 1114 }
05330448
AL
1115
1116 env->fpstt = (fpu.fsw >> 11) & 7;
1117 env->fpus = fpu.fsw;
1118 env->fpuc = fpu.fcw;
42cc8fa6
JK
1119 env->fpop = fpu.last_opcode;
1120 env->fpip = fpu.last_ip;
1121 env->fpdp = fpu.last_dp;
b9bec74b
JK
1122 for (i = 0; i < 8; ++i) {
1123 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1124 }
05330448
AL
1125 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1126 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1127 env->mxcsr = fpu.mxcsr;
1128
1129 return 0;
1130}
1131
1bc22652 1132static int kvm_get_xsave(X86CPU *cpu)
f1665b21 1133{
1bc22652 1134 CPUX86State *env = &cpu->env;
fabacc0f 1135 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1136 int ret, i;
42cc8fa6 1137 uint16_t cwd, swd, twd;
f1665b21 1138
b9bec74b 1139 if (!kvm_has_xsave()) {
1bc22652 1140 return kvm_get_fpu(cpu);
b9bec74b 1141 }
f1665b21 1142
1bc22652 1143 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 1144 if (ret < 0) {
f1665b21 1145 return ret;
0f53994f 1146 }
f1665b21 1147
6b42494b
JK
1148 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1149 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1150 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1151 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1152 env->fpstt = (swd >> 11) & 7;
1153 env->fpus = swd;
1154 env->fpuc = cwd;
b9bec74b 1155 for (i = 0; i < 8; ++i) {
f1665b21 1156 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1157 }
42cc8fa6
JK
1158 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1159 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1160 env->mxcsr = xsave->region[XSAVE_MXCSR];
1161 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1162 sizeof env->fpregs);
1163 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1164 sizeof env->xmm_regs);
1165 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1166 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1167 sizeof env->ymmh_regs);
1168 return 0;
f1665b21
SY
1169}
1170
1bc22652 1171static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 1172{
1bc22652 1173 CPUX86State *env = &cpu->env;
f1665b21
SY
1174 int i, ret;
1175 struct kvm_xcrs xcrs;
1176
b9bec74b 1177 if (!kvm_has_xcrs()) {
f1665b21 1178 return 0;
b9bec74b 1179 }
f1665b21 1180
1bc22652 1181 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 1182 if (ret < 0) {
f1665b21 1183 return ret;
b9bec74b 1184 }
f1665b21 1185
b9bec74b 1186 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1187 /* Only support xcr0 now */
1188 if (xcrs.xcrs[0].xcr == 0) {
1189 env->xcr0 = xcrs.xcrs[0].value;
1190 break;
1191 }
b9bec74b 1192 }
f1665b21 1193 return 0;
f1665b21
SY
1194}
1195
1bc22652 1196static int kvm_get_sregs(X86CPU *cpu)
05330448 1197{
1bc22652 1198 CPUX86State *env = &cpu->env;
05330448
AL
1199 struct kvm_sregs sregs;
1200 uint32_t hflags;
0e607a80 1201 int bit, i, ret;
05330448 1202
1bc22652 1203 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 1204 if (ret < 0) {
05330448 1205 return ret;
b9bec74b 1206 }
05330448 1207
0e607a80
JK
1208 /* There can only be one pending IRQ set in the bitmap at a time, so try
1209 to find it and save its number instead (-1 for none). */
1210 env->interrupt_injected = -1;
1211 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1212 if (sregs.interrupt_bitmap[i]) {
1213 bit = ctz64(sregs.interrupt_bitmap[i]);
1214 env->interrupt_injected = i * 64 + bit;
1215 break;
1216 }
1217 }
05330448
AL
1218
1219 get_seg(&env->segs[R_CS], &sregs.cs);
1220 get_seg(&env->segs[R_DS], &sregs.ds);
1221 get_seg(&env->segs[R_ES], &sregs.es);
1222 get_seg(&env->segs[R_FS], &sregs.fs);
1223 get_seg(&env->segs[R_GS], &sregs.gs);
1224 get_seg(&env->segs[R_SS], &sregs.ss);
1225
1226 get_seg(&env->tr, &sregs.tr);
1227 get_seg(&env->ldt, &sregs.ldt);
1228
1229 env->idt.limit = sregs.idt.limit;
1230 env->idt.base = sregs.idt.base;
1231 env->gdt.limit = sregs.gdt.limit;
1232 env->gdt.base = sregs.gdt.base;
1233
1234 env->cr[0] = sregs.cr0;
1235 env->cr[2] = sregs.cr2;
1236 env->cr[3] = sregs.cr3;
1237 env->cr[4] = sregs.cr4;
1238
05330448 1239 env->efer = sregs.efer;
cce47516
JK
1240
1241 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1242
b9bec74b
JK
1243#define HFLAG_COPY_MASK \
1244 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1245 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1246 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1247 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1248
1249 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1250 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1251 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1252 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1253 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1254 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1255 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1256
1257 if (env->efer & MSR_EFER_LMA) {
1258 hflags |= HF_LMA_MASK;
1259 }
1260
1261 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1262 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1263 } else {
1264 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1265 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1266 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1267 (DESC_B_SHIFT - HF_SS32_SHIFT);
1268 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1269 !(hflags & HF_CS32_MASK)) {
1270 hflags |= HF_ADDSEG_MASK;
1271 } else {
1272 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1273 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1274 }
05330448
AL
1275 }
1276 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1277
1278 return 0;
1279}
1280
1bc22652 1281static int kvm_get_msrs(X86CPU *cpu)
05330448 1282{
1bc22652 1283 CPUX86State *env = &cpu->env;
05330448
AL
1284 struct {
1285 struct kvm_msrs info;
1286 struct kvm_msr_entry entries[100];
1287 } msr_data;
1288 struct kvm_msr_entry *msrs = msr_data.entries;
1289 int ret, i, n;
1290
1291 n = 0;
1292 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1293 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1294 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1295 msrs[n++].index = MSR_PAT;
c3a3a7d3 1296 if (has_msr_star) {
b9bec74b
JK
1297 msrs[n++].index = MSR_STAR;
1298 }
c3a3a7d3 1299 if (has_msr_hsave_pa) {
75b10c43 1300 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1301 }
f28558d3
WA
1302 if (has_msr_tsc_adjust) {
1303 msrs[n++].index = MSR_TSC_ADJUST;
1304 }
aa82ba54
LJ
1305 if (has_msr_tsc_deadline) {
1306 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1307 }
21e87c46
AK
1308 if (has_msr_misc_enable) {
1309 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1310 }
b8cc45d6
GC
1311
1312 if (!env->tsc_valid) {
1313 msrs[n++].index = MSR_IA32_TSC;
1354869c 1314 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1315 }
1316
05330448 1317#ifdef TARGET_X86_64
25d2e361
MT
1318 if (lm_capable_kernel) {
1319 msrs[n++].index = MSR_CSTAR;
1320 msrs[n++].index = MSR_KERNELGSBASE;
1321 msrs[n++].index = MSR_FMASK;
1322 msrs[n++].index = MSR_LSTAR;
1323 }
05330448 1324#endif
1a03675d
GC
1325 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1326 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1327 if (has_msr_async_pf_en) {
1328 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1329 }
bc9a839d
MT
1330 if (has_msr_pv_eoi_en) {
1331 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1332 }
1a03675d 1333
57780495
MT
1334 if (env->mcg_cap) {
1335 msrs[n++].index = MSR_MCG_STATUS;
1336 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1337 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1338 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1339 }
57780495 1340 }
57780495 1341
05330448 1342 msr_data.info.nmsrs = n;
1bc22652 1343 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
b9bec74b 1344 if (ret < 0) {
05330448 1345 return ret;
b9bec74b 1346 }
05330448
AL
1347
1348 for (i = 0; i < ret; i++) {
1349 switch (msrs[i].index) {
1350 case MSR_IA32_SYSENTER_CS:
1351 env->sysenter_cs = msrs[i].data;
1352 break;
1353 case MSR_IA32_SYSENTER_ESP:
1354 env->sysenter_esp = msrs[i].data;
1355 break;
1356 case MSR_IA32_SYSENTER_EIP:
1357 env->sysenter_eip = msrs[i].data;
1358 break;
0c03266a
JK
1359 case MSR_PAT:
1360 env->pat = msrs[i].data;
1361 break;
05330448
AL
1362 case MSR_STAR:
1363 env->star = msrs[i].data;
1364 break;
1365#ifdef TARGET_X86_64
1366 case MSR_CSTAR:
1367 env->cstar = msrs[i].data;
1368 break;
1369 case MSR_KERNELGSBASE:
1370 env->kernelgsbase = msrs[i].data;
1371 break;
1372 case MSR_FMASK:
1373 env->fmask = msrs[i].data;
1374 break;
1375 case MSR_LSTAR:
1376 env->lstar = msrs[i].data;
1377 break;
1378#endif
1379 case MSR_IA32_TSC:
1380 env->tsc = msrs[i].data;
1381 break;
f28558d3
WA
1382 case MSR_TSC_ADJUST:
1383 env->tsc_adjust = msrs[i].data;
1384 break;
aa82ba54
LJ
1385 case MSR_IA32_TSCDEADLINE:
1386 env->tsc_deadline = msrs[i].data;
1387 break;
aa851e36
MT
1388 case MSR_VM_HSAVE_PA:
1389 env->vm_hsave = msrs[i].data;
1390 break;
1a03675d
GC
1391 case MSR_KVM_SYSTEM_TIME:
1392 env->system_time_msr = msrs[i].data;
1393 break;
1394 case MSR_KVM_WALL_CLOCK:
1395 env->wall_clock_msr = msrs[i].data;
1396 break;
57780495
MT
1397 case MSR_MCG_STATUS:
1398 env->mcg_status = msrs[i].data;
1399 break;
1400 case MSR_MCG_CTL:
1401 env->mcg_ctl = msrs[i].data;
1402 break;
21e87c46
AK
1403 case MSR_IA32_MISC_ENABLE:
1404 env->msr_ia32_misc_enable = msrs[i].data;
1405 break;
57780495 1406 default:
57780495
MT
1407 if (msrs[i].index >= MSR_MC0_CTL &&
1408 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1409 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1410 }
d8da8574 1411 break;
f6584ee2
GN
1412 case MSR_KVM_ASYNC_PF_EN:
1413 env->async_pf_en_msr = msrs[i].data;
1414 break;
bc9a839d
MT
1415 case MSR_KVM_PV_EOI_EN:
1416 env->pv_eoi_en_msr = msrs[i].data;
1417 break;
05330448
AL
1418 }
1419 }
1420
1421 return 0;
1422}
1423
1bc22652 1424static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 1425{
1bc22652 1426 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 1427
1bc22652 1428 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
1429}
1430
23d02d9b 1431static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 1432{
23d02d9b 1433 CPUX86State *env = &cpu->env;
9bdbe550
HB
1434 struct kvm_mp_state mp_state;
1435 int ret;
1436
1bc22652 1437 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
1438 if (ret < 0) {
1439 return ret;
1440 }
1441 env->mp_state = mp_state.mp_state;
c14750e8
JK
1442 if (kvm_irqchip_in_kernel()) {
1443 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1444 }
9bdbe550
HB
1445 return 0;
1446}
1447
1bc22652 1448static int kvm_get_apic(X86CPU *cpu)
680c1c6f 1449{
1bc22652 1450 CPUX86State *env = &cpu->env;
680c1c6f
JK
1451 DeviceState *apic = env->apic_state;
1452 struct kvm_lapic_state kapic;
1453 int ret;
1454
3d4b2649 1455 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 1456 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
1457 if (ret < 0) {
1458 return ret;
1459 }
1460
1461 kvm_get_apic_state(apic, &kapic);
1462 }
1463 return 0;
1464}
1465
1bc22652 1466static int kvm_put_apic(X86CPU *cpu)
680c1c6f 1467{
1bc22652 1468 CPUX86State *env = &cpu->env;
680c1c6f
JK
1469 DeviceState *apic = env->apic_state;
1470 struct kvm_lapic_state kapic;
1471
3d4b2649 1472 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1473 kvm_put_apic_state(apic, &kapic);
1474
1bc22652 1475 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
680c1c6f
JK
1476 }
1477 return 0;
1478}
1479
1bc22652 1480static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 1481{
1bc22652 1482 CPUX86State *env = &cpu->env;
a0fb002c
JK
1483 struct kvm_vcpu_events events;
1484
1485 if (!kvm_has_vcpu_events()) {
1486 return 0;
1487 }
1488
31827373
JK
1489 events.exception.injected = (env->exception_injected >= 0);
1490 events.exception.nr = env->exception_injected;
a0fb002c
JK
1491 events.exception.has_error_code = env->has_error_code;
1492 events.exception.error_code = env->error_code;
7e680753 1493 events.exception.pad = 0;
a0fb002c
JK
1494
1495 events.interrupt.injected = (env->interrupt_injected >= 0);
1496 events.interrupt.nr = env->interrupt_injected;
1497 events.interrupt.soft = env->soft_interrupt;
1498
1499 events.nmi.injected = env->nmi_injected;
1500 events.nmi.pending = env->nmi_pending;
1501 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1502 events.nmi.pad = 0;
a0fb002c
JK
1503
1504 events.sipi_vector = env->sipi_vector;
1505
ea643051
JK
1506 events.flags = 0;
1507 if (level >= KVM_PUT_RESET_STATE) {
1508 events.flags |=
1509 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1510 }
aee028b9 1511
1bc22652 1512 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1513}
1514
1bc22652 1515static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 1516{
1bc22652 1517 CPUX86State *env = &cpu->env;
a0fb002c
JK
1518 struct kvm_vcpu_events events;
1519 int ret;
1520
1521 if (!kvm_has_vcpu_events()) {
1522 return 0;
1523 }
1524
1bc22652 1525 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
1526 if (ret < 0) {
1527 return ret;
1528 }
31827373 1529 env->exception_injected =
a0fb002c
JK
1530 events.exception.injected ? events.exception.nr : -1;
1531 env->has_error_code = events.exception.has_error_code;
1532 env->error_code = events.exception.error_code;
1533
1534 env->interrupt_injected =
1535 events.interrupt.injected ? events.interrupt.nr : -1;
1536 env->soft_interrupt = events.interrupt.soft;
1537
1538 env->nmi_injected = events.nmi.injected;
1539 env->nmi_pending = events.nmi.pending;
1540 if (events.nmi.masked) {
1541 env->hflags2 |= HF2_NMI_MASK;
1542 } else {
1543 env->hflags2 &= ~HF2_NMI_MASK;
1544 }
1545
1546 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1547
1548 return 0;
1549}
1550
1bc22652 1551static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 1552{
1bc22652 1553 CPUX86State *env = &cpu->env;
b0b1d690 1554 int ret = 0;
b0b1d690
JK
1555 unsigned long reinject_trap = 0;
1556
1557 if (!kvm_has_vcpu_events()) {
1558 if (env->exception_injected == 1) {
1559 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1560 } else if (env->exception_injected == 3) {
1561 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1562 }
1563 env->exception_injected = -1;
1564 }
1565
1566 /*
1567 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1568 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1569 * by updating the debug state once again if single-stepping is on.
1570 * Another reason to call kvm_update_guest_debug here is a pending debug
1571 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1572 * reinject them via SET_GUEST_DEBUG.
1573 */
1574 if (reinject_trap ||
1575 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1576 ret = kvm_update_guest_debug(env, reinject_trap);
1577 }
b0b1d690
JK
1578 return ret;
1579}
1580
1bc22652 1581static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 1582{
1bc22652 1583 CPUX86State *env = &cpu->env;
ff44f1a3
JK
1584 struct kvm_debugregs dbgregs;
1585 int i;
1586
1587 if (!kvm_has_debugregs()) {
1588 return 0;
1589 }
1590
1591 for (i = 0; i < 4; i++) {
1592 dbgregs.db[i] = env->dr[i];
1593 }
1594 dbgregs.dr6 = env->dr[6];
1595 dbgregs.dr7 = env->dr[7];
1596 dbgregs.flags = 0;
1597
1bc22652 1598 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1599}
1600
1bc22652 1601static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 1602{
1bc22652 1603 CPUX86State *env = &cpu->env;
ff44f1a3
JK
1604 struct kvm_debugregs dbgregs;
1605 int i, ret;
1606
1607 if (!kvm_has_debugregs()) {
1608 return 0;
1609 }
1610
1bc22652 1611 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 1612 if (ret < 0) {
b9bec74b 1613 return ret;
ff44f1a3
JK
1614 }
1615 for (i = 0; i < 4; i++) {
1616 env->dr[i] = dbgregs.db[i];
1617 }
1618 env->dr[4] = env->dr[6] = dbgregs.dr6;
1619 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1620
1621 return 0;
1622}
1623
20d695a9 1624int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 1625{
20d695a9 1626 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
1627 int ret;
1628
2fa45344 1629 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 1630
1bc22652 1631 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 1632 if (ret < 0) {
05330448 1633 return ret;
b9bec74b 1634 }
1bc22652 1635 ret = kvm_put_xsave(x86_cpu);
b9bec74b 1636 if (ret < 0) {
f1665b21 1637 return ret;
b9bec74b 1638 }
1bc22652 1639 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 1640 if (ret < 0) {
05330448 1641 return ret;
b9bec74b 1642 }
1bc22652 1643 ret = kvm_put_sregs(x86_cpu);
b9bec74b 1644 if (ret < 0) {
05330448 1645 return ret;
b9bec74b 1646 }
ab443475 1647 /* must be before kvm_put_msrs */
1bc22652 1648 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
1649 if (ret < 0) {
1650 return ret;
1651 }
1bc22652 1652 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 1653 if (ret < 0) {
05330448 1654 return ret;
b9bec74b 1655 }
ea643051 1656 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 1657 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 1658 if (ret < 0) {
ea643051 1659 return ret;
b9bec74b 1660 }
1bc22652 1661 ret = kvm_put_apic(x86_cpu);
680c1c6f
JK
1662 if (ret < 0) {
1663 return ret;
1664 }
ea643051 1665 }
1bc22652 1666 ret = kvm_put_vcpu_events(x86_cpu, level);
b9bec74b 1667 if (ret < 0) {
a0fb002c 1668 return ret;
b9bec74b 1669 }
1bc22652 1670 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 1671 if (ret < 0) {
b0b1d690 1672 return ret;
b9bec74b 1673 }
b0b1d690 1674 /* must be last */
1bc22652 1675 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 1676 if (ret < 0) {
ff44f1a3 1677 return ret;
b9bec74b 1678 }
05330448
AL
1679 return 0;
1680}
1681
20d695a9 1682int kvm_arch_get_registers(CPUState *cs)
05330448 1683{
20d695a9 1684 X86CPU *cpu = X86_CPU(cs);
05330448
AL
1685 int ret;
1686
20d695a9 1687 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 1688
1bc22652 1689 ret = kvm_getput_regs(cpu, 0);
b9bec74b 1690 if (ret < 0) {
05330448 1691 return ret;
b9bec74b 1692 }
1bc22652 1693 ret = kvm_get_xsave(cpu);
b9bec74b 1694 if (ret < 0) {
f1665b21 1695 return ret;
b9bec74b 1696 }
1bc22652 1697 ret = kvm_get_xcrs(cpu);
b9bec74b 1698 if (ret < 0) {
05330448 1699 return ret;
b9bec74b 1700 }
1bc22652 1701 ret = kvm_get_sregs(cpu);
b9bec74b 1702 if (ret < 0) {
05330448 1703 return ret;
b9bec74b 1704 }
1bc22652 1705 ret = kvm_get_msrs(cpu);
b9bec74b 1706 if (ret < 0) {
05330448 1707 return ret;
b9bec74b 1708 }
23d02d9b 1709 ret = kvm_get_mp_state(cpu);
b9bec74b 1710 if (ret < 0) {
5a2e3c2e 1711 return ret;
b9bec74b 1712 }
1bc22652 1713 ret = kvm_get_apic(cpu);
680c1c6f
JK
1714 if (ret < 0) {
1715 return ret;
1716 }
1bc22652 1717 ret = kvm_get_vcpu_events(cpu);
b9bec74b 1718 if (ret < 0) {
a0fb002c 1719 return ret;
b9bec74b 1720 }
1bc22652 1721 ret = kvm_get_debugregs(cpu);
b9bec74b 1722 if (ret < 0) {
ff44f1a3 1723 return ret;
b9bec74b 1724 }
05330448
AL
1725 return 0;
1726}
1727
20d695a9 1728void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 1729{
20d695a9
AF
1730 X86CPU *x86_cpu = X86_CPU(cpu);
1731 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
1732 int ret;
1733
276ce815
LJ
1734 /* Inject NMI */
1735 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1736 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1737 DPRINTF("injected NMI\n");
1bc22652 1738 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
ce377af3
JK
1739 if (ret < 0) {
1740 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1741 strerror(-ret));
1742 }
276ce815
LJ
1743 }
1744
db1669bc 1745 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
1746 /* Force the VCPU out of its inner loop to process any INIT requests
1747 * or pending TPR access reports. */
1748 if (env->interrupt_request &
1749 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
db1669bc 1750 env->exit_request = 1;
05330448 1751 }
05330448 1752
db1669bc
JK
1753 /* Try to inject an interrupt if the guest can accept it */
1754 if (run->ready_for_interrupt_injection &&
1755 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1756 (env->eflags & IF_MASK)) {
1757 int irq;
1758
1759 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1760 irq = cpu_get_pic_interrupt(env);
1761 if (irq >= 0) {
1762 struct kvm_interrupt intr;
1763
1764 intr.irq = irq;
db1669bc 1765 DPRINTF("injected interrupt %d\n", irq);
1bc22652 1766 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
1767 if (ret < 0) {
1768 fprintf(stderr,
1769 "KVM: injection failed, interrupt lost (%s)\n",
1770 strerror(-ret));
1771 }
db1669bc
JK
1772 }
1773 }
05330448 1774
db1669bc
JK
1775 /* If we have an interrupt but the guest is not ready to receive an
1776 * interrupt, request an interrupt window exit. This will
1777 * cause a return to userspace as soon as the guest is ready to
1778 * receive interrupts. */
1779 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1780 run->request_interrupt_window = 1;
1781 } else {
1782 run->request_interrupt_window = 0;
1783 }
1784
1785 DPRINTF("setting tpr\n");
1786 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1787 }
05330448
AL
1788}
1789
20d695a9 1790void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 1791{
20d695a9
AF
1792 X86CPU *x86_cpu = X86_CPU(cpu);
1793 CPUX86State *env = &x86_cpu->env;
1794
b9bec74b 1795 if (run->if_flag) {
05330448 1796 env->eflags |= IF_MASK;
b9bec74b 1797 } else {
05330448 1798 env->eflags &= ~IF_MASK;
b9bec74b 1799 }
4a942cea
BS
1800 cpu_set_apic_tpr(env->apic_state, run->cr8);
1801 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1802}
1803
20d695a9 1804int kvm_arch_process_async_events(CPUState *cs)
0af691d7 1805{
20d695a9
AF
1806 X86CPU *cpu = X86_CPU(cs);
1807 CPUX86State *env = &cpu->env;
232fc23b 1808
ab443475
JK
1809 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1810 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1811 assert(env->mcg_cap);
1812
1813 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1814
1815 kvm_cpu_synchronize_state(env);
1816
1817 if (env->exception_injected == EXCP08_DBLE) {
1818 /* this means triple fault */
1819 qemu_system_reset_request();
1820 env->exit_request = 1;
1821 return 0;
1822 }
1823 env->exception_injected = EXCP12_MCHK;
1824 env->has_error_code = 0;
1825
1826 env->halted = 0;
1827 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1828 env->mp_state = KVM_MP_STATE_RUNNABLE;
1829 }
1830 }
1831
db1669bc
JK
1832 if (kvm_irqchip_in_kernel()) {
1833 return 0;
1834 }
1835
5d62c43a
JK
1836 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1837 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1838 apic_poll_irq(env->apic_state);
1839 }
4601f7b0
JK
1840 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1841 (env->eflags & IF_MASK)) ||
1842 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1843 env->halted = 0;
1844 }
0af691d7
MT
1845 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1846 kvm_cpu_synchronize_state(env);
232fc23b 1847 do_cpu_init(cpu);
0af691d7 1848 }
0af691d7
MT
1849 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1850 kvm_cpu_synchronize_state(env);
232fc23b 1851 do_cpu_sipi(cpu);
0af691d7 1852 }
d362e757
JK
1853 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1854 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1855 kvm_cpu_synchronize_state(env);
1856 apic_handle_tpr_access_report(env->apic_state, env->eip,
1857 env->tpr_access_type);
1858 }
0af691d7
MT
1859
1860 return env->halted;
1861}
1862
839b5630 1863static int kvm_handle_halt(X86CPU *cpu)
05330448 1864{
839b5630
AF
1865 CPUX86State *env = &cpu->env;
1866
05330448
AL
1867 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1868 (env->eflags & IF_MASK)) &&
1869 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1870 env->halted = 1;
bb4ea393 1871 return EXCP_HLT;
05330448
AL
1872 }
1873
bb4ea393 1874 return 0;
05330448
AL
1875}
1876
f7575c96 1877static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 1878{
f7575c96
AF
1879 CPUX86State *env = &cpu->env;
1880 CPUState *cs = CPU(cpu);
1881 struct kvm_run *run = cs->kvm_run;
d362e757
JK
1882
1883 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1884 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1885 : TPR_ACCESS_READ);
1886 return 1;
1887}
1888
20d695a9 1889int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
e22a25c9 1890{
20d695a9 1891 CPUX86State *env = &X86_CPU(cpu)->env;
38972938 1892 static const uint8_t int3 = 0xcc;
64bf3f4e 1893
e22a25c9 1894 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1895 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1896 return -EINVAL;
b9bec74b 1897 }
e22a25c9
AL
1898 return 0;
1899}
1900
20d695a9 1901int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
e22a25c9 1902{
20d695a9 1903 CPUX86State *env = &X86_CPU(cpu)->env;
e22a25c9
AL
1904 uint8_t int3;
1905
1906 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1907 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1908 return -EINVAL;
b9bec74b 1909 }
e22a25c9
AL
1910 return 0;
1911}
1912
1913static struct {
1914 target_ulong addr;
1915 int len;
1916 int type;
1917} hw_breakpoint[4];
1918
1919static int nb_hw_breakpoint;
1920
1921static int find_hw_breakpoint(target_ulong addr, int len, int type)
1922{
1923 int n;
1924
b9bec74b 1925 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1926 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1927 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1928 return n;
b9bec74b
JK
1929 }
1930 }
e22a25c9
AL
1931 return -1;
1932}
1933
1934int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1935 target_ulong len, int type)
1936{
1937 switch (type) {
1938 case GDB_BREAKPOINT_HW:
1939 len = 1;
1940 break;
1941 case GDB_WATCHPOINT_WRITE:
1942 case GDB_WATCHPOINT_ACCESS:
1943 switch (len) {
1944 case 1:
1945 break;
1946 case 2:
1947 case 4:
1948 case 8:
b9bec74b 1949 if (addr & (len - 1)) {
e22a25c9 1950 return -EINVAL;
b9bec74b 1951 }
e22a25c9
AL
1952 break;
1953 default:
1954 return -EINVAL;
1955 }
1956 break;
1957 default:
1958 return -ENOSYS;
1959 }
1960
b9bec74b 1961 if (nb_hw_breakpoint == 4) {
e22a25c9 1962 return -ENOBUFS;
b9bec74b
JK
1963 }
1964 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1965 return -EEXIST;
b9bec74b 1966 }
e22a25c9
AL
1967 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1968 hw_breakpoint[nb_hw_breakpoint].len = len;
1969 hw_breakpoint[nb_hw_breakpoint].type = type;
1970 nb_hw_breakpoint++;
1971
1972 return 0;
1973}
1974
1975int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1976 target_ulong len, int type)
1977{
1978 int n;
1979
1980 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1981 if (n < 0) {
e22a25c9 1982 return -ENOENT;
b9bec74b 1983 }
e22a25c9
AL
1984 nb_hw_breakpoint--;
1985 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1986
1987 return 0;
1988}
1989
1990void kvm_arch_remove_all_hw_breakpoints(void)
1991{
1992 nb_hw_breakpoint = 0;
1993}
1994
1995static CPUWatchpoint hw_watchpoint;
1996
a60f24b5 1997static int kvm_handle_debug(X86CPU *cpu,
48405526 1998 struct kvm_debug_exit_arch *arch_info)
e22a25c9 1999{
a60f24b5 2000 CPUX86State *env = &cpu->env;
f2574737 2001 int ret = 0;
e22a25c9
AL
2002 int n;
2003
2004 if (arch_info->exception == 1) {
2005 if (arch_info->dr6 & (1 << 14)) {
48405526 2006 if (env->singlestep_enabled) {
f2574737 2007 ret = EXCP_DEBUG;
b9bec74b 2008 }
e22a25c9 2009 } else {
b9bec74b
JK
2010 for (n = 0; n < 4; n++) {
2011 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
2012 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2013 case 0x0:
f2574737 2014 ret = EXCP_DEBUG;
e22a25c9
AL
2015 break;
2016 case 0x1:
f2574737 2017 ret = EXCP_DEBUG;
48405526 2018 env->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2019 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2020 hw_watchpoint.flags = BP_MEM_WRITE;
2021 break;
2022 case 0x3:
f2574737 2023 ret = EXCP_DEBUG;
48405526 2024 env->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2025 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2026 hw_watchpoint.flags = BP_MEM_ACCESS;
2027 break;
2028 }
b9bec74b
JK
2029 }
2030 }
e22a25c9 2031 }
a60f24b5 2032 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
f2574737 2033 ret = EXCP_DEBUG;
b9bec74b 2034 }
f2574737 2035 if (ret == 0) {
48405526
BS
2036 cpu_synchronize_state(env);
2037 assert(env->exception_injected == -1);
b0b1d690 2038
f2574737 2039 /* pass to guest */
48405526
BS
2040 env->exception_injected = arch_info->exception;
2041 env->has_error_code = 0;
b0b1d690 2042 }
e22a25c9 2043
f2574737 2044 return ret;
e22a25c9
AL
2045}
2046
20d695a9 2047void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
2048{
2049 const uint8_t type_code[] = {
2050 [GDB_BREAKPOINT_HW] = 0x0,
2051 [GDB_WATCHPOINT_WRITE] = 0x1,
2052 [GDB_WATCHPOINT_ACCESS] = 0x3
2053 };
2054 const uint8_t len_code[] = {
2055 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2056 };
2057 int n;
2058
a60f24b5 2059 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 2060 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 2061 }
e22a25c9
AL
2062 if (nb_hw_breakpoint > 0) {
2063 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2064 dbg->arch.debugreg[7] = 0x0600;
2065 for (n = 0; n < nb_hw_breakpoint; n++) {
2066 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2067 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2068 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 2069 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
2070 }
2071 }
2072}
4513d923 2073
2a4dac83
JK
2074static bool host_supports_vmx(void)
2075{
2076 uint32_t ecx, unused;
2077
2078 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2079 return ecx & CPUID_EXT_VMX;
2080}
2081
2082#define VMX_INVALID_GUEST_STATE 0x80000021
2083
20d695a9 2084int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 2085{
20d695a9 2086 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
2087 uint64_t code;
2088 int ret;
2089
2090 switch (run->exit_reason) {
2091 case KVM_EXIT_HLT:
2092 DPRINTF("handle_hlt\n");
839b5630 2093 ret = kvm_handle_halt(cpu);
2a4dac83
JK
2094 break;
2095 case KVM_EXIT_SET_TPR:
2096 ret = 0;
2097 break;
d362e757 2098 case KVM_EXIT_TPR_ACCESS:
f7575c96 2099 ret = kvm_handle_tpr_access(cpu);
d362e757 2100 break;
2a4dac83
JK
2101 case KVM_EXIT_FAIL_ENTRY:
2102 code = run->fail_entry.hardware_entry_failure_reason;
2103 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2104 code);
2105 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2106 fprintf(stderr,
12619721 2107 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2108 "unrestricted mode\n"
2109 "support, the failure can be most likely due to the guest "
2110 "entering an invalid\n"
2111 "state for Intel VT. For example, the guest maybe running "
2112 "in big real mode\n"
2113 "which is not supported on less recent Intel processors."
2114 "\n\n");
2115 }
2116 ret = -1;
2117 break;
2118 case KVM_EXIT_EXCEPTION:
2119 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2120 run->ex.exception, run->ex.error_code);
2121 ret = -1;
2122 break;
f2574737
JK
2123 case KVM_EXIT_DEBUG:
2124 DPRINTF("kvm_exit_debug\n");
a60f24b5 2125 ret = kvm_handle_debug(cpu, &run->debug.arch);
f2574737 2126 break;
2a4dac83
JK
2127 default:
2128 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2129 ret = -1;
2130 break;
2131 }
2132
2133 return ret;
2134}
2135
20d695a9 2136bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 2137{
20d695a9
AF
2138 X86CPU *cpu = X86_CPU(cs);
2139 CPUX86State *env = &cpu->env;
2140
d1f86636 2141 kvm_cpu_synchronize_state(env);
b9bec74b
JK
2142 return !(env->cr[0] & CR0_PE_MASK) ||
2143 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2144}
84b058d7
JK
2145
2146void kvm_arch_init_irq_routing(KVMState *s)
2147{
2148 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2149 /* If kernel can't do irq routing, interrupt source
2150 * override 0->2 cannot be set up as required by HPET.
2151 * So we have to disable it.
2152 */
2153 no_hpet = 1;
2154 }
cc7e0ddf 2155 /* We know at this point that we're using the in-kernel
614e41bc 2156 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2157 * we can use msi via irqfd and GSI routing.
cc7e0ddf
PM
2158 */
2159 kvm_irqfds_allowed = true;
614e41bc 2160 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2161 kvm_gsi_routing_allowed = true;
84b058d7 2162}
b139bd30
JK
2163
2164/* Classic KVM device assignment interface. Will remain x86 only. */
2165int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2166 uint32_t flags, uint32_t *dev_id)
2167{
2168 struct kvm_assigned_pci_dev dev_data = {
2169 .segnr = dev_addr->domain,
2170 .busnr = dev_addr->bus,
2171 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2172 .flags = flags,
2173 };
2174 int ret;
2175
2176 dev_data.assigned_dev_id =
2177 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2178
2179 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2180 if (ret < 0) {
2181 return ret;
2182 }
2183
2184 *dev_id = dev_data.assigned_dev_id;
2185
2186 return 0;
2187}
2188
2189int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2190{
2191 struct kvm_assigned_pci_dev dev_data = {
2192 .assigned_dev_id = dev_id,
2193 };
2194
2195 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2196}
2197
2198static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2199 uint32_t irq_type, uint32_t guest_irq)
2200{
2201 struct kvm_assigned_irq assigned_irq = {
2202 .assigned_dev_id = dev_id,
2203 .guest_irq = guest_irq,
2204 .flags = irq_type,
2205 };
2206
2207 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2208 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2209 } else {
2210 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2211 }
2212}
2213
2214int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2215 uint32_t guest_irq)
2216{
2217 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2218 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2219
2220 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2221}
2222
2223int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2224{
2225 struct kvm_assigned_pci_dev dev_data = {
2226 .assigned_dev_id = dev_id,
2227 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2228 };
2229
2230 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2231}
2232
2233static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2234 uint32_t type)
2235{
2236 struct kvm_assigned_irq assigned_irq = {
2237 .assigned_dev_id = dev_id,
2238 .flags = type,
2239 };
2240
2241 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2242}
2243
2244int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2245{
2246 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2247 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2248}
2249
2250int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2251{
2252 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2253 KVM_DEV_IRQ_GUEST_MSI, virq);
2254}
2255
2256int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2257{
2258 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2259 KVM_DEV_IRQ_HOST_MSI);
2260}
2261
2262bool kvm_device_msix_supported(KVMState *s)
2263{
2264 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2265 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2266 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2267}
2268
2269int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2270 uint32_t nr_vectors)
2271{
2272 struct kvm_assigned_msix_nr msix_nr = {
2273 .assigned_dev_id = dev_id,
2274 .entry_nr = nr_vectors,
2275 };
2276
2277 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2278}
2279
2280int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2281 int virq)
2282{
2283 struct kvm_assigned_msix_entry msix_entry = {
2284 .assigned_dev_id = dev_id,
2285 .gsi = virq,
2286 .entry = vector,
2287 };
2288
2289 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2290}
2291
2292int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2293{
2294 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2295 KVM_DEV_IRQ_GUEST_MSIX, 0);
2296}
2297
2298int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2299{
2300 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2301 KVM_DEV_IRQ_HOST_MSIX);
2302}