]> git.proxmox.com Git - qemu.git/blame - target-i386/kvm.c
x86: Allow multiple cpu feature matches of lookup_feature
[qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
21
22#include "qemu-common.h"
23#include "sysemu.h"
24#include "kvm.h"
25#include "cpu.h"
e22a25c9 26#include "gdbstub.h"
0e607a80 27#include "host-utils.h"
4c5b10b7 28#include "hw/pc.h"
408392b3 29#include "hw/apic.h"
35bed8ee 30#include "ioport.h"
05330448 31
bb0300dc
GN
32#ifdef CONFIG_KVM_PARA
33#include <linux/kvm_para.h>
34#endif
35//
05330448
AL
36//#define DEBUG_KVM
37
38#ifdef DEBUG_KVM
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41#else
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { } while (0)
44#endif
45
1a03675d
GC
46#define MSR_KVM_WALL_CLOCK 0x11
47#define MSR_KVM_SYSTEM_TIME 0x12
48
c0532a76
MT
49#ifndef BUS_MCEERR_AR
50#define BUS_MCEERR_AR 4
51#endif
52#ifndef BUS_MCEERR_AO
53#define BUS_MCEERR_AO 5
54#endif
55
94a8d39a
JK
56const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61};
25d2e361 62
c3a3a7d3
JK
63static bool has_msr_star;
64static bool has_msr_hsave_pa;
c5999bfc
JK
65#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66static bool has_msr_async_pf_en;
67#endif
25d2e361 68static int lm_capable_kernel;
b827df58
AK
69
70static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
71{
72 struct kvm_cpuid2 *cpuid;
73 int r, size;
74
75 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77 cpuid->nent = max;
78 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
79 if (r == 0 && cpuid->nent >= max) {
80 r = -E2BIG;
81 }
b827df58
AK
82 if (r < 0) {
83 if (r == -E2BIG) {
84 qemu_free(cpuid);
85 return NULL;
86 } else {
87 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88 strerror(-r));
89 exit(1);
90 }
91 }
92 return cpuid;
93}
94
0c31b744
GC
95#ifdef CONFIG_KVM_PARA
96struct kvm_para_features {
97 int cap;
98 int feature;
99} para_features[] = {
100 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
101 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
102 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
103#ifdef KVM_CAP_ASYNC_PF
104 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
105#endif
106 { -1, -1 }
107};
108
109static int get_para_features(CPUState *env)
110{
111 int i, features = 0;
112
113 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
114 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
115 features |= (1 << para_features[i].feature);
116 }
117 }
118
119 return features;
120}
121#endif
122
123
c958a8bd
SY
124uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
125 uint32_t index, int reg)
b827df58
AK
126{
127 struct kvm_cpuid2 *cpuid;
128 int i, max;
129 uint32_t ret = 0;
130 uint32_t cpuid_1_edx;
0c31b744
GC
131#ifdef CONFIG_KVM_PARA
132 int has_kvm_features = 0;
133#endif
b827df58 134
b827df58
AK
135 max = 1;
136 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
137 max *= 2;
138 }
139
140 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
141 if (cpuid->entries[i].function == function &&
142 cpuid->entries[i].index == index) {
0c31b744
GC
143#ifdef CONFIG_KVM_PARA
144 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
145 has_kvm_features = 1;
146 }
147#endif
b827df58
AK
148 switch (reg) {
149 case R_EAX:
150 ret = cpuid->entries[i].eax;
151 break;
152 case R_EBX:
153 ret = cpuid->entries[i].ebx;
154 break;
155 case R_ECX:
156 ret = cpuid->entries[i].ecx;
157 break;
158 case R_EDX:
159 ret = cpuid->entries[i].edx;
19ccb8ea
JK
160 switch (function) {
161 case 1:
162 /* KVM before 2.6.30 misreports the following features */
163 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
164 break;
165 case 0x80000001:
b827df58
AK
166 /* On Intel, kvm returns cpuid according to the Intel spec,
167 * so add missing bits according to the AMD spec:
168 */
c958a8bd 169 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
c1667e40 170 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 171 break;
b827df58
AK
172 }
173 break;
174 }
175 }
176 }
177
178 qemu_free(cpuid);
179
bb0300dc 180#ifdef CONFIG_KVM_PARA
0c31b744
GC
181 /* fallback for older kernels */
182 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
183 ret = get_para_features(env);
b9bec74b 184 }
b3a98367 185#endif
0c31b744
GC
186
187 return ret;
bb0300dc 188}
bb0300dc 189
3c85e74f
HY
190typedef struct HWPoisonPage {
191 ram_addr_t ram_addr;
192 QLIST_ENTRY(HWPoisonPage) list;
193} HWPoisonPage;
194
195static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
196 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
197
198static void kvm_unpoison_all(void *param)
199{
200 HWPoisonPage *page, *next_page;
201
202 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
203 QLIST_REMOVE(page, list);
204 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
205 qemu_free(page);
206 }
207}
208
e7701825 209#ifdef KVM_CAP_MCE
3c85e74f
HY
210static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
211{
212 HWPoisonPage *page;
213
214 QLIST_FOREACH(page, &hwpoison_page_list, list) {
215 if (page->ram_addr == ram_addr) {
216 return;
217 }
218 }
219 page = qemu_malloc(sizeof(HWPoisonPage));
220 page->ram_addr = ram_addr;
221 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
222}
223
e7701825
MT
224static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
225 int *max_banks)
226{
227 int r;
228
14a09518 229 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
230 if (r > 0) {
231 *max_banks = r;
232 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
233 }
234 return -ENOSYS;
235}
236
c34d440a 237static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
e7701825 238{
c34d440a
JK
239 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
240 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
241 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 242
c34d440a
JK
243 if (code == BUS_MCEERR_AR) {
244 status |= MCI_STATUS_AR | 0x134;
245 mcg_status |= MCG_STATUS_EIPV;
246 } else {
247 status |= 0xc0;
248 mcg_status |= MCG_STATUS_RIPV;
419fb20a 249 }
c34d440a
JK
250 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
251 (MCM_ADDR_PHYS << 6) | 0xc,
252 cpu_x86_support_mca_broadcast(env) ?
253 MCE_INJECT_BROADCAST : 0);
419fb20a
JK
254}
255#endif /* KVM_CAP_MCE */
256
257static void hardware_memory_error(void)
258{
259 fprintf(stderr, "Hardware memory error!\n");
260 exit(1);
261}
262
263int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
264{
265#ifdef KVM_CAP_MCE
419fb20a
JK
266 ram_addr_t ram_addr;
267 target_phys_addr_t paddr;
268
269 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
270 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
271 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
272 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
273 &paddr)) {
419fb20a
JK
274 fprintf(stderr, "Hardware memory error for memory used by "
275 "QEMU itself instead of guest system!\n");
276 /* Hope we are lucky for AO MCE */
277 if (code == BUS_MCEERR_AO) {
278 return 0;
279 } else {
280 hardware_memory_error();
281 }
282 }
3c85e74f 283 kvm_hwpoison_page_add(ram_addr);
c34d440a 284 kvm_mce_inject(env, paddr, code);
419fb20a
JK
285 } else
286#endif /* KVM_CAP_MCE */
287 {
288 if (code == BUS_MCEERR_AO) {
289 return 0;
290 } else if (code == BUS_MCEERR_AR) {
291 hardware_memory_error();
292 } else {
293 return 1;
294 }
295 }
296 return 0;
297}
298
299int kvm_arch_on_sigbus(int code, void *addr)
300{
301#ifdef KVM_CAP_MCE
302 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a
JK
303 ram_addr_t ram_addr;
304 target_phys_addr_t paddr;
305
306 /* Hope we are lucky for AO MCE */
c34d440a 307 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
419fb20a
JK
308 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
309 &paddr)) {
310 fprintf(stderr, "Hardware memory error for memory used by "
311 "QEMU itself instead of guest system!: %p\n", addr);
312 return 0;
313 }
3c85e74f 314 kvm_hwpoison_page_add(ram_addr);
c34d440a 315 kvm_mce_inject(first_cpu, paddr, code);
419fb20a
JK
316 } else
317#endif /* KVM_CAP_MCE */
318 {
319 if (code == BUS_MCEERR_AO) {
320 return 0;
321 } else if (code == BUS_MCEERR_AR) {
322 hardware_memory_error();
323 } else {
324 return 1;
325 }
326 }
327 return 0;
328}
e7701825 329
ab443475
JK
330static int kvm_inject_mce_oldstyle(CPUState *env)
331{
332#ifdef KVM_CAP_MCE
333 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
334 unsigned int bank, bank_num = env->mcg_cap & 0xff;
335 struct kvm_x86_mce mce;
336
337 env->exception_injected = -1;
338
339 /*
340 * There must be at least one bank in use if an MCE is pending.
341 * Find it and use its values for the event injection.
342 */
343 for (bank = 0; bank < bank_num; bank++) {
344 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
345 break;
346 }
347 }
348 assert(bank < bank_num);
349
350 mce.bank = bank;
351 mce.status = env->mce_banks[bank * 4 + 1];
352 mce.mcg_status = env->mcg_status;
353 mce.addr = env->mce_banks[bank * 4 + 2];
354 mce.misc = env->mce_banks[bank * 4 + 3];
355
356 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
357 }
358#endif /* KVM_CAP_MCE */
359 return 0;
360}
361
b8cc45d6
GC
362static void cpu_update_state(void *opaque, int running, int reason)
363{
364 CPUState *env = opaque;
365
366 if (running) {
367 env->tsc_valid = false;
368 }
369}
370
05330448
AL
371int kvm_arch_init_vcpu(CPUState *env)
372{
373 struct {
486bd5a2
AL
374 struct kvm_cpuid2 cpuid;
375 struct kvm_cpuid_entry2 entries[100];
05330448 376 } __attribute__((packed)) cpuid_data;
486bd5a2 377 uint32_t limit, i, j, cpuid_i;
a33609ca 378 uint32_t unused;
bb0300dc 379 struct kvm_cpuid_entry2 *c;
521f0798 380#ifdef CONFIG_KVM_PARA
bb0300dc
GN
381 uint32_t signature[3];
382#endif
05330448 383
c958a8bd 384 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
6c0d7ee8
AP
385
386 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
c958a8bd 387 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
6c0d7ee8
AP
388 env->cpuid_ext_features |= i;
389
457dfed6 390 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 391 0, R_EDX);
457dfed6 392 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 393 0, R_ECX);
296acb64
JR
394 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
395 0, R_EDX);
396
6c1f42fe 397
05330448
AL
398 cpuid_i = 0;
399
bb0300dc
GN
400#ifdef CONFIG_KVM_PARA
401 /* Paravirtualization CPUIDs */
402 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
403 c = &cpuid_data.entries[cpuid_i++];
404 memset(c, 0, sizeof(*c));
405 c->function = KVM_CPUID_SIGNATURE;
406 c->eax = 0;
407 c->ebx = signature[0];
408 c->ecx = signature[1];
409 c->edx = signature[2];
410
411 c = &cpuid_data.entries[cpuid_i++];
412 memset(c, 0, sizeof(*c));
413 c->function = KVM_CPUID_FEATURES;
0c31b744
GC
414 c->eax = env->cpuid_kvm_features & kvm_arch_get_supported_cpuid(env,
415 KVM_CPUID_FEATURES, 0, R_EAX);
416
417#ifdef KVM_CAP_ASYNC_PF
418 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
419#endif
420
bb0300dc
GN
421#endif
422
a33609ca 423 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
424
425 for (i = 0; i <= limit; i++) {
bb0300dc 426 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
427
428 switch (i) {
a36b1029
AL
429 case 2: {
430 /* Keep reading function 2 till all the input is received */
431 int times;
432
a36b1029 433 c->function = i;
a33609ca
AL
434 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
435 KVM_CPUID_FLAG_STATE_READ_NEXT;
436 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
437 times = c->eax & 0xff;
a36b1029
AL
438
439 for (j = 1; j < times; ++j) {
a33609ca 440 c = &cpuid_data.entries[cpuid_i++];
a36b1029 441 c->function = i;
a33609ca
AL
442 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
443 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
444 }
445 break;
446 }
486bd5a2
AL
447 case 4:
448 case 0xb:
449 case 0xd:
450 for (j = 0; ; j++) {
486bd5a2
AL
451 c->function = i;
452 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
453 c->index = j;
a33609ca 454 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 455
b9bec74b 456 if (i == 4 && c->eax == 0) {
486bd5a2 457 break;
b9bec74b
JK
458 }
459 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 460 break;
b9bec74b
JK
461 }
462 if (i == 0xd && c->eax == 0) {
486bd5a2 463 break;
b9bec74b 464 }
a33609ca 465 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
466 }
467 break;
468 default:
486bd5a2 469 c->function = i;
a33609ca
AL
470 c->flags = 0;
471 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
472 break;
473 }
05330448 474 }
a33609ca 475 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
476
477 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 478 c = &cpuid_data.entries[cpuid_i++];
05330448 479
05330448 480 c->function = i;
a33609ca
AL
481 c->flags = 0;
482 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
483 }
484
485 cpuid_data.cpuid.nent = cpuid_i;
486
e7701825
MT
487#ifdef KVM_CAP_MCE
488 if (((env->cpuid_version >> 8)&0xF) >= 6
489 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
490 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
491 uint64_t mcg_cap;
492 int banks;
32a42024 493 int ret;
e7701825 494
75d49497
JK
495 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
496 if (ret < 0) {
497 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
498 return ret;
e7701825 499 }
75d49497
JK
500
501 if (banks > MCE_BANKS_DEF) {
502 banks = MCE_BANKS_DEF;
503 }
504 mcg_cap &= MCE_CAP_DEF;
505 mcg_cap |= banks;
506 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
507 if (ret < 0) {
508 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
509 return ret;
510 }
511
512 env->mcg_cap = mcg_cap;
e7701825
MT
513 }
514#endif
515
b8cc45d6
GC
516 qemu_add_vm_change_state_handler(cpu_update_state, env);
517
486bd5a2 518 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
519}
520
caa5af0f
JK
521void kvm_arch_reset_vcpu(CPUState *env)
522{
e73223a5 523 env->exception_injected = -1;
0e607a80 524 env->interrupt_injected = -1;
1a5e9d2f 525 env->xcr0 = 1;
ddced198
MT
526 if (kvm_irqchip_in_kernel()) {
527 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
528 KVM_MP_STATE_UNINITIALIZED;
529 } else {
530 env->mp_state = KVM_MP_STATE_RUNNABLE;
531 }
caa5af0f
JK
532}
533
c3a3a7d3 534static int kvm_get_supported_msrs(KVMState *s)
05330448 535{
75b10c43 536 static int kvm_supported_msrs;
c3a3a7d3 537 int ret = 0;
05330448
AL
538
539 /* first time */
75b10c43 540 if (kvm_supported_msrs == 0) {
05330448
AL
541 struct kvm_msr_list msr_list, *kvm_msr_list;
542
75b10c43 543 kvm_supported_msrs = -1;
05330448
AL
544
545 /* Obtain MSR list from KVM. These are the MSRs that we must
546 * save/restore */
4c9f7372 547 msr_list.nmsrs = 0;
c3a3a7d3 548 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 549 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 550 return ret;
6fb6d245 551 }
d9db889f
JK
552 /* Old kernel modules had a bug and could write beyond the provided
553 memory. Allocate at least a safe amount of 1K. */
554 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
555 msr_list.nmsrs *
556 sizeof(msr_list.indices[0])));
05330448 557
55308450 558 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 559 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
560 if (ret >= 0) {
561 int i;
562
563 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
564 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 565 has_msr_star = true;
75b10c43
MT
566 continue;
567 }
568 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 569 has_msr_hsave_pa = true;
75b10c43 570 continue;
05330448
AL
571 }
572 }
573 }
574
575 free(kvm_msr_list);
576 }
577
c3a3a7d3 578 return ret;
05330448
AL
579}
580
cad1e282 581int kvm_arch_init(KVMState *s)
20420430 582{
11076198 583 uint64_t identity_base = 0xfffbc000;
20420430 584 int ret;
25d2e361 585 struct utsname utsname;
20420430 586
c3a3a7d3 587 ret = kvm_get_supported_msrs(s);
20420430 588 if (ret < 0) {
20420430
SY
589 return ret;
590 }
25d2e361
MT
591
592 uname(&utsname);
593 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
594
4c5b10b7 595 /*
11076198
JK
596 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
597 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
598 * Since these must be part of guest physical memory, we need to allocate
599 * them, both by setting their start addresses in the kernel and by
600 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
601 *
602 * Older KVM versions may not support setting the identity map base. In
603 * that case we need to stick with the default, i.e. a 256K maximum BIOS
604 * size.
4c5b10b7 605 */
11076198
JK
606#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
607 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
608 /* Allows up to 16M BIOSes. */
609 identity_base = 0xfeffc000;
610
611 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
612 if (ret < 0) {
613 return ret;
614 }
4c5b10b7 615 }
11076198
JK
616#endif
617 /* Set TSS base one page after EPT identity map. */
618 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
619 if (ret < 0) {
620 return ret;
621 }
622
11076198
JK
623 /* Tell fw_cfg to notify the BIOS to reserve the range. */
624 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 625 if (ret < 0) {
11076198 626 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
627 return ret;
628 }
3c85e74f 629 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 630
11076198 631 return 0;
05330448 632}
b9bec74b 633
05330448
AL
634static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
635{
636 lhs->selector = rhs->selector;
637 lhs->base = rhs->base;
638 lhs->limit = rhs->limit;
639 lhs->type = 3;
640 lhs->present = 1;
641 lhs->dpl = 3;
642 lhs->db = 0;
643 lhs->s = 1;
644 lhs->l = 0;
645 lhs->g = 0;
646 lhs->avl = 0;
647 lhs->unusable = 0;
648}
649
650static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
651{
652 unsigned flags = rhs->flags;
653 lhs->selector = rhs->selector;
654 lhs->base = rhs->base;
655 lhs->limit = rhs->limit;
656 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
657 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 658 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
659 lhs->db = (flags >> DESC_B_SHIFT) & 1;
660 lhs->s = (flags & DESC_S_MASK) != 0;
661 lhs->l = (flags >> DESC_L_SHIFT) & 1;
662 lhs->g = (flags & DESC_G_MASK) != 0;
663 lhs->avl = (flags & DESC_AVL_MASK) != 0;
664 lhs->unusable = 0;
665}
666
667static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
668{
669 lhs->selector = rhs->selector;
670 lhs->base = rhs->base;
671 lhs->limit = rhs->limit;
b9bec74b
JK
672 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
673 (rhs->present * DESC_P_MASK) |
674 (rhs->dpl << DESC_DPL_SHIFT) |
675 (rhs->db << DESC_B_SHIFT) |
676 (rhs->s * DESC_S_MASK) |
677 (rhs->l << DESC_L_SHIFT) |
678 (rhs->g * DESC_G_MASK) |
679 (rhs->avl * DESC_AVL_MASK);
05330448
AL
680}
681
682static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
683{
b9bec74b 684 if (set) {
05330448 685 *kvm_reg = *qemu_reg;
b9bec74b 686 } else {
05330448 687 *qemu_reg = *kvm_reg;
b9bec74b 688 }
05330448
AL
689}
690
691static int kvm_getput_regs(CPUState *env, int set)
692{
693 struct kvm_regs regs;
694 int ret = 0;
695
696 if (!set) {
697 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 698 if (ret < 0) {
05330448 699 return ret;
b9bec74b 700 }
05330448
AL
701 }
702
703 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
704 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
705 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
706 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
707 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
708 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
709 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
710 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
711#ifdef TARGET_X86_64
712 kvm_getput_reg(&regs.r8, &env->regs[8], set);
713 kvm_getput_reg(&regs.r9, &env->regs[9], set);
714 kvm_getput_reg(&regs.r10, &env->regs[10], set);
715 kvm_getput_reg(&regs.r11, &env->regs[11], set);
716 kvm_getput_reg(&regs.r12, &env->regs[12], set);
717 kvm_getput_reg(&regs.r13, &env->regs[13], set);
718 kvm_getput_reg(&regs.r14, &env->regs[14], set);
719 kvm_getput_reg(&regs.r15, &env->regs[15], set);
720#endif
721
722 kvm_getput_reg(&regs.rflags, &env->eflags, set);
723 kvm_getput_reg(&regs.rip, &env->eip, set);
724
b9bec74b 725 if (set) {
05330448 726 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 727 }
05330448
AL
728
729 return ret;
730}
731
732static int kvm_put_fpu(CPUState *env)
733{
734 struct kvm_fpu fpu;
735 int i;
736
737 memset(&fpu, 0, sizeof fpu);
738 fpu.fsw = env->fpus & ~(7 << 11);
739 fpu.fsw |= (env->fpstt & 7) << 11;
740 fpu.fcw = env->fpuc;
b9bec74b
JK
741 for (i = 0; i < 8; ++i) {
742 fpu.ftwx |= (!env->fptags[i]) << i;
743 }
05330448
AL
744 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
745 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
746 fpu.mxcsr = env->mxcsr;
747
748 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
749}
750
f1665b21
SY
751#ifdef KVM_CAP_XSAVE
752#define XSAVE_CWD_RIP 2
753#define XSAVE_CWD_RDP 4
754#define XSAVE_MXCSR 6
755#define XSAVE_ST_SPACE 8
756#define XSAVE_XMM_SPACE 40
757#define XSAVE_XSTATE_BV 128
758#define XSAVE_YMMH_SPACE 144
759#endif
760
761static int kvm_put_xsave(CPUState *env)
762{
763#ifdef KVM_CAP_XSAVE
0f53994f 764 int i, r;
f1665b21
SY
765 struct kvm_xsave* xsave;
766 uint16_t cwd, swd, twd, fop;
767
b9bec74b 768 if (!kvm_has_xsave()) {
f1665b21 769 return kvm_put_fpu(env);
b9bec74b 770 }
f1665b21
SY
771
772 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
773 memset(xsave, 0, sizeof(struct kvm_xsave));
774 cwd = swd = twd = fop = 0;
775 swd = env->fpus & ~(7 << 11);
776 swd |= (env->fpstt & 7) << 11;
777 cwd = env->fpuc;
b9bec74b 778 for (i = 0; i < 8; ++i) {
f1665b21 779 twd |= (!env->fptags[i]) << i;
b9bec74b 780 }
f1665b21
SY
781 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
782 xsave->region[1] = (uint32_t)(fop << 16) + twd;
783 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
784 sizeof env->fpregs);
785 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
786 sizeof env->xmm_regs);
787 xsave->region[XSAVE_MXCSR] = env->mxcsr;
788 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
789 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
790 sizeof env->ymmh_regs);
0f53994f
MT
791 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
792 qemu_free(xsave);
793 return r;
f1665b21
SY
794#else
795 return kvm_put_fpu(env);
796#endif
797}
798
799static int kvm_put_xcrs(CPUState *env)
800{
801#ifdef KVM_CAP_XCRS
802 struct kvm_xcrs xcrs;
803
b9bec74b 804 if (!kvm_has_xcrs()) {
f1665b21 805 return 0;
b9bec74b 806 }
f1665b21
SY
807
808 xcrs.nr_xcrs = 1;
809 xcrs.flags = 0;
810 xcrs.xcrs[0].xcr = 0;
811 xcrs.xcrs[0].value = env->xcr0;
812 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
813#else
814 return 0;
815#endif
816}
817
05330448
AL
818static int kvm_put_sregs(CPUState *env)
819{
820 struct kvm_sregs sregs;
821
0e607a80
JK
822 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
823 if (env->interrupt_injected >= 0) {
824 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
825 (uint64_t)1 << (env->interrupt_injected % 64);
826 }
05330448
AL
827
828 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
829 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
830 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
831 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
832 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
833 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
834 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 835 } else {
b9bec74b
JK
836 set_seg(&sregs.cs, &env->segs[R_CS]);
837 set_seg(&sregs.ds, &env->segs[R_DS]);
838 set_seg(&sregs.es, &env->segs[R_ES]);
839 set_seg(&sregs.fs, &env->segs[R_FS]);
840 set_seg(&sregs.gs, &env->segs[R_GS]);
841 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
842 }
843
844 set_seg(&sregs.tr, &env->tr);
845 set_seg(&sregs.ldt, &env->ldt);
846
847 sregs.idt.limit = env->idt.limit;
848 sregs.idt.base = env->idt.base;
849 sregs.gdt.limit = env->gdt.limit;
850 sregs.gdt.base = env->gdt.base;
851
852 sregs.cr0 = env->cr[0];
853 sregs.cr2 = env->cr[2];
854 sregs.cr3 = env->cr[3];
855 sregs.cr4 = env->cr[4];
856
4a942cea
BS
857 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
858 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
859
860 sregs.efer = env->efer;
861
862 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
863}
864
865static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
866 uint32_t index, uint64_t value)
867{
868 entry->index = index;
869 entry->data = value;
870}
871
ea643051 872static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
873{
874 struct {
875 struct kvm_msrs info;
876 struct kvm_msr_entry entries[100];
877 } msr_data;
878 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 879 int n = 0;
05330448
AL
880
881 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
882 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
883 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 884 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 885 if (has_msr_star) {
b9bec74b
JK
886 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
887 }
c3a3a7d3 888 if (has_msr_hsave_pa) {
75b10c43 889 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 890 }
05330448 891#ifdef TARGET_X86_64
25d2e361
MT
892 if (lm_capable_kernel) {
893 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
894 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
895 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
896 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
897 }
05330448 898#endif
ea643051 899 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
900 /*
901 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
902 * writeback. Until this is fixed, we only write the offset to SMP
903 * guests after migration, desynchronizing the VCPUs, but avoiding
904 * huge jump-backs that would occur without any writeback at all.
905 */
906 if (smp_cpus == 1 || env->tsc != 0) {
907 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
908 }
ff5c186b
JK
909 }
910 /*
911 * The following paravirtual MSRs have side effects on the guest or are
912 * too heavy for normal writeback. Limit them to reset or full state
913 * updates.
914 */
915 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
916 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
917 env->system_time_msr);
918 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
521f0798 919#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
920 if (has_msr_async_pf_en) {
921 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
922 env->async_pf_en_msr);
923 }
f6584ee2 924#endif
ea643051 925 }
57780495
MT
926#ifdef KVM_CAP_MCE
927 if (env->mcg_cap) {
d8da8574 928 int i;
b9bec74b 929
c34d440a
JK
930 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
931 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
932 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
933 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
934 }
935 }
936#endif
1a03675d 937
05330448
AL
938 msr_data.info.nmsrs = n;
939
940 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
941
942}
943
944
945static int kvm_get_fpu(CPUState *env)
946{
947 struct kvm_fpu fpu;
948 int i, ret;
949
950 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 951 if (ret < 0) {
05330448 952 return ret;
b9bec74b 953 }
05330448
AL
954
955 env->fpstt = (fpu.fsw >> 11) & 7;
956 env->fpus = fpu.fsw;
957 env->fpuc = fpu.fcw;
b9bec74b
JK
958 for (i = 0; i < 8; ++i) {
959 env->fptags[i] = !((fpu.ftwx >> i) & 1);
960 }
05330448
AL
961 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
962 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
963 env->mxcsr = fpu.mxcsr;
964
965 return 0;
966}
967
f1665b21
SY
968static int kvm_get_xsave(CPUState *env)
969{
970#ifdef KVM_CAP_XSAVE
971 struct kvm_xsave* xsave;
972 int ret, i;
973 uint16_t cwd, swd, twd, fop;
974
b9bec74b 975 if (!kvm_has_xsave()) {
f1665b21 976 return kvm_get_fpu(env);
b9bec74b 977 }
f1665b21
SY
978
979 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
980 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f
MT
981 if (ret < 0) {
982 qemu_free(xsave);
f1665b21 983 return ret;
0f53994f 984 }
f1665b21
SY
985
986 cwd = (uint16_t)xsave->region[0];
987 swd = (uint16_t)(xsave->region[0] >> 16);
988 twd = (uint16_t)xsave->region[1];
989 fop = (uint16_t)(xsave->region[1] >> 16);
990 env->fpstt = (swd >> 11) & 7;
991 env->fpus = swd;
992 env->fpuc = cwd;
b9bec74b 993 for (i = 0; i < 8; ++i) {
f1665b21 994 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 995 }
f1665b21
SY
996 env->mxcsr = xsave->region[XSAVE_MXCSR];
997 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
998 sizeof env->fpregs);
999 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1000 sizeof env->xmm_regs);
1001 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1002 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1003 sizeof env->ymmh_regs);
0f53994f 1004 qemu_free(xsave);
f1665b21
SY
1005 return 0;
1006#else
1007 return kvm_get_fpu(env);
1008#endif
1009}
1010
1011static int kvm_get_xcrs(CPUState *env)
1012{
1013#ifdef KVM_CAP_XCRS
1014 int i, ret;
1015 struct kvm_xcrs xcrs;
1016
b9bec74b 1017 if (!kvm_has_xcrs()) {
f1665b21 1018 return 0;
b9bec74b 1019 }
f1665b21
SY
1020
1021 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1022 if (ret < 0) {
f1665b21 1023 return ret;
b9bec74b 1024 }
f1665b21 1025
b9bec74b 1026 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1027 /* Only support xcr0 now */
1028 if (xcrs.xcrs[0].xcr == 0) {
1029 env->xcr0 = xcrs.xcrs[0].value;
1030 break;
1031 }
b9bec74b 1032 }
f1665b21
SY
1033 return 0;
1034#else
1035 return 0;
1036#endif
1037}
1038
05330448
AL
1039static int kvm_get_sregs(CPUState *env)
1040{
1041 struct kvm_sregs sregs;
1042 uint32_t hflags;
0e607a80 1043 int bit, i, ret;
05330448
AL
1044
1045 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1046 if (ret < 0) {
05330448 1047 return ret;
b9bec74b 1048 }
05330448 1049
0e607a80
JK
1050 /* There can only be one pending IRQ set in the bitmap at a time, so try
1051 to find it and save its number instead (-1 for none). */
1052 env->interrupt_injected = -1;
1053 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1054 if (sregs.interrupt_bitmap[i]) {
1055 bit = ctz64(sregs.interrupt_bitmap[i]);
1056 env->interrupt_injected = i * 64 + bit;
1057 break;
1058 }
1059 }
05330448
AL
1060
1061 get_seg(&env->segs[R_CS], &sregs.cs);
1062 get_seg(&env->segs[R_DS], &sregs.ds);
1063 get_seg(&env->segs[R_ES], &sregs.es);
1064 get_seg(&env->segs[R_FS], &sregs.fs);
1065 get_seg(&env->segs[R_GS], &sregs.gs);
1066 get_seg(&env->segs[R_SS], &sregs.ss);
1067
1068 get_seg(&env->tr, &sregs.tr);
1069 get_seg(&env->ldt, &sregs.ldt);
1070
1071 env->idt.limit = sregs.idt.limit;
1072 env->idt.base = sregs.idt.base;
1073 env->gdt.limit = sregs.gdt.limit;
1074 env->gdt.base = sregs.gdt.base;
1075
1076 env->cr[0] = sregs.cr0;
1077 env->cr[2] = sregs.cr2;
1078 env->cr[3] = sregs.cr3;
1079 env->cr[4] = sregs.cr4;
1080
4a942cea 1081 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
1082
1083 env->efer = sregs.efer;
4a942cea 1084 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448 1085
b9bec74b
JK
1086#define HFLAG_COPY_MASK \
1087 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1088 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1089 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1090 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1091
1092 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1093 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1094 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1095 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1096 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1097 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1098 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1099
1100 if (env->efer & MSR_EFER_LMA) {
1101 hflags |= HF_LMA_MASK;
1102 }
1103
1104 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1105 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1106 } else {
1107 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1108 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1109 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1110 (DESC_B_SHIFT - HF_SS32_SHIFT);
1111 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1112 !(hflags & HF_CS32_MASK)) {
1113 hflags |= HF_ADDSEG_MASK;
1114 } else {
1115 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1116 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1117 }
05330448
AL
1118 }
1119 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1120
1121 return 0;
1122}
1123
1124static int kvm_get_msrs(CPUState *env)
1125{
1126 struct {
1127 struct kvm_msrs info;
1128 struct kvm_msr_entry entries[100];
1129 } msr_data;
1130 struct kvm_msr_entry *msrs = msr_data.entries;
1131 int ret, i, n;
1132
1133 n = 0;
1134 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1135 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1136 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1137 msrs[n++].index = MSR_PAT;
c3a3a7d3 1138 if (has_msr_star) {
b9bec74b
JK
1139 msrs[n++].index = MSR_STAR;
1140 }
c3a3a7d3 1141 if (has_msr_hsave_pa) {
75b10c43 1142 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1143 }
b8cc45d6
GC
1144
1145 if (!env->tsc_valid) {
1146 msrs[n++].index = MSR_IA32_TSC;
1147 env->tsc_valid = !vm_running;
1148 }
1149
05330448 1150#ifdef TARGET_X86_64
25d2e361
MT
1151 if (lm_capable_kernel) {
1152 msrs[n++].index = MSR_CSTAR;
1153 msrs[n++].index = MSR_KERNELGSBASE;
1154 msrs[n++].index = MSR_FMASK;
1155 msrs[n++].index = MSR_LSTAR;
1156 }
05330448 1157#endif
1a03675d
GC
1158 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1159 msrs[n++].index = MSR_KVM_WALL_CLOCK;
521f0798 1160#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
1161 if (has_msr_async_pf_en) {
1162 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1163 }
f6584ee2 1164#endif
1a03675d 1165
57780495
MT
1166#ifdef KVM_CAP_MCE
1167 if (env->mcg_cap) {
1168 msrs[n++].index = MSR_MCG_STATUS;
1169 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1170 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1171 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1172 }
57780495
MT
1173 }
1174#endif
1175
05330448
AL
1176 msr_data.info.nmsrs = n;
1177 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1178 if (ret < 0) {
05330448 1179 return ret;
b9bec74b 1180 }
05330448
AL
1181
1182 for (i = 0; i < ret; i++) {
1183 switch (msrs[i].index) {
1184 case MSR_IA32_SYSENTER_CS:
1185 env->sysenter_cs = msrs[i].data;
1186 break;
1187 case MSR_IA32_SYSENTER_ESP:
1188 env->sysenter_esp = msrs[i].data;
1189 break;
1190 case MSR_IA32_SYSENTER_EIP:
1191 env->sysenter_eip = msrs[i].data;
1192 break;
0c03266a
JK
1193 case MSR_PAT:
1194 env->pat = msrs[i].data;
1195 break;
05330448
AL
1196 case MSR_STAR:
1197 env->star = msrs[i].data;
1198 break;
1199#ifdef TARGET_X86_64
1200 case MSR_CSTAR:
1201 env->cstar = msrs[i].data;
1202 break;
1203 case MSR_KERNELGSBASE:
1204 env->kernelgsbase = msrs[i].data;
1205 break;
1206 case MSR_FMASK:
1207 env->fmask = msrs[i].data;
1208 break;
1209 case MSR_LSTAR:
1210 env->lstar = msrs[i].data;
1211 break;
1212#endif
1213 case MSR_IA32_TSC:
1214 env->tsc = msrs[i].data;
1215 break;
aa851e36
MT
1216 case MSR_VM_HSAVE_PA:
1217 env->vm_hsave = msrs[i].data;
1218 break;
1a03675d
GC
1219 case MSR_KVM_SYSTEM_TIME:
1220 env->system_time_msr = msrs[i].data;
1221 break;
1222 case MSR_KVM_WALL_CLOCK:
1223 env->wall_clock_msr = msrs[i].data;
1224 break;
57780495
MT
1225#ifdef KVM_CAP_MCE
1226 case MSR_MCG_STATUS:
1227 env->mcg_status = msrs[i].data;
1228 break;
1229 case MSR_MCG_CTL:
1230 env->mcg_ctl = msrs[i].data;
1231 break;
1232#endif
1233 default:
1234#ifdef KVM_CAP_MCE
1235 if (msrs[i].index >= MSR_MC0_CTL &&
1236 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1237 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495
MT
1238 }
1239#endif
d8da8574 1240 break;
521f0798 1241#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
f6584ee2
GN
1242 case MSR_KVM_ASYNC_PF_EN:
1243 env->async_pf_en_msr = msrs[i].data;
1244 break;
1245#endif
05330448
AL
1246 }
1247 }
1248
1249 return 0;
1250}
1251
9bdbe550
HB
1252static int kvm_put_mp_state(CPUState *env)
1253{
1254 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1255
1256 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1257}
1258
1259static int kvm_get_mp_state(CPUState *env)
1260{
1261 struct kvm_mp_state mp_state;
1262 int ret;
1263
1264 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1265 if (ret < 0) {
1266 return ret;
1267 }
1268 env->mp_state = mp_state.mp_state;
c14750e8
JK
1269 if (kvm_irqchip_in_kernel()) {
1270 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1271 }
9bdbe550
HB
1272 return 0;
1273}
1274
ea643051 1275static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c
JK
1276{
1277#ifdef KVM_CAP_VCPU_EVENTS
1278 struct kvm_vcpu_events events;
1279
1280 if (!kvm_has_vcpu_events()) {
1281 return 0;
1282 }
1283
31827373
JK
1284 events.exception.injected = (env->exception_injected >= 0);
1285 events.exception.nr = env->exception_injected;
a0fb002c
JK
1286 events.exception.has_error_code = env->has_error_code;
1287 events.exception.error_code = env->error_code;
1288
1289 events.interrupt.injected = (env->interrupt_injected >= 0);
1290 events.interrupt.nr = env->interrupt_injected;
1291 events.interrupt.soft = env->soft_interrupt;
1292
1293 events.nmi.injected = env->nmi_injected;
1294 events.nmi.pending = env->nmi_pending;
1295 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1296
1297 events.sipi_vector = env->sipi_vector;
1298
ea643051
JK
1299 events.flags = 0;
1300 if (level >= KVM_PUT_RESET_STATE) {
1301 events.flags |=
1302 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1303 }
aee028b9 1304
a0fb002c
JK
1305 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1306#else
1307 return 0;
1308#endif
1309}
1310
1311static int kvm_get_vcpu_events(CPUState *env)
1312{
1313#ifdef KVM_CAP_VCPU_EVENTS
1314 struct kvm_vcpu_events events;
1315 int ret;
1316
1317 if (!kvm_has_vcpu_events()) {
1318 return 0;
1319 }
1320
1321 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1322 if (ret < 0) {
1323 return ret;
1324 }
31827373 1325 env->exception_injected =
a0fb002c
JK
1326 events.exception.injected ? events.exception.nr : -1;
1327 env->has_error_code = events.exception.has_error_code;
1328 env->error_code = events.exception.error_code;
1329
1330 env->interrupt_injected =
1331 events.interrupt.injected ? events.interrupt.nr : -1;
1332 env->soft_interrupt = events.interrupt.soft;
1333
1334 env->nmi_injected = events.nmi.injected;
1335 env->nmi_pending = events.nmi.pending;
1336 if (events.nmi.masked) {
1337 env->hflags2 |= HF2_NMI_MASK;
1338 } else {
1339 env->hflags2 &= ~HF2_NMI_MASK;
1340 }
1341
1342 env->sipi_vector = events.sipi_vector;
1343#endif
1344
1345 return 0;
1346}
1347
b0b1d690
JK
1348static int kvm_guest_debug_workarounds(CPUState *env)
1349{
1350 int ret = 0;
1351#ifdef KVM_CAP_SET_GUEST_DEBUG
1352 unsigned long reinject_trap = 0;
1353
1354 if (!kvm_has_vcpu_events()) {
1355 if (env->exception_injected == 1) {
1356 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1357 } else if (env->exception_injected == 3) {
1358 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1359 }
1360 env->exception_injected = -1;
1361 }
1362
1363 /*
1364 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1365 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1366 * by updating the debug state once again if single-stepping is on.
1367 * Another reason to call kvm_update_guest_debug here is a pending debug
1368 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1369 * reinject them via SET_GUEST_DEBUG.
1370 */
1371 if (reinject_trap ||
1372 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1373 ret = kvm_update_guest_debug(env, reinject_trap);
1374 }
1375#endif /* KVM_CAP_SET_GUEST_DEBUG */
1376 return ret;
1377}
1378
ff44f1a3
JK
1379static int kvm_put_debugregs(CPUState *env)
1380{
1381#ifdef KVM_CAP_DEBUGREGS
1382 struct kvm_debugregs dbgregs;
1383 int i;
1384
1385 if (!kvm_has_debugregs()) {
1386 return 0;
1387 }
1388
1389 for (i = 0; i < 4; i++) {
1390 dbgregs.db[i] = env->dr[i];
1391 }
1392 dbgregs.dr6 = env->dr[6];
1393 dbgregs.dr7 = env->dr[7];
1394 dbgregs.flags = 0;
1395
1396 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1397#else
1398 return 0;
1399#endif
1400}
1401
1402static int kvm_get_debugregs(CPUState *env)
1403{
1404#ifdef KVM_CAP_DEBUGREGS
1405 struct kvm_debugregs dbgregs;
1406 int i, ret;
1407
1408 if (!kvm_has_debugregs()) {
1409 return 0;
1410 }
1411
1412 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1413 if (ret < 0) {
b9bec74b 1414 return ret;
ff44f1a3
JK
1415 }
1416 for (i = 0; i < 4; i++) {
1417 env->dr[i] = dbgregs.db[i];
1418 }
1419 env->dr[4] = env->dr[6] = dbgregs.dr6;
1420 env->dr[5] = env->dr[7] = dbgregs.dr7;
1421#endif
1422
1423 return 0;
1424}
1425
ea375f9a 1426int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1427{
1428 int ret;
1429
b7680cb6 1430 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1431
05330448 1432 ret = kvm_getput_regs(env, 1);
b9bec74b 1433 if (ret < 0) {
05330448 1434 return ret;
b9bec74b 1435 }
f1665b21 1436 ret = kvm_put_xsave(env);
b9bec74b 1437 if (ret < 0) {
f1665b21 1438 return ret;
b9bec74b 1439 }
f1665b21 1440 ret = kvm_put_xcrs(env);
b9bec74b 1441 if (ret < 0) {
05330448 1442 return ret;
b9bec74b 1443 }
05330448 1444 ret = kvm_put_sregs(env);
b9bec74b 1445 if (ret < 0) {
05330448 1446 return ret;
b9bec74b 1447 }
ab443475
JK
1448 /* must be before kvm_put_msrs */
1449 ret = kvm_inject_mce_oldstyle(env);
1450 if (ret < 0) {
1451 return ret;
1452 }
ea643051 1453 ret = kvm_put_msrs(env, level);
b9bec74b 1454 if (ret < 0) {
05330448 1455 return ret;
b9bec74b 1456 }
ea643051
JK
1457 if (level >= KVM_PUT_RESET_STATE) {
1458 ret = kvm_put_mp_state(env);
b9bec74b 1459 if (ret < 0) {
ea643051 1460 return ret;
b9bec74b 1461 }
ea643051 1462 }
ea643051 1463 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1464 if (ret < 0) {
a0fb002c 1465 return ret;
b9bec74b 1466 }
0d75a9ec 1467 ret = kvm_put_debugregs(env);
b9bec74b 1468 if (ret < 0) {
b0b1d690 1469 return ret;
b9bec74b 1470 }
b0b1d690
JK
1471 /* must be last */
1472 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1473 if (ret < 0) {
ff44f1a3 1474 return ret;
b9bec74b 1475 }
05330448
AL
1476 return 0;
1477}
1478
1479int kvm_arch_get_registers(CPUState *env)
1480{
1481 int ret;
1482
b7680cb6 1483 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1484
05330448 1485 ret = kvm_getput_regs(env, 0);
b9bec74b 1486 if (ret < 0) {
05330448 1487 return ret;
b9bec74b 1488 }
f1665b21 1489 ret = kvm_get_xsave(env);
b9bec74b 1490 if (ret < 0) {
f1665b21 1491 return ret;
b9bec74b 1492 }
f1665b21 1493 ret = kvm_get_xcrs(env);
b9bec74b 1494 if (ret < 0) {
05330448 1495 return ret;
b9bec74b 1496 }
05330448 1497 ret = kvm_get_sregs(env);
b9bec74b 1498 if (ret < 0) {
05330448 1499 return ret;
b9bec74b 1500 }
05330448 1501 ret = kvm_get_msrs(env);
b9bec74b 1502 if (ret < 0) {
05330448 1503 return ret;
b9bec74b 1504 }
5a2e3c2e 1505 ret = kvm_get_mp_state(env);
b9bec74b 1506 if (ret < 0) {
5a2e3c2e 1507 return ret;
b9bec74b 1508 }
a0fb002c 1509 ret = kvm_get_vcpu_events(env);
b9bec74b 1510 if (ret < 0) {
a0fb002c 1511 return ret;
b9bec74b 1512 }
ff44f1a3 1513 ret = kvm_get_debugregs(env);
b9bec74b 1514 if (ret < 0) {
ff44f1a3 1515 return ret;
b9bec74b 1516 }
05330448
AL
1517 return 0;
1518}
1519
7a39fe58 1520void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
05330448 1521{
ce377af3
JK
1522 int ret;
1523
276ce815
LJ
1524 /* Inject NMI */
1525 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1526 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1527 DPRINTF("injected NMI\n");
ce377af3
JK
1528 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1529 if (ret < 0) {
1530 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1531 strerror(-ret));
1532 }
276ce815
LJ
1533 }
1534
db1669bc
JK
1535 if (!kvm_irqchip_in_kernel()) {
1536 /* Force the VCPU out of its inner loop to process the INIT request */
1537 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1538 env->exit_request = 1;
05330448 1539 }
05330448 1540
db1669bc
JK
1541 /* Try to inject an interrupt if the guest can accept it */
1542 if (run->ready_for_interrupt_injection &&
1543 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1544 (env->eflags & IF_MASK)) {
1545 int irq;
1546
1547 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1548 irq = cpu_get_pic_interrupt(env);
1549 if (irq >= 0) {
1550 struct kvm_interrupt intr;
1551
1552 intr.irq = irq;
db1669bc 1553 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1554 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1555 if (ret < 0) {
1556 fprintf(stderr,
1557 "KVM: injection failed, interrupt lost (%s)\n",
1558 strerror(-ret));
1559 }
db1669bc
JK
1560 }
1561 }
05330448 1562
db1669bc
JK
1563 /* If we have an interrupt but the guest is not ready to receive an
1564 * interrupt, request an interrupt window exit. This will
1565 * cause a return to userspace as soon as the guest is ready to
1566 * receive interrupts. */
1567 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1568 run->request_interrupt_window = 1;
1569 } else {
1570 run->request_interrupt_window = 0;
1571 }
1572
1573 DPRINTF("setting tpr\n");
1574 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1575 }
05330448
AL
1576}
1577
7a39fe58 1578void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
05330448 1579{
b9bec74b 1580 if (run->if_flag) {
05330448 1581 env->eflags |= IF_MASK;
b9bec74b 1582 } else {
05330448 1583 env->eflags &= ~IF_MASK;
b9bec74b 1584 }
4a942cea
BS
1585 cpu_set_apic_tpr(env->apic_state, run->cr8);
1586 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1587}
1588
99036865 1589int kvm_arch_process_async_events(CPUState *env)
0af691d7 1590{
ab443475
JK
1591 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1592 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1593 assert(env->mcg_cap);
1594
1595 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1596
1597 kvm_cpu_synchronize_state(env);
1598
1599 if (env->exception_injected == EXCP08_DBLE) {
1600 /* this means triple fault */
1601 qemu_system_reset_request();
1602 env->exit_request = 1;
1603 return 0;
1604 }
1605 env->exception_injected = EXCP12_MCHK;
1606 env->has_error_code = 0;
1607
1608 env->halted = 0;
1609 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1610 env->mp_state = KVM_MP_STATE_RUNNABLE;
1611 }
1612 }
1613
db1669bc
JK
1614 if (kvm_irqchip_in_kernel()) {
1615 return 0;
1616 }
1617
4601f7b0
JK
1618 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1619 (env->eflags & IF_MASK)) ||
1620 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1621 env->halted = 0;
1622 }
0af691d7
MT
1623 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1624 kvm_cpu_synchronize_state(env);
1625 do_cpu_init(env);
0af691d7 1626 }
0af691d7
MT
1627 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1628 kvm_cpu_synchronize_state(env);
1629 do_cpu_sipi(env);
1630 }
1631
1632 return env->halted;
1633}
1634
05330448
AL
1635static int kvm_handle_halt(CPUState *env)
1636{
1637 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1638 (env->eflags & IF_MASK)) &&
1639 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1640 env->halted = 1;
bb4ea393 1641 return EXCP_HLT;
05330448
AL
1642 }
1643
bb4ea393 1644 return 0;
05330448
AL
1645}
1646
e22a25c9 1647#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1648int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1649{
38972938 1650 static const uint8_t int3 = 0xcc;
64bf3f4e 1651
e22a25c9 1652 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1653 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1654 return -EINVAL;
b9bec74b 1655 }
e22a25c9
AL
1656 return 0;
1657}
1658
1659int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1660{
1661 uint8_t int3;
1662
1663 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1664 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1665 return -EINVAL;
b9bec74b 1666 }
e22a25c9
AL
1667 return 0;
1668}
1669
1670static struct {
1671 target_ulong addr;
1672 int len;
1673 int type;
1674} hw_breakpoint[4];
1675
1676static int nb_hw_breakpoint;
1677
1678static int find_hw_breakpoint(target_ulong addr, int len, int type)
1679{
1680 int n;
1681
b9bec74b 1682 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1683 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1684 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1685 return n;
b9bec74b
JK
1686 }
1687 }
e22a25c9
AL
1688 return -1;
1689}
1690
1691int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1692 target_ulong len, int type)
1693{
1694 switch (type) {
1695 case GDB_BREAKPOINT_HW:
1696 len = 1;
1697 break;
1698 case GDB_WATCHPOINT_WRITE:
1699 case GDB_WATCHPOINT_ACCESS:
1700 switch (len) {
1701 case 1:
1702 break;
1703 case 2:
1704 case 4:
1705 case 8:
b9bec74b 1706 if (addr & (len - 1)) {
e22a25c9 1707 return -EINVAL;
b9bec74b 1708 }
e22a25c9
AL
1709 break;
1710 default:
1711 return -EINVAL;
1712 }
1713 break;
1714 default:
1715 return -ENOSYS;
1716 }
1717
b9bec74b 1718 if (nb_hw_breakpoint == 4) {
e22a25c9 1719 return -ENOBUFS;
b9bec74b
JK
1720 }
1721 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1722 return -EEXIST;
b9bec74b 1723 }
e22a25c9
AL
1724 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1725 hw_breakpoint[nb_hw_breakpoint].len = len;
1726 hw_breakpoint[nb_hw_breakpoint].type = type;
1727 nb_hw_breakpoint++;
1728
1729 return 0;
1730}
1731
1732int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1733 target_ulong len, int type)
1734{
1735 int n;
1736
1737 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1738 if (n < 0) {
e22a25c9 1739 return -ENOENT;
b9bec74b 1740 }
e22a25c9
AL
1741 nb_hw_breakpoint--;
1742 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1743
1744 return 0;
1745}
1746
1747void kvm_arch_remove_all_hw_breakpoints(void)
1748{
1749 nb_hw_breakpoint = 0;
1750}
1751
1752static CPUWatchpoint hw_watchpoint;
1753
f2574737 1754static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
e22a25c9 1755{
f2574737 1756 int ret = 0;
e22a25c9
AL
1757 int n;
1758
1759 if (arch_info->exception == 1) {
1760 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1761 if (cpu_single_env->singlestep_enabled) {
f2574737 1762 ret = EXCP_DEBUG;
b9bec74b 1763 }
e22a25c9 1764 } else {
b9bec74b
JK
1765 for (n = 0; n < 4; n++) {
1766 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1767 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1768 case 0x0:
f2574737 1769 ret = EXCP_DEBUG;
e22a25c9
AL
1770 break;
1771 case 0x1:
f2574737 1772 ret = EXCP_DEBUG;
e22a25c9
AL
1773 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1774 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1775 hw_watchpoint.flags = BP_MEM_WRITE;
1776 break;
1777 case 0x3:
f2574737 1778 ret = EXCP_DEBUG;
e22a25c9
AL
1779 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1780 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1781 hw_watchpoint.flags = BP_MEM_ACCESS;
1782 break;
1783 }
b9bec74b
JK
1784 }
1785 }
e22a25c9 1786 }
b9bec74b 1787 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
f2574737 1788 ret = EXCP_DEBUG;
b9bec74b 1789 }
f2574737 1790 if (ret == 0) {
b0b1d690
JK
1791 cpu_synchronize_state(cpu_single_env);
1792 assert(cpu_single_env->exception_injected == -1);
1793
f2574737 1794 /* pass to guest */
b0b1d690
JK
1795 cpu_single_env->exception_injected = arch_info->exception;
1796 cpu_single_env->has_error_code = 0;
1797 }
e22a25c9 1798
f2574737 1799 return ret;
e22a25c9
AL
1800}
1801
1802void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1803{
1804 const uint8_t type_code[] = {
1805 [GDB_BREAKPOINT_HW] = 0x0,
1806 [GDB_WATCHPOINT_WRITE] = 0x1,
1807 [GDB_WATCHPOINT_ACCESS] = 0x3
1808 };
1809 const uint8_t len_code[] = {
1810 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1811 };
1812 int n;
1813
b9bec74b 1814 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1815 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1816 }
e22a25c9
AL
1817 if (nb_hw_breakpoint > 0) {
1818 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1819 dbg->arch.debugreg[7] = 0x0600;
1820 for (n = 0; n < nb_hw_breakpoint; n++) {
1821 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1822 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1823 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1824 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1825 }
1826 }
1827}
1828#endif /* KVM_CAP_SET_GUEST_DEBUG */
4513d923 1829
2a4dac83
JK
1830static bool host_supports_vmx(void)
1831{
1832 uint32_t ecx, unused;
1833
1834 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1835 return ecx & CPUID_EXT_VMX;
1836}
1837
1838#define VMX_INVALID_GUEST_STATE 0x80000021
1839
1840int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1841{
1842 uint64_t code;
1843 int ret;
1844
1845 switch (run->exit_reason) {
1846 case KVM_EXIT_HLT:
1847 DPRINTF("handle_hlt\n");
1848 ret = kvm_handle_halt(env);
1849 break;
1850 case KVM_EXIT_SET_TPR:
1851 ret = 0;
1852 break;
1853 case KVM_EXIT_FAIL_ENTRY:
1854 code = run->fail_entry.hardware_entry_failure_reason;
1855 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1856 code);
1857 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1858 fprintf(stderr,
1859 "\nIf you're runnning a guest on an Intel machine without "
1860 "unrestricted mode\n"
1861 "support, the failure can be most likely due to the guest "
1862 "entering an invalid\n"
1863 "state for Intel VT. For example, the guest maybe running "
1864 "in big real mode\n"
1865 "which is not supported on less recent Intel processors."
1866 "\n\n");
1867 }
1868 ret = -1;
1869 break;
1870 case KVM_EXIT_EXCEPTION:
1871 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1872 run->ex.exception, run->ex.error_code);
1873 ret = -1;
1874 break;
f2574737
JK
1875#ifdef KVM_CAP_SET_GUEST_DEBUG
1876 case KVM_EXIT_DEBUG:
1877 DPRINTF("kvm_exit_debug\n");
1878 ret = kvm_handle_debug(&run->debug.arch);
1879 break;
1880#endif /* KVM_CAP_SET_GUEST_DEBUG */
2a4dac83
JK
1881 default:
1882 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1883 ret = -1;
1884 break;
1885 }
1886
1887 return ret;
1888}
1889
4513d923
GN
1890bool kvm_arch_stop_on_emulation_error(CPUState *env)
1891{
b9bec74b
JK
1892 return !(env->cr[0] & CR0_PE_MASK) ||
1893 ((env->segs[R_CS].selector & 3) != 3);
4513d923 1894}