]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
kvm: make hyperv hypercall and guest os id MSRs migratable.
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
9c17d615
PB
24#include "sysemu/sysemu.h"
25#include "sysemu/kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
022c62cb 28#include "exec/gdbstub.h"
1de7afc9
PB
29#include "qemu/host-utils.h"
30#include "qemu/config-file.h"
0d09e41a
PB
31#include "hw/i386/pc.h"
32#include "hw/i386/apic.h"
022c62cb 33#include "exec/ioport.h"
92067bf4 34#include <asm/hyperv.h>
a2cb15b0 35#include "hw/pci/pci.h"
05330448
AL
36
37//#define DEBUG_KVM
38
39#ifdef DEBUG_KVM
8c0d577e 40#define DPRINTF(fmt, ...) \
05330448
AL
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42#else
8c0d577e 43#define DPRINTF(fmt, ...) \
05330448
AL
44 do { } while (0)
45#endif
46
1a03675d
GC
47#define MSR_KVM_WALL_CLOCK 0x11
48#define MSR_KVM_SYSTEM_TIME 0x12
49
c0532a76
MT
50#ifndef BUS_MCEERR_AR
51#define BUS_MCEERR_AR 4
52#endif
53#ifndef BUS_MCEERR_AO
54#define BUS_MCEERR_AO 5
55#endif
56
94a8d39a
JK
57const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62};
25d2e361 63
c3a3a7d3
JK
64static bool has_msr_star;
65static bool has_msr_hsave_pa;
f28558d3 66static bool has_msr_tsc_adjust;
aa82ba54 67static bool has_msr_tsc_deadline;
df67696e 68static bool has_msr_feature_control;
c5999bfc 69static bool has_msr_async_pf_en;
bc9a839d 70static bool has_msr_pv_eoi_en;
21e87c46 71static bool has_msr_misc_enable;
79e9ebeb 72static bool has_msr_bndcfgs;
917367aa 73static bool has_msr_kvm_steal_time;
25d2e361 74static int lm_capable_kernel;
7bc3d711
PB
75static bool has_msr_hv_hypercall;
76static bool has_msr_hv_vapic;
b827df58 77
0d894367
PB
78static bool has_msr_architectural_pmu;
79static uint32_t num_architectural_pmu_counters;
80
1d31f66b
PM
81bool kvm_allows_irq0_override(void)
82{
83 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
84}
85
b827df58
AK
86static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
87{
88 struct kvm_cpuid2 *cpuid;
89 int r, size;
90
91 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 92 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
93 cpuid->nent = max;
94 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
95 if (r == 0 && cpuid->nent >= max) {
96 r = -E2BIG;
97 }
b827df58
AK
98 if (r < 0) {
99 if (r == -E2BIG) {
7267c094 100 g_free(cpuid);
b827df58
AK
101 return NULL;
102 } else {
103 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
104 strerror(-r));
105 exit(1);
106 }
107 }
108 return cpuid;
109}
110
dd87f8a6
EH
111/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
112 * for all entries.
113 */
114static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
115{
116 struct kvm_cpuid2 *cpuid;
117 int max = 1;
118 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
119 max *= 2;
120 }
121 return cpuid;
122}
123
0c31b744
GC
124struct kvm_para_features {
125 int cap;
126 int feature;
127} para_features[] = {
128 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
129 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
130 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 131 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
132 { -1, -1 }
133};
134
ba9bc59e 135static int get_para_features(KVMState *s)
0c31b744
GC
136{
137 int i, features = 0;
138
139 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 140 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
141 features |= (1 << para_features[i].feature);
142 }
143 }
144
145 return features;
146}
0c31b744
GC
147
148
829ae2f9
EH
149/* Returns the value for a specific register on the cpuid entry
150 */
151static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
152{
153 uint32_t ret = 0;
154 switch (reg) {
155 case R_EAX:
156 ret = entry->eax;
157 break;
158 case R_EBX:
159 ret = entry->ebx;
160 break;
161 case R_ECX:
162 ret = entry->ecx;
163 break;
164 case R_EDX:
165 ret = entry->edx;
166 break;
167 }
168 return ret;
169}
170
4fb73f1d
EH
171/* Find matching entry for function/index on kvm_cpuid2 struct
172 */
173static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
174 uint32_t function,
175 uint32_t index)
176{
177 int i;
178 for (i = 0; i < cpuid->nent; ++i) {
179 if (cpuid->entries[i].function == function &&
180 cpuid->entries[i].index == index) {
181 return &cpuid->entries[i];
182 }
183 }
184 /* not found: */
185 return NULL;
186}
187
ba9bc59e 188uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 189 uint32_t index, int reg)
b827df58
AK
190{
191 struct kvm_cpuid2 *cpuid;
b827df58
AK
192 uint32_t ret = 0;
193 uint32_t cpuid_1_edx;
8c723b79 194 bool found = false;
b827df58 195
dd87f8a6 196 cpuid = get_supported_cpuid(s);
b827df58 197
4fb73f1d
EH
198 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
199 if (entry) {
200 found = true;
201 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
202 }
203
7b46e5ce
EH
204 /* Fixups for the data returned by KVM, below */
205
c2acb022
EH
206 if (function == 1 && reg == R_EDX) {
207 /* KVM before 2.6.30 misreports the following features */
208 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
209 } else if (function == 1 && reg == R_ECX) {
210 /* We can set the hypervisor flag, even if KVM does not return it on
211 * GET_SUPPORTED_CPUID
212 */
213 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
214 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
215 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
216 * and the irqchip is in the kernel.
217 */
218 if (kvm_irqchip_in_kernel() &&
219 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
220 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
221 }
41e5e76d
EH
222
223 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
224 * without the in-kernel irqchip
225 */
226 if (!kvm_irqchip_in_kernel()) {
227 ret &= ~CPUID_EXT_X2APIC;
b827df58 228 }
c2acb022
EH
229 } else if (function == 0x80000001 && reg == R_EDX) {
230 /* On Intel, kvm returns cpuid according to the Intel spec,
231 * so add missing bits according to the AMD spec:
232 */
233 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
234 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
b827df58
AK
235 }
236
7267c094 237 g_free(cpuid);
b827df58 238
0c31b744 239 /* fallback for older kernels */
8c723b79 240 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 241 ret = get_para_features(s);
b9bec74b 242 }
0c31b744
GC
243
244 return ret;
bb0300dc 245}
bb0300dc 246
3c85e74f
HY
247typedef struct HWPoisonPage {
248 ram_addr_t ram_addr;
249 QLIST_ENTRY(HWPoisonPage) list;
250} HWPoisonPage;
251
252static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
253 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
254
255static void kvm_unpoison_all(void *param)
256{
257 HWPoisonPage *page, *next_page;
258
259 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
260 QLIST_REMOVE(page, list);
261 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 262 g_free(page);
3c85e74f
HY
263 }
264}
265
3c85e74f
HY
266static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
267{
268 HWPoisonPage *page;
269
270 QLIST_FOREACH(page, &hwpoison_page_list, list) {
271 if (page->ram_addr == ram_addr) {
272 return;
273 }
274 }
7267c094 275 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
276 page->ram_addr = ram_addr;
277 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
278}
279
e7701825
MT
280static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
281 int *max_banks)
282{
283 int r;
284
14a09518 285 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
286 if (r > 0) {
287 *max_banks = r;
288 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
289 }
290 return -ENOSYS;
291}
292
bee615d4 293static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 294{
bee615d4 295 CPUX86State *env = &cpu->env;
c34d440a
JK
296 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
297 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
298 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 299
c34d440a
JK
300 if (code == BUS_MCEERR_AR) {
301 status |= MCI_STATUS_AR | 0x134;
302 mcg_status |= MCG_STATUS_EIPV;
303 } else {
304 status |= 0xc0;
305 mcg_status |= MCG_STATUS_RIPV;
419fb20a 306 }
8c5cf3b6 307 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
c34d440a
JK
308 (MCM_ADDR_PHYS << 6) | 0xc,
309 cpu_x86_support_mca_broadcast(env) ?
310 MCE_INJECT_BROADCAST : 0);
419fb20a 311}
419fb20a
JK
312
313static void hardware_memory_error(void)
314{
315 fprintf(stderr, "Hardware memory error!\n");
316 exit(1);
317}
318
20d695a9 319int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
419fb20a 320{
20d695a9
AF
321 X86CPU *cpu = X86_CPU(c);
322 CPUX86State *env = &cpu->env;
419fb20a 323 ram_addr_t ram_addr;
a8170e5e 324 hwaddr paddr;
419fb20a
JK
325
326 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a 327 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
1b5ec234 328 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
a60f24b5 329 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
419fb20a
JK
330 fprintf(stderr, "Hardware memory error for memory used by "
331 "QEMU itself instead of guest system!\n");
332 /* Hope we are lucky for AO MCE */
333 if (code == BUS_MCEERR_AO) {
334 return 0;
335 } else {
336 hardware_memory_error();
337 }
338 }
3c85e74f 339 kvm_hwpoison_page_add(ram_addr);
bee615d4 340 kvm_mce_inject(cpu, paddr, code);
e56ff191 341 } else {
419fb20a
JK
342 if (code == BUS_MCEERR_AO) {
343 return 0;
344 } else if (code == BUS_MCEERR_AR) {
345 hardware_memory_error();
346 } else {
347 return 1;
348 }
349 }
350 return 0;
351}
352
353int kvm_arch_on_sigbus(int code, void *addr)
354{
182735ef
AF
355 X86CPU *cpu = X86_CPU(first_cpu);
356
357 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 358 ram_addr_t ram_addr;
a8170e5e 359 hwaddr paddr;
419fb20a
JK
360
361 /* Hope we are lucky for AO MCE */
1b5ec234 362 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
182735ef 363 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
a60f24b5 364 addr, &paddr)) {
419fb20a
JK
365 fprintf(stderr, "Hardware memory error for memory used by "
366 "QEMU itself instead of guest system!: %p\n", addr);
367 return 0;
368 }
3c85e74f 369 kvm_hwpoison_page_add(ram_addr);
182735ef 370 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
e56ff191 371 } else {
419fb20a
JK
372 if (code == BUS_MCEERR_AO) {
373 return 0;
374 } else if (code == BUS_MCEERR_AR) {
375 hardware_memory_error();
376 } else {
377 return 1;
378 }
379 }
380 return 0;
381}
e7701825 382
1bc22652 383static int kvm_inject_mce_oldstyle(X86CPU *cpu)
ab443475 384{
1bc22652
AF
385 CPUX86State *env = &cpu->env;
386
ab443475
JK
387 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
388 unsigned int bank, bank_num = env->mcg_cap & 0xff;
389 struct kvm_x86_mce mce;
390
391 env->exception_injected = -1;
392
393 /*
394 * There must be at least one bank in use if an MCE is pending.
395 * Find it and use its values for the event injection.
396 */
397 for (bank = 0; bank < bank_num; bank++) {
398 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
399 break;
400 }
401 }
402 assert(bank < bank_num);
403
404 mce.bank = bank;
405 mce.status = env->mce_banks[bank * 4 + 1];
406 mce.mcg_status = env->mcg_status;
407 mce.addr = env->mce_banks[bank * 4 + 2];
408 mce.misc = env->mce_banks[bank * 4 + 3];
409
1bc22652 410 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
ab443475 411 }
ab443475
JK
412 return 0;
413}
414
1dfb4dd9 415static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 416{
317ac620 417 CPUX86State *env = opaque;
b8cc45d6
GC
418
419 if (running) {
420 env->tsc_valid = false;
421 }
422}
423
83b17af5 424unsigned long kvm_arch_vcpu_id(CPUState *cs)
b164e48e 425{
83b17af5
EH
426 X86CPU *cpu = X86_CPU(cs);
427 return cpu->env.cpuid_apic_id;
b164e48e
EH
428}
429
92067bf4
IM
430#ifndef KVM_CPUID_SIGNATURE_NEXT
431#define KVM_CPUID_SIGNATURE_NEXT 0x40000100
432#endif
433
434static bool hyperv_hypercall_available(X86CPU *cpu)
435{
436 return cpu->hyperv_vapic ||
437 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
438}
439
440static bool hyperv_enabled(X86CPU *cpu)
441{
7bc3d711
PB
442 CPUState *cs = CPU(cpu);
443 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
444 (hyperv_hypercall_available(cpu) ||
445 cpu->hyperv_relaxed_timing);
92067bf4
IM
446}
447
f8bb0565 448#define KVM_MAX_CPUID_ENTRIES 100
0893d460 449
20d695a9 450int kvm_arch_init_vcpu(CPUState *cs)
05330448
AL
451{
452 struct {
486bd5a2 453 struct kvm_cpuid2 cpuid;
f8bb0565 454 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
541dc0d4 455 } QEMU_PACKED cpuid_data;
20d695a9
AF
456 X86CPU *cpu = X86_CPU(cs);
457 CPUX86State *env = &cpu->env;
486bd5a2 458 uint32_t limit, i, j, cpuid_i;
a33609ca 459 uint32_t unused;
bb0300dc 460 struct kvm_cpuid_entry2 *c;
bb0300dc 461 uint32_t signature[3];
234cc647 462 int kvm_base = KVM_CPUID_SIGNATURE;
e7429073 463 int r;
05330448 464
ef4cbe14
SW
465 memset(&cpuid_data, 0, sizeof(cpuid_data));
466
05330448
AL
467 cpuid_i = 0;
468
bb0300dc 469 /* Paravirtualization CPUIDs */
234cc647
PB
470 if (hyperv_enabled(cpu)) {
471 c = &cpuid_data.entries[cpuid_i++];
472 c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
eab70139
VR
473 memcpy(signature, "Microsoft Hv", 12);
474 c->eax = HYPERV_CPUID_MIN;
234cc647
PB
475 c->ebx = signature[0];
476 c->ecx = signature[1];
477 c->edx = signature[2];
0c31b744 478
234cc647
PB
479 c = &cpuid_data.entries[cpuid_i++];
480 c->function = HYPERV_CPUID_INTERFACE;
eab70139
VR
481 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
482 c->eax = signature[0];
234cc647
PB
483 c->ebx = 0;
484 c->ecx = 0;
485 c->edx = 0;
eab70139
VR
486
487 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
488 c->function = HYPERV_CPUID_VERSION;
489 c->eax = 0x00001bbc;
490 c->ebx = 0x00060001;
491
492 c = &cpuid_data.entries[cpuid_i++];
eab70139 493 c->function = HYPERV_CPUID_FEATURES;
92067bf4 494 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
495 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
496 }
92067bf4 497 if (cpu->hyperv_vapic) {
eab70139
VR
498 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
499 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
7bc3d711 500 has_msr_hv_vapic = true;
eab70139
VR
501 }
502
503 c = &cpuid_data.entries[cpuid_i++];
eab70139 504 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
92067bf4 505 if (cpu->hyperv_relaxed_timing) {
eab70139
VR
506 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
507 }
7bc3d711 508 if (has_msr_hv_vapic) {
eab70139
VR
509 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
510 }
92067bf4 511 c->ebx = cpu->hyperv_spinlock_attempts;
eab70139
VR
512
513 c = &cpuid_data.entries[cpuid_i++];
eab70139
VR
514 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
515 c->eax = 0x40;
516 c->ebx = 0x40;
517
234cc647 518 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
7bc3d711 519 has_msr_hv_hypercall = true;
eab70139
VR
520 }
521
234cc647
PB
522 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
523 c = &cpuid_data.entries[cpuid_i++];
524 c->function = KVM_CPUID_SIGNATURE | kvm_base;
525 c->eax = 0;
526 c->ebx = signature[0];
527 c->ecx = signature[1];
528 c->edx = signature[2];
529
530 c = &cpuid_data.entries[cpuid_i++];
531 c->function = KVM_CPUID_FEATURES | kvm_base;
532 c->eax = env->features[FEAT_KVM];
533
0c31b744 534 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 535
bc9a839d
MT
536 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
537
917367aa
MT
538 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
539
a33609ca 540 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
541
542 for (i = 0; i <= limit; i++) {
f8bb0565
IM
543 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
544 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
545 abort();
546 }
bb0300dc 547 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
548
549 switch (i) {
a36b1029
AL
550 case 2: {
551 /* Keep reading function 2 till all the input is received */
552 int times;
553
a36b1029 554 c->function = i;
a33609ca
AL
555 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
556 KVM_CPUID_FLAG_STATE_READ_NEXT;
557 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
558 times = c->eax & 0xff;
a36b1029
AL
559
560 for (j = 1; j < times; ++j) {
f8bb0565
IM
561 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
562 fprintf(stderr, "cpuid_data is full, no space for "
563 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
564 abort();
565 }
a33609ca 566 c = &cpuid_data.entries[cpuid_i++];
a36b1029 567 c->function = i;
a33609ca
AL
568 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
569 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
570 }
571 break;
572 }
486bd5a2
AL
573 case 4:
574 case 0xb:
575 case 0xd:
576 for (j = 0; ; j++) {
31e8c696
AP
577 if (i == 0xd && j == 64) {
578 break;
579 }
486bd5a2
AL
580 c->function = i;
581 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
582 c->index = j;
a33609ca 583 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 584
b9bec74b 585 if (i == 4 && c->eax == 0) {
486bd5a2 586 break;
b9bec74b
JK
587 }
588 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 589 break;
b9bec74b
JK
590 }
591 if (i == 0xd && c->eax == 0) {
31e8c696 592 continue;
b9bec74b 593 }
f8bb0565
IM
594 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
595 fprintf(stderr, "cpuid_data is full, no space for "
596 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
597 abort();
598 }
a33609ca 599 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
600 }
601 break;
602 default:
486bd5a2 603 c->function = i;
a33609ca
AL
604 c->flags = 0;
605 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
606 break;
607 }
05330448 608 }
0d894367
PB
609
610 if (limit >= 0x0a) {
611 uint32_t ver;
612
613 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
614 if ((ver & 0xff) > 0) {
615 has_msr_architectural_pmu = true;
616 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
617
618 /* Shouldn't be more than 32, since that's the number of bits
619 * available in EBX to tell us _which_ counters are available.
620 * Play it safe.
621 */
622 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
623 num_architectural_pmu_counters = MAX_GP_COUNTERS;
624 }
625 }
626 }
627
a33609ca 628 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
629
630 for (i = 0x80000000; i <= limit; i++) {
f8bb0565
IM
631 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
632 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
633 abort();
634 }
bb0300dc 635 c = &cpuid_data.entries[cpuid_i++];
05330448 636
05330448 637 c->function = i;
a33609ca
AL
638 c->flags = 0;
639 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
640 }
641
b3baa152
BW
642 /* Call Centaur's CPUID instructions they are supported. */
643 if (env->cpuid_xlevel2 > 0) {
b3baa152
BW
644 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
645
646 for (i = 0xC0000000; i <= limit; i++) {
f8bb0565
IM
647 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
648 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
649 abort();
650 }
b3baa152
BW
651 c = &cpuid_data.entries[cpuid_i++];
652
653 c->function = i;
654 c->flags = 0;
655 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
656 }
657 }
658
05330448
AL
659 cpuid_data.cpuid.nent = cpuid_i;
660
e7701825 661 if (((env->cpuid_version >> 8)&0xF) >= 6
0514ef2f 662 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
fc7a504c 663 (CPUID_MCE | CPUID_MCA)
a60f24b5 664 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
e7701825
MT
665 uint64_t mcg_cap;
666 int banks;
32a42024 667 int ret;
e7701825 668
a60f24b5 669 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
75d49497
JK
670 if (ret < 0) {
671 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
672 return ret;
e7701825 673 }
75d49497
JK
674
675 if (banks > MCE_BANKS_DEF) {
676 banks = MCE_BANKS_DEF;
677 }
678 mcg_cap &= MCE_CAP_DEF;
679 mcg_cap |= banks;
1bc22652 680 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
75d49497
JK
681 if (ret < 0) {
682 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
683 return ret;
684 }
685
686 env->mcg_cap = mcg_cap;
e7701825 687 }
e7701825 688
b8cc45d6
GC
689 qemu_add_vm_change_state_handler(cpu_update_state, env);
690
df67696e
LJ
691 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
692 if (c) {
693 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
694 !!(c->ecx & CPUID_EXT_SMX);
695 }
696
7e680753 697 cpuid_data.cpuid.padding = 0;
1bc22652 698 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
699 if (r) {
700 return r;
701 }
e7429073 702
a60f24b5 703 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
e7429073 704 if (r && env->tsc_khz) {
1bc22652 705 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
e7429073
JR
706 if (r < 0) {
707 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
708 return r;
709 }
710 }
e7429073 711
fabacc0f
JK
712 if (kvm_has_xsave()) {
713 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
714 }
715
e7429073 716 return 0;
05330448
AL
717}
718
20d695a9 719void kvm_arch_reset_vcpu(CPUState *cs)
caa5af0f 720{
20d695a9
AF
721 X86CPU *cpu = X86_CPU(cs);
722 CPUX86State *env = &cpu->env;
dd673288 723
e73223a5 724 env->exception_injected = -1;
0e607a80 725 env->interrupt_injected = -1;
1a5e9d2f 726 env->xcr0 = 1;
ddced198 727 if (kvm_irqchip_in_kernel()) {
dd673288 728 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
729 KVM_MP_STATE_UNINITIALIZED;
730 } else {
731 env->mp_state = KVM_MP_STATE_RUNNABLE;
732 }
caa5af0f
JK
733}
734
c3a3a7d3 735static int kvm_get_supported_msrs(KVMState *s)
05330448 736{
75b10c43 737 static int kvm_supported_msrs;
c3a3a7d3 738 int ret = 0;
05330448
AL
739
740 /* first time */
75b10c43 741 if (kvm_supported_msrs == 0) {
05330448
AL
742 struct kvm_msr_list msr_list, *kvm_msr_list;
743
75b10c43 744 kvm_supported_msrs = -1;
05330448
AL
745
746 /* Obtain MSR list from KVM. These are the MSRs that we must
747 * save/restore */
4c9f7372 748 msr_list.nmsrs = 0;
c3a3a7d3 749 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 750 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 751 return ret;
6fb6d245 752 }
d9db889f
JK
753 /* Old kernel modules had a bug and could write beyond the provided
754 memory. Allocate at least a safe amount of 1K. */
7267c094 755 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
756 msr_list.nmsrs *
757 sizeof(msr_list.indices[0])));
05330448 758
55308450 759 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 760 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
761 if (ret >= 0) {
762 int i;
763
764 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
765 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 766 has_msr_star = true;
75b10c43
MT
767 continue;
768 }
769 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 770 has_msr_hsave_pa = true;
75b10c43 771 continue;
05330448 772 }
f28558d3
WA
773 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
774 has_msr_tsc_adjust = true;
775 continue;
776 }
aa82ba54
LJ
777 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
778 has_msr_tsc_deadline = true;
779 continue;
780 }
21e87c46
AK
781 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
782 has_msr_misc_enable = true;
783 continue;
784 }
79e9ebeb
LJ
785 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
786 has_msr_bndcfgs = true;
787 continue;
788 }
05330448
AL
789 }
790 }
791
7267c094 792 g_free(kvm_msr_list);
05330448
AL
793 }
794
c3a3a7d3 795 return ret;
05330448
AL
796}
797
cad1e282 798int kvm_arch_init(KVMState *s)
20420430 799{
11076198 800 uint64_t identity_base = 0xfffbc000;
39d6960a 801 uint64_t shadow_mem;
20420430 802 int ret;
25d2e361 803 struct utsname utsname;
20420430 804
c3a3a7d3 805 ret = kvm_get_supported_msrs(s);
20420430 806 if (ret < 0) {
20420430
SY
807 return ret;
808 }
25d2e361
MT
809
810 uname(&utsname);
811 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
812
4c5b10b7 813 /*
11076198
JK
814 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
815 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
816 * Since these must be part of guest physical memory, we need to allocate
817 * them, both by setting their start addresses in the kernel and by
818 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
819 *
820 * Older KVM versions may not support setting the identity map base. In
821 * that case we need to stick with the default, i.e. a 256K maximum BIOS
822 * size.
4c5b10b7 823 */
11076198
JK
824 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
825 /* Allows up to 16M BIOSes. */
826 identity_base = 0xfeffc000;
827
828 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
829 if (ret < 0) {
830 return ret;
831 }
4c5b10b7 832 }
e56ff191 833
11076198
JK
834 /* Set TSS base one page after EPT identity map. */
835 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
836 if (ret < 0) {
837 return ret;
838 }
839
11076198
JK
840 /* Tell fw_cfg to notify the BIOS to reserve the range. */
841 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 842 if (ret < 0) {
11076198 843 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
844 return ret;
845 }
3c85e74f 846 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 847
36ad0e94
MA
848 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
849 "kvm_shadow_mem", -1);
850 if (shadow_mem != -1) {
851 shadow_mem /= 4096;
852 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
853 if (ret < 0) {
854 return ret;
39d6960a
JK
855 }
856 }
11076198 857 return 0;
05330448 858}
b9bec74b 859
05330448
AL
860static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
861{
862 lhs->selector = rhs->selector;
863 lhs->base = rhs->base;
864 lhs->limit = rhs->limit;
865 lhs->type = 3;
866 lhs->present = 1;
867 lhs->dpl = 3;
868 lhs->db = 0;
869 lhs->s = 1;
870 lhs->l = 0;
871 lhs->g = 0;
872 lhs->avl = 0;
873 lhs->unusable = 0;
874}
875
876static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
877{
878 unsigned flags = rhs->flags;
879 lhs->selector = rhs->selector;
880 lhs->base = rhs->base;
881 lhs->limit = rhs->limit;
882 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
883 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 884 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
885 lhs->db = (flags >> DESC_B_SHIFT) & 1;
886 lhs->s = (flags & DESC_S_MASK) != 0;
887 lhs->l = (flags >> DESC_L_SHIFT) & 1;
888 lhs->g = (flags & DESC_G_MASK) != 0;
889 lhs->avl = (flags & DESC_AVL_MASK) != 0;
890 lhs->unusable = 0;
7e680753 891 lhs->padding = 0;
05330448
AL
892}
893
894static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
895{
896 lhs->selector = rhs->selector;
897 lhs->base = rhs->base;
898 lhs->limit = rhs->limit;
b9bec74b
JK
899 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
900 (rhs->present * DESC_P_MASK) |
901 (rhs->dpl << DESC_DPL_SHIFT) |
902 (rhs->db << DESC_B_SHIFT) |
903 (rhs->s * DESC_S_MASK) |
904 (rhs->l << DESC_L_SHIFT) |
905 (rhs->g * DESC_G_MASK) |
906 (rhs->avl * DESC_AVL_MASK);
05330448
AL
907}
908
909static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
910{
b9bec74b 911 if (set) {
05330448 912 *kvm_reg = *qemu_reg;
b9bec74b 913 } else {
05330448 914 *qemu_reg = *kvm_reg;
b9bec74b 915 }
05330448
AL
916}
917
1bc22652 918static int kvm_getput_regs(X86CPU *cpu, int set)
05330448 919{
1bc22652 920 CPUX86State *env = &cpu->env;
05330448
AL
921 struct kvm_regs regs;
922 int ret = 0;
923
924 if (!set) {
1bc22652 925 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
b9bec74b 926 if (ret < 0) {
05330448 927 return ret;
b9bec74b 928 }
05330448
AL
929 }
930
931 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
932 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
933 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
934 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
935 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
936 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
937 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
938 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
939#ifdef TARGET_X86_64
940 kvm_getput_reg(&regs.r8, &env->regs[8], set);
941 kvm_getput_reg(&regs.r9, &env->regs[9], set);
942 kvm_getput_reg(&regs.r10, &env->regs[10], set);
943 kvm_getput_reg(&regs.r11, &env->regs[11], set);
944 kvm_getput_reg(&regs.r12, &env->regs[12], set);
945 kvm_getput_reg(&regs.r13, &env->regs[13], set);
946 kvm_getput_reg(&regs.r14, &env->regs[14], set);
947 kvm_getput_reg(&regs.r15, &env->regs[15], set);
948#endif
949
950 kvm_getput_reg(&regs.rflags, &env->eflags, set);
951 kvm_getput_reg(&regs.rip, &env->eip, set);
952
b9bec74b 953 if (set) {
1bc22652 954 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
b9bec74b 955 }
05330448
AL
956
957 return ret;
958}
959
1bc22652 960static int kvm_put_fpu(X86CPU *cpu)
05330448 961{
1bc22652 962 CPUX86State *env = &cpu->env;
05330448
AL
963 struct kvm_fpu fpu;
964 int i;
965
966 memset(&fpu, 0, sizeof fpu);
967 fpu.fsw = env->fpus & ~(7 << 11);
968 fpu.fsw |= (env->fpstt & 7) << 11;
969 fpu.fcw = env->fpuc;
42cc8fa6
JK
970 fpu.last_opcode = env->fpop;
971 fpu.last_ip = env->fpip;
972 fpu.last_dp = env->fpdp;
b9bec74b
JK
973 for (i = 0; i < 8; ++i) {
974 fpu.ftwx |= (!env->fptags[i]) << i;
975 }
05330448
AL
976 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
977 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
978 fpu.mxcsr = env->mxcsr;
979
1bc22652 980 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
05330448
AL
981}
982
6b42494b
JK
983#define XSAVE_FCW_FSW 0
984#define XSAVE_FTW_FOP 1
f1665b21
SY
985#define XSAVE_CWD_RIP 2
986#define XSAVE_CWD_RDP 4
987#define XSAVE_MXCSR 6
988#define XSAVE_ST_SPACE 8
989#define XSAVE_XMM_SPACE 40
990#define XSAVE_XSTATE_BV 128
991#define XSAVE_YMMH_SPACE 144
79e9ebeb
LJ
992#define XSAVE_BNDREGS 240
993#define XSAVE_BNDCSR 256
f1665b21 994
1bc22652 995static int kvm_put_xsave(X86CPU *cpu)
f1665b21 996{
1bc22652 997 CPUX86State *env = &cpu->env;
fabacc0f 998 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 999 uint16_t cwd, swd, twd;
fabacc0f 1000 int i, r;
f1665b21 1001
b9bec74b 1002 if (!kvm_has_xsave()) {
1bc22652 1003 return kvm_put_fpu(cpu);
b9bec74b 1004 }
f1665b21 1005
f1665b21 1006 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 1007 twd = 0;
f1665b21
SY
1008 swd = env->fpus & ~(7 << 11);
1009 swd |= (env->fpstt & 7) << 11;
1010 cwd = env->fpuc;
b9bec74b 1011 for (i = 0; i < 8; ++i) {
f1665b21 1012 twd |= (!env->fptags[i]) << i;
b9bec74b 1013 }
6b42494b
JK
1014 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1015 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
1016 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1017 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
1018 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1019 sizeof env->fpregs);
1020 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
1021 sizeof env->xmm_regs);
1022 xsave->region[XSAVE_MXCSR] = env->mxcsr;
1023 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1024 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
1025 sizeof env->ymmh_regs);
79e9ebeb
LJ
1026 memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1027 sizeof env->bnd_regs);
1028 memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1029 sizeof(env->bndcs_regs));
1bc22652 1030 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
0f53994f 1031 return r;
f1665b21
SY
1032}
1033
1bc22652 1034static int kvm_put_xcrs(X86CPU *cpu)
f1665b21 1035{
1bc22652 1036 CPUX86State *env = &cpu->env;
f1665b21
SY
1037 struct kvm_xcrs xcrs;
1038
b9bec74b 1039 if (!kvm_has_xcrs()) {
f1665b21 1040 return 0;
b9bec74b 1041 }
f1665b21
SY
1042
1043 xcrs.nr_xcrs = 1;
1044 xcrs.flags = 0;
1045 xcrs.xcrs[0].xcr = 0;
1046 xcrs.xcrs[0].value = env->xcr0;
1bc22652 1047 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
f1665b21
SY
1048}
1049
1bc22652 1050static int kvm_put_sregs(X86CPU *cpu)
05330448 1051{
1bc22652 1052 CPUX86State *env = &cpu->env;
05330448
AL
1053 struct kvm_sregs sregs;
1054
0e607a80
JK
1055 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1056 if (env->interrupt_injected >= 0) {
1057 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1058 (uint64_t)1 << (env->interrupt_injected % 64);
1059 }
05330448
AL
1060
1061 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
1062 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1063 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1064 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1065 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1066 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1067 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 1068 } else {
b9bec74b
JK
1069 set_seg(&sregs.cs, &env->segs[R_CS]);
1070 set_seg(&sregs.ds, &env->segs[R_DS]);
1071 set_seg(&sregs.es, &env->segs[R_ES]);
1072 set_seg(&sregs.fs, &env->segs[R_FS]);
1073 set_seg(&sregs.gs, &env->segs[R_GS]);
1074 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
1075 }
1076
1077 set_seg(&sregs.tr, &env->tr);
1078 set_seg(&sregs.ldt, &env->ldt);
1079
1080 sregs.idt.limit = env->idt.limit;
1081 sregs.idt.base = env->idt.base;
7e680753 1082 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
1083 sregs.gdt.limit = env->gdt.limit;
1084 sregs.gdt.base = env->gdt.base;
7e680753 1085 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
1086
1087 sregs.cr0 = env->cr[0];
1088 sregs.cr2 = env->cr[2];
1089 sregs.cr3 = env->cr[3];
1090 sregs.cr4 = env->cr[4];
1091
02e51483
CF
1092 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1093 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
05330448
AL
1094
1095 sregs.efer = env->efer;
1096
1bc22652 1097 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
05330448
AL
1098}
1099
1100static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1101 uint32_t index, uint64_t value)
1102{
1103 entry->index = index;
1104 entry->data = value;
1105}
1106
7477cd38
MT
1107static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1108{
1109 CPUX86State *env = &cpu->env;
1110 struct {
1111 struct kvm_msrs info;
1112 struct kvm_msr_entry entries[1];
1113 } msr_data;
1114 struct kvm_msr_entry *msrs = msr_data.entries;
1115
1116 if (!has_msr_tsc_deadline) {
1117 return 0;
1118 }
1119
1120 kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1121
1122 msr_data.info.nmsrs = 1;
1123
1124 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1125}
1126
6bdf863d
JK
1127/*
1128 * Provide a separate write service for the feature control MSR in order to
1129 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1130 * before writing any other state because forcibly leaving nested mode
1131 * invalidates the VCPU state.
1132 */
1133static int kvm_put_msr_feature_control(X86CPU *cpu)
1134{
1135 struct {
1136 struct kvm_msrs info;
1137 struct kvm_msr_entry entry;
1138 } msr_data;
1139
1140 kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1141 cpu->env.msr_ia32_feature_control);
1142 msr_data.info.nmsrs = 1;
1143 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1144}
1145
1bc22652 1146static int kvm_put_msrs(X86CPU *cpu, int level)
05330448 1147{
1bc22652 1148 CPUX86State *env = &cpu->env;
05330448
AL
1149 struct {
1150 struct kvm_msrs info;
1151 struct kvm_msr_entry entries[100];
1152 } msr_data;
1153 struct kvm_msr_entry *msrs = msr_data.entries;
0d894367 1154 int n = 0, i;
05330448
AL
1155
1156 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1157 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1158 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 1159 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 1160 if (has_msr_star) {
b9bec74b
JK
1161 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1162 }
c3a3a7d3 1163 if (has_msr_hsave_pa) {
75b10c43 1164 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1165 }
f28558d3
WA
1166 if (has_msr_tsc_adjust) {
1167 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1168 }
21e87c46
AK
1169 if (has_msr_misc_enable) {
1170 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1171 env->msr_ia32_misc_enable);
1172 }
439d19f2
PB
1173 if (has_msr_bndcfgs) {
1174 kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1175 }
05330448 1176#ifdef TARGET_X86_64
25d2e361
MT
1177 if (lm_capable_kernel) {
1178 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1179 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1180 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1181 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1182 }
05330448 1183#endif
ff5c186b 1184 /*
0d894367
PB
1185 * The following MSRs have side effects on the guest or are too heavy
1186 * for normal writeback. Limit them to reset or full state updates.
ff5c186b
JK
1187 */
1188 if (level >= KVM_PUT_RESET_STATE) {
0522604b 1189 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
ea643051
JK
1190 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1191 env->system_time_msr);
1192 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1193 if (has_msr_async_pf_en) {
1194 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1195 env->async_pf_en_msr);
1196 }
bc9a839d
MT
1197 if (has_msr_pv_eoi_en) {
1198 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1199 env->pv_eoi_en_msr);
1200 }
917367aa
MT
1201 if (has_msr_kvm_steal_time) {
1202 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1203 env->steal_time_msr);
1204 }
0d894367
PB
1205 if (has_msr_architectural_pmu) {
1206 /* Stop the counter. */
1207 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1208 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1209
1210 /* Set the counter values. */
1211 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1212 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1213 env->msr_fixed_counters[i]);
1214 }
1215 for (i = 0; i < num_architectural_pmu_counters; i++) {
1216 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1217 env->msr_gp_counters[i]);
1218 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1219 env->msr_gp_evtsel[i]);
1220 }
1221 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1222 env->msr_global_status);
1223 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1224 env->msr_global_ovf_ctrl);
1225
1226 /* Now start the PMU. */
1227 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1228 env->msr_fixed_ctr_ctrl);
1229 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1230 env->msr_global_ctrl);
1231 }
7bc3d711 1232 if (has_msr_hv_hypercall) {
1c90ef26
VR
1233 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1234 env->msr_hv_guest_os_id);
1235 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1236 env->msr_hv_hypercall);
eab70139 1237 }
7bc3d711 1238 if (has_msr_hv_vapic) {
eab70139
VR
1239 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1240 }
6bdf863d
JK
1241
1242 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1243 * kvm_put_msr_feature_control. */
ea643051 1244 }
57780495 1245 if (env->mcg_cap) {
d8da8574 1246 int i;
b9bec74b 1247
c34d440a
JK
1248 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1249 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1250 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1251 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1252 }
1253 }
1a03675d 1254
05330448
AL
1255 msr_data.info.nmsrs = n;
1256
1bc22652 1257 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
05330448
AL
1258
1259}
1260
1261
1bc22652 1262static int kvm_get_fpu(X86CPU *cpu)
05330448 1263{
1bc22652 1264 CPUX86State *env = &cpu->env;
05330448
AL
1265 struct kvm_fpu fpu;
1266 int i, ret;
1267
1bc22652 1268 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
b9bec74b 1269 if (ret < 0) {
05330448 1270 return ret;
b9bec74b 1271 }
05330448
AL
1272
1273 env->fpstt = (fpu.fsw >> 11) & 7;
1274 env->fpus = fpu.fsw;
1275 env->fpuc = fpu.fcw;
42cc8fa6
JK
1276 env->fpop = fpu.last_opcode;
1277 env->fpip = fpu.last_ip;
1278 env->fpdp = fpu.last_dp;
b9bec74b
JK
1279 for (i = 0; i < 8; ++i) {
1280 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1281 }
05330448
AL
1282 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1283 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1284 env->mxcsr = fpu.mxcsr;
1285
1286 return 0;
1287}
1288
1bc22652 1289static int kvm_get_xsave(X86CPU *cpu)
f1665b21 1290{
1bc22652 1291 CPUX86State *env = &cpu->env;
fabacc0f 1292 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1293 int ret, i;
42cc8fa6 1294 uint16_t cwd, swd, twd;
f1665b21 1295
b9bec74b 1296 if (!kvm_has_xsave()) {
1bc22652 1297 return kvm_get_fpu(cpu);
b9bec74b 1298 }
f1665b21 1299
1bc22652 1300 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
0f53994f 1301 if (ret < 0) {
f1665b21 1302 return ret;
0f53994f 1303 }
f1665b21 1304
6b42494b
JK
1305 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1306 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1307 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1308 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1309 env->fpstt = (swd >> 11) & 7;
1310 env->fpus = swd;
1311 env->fpuc = cwd;
b9bec74b 1312 for (i = 0; i < 8; ++i) {
f1665b21 1313 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1314 }
42cc8fa6
JK
1315 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1316 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1317 env->mxcsr = xsave->region[XSAVE_MXCSR];
1318 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1319 sizeof env->fpregs);
1320 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1321 sizeof env->xmm_regs);
1322 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1323 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1324 sizeof env->ymmh_regs);
79e9ebeb
LJ
1325 memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1326 sizeof env->bnd_regs);
1327 memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1328 sizeof(env->bndcs_regs));
f1665b21 1329 return 0;
f1665b21
SY
1330}
1331
1bc22652 1332static int kvm_get_xcrs(X86CPU *cpu)
f1665b21 1333{
1bc22652 1334 CPUX86State *env = &cpu->env;
f1665b21
SY
1335 int i, ret;
1336 struct kvm_xcrs xcrs;
1337
b9bec74b 1338 if (!kvm_has_xcrs()) {
f1665b21 1339 return 0;
b9bec74b 1340 }
f1665b21 1341
1bc22652 1342 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
b9bec74b 1343 if (ret < 0) {
f1665b21 1344 return ret;
b9bec74b 1345 }
f1665b21 1346
b9bec74b 1347 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21 1348 /* Only support xcr0 now */
0fd53fec
PB
1349 if (xcrs.xcrs[i].xcr == 0) {
1350 env->xcr0 = xcrs.xcrs[i].value;
f1665b21
SY
1351 break;
1352 }
b9bec74b 1353 }
f1665b21 1354 return 0;
f1665b21
SY
1355}
1356
1bc22652 1357static int kvm_get_sregs(X86CPU *cpu)
05330448 1358{
1bc22652 1359 CPUX86State *env = &cpu->env;
05330448
AL
1360 struct kvm_sregs sregs;
1361 uint32_t hflags;
0e607a80 1362 int bit, i, ret;
05330448 1363
1bc22652 1364 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
b9bec74b 1365 if (ret < 0) {
05330448 1366 return ret;
b9bec74b 1367 }
05330448 1368
0e607a80
JK
1369 /* There can only be one pending IRQ set in the bitmap at a time, so try
1370 to find it and save its number instead (-1 for none). */
1371 env->interrupt_injected = -1;
1372 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1373 if (sregs.interrupt_bitmap[i]) {
1374 bit = ctz64(sregs.interrupt_bitmap[i]);
1375 env->interrupt_injected = i * 64 + bit;
1376 break;
1377 }
1378 }
05330448
AL
1379
1380 get_seg(&env->segs[R_CS], &sregs.cs);
1381 get_seg(&env->segs[R_DS], &sregs.ds);
1382 get_seg(&env->segs[R_ES], &sregs.es);
1383 get_seg(&env->segs[R_FS], &sregs.fs);
1384 get_seg(&env->segs[R_GS], &sregs.gs);
1385 get_seg(&env->segs[R_SS], &sregs.ss);
1386
1387 get_seg(&env->tr, &sregs.tr);
1388 get_seg(&env->ldt, &sregs.ldt);
1389
1390 env->idt.limit = sregs.idt.limit;
1391 env->idt.base = sregs.idt.base;
1392 env->gdt.limit = sregs.gdt.limit;
1393 env->gdt.base = sregs.gdt.base;
1394
1395 env->cr[0] = sregs.cr0;
1396 env->cr[2] = sregs.cr2;
1397 env->cr[3] = sregs.cr3;
1398 env->cr[4] = sregs.cr4;
1399
05330448 1400 env->efer = sregs.efer;
cce47516
JK
1401
1402 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1403
b9bec74b
JK
1404#define HFLAG_COPY_MASK \
1405 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1406 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1407 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1408 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1409
1410 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1411 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1412 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1413 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1414 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1415 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1416 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1417
1418 if (env->efer & MSR_EFER_LMA) {
1419 hflags |= HF_LMA_MASK;
1420 }
1421
1422 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1423 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1424 } else {
1425 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1426 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1427 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1428 (DESC_B_SHIFT - HF_SS32_SHIFT);
1429 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1430 !(hflags & HF_CS32_MASK)) {
1431 hflags |= HF_ADDSEG_MASK;
1432 } else {
1433 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1434 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1435 }
05330448
AL
1436 }
1437 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1438
1439 return 0;
1440}
1441
1bc22652 1442static int kvm_get_msrs(X86CPU *cpu)
05330448 1443{
1bc22652 1444 CPUX86State *env = &cpu->env;
05330448
AL
1445 struct {
1446 struct kvm_msrs info;
1447 struct kvm_msr_entry entries[100];
1448 } msr_data;
1449 struct kvm_msr_entry *msrs = msr_data.entries;
1450 int ret, i, n;
1451
1452 n = 0;
1453 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1454 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1455 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1456 msrs[n++].index = MSR_PAT;
c3a3a7d3 1457 if (has_msr_star) {
b9bec74b
JK
1458 msrs[n++].index = MSR_STAR;
1459 }
c3a3a7d3 1460 if (has_msr_hsave_pa) {
75b10c43 1461 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1462 }
f28558d3
WA
1463 if (has_msr_tsc_adjust) {
1464 msrs[n++].index = MSR_TSC_ADJUST;
1465 }
aa82ba54
LJ
1466 if (has_msr_tsc_deadline) {
1467 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1468 }
21e87c46
AK
1469 if (has_msr_misc_enable) {
1470 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1471 }
df67696e
LJ
1472 if (has_msr_feature_control) {
1473 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1474 }
79e9ebeb
LJ
1475 if (has_msr_bndcfgs) {
1476 msrs[n++].index = MSR_IA32_BNDCFGS;
1477 }
b8cc45d6
GC
1478
1479 if (!env->tsc_valid) {
1480 msrs[n++].index = MSR_IA32_TSC;
1354869c 1481 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1482 }
1483
05330448 1484#ifdef TARGET_X86_64
25d2e361
MT
1485 if (lm_capable_kernel) {
1486 msrs[n++].index = MSR_CSTAR;
1487 msrs[n++].index = MSR_KERNELGSBASE;
1488 msrs[n++].index = MSR_FMASK;
1489 msrs[n++].index = MSR_LSTAR;
1490 }
05330448 1491#endif
1a03675d
GC
1492 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1493 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1494 if (has_msr_async_pf_en) {
1495 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1496 }
bc9a839d
MT
1497 if (has_msr_pv_eoi_en) {
1498 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1499 }
917367aa
MT
1500 if (has_msr_kvm_steal_time) {
1501 msrs[n++].index = MSR_KVM_STEAL_TIME;
1502 }
0d894367
PB
1503 if (has_msr_architectural_pmu) {
1504 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1505 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1506 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1507 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1508 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1509 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1510 }
1511 for (i = 0; i < num_architectural_pmu_counters; i++) {
1512 msrs[n++].index = MSR_P6_PERFCTR0 + i;
1513 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1514 }
1515 }
1a03675d 1516
57780495
MT
1517 if (env->mcg_cap) {
1518 msrs[n++].index = MSR_MCG_STATUS;
1519 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1520 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1521 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1522 }
57780495 1523 }
57780495 1524
1c90ef26
VR
1525 if (has_msr_hv_hypercall) {
1526 msrs[n++].index = HV_X64_MSR_HYPERCALL;
1527 msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
1528 }
05330448 1529 msr_data.info.nmsrs = n;
1bc22652 1530 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
b9bec74b 1531 if (ret < 0) {
05330448 1532 return ret;
b9bec74b 1533 }
05330448
AL
1534
1535 for (i = 0; i < ret; i++) {
0d894367
PB
1536 uint32_t index = msrs[i].index;
1537 switch (index) {
05330448
AL
1538 case MSR_IA32_SYSENTER_CS:
1539 env->sysenter_cs = msrs[i].data;
1540 break;
1541 case MSR_IA32_SYSENTER_ESP:
1542 env->sysenter_esp = msrs[i].data;
1543 break;
1544 case MSR_IA32_SYSENTER_EIP:
1545 env->sysenter_eip = msrs[i].data;
1546 break;
0c03266a
JK
1547 case MSR_PAT:
1548 env->pat = msrs[i].data;
1549 break;
05330448
AL
1550 case MSR_STAR:
1551 env->star = msrs[i].data;
1552 break;
1553#ifdef TARGET_X86_64
1554 case MSR_CSTAR:
1555 env->cstar = msrs[i].data;
1556 break;
1557 case MSR_KERNELGSBASE:
1558 env->kernelgsbase = msrs[i].data;
1559 break;
1560 case MSR_FMASK:
1561 env->fmask = msrs[i].data;
1562 break;
1563 case MSR_LSTAR:
1564 env->lstar = msrs[i].data;
1565 break;
1566#endif
1567 case MSR_IA32_TSC:
1568 env->tsc = msrs[i].data;
1569 break;
f28558d3
WA
1570 case MSR_TSC_ADJUST:
1571 env->tsc_adjust = msrs[i].data;
1572 break;
aa82ba54
LJ
1573 case MSR_IA32_TSCDEADLINE:
1574 env->tsc_deadline = msrs[i].data;
1575 break;
aa851e36
MT
1576 case MSR_VM_HSAVE_PA:
1577 env->vm_hsave = msrs[i].data;
1578 break;
1a03675d
GC
1579 case MSR_KVM_SYSTEM_TIME:
1580 env->system_time_msr = msrs[i].data;
1581 break;
1582 case MSR_KVM_WALL_CLOCK:
1583 env->wall_clock_msr = msrs[i].data;
1584 break;
57780495
MT
1585 case MSR_MCG_STATUS:
1586 env->mcg_status = msrs[i].data;
1587 break;
1588 case MSR_MCG_CTL:
1589 env->mcg_ctl = msrs[i].data;
1590 break;
21e87c46
AK
1591 case MSR_IA32_MISC_ENABLE:
1592 env->msr_ia32_misc_enable = msrs[i].data;
1593 break;
0779caeb
ACL
1594 case MSR_IA32_FEATURE_CONTROL:
1595 env->msr_ia32_feature_control = msrs[i].data;
df67696e 1596 break;
79e9ebeb
LJ
1597 case MSR_IA32_BNDCFGS:
1598 env->msr_bndcfgs = msrs[i].data;
1599 break;
57780495 1600 default:
57780495
MT
1601 if (msrs[i].index >= MSR_MC0_CTL &&
1602 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1603 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1604 }
d8da8574 1605 break;
f6584ee2
GN
1606 case MSR_KVM_ASYNC_PF_EN:
1607 env->async_pf_en_msr = msrs[i].data;
1608 break;
bc9a839d
MT
1609 case MSR_KVM_PV_EOI_EN:
1610 env->pv_eoi_en_msr = msrs[i].data;
1611 break;
917367aa
MT
1612 case MSR_KVM_STEAL_TIME:
1613 env->steal_time_msr = msrs[i].data;
1614 break;
0d894367
PB
1615 case MSR_CORE_PERF_FIXED_CTR_CTRL:
1616 env->msr_fixed_ctr_ctrl = msrs[i].data;
1617 break;
1618 case MSR_CORE_PERF_GLOBAL_CTRL:
1619 env->msr_global_ctrl = msrs[i].data;
1620 break;
1621 case MSR_CORE_PERF_GLOBAL_STATUS:
1622 env->msr_global_status = msrs[i].data;
1623 break;
1624 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
1625 env->msr_global_ovf_ctrl = msrs[i].data;
1626 break;
1627 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
1628 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
1629 break;
1630 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
1631 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
1632 break;
1633 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
1634 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
1635 break;
1c90ef26
VR
1636 case HV_X64_MSR_HYPERCALL:
1637 env->msr_hv_hypercall = msrs[i].data;
1638 break;
1639 case HV_X64_MSR_GUEST_OS_ID:
1640 env->msr_hv_guest_os_id = msrs[i].data;
1641 break;
05330448
AL
1642 }
1643 }
1644
1645 return 0;
1646}
1647
1bc22652 1648static int kvm_put_mp_state(X86CPU *cpu)
9bdbe550 1649{
1bc22652 1650 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
9bdbe550 1651
1bc22652 1652 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
9bdbe550
HB
1653}
1654
23d02d9b 1655static int kvm_get_mp_state(X86CPU *cpu)
9bdbe550 1656{
259186a7 1657 CPUState *cs = CPU(cpu);
23d02d9b 1658 CPUX86State *env = &cpu->env;
9bdbe550
HB
1659 struct kvm_mp_state mp_state;
1660 int ret;
1661
259186a7 1662 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
9bdbe550
HB
1663 if (ret < 0) {
1664 return ret;
1665 }
1666 env->mp_state = mp_state.mp_state;
c14750e8 1667 if (kvm_irqchip_in_kernel()) {
259186a7 1668 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
c14750e8 1669 }
9bdbe550
HB
1670 return 0;
1671}
1672
1bc22652 1673static int kvm_get_apic(X86CPU *cpu)
680c1c6f 1674{
02e51483 1675 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
1676 struct kvm_lapic_state kapic;
1677 int ret;
1678
3d4b2649 1679 if (apic && kvm_irqchip_in_kernel()) {
1bc22652 1680 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
680c1c6f
JK
1681 if (ret < 0) {
1682 return ret;
1683 }
1684
1685 kvm_get_apic_state(apic, &kapic);
1686 }
1687 return 0;
1688}
1689
1bc22652 1690static int kvm_put_apic(X86CPU *cpu)
680c1c6f 1691{
02e51483 1692 DeviceState *apic = cpu->apic_state;
680c1c6f
JK
1693 struct kvm_lapic_state kapic;
1694
3d4b2649 1695 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1696 kvm_put_apic_state(apic, &kapic);
1697
1bc22652 1698 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
680c1c6f
JK
1699 }
1700 return 0;
1701}
1702
1bc22652 1703static int kvm_put_vcpu_events(X86CPU *cpu, int level)
a0fb002c 1704{
1bc22652 1705 CPUX86State *env = &cpu->env;
a0fb002c
JK
1706 struct kvm_vcpu_events events;
1707
1708 if (!kvm_has_vcpu_events()) {
1709 return 0;
1710 }
1711
31827373
JK
1712 events.exception.injected = (env->exception_injected >= 0);
1713 events.exception.nr = env->exception_injected;
a0fb002c
JK
1714 events.exception.has_error_code = env->has_error_code;
1715 events.exception.error_code = env->error_code;
7e680753 1716 events.exception.pad = 0;
a0fb002c
JK
1717
1718 events.interrupt.injected = (env->interrupt_injected >= 0);
1719 events.interrupt.nr = env->interrupt_injected;
1720 events.interrupt.soft = env->soft_interrupt;
1721
1722 events.nmi.injected = env->nmi_injected;
1723 events.nmi.pending = env->nmi_pending;
1724 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1725 events.nmi.pad = 0;
a0fb002c
JK
1726
1727 events.sipi_vector = env->sipi_vector;
1728
ea643051
JK
1729 events.flags = 0;
1730 if (level >= KVM_PUT_RESET_STATE) {
1731 events.flags |=
1732 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1733 }
aee028b9 1734
1bc22652 1735 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1736}
1737
1bc22652 1738static int kvm_get_vcpu_events(X86CPU *cpu)
a0fb002c 1739{
1bc22652 1740 CPUX86State *env = &cpu->env;
a0fb002c
JK
1741 struct kvm_vcpu_events events;
1742 int ret;
1743
1744 if (!kvm_has_vcpu_events()) {
1745 return 0;
1746 }
1747
1bc22652 1748 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
a0fb002c
JK
1749 if (ret < 0) {
1750 return ret;
1751 }
31827373 1752 env->exception_injected =
a0fb002c
JK
1753 events.exception.injected ? events.exception.nr : -1;
1754 env->has_error_code = events.exception.has_error_code;
1755 env->error_code = events.exception.error_code;
1756
1757 env->interrupt_injected =
1758 events.interrupt.injected ? events.interrupt.nr : -1;
1759 env->soft_interrupt = events.interrupt.soft;
1760
1761 env->nmi_injected = events.nmi.injected;
1762 env->nmi_pending = events.nmi.pending;
1763 if (events.nmi.masked) {
1764 env->hflags2 |= HF2_NMI_MASK;
1765 } else {
1766 env->hflags2 &= ~HF2_NMI_MASK;
1767 }
1768
1769 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1770
1771 return 0;
1772}
1773
1bc22652 1774static int kvm_guest_debug_workarounds(X86CPU *cpu)
b0b1d690 1775{
ed2803da 1776 CPUState *cs = CPU(cpu);
1bc22652 1777 CPUX86State *env = &cpu->env;
b0b1d690 1778 int ret = 0;
b0b1d690
JK
1779 unsigned long reinject_trap = 0;
1780
1781 if (!kvm_has_vcpu_events()) {
1782 if (env->exception_injected == 1) {
1783 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1784 } else if (env->exception_injected == 3) {
1785 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1786 }
1787 env->exception_injected = -1;
1788 }
1789
1790 /*
1791 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1792 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1793 * by updating the debug state once again if single-stepping is on.
1794 * Another reason to call kvm_update_guest_debug here is a pending debug
1795 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1796 * reinject them via SET_GUEST_DEBUG.
1797 */
1798 if (reinject_trap ||
ed2803da 1799 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
38e478ec 1800 ret = kvm_update_guest_debug(cs, reinject_trap);
b0b1d690 1801 }
b0b1d690
JK
1802 return ret;
1803}
1804
1bc22652 1805static int kvm_put_debugregs(X86CPU *cpu)
ff44f1a3 1806{
1bc22652 1807 CPUX86State *env = &cpu->env;
ff44f1a3
JK
1808 struct kvm_debugregs dbgregs;
1809 int i;
1810
1811 if (!kvm_has_debugregs()) {
1812 return 0;
1813 }
1814
1815 for (i = 0; i < 4; i++) {
1816 dbgregs.db[i] = env->dr[i];
1817 }
1818 dbgregs.dr6 = env->dr[6];
1819 dbgregs.dr7 = env->dr[7];
1820 dbgregs.flags = 0;
1821
1bc22652 1822 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1823}
1824
1bc22652 1825static int kvm_get_debugregs(X86CPU *cpu)
ff44f1a3 1826{
1bc22652 1827 CPUX86State *env = &cpu->env;
ff44f1a3
JK
1828 struct kvm_debugregs dbgregs;
1829 int i, ret;
1830
1831 if (!kvm_has_debugregs()) {
1832 return 0;
1833 }
1834
1bc22652 1835 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
ff44f1a3 1836 if (ret < 0) {
b9bec74b 1837 return ret;
ff44f1a3
JK
1838 }
1839 for (i = 0; i < 4; i++) {
1840 env->dr[i] = dbgregs.db[i];
1841 }
1842 env->dr[4] = env->dr[6] = dbgregs.dr6;
1843 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1844
1845 return 0;
1846}
1847
20d695a9 1848int kvm_arch_put_registers(CPUState *cpu, int level)
05330448 1849{
20d695a9 1850 X86CPU *x86_cpu = X86_CPU(cpu);
05330448
AL
1851 int ret;
1852
2fa45344 1853 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 1854
6bdf863d
JK
1855 if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
1856 ret = kvm_put_msr_feature_control(x86_cpu);
1857 if (ret < 0) {
1858 return ret;
1859 }
1860 }
1861
1bc22652 1862 ret = kvm_getput_regs(x86_cpu, 1);
b9bec74b 1863 if (ret < 0) {
05330448 1864 return ret;
b9bec74b 1865 }
1bc22652 1866 ret = kvm_put_xsave(x86_cpu);
b9bec74b 1867 if (ret < 0) {
f1665b21 1868 return ret;
b9bec74b 1869 }
1bc22652 1870 ret = kvm_put_xcrs(x86_cpu);
b9bec74b 1871 if (ret < 0) {
05330448 1872 return ret;
b9bec74b 1873 }
1bc22652 1874 ret = kvm_put_sregs(x86_cpu);
b9bec74b 1875 if (ret < 0) {
05330448 1876 return ret;
b9bec74b 1877 }
ab443475 1878 /* must be before kvm_put_msrs */
1bc22652 1879 ret = kvm_inject_mce_oldstyle(x86_cpu);
ab443475
JK
1880 if (ret < 0) {
1881 return ret;
1882 }
1bc22652 1883 ret = kvm_put_msrs(x86_cpu, level);
b9bec74b 1884 if (ret < 0) {
05330448 1885 return ret;
b9bec74b 1886 }
ea643051 1887 if (level >= KVM_PUT_RESET_STATE) {
1bc22652 1888 ret = kvm_put_mp_state(x86_cpu);
b9bec74b 1889 if (ret < 0) {
ea643051 1890 return ret;
b9bec74b 1891 }
1bc22652 1892 ret = kvm_put_apic(x86_cpu);
680c1c6f
JK
1893 if (ret < 0) {
1894 return ret;
1895 }
ea643051 1896 }
7477cd38
MT
1897
1898 ret = kvm_put_tscdeadline_msr(x86_cpu);
1899 if (ret < 0) {
1900 return ret;
1901 }
1902
1bc22652 1903 ret = kvm_put_vcpu_events(x86_cpu, level);
b9bec74b 1904 if (ret < 0) {
a0fb002c 1905 return ret;
b9bec74b 1906 }
1bc22652 1907 ret = kvm_put_debugregs(x86_cpu);
b9bec74b 1908 if (ret < 0) {
b0b1d690 1909 return ret;
b9bec74b 1910 }
b0b1d690 1911 /* must be last */
1bc22652 1912 ret = kvm_guest_debug_workarounds(x86_cpu);
b9bec74b 1913 if (ret < 0) {
ff44f1a3 1914 return ret;
b9bec74b 1915 }
05330448
AL
1916 return 0;
1917}
1918
20d695a9 1919int kvm_arch_get_registers(CPUState *cs)
05330448 1920{
20d695a9 1921 X86CPU *cpu = X86_CPU(cs);
05330448
AL
1922 int ret;
1923
20d695a9 1924 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
dbaa07c4 1925
1bc22652 1926 ret = kvm_getput_regs(cpu, 0);
b9bec74b 1927 if (ret < 0) {
05330448 1928 return ret;
b9bec74b 1929 }
1bc22652 1930 ret = kvm_get_xsave(cpu);
b9bec74b 1931 if (ret < 0) {
f1665b21 1932 return ret;
b9bec74b 1933 }
1bc22652 1934 ret = kvm_get_xcrs(cpu);
b9bec74b 1935 if (ret < 0) {
05330448 1936 return ret;
b9bec74b 1937 }
1bc22652 1938 ret = kvm_get_sregs(cpu);
b9bec74b 1939 if (ret < 0) {
05330448 1940 return ret;
b9bec74b 1941 }
1bc22652 1942 ret = kvm_get_msrs(cpu);
b9bec74b 1943 if (ret < 0) {
05330448 1944 return ret;
b9bec74b 1945 }
23d02d9b 1946 ret = kvm_get_mp_state(cpu);
b9bec74b 1947 if (ret < 0) {
5a2e3c2e 1948 return ret;
b9bec74b 1949 }
1bc22652 1950 ret = kvm_get_apic(cpu);
680c1c6f
JK
1951 if (ret < 0) {
1952 return ret;
1953 }
1bc22652 1954 ret = kvm_get_vcpu_events(cpu);
b9bec74b 1955 if (ret < 0) {
a0fb002c 1956 return ret;
b9bec74b 1957 }
1bc22652 1958 ret = kvm_get_debugregs(cpu);
b9bec74b 1959 if (ret < 0) {
ff44f1a3 1960 return ret;
b9bec74b 1961 }
05330448
AL
1962 return 0;
1963}
1964
20d695a9 1965void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
05330448 1966{
20d695a9
AF
1967 X86CPU *x86_cpu = X86_CPU(cpu);
1968 CPUX86State *env = &x86_cpu->env;
ce377af3
JK
1969 int ret;
1970
276ce815 1971 /* Inject NMI */
259186a7
AF
1972 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1973 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
276ce815 1974 DPRINTF("injected NMI\n");
1bc22652 1975 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
ce377af3
JK
1976 if (ret < 0) {
1977 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1978 strerror(-ret));
1979 }
276ce815
LJ
1980 }
1981
db1669bc 1982 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
1983 /* Force the VCPU out of its inner loop to process any INIT requests
1984 * or pending TPR access reports. */
259186a7 1985 if (cpu->interrupt_request &
d362e757 1986 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
fcd7d003 1987 cpu->exit_request = 1;
05330448 1988 }
05330448 1989
db1669bc
JK
1990 /* Try to inject an interrupt if the guest can accept it */
1991 if (run->ready_for_interrupt_injection &&
259186a7 1992 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
db1669bc
JK
1993 (env->eflags & IF_MASK)) {
1994 int irq;
1995
259186a7 1996 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
db1669bc
JK
1997 irq = cpu_get_pic_interrupt(env);
1998 if (irq >= 0) {
1999 struct kvm_interrupt intr;
2000
2001 intr.irq = irq;
db1669bc 2002 DPRINTF("injected interrupt %d\n", irq);
1bc22652 2003 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
ce377af3
JK
2004 if (ret < 0) {
2005 fprintf(stderr,
2006 "KVM: injection failed, interrupt lost (%s)\n",
2007 strerror(-ret));
2008 }
db1669bc
JK
2009 }
2010 }
05330448 2011
db1669bc
JK
2012 /* If we have an interrupt but the guest is not ready to receive an
2013 * interrupt, request an interrupt window exit. This will
2014 * cause a return to userspace as soon as the guest is ready to
2015 * receive interrupts. */
259186a7 2016 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
db1669bc
JK
2017 run->request_interrupt_window = 1;
2018 } else {
2019 run->request_interrupt_window = 0;
2020 }
2021
2022 DPRINTF("setting tpr\n");
02e51483 2023 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
db1669bc 2024 }
05330448
AL
2025}
2026
20d695a9 2027void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
05330448 2028{
20d695a9
AF
2029 X86CPU *x86_cpu = X86_CPU(cpu);
2030 CPUX86State *env = &x86_cpu->env;
2031
b9bec74b 2032 if (run->if_flag) {
05330448 2033 env->eflags |= IF_MASK;
b9bec74b 2034 } else {
05330448 2035 env->eflags &= ~IF_MASK;
b9bec74b 2036 }
02e51483
CF
2037 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2038 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
05330448
AL
2039}
2040
20d695a9 2041int kvm_arch_process_async_events(CPUState *cs)
0af691d7 2042{
20d695a9
AF
2043 X86CPU *cpu = X86_CPU(cs);
2044 CPUX86State *env = &cpu->env;
232fc23b 2045
259186a7 2046 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
ab443475
JK
2047 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2048 assert(env->mcg_cap);
2049
259186a7 2050 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
ab443475 2051
dd1750d7 2052 kvm_cpu_synchronize_state(cs);
ab443475
JK
2053
2054 if (env->exception_injected == EXCP08_DBLE) {
2055 /* this means triple fault */
2056 qemu_system_reset_request();
fcd7d003 2057 cs->exit_request = 1;
ab443475
JK
2058 return 0;
2059 }
2060 env->exception_injected = EXCP12_MCHK;
2061 env->has_error_code = 0;
2062
259186a7 2063 cs->halted = 0;
ab443475
JK
2064 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2065 env->mp_state = KVM_MP_STATE_RUNNABLE;
2066 }
2067 }
2068
db1669bc
JK
2069 if (kvm_irqchip_in_kernel()) {
2070 return 0;
2071 }
2072
259186a7
AF
2073 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2074 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
02e51483 2075 apic_poll_irq(cpu->apic_state);
5d62c43a 2076 }
259186a7 2077 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4601f7b0 2078 (env->eflags & IF_MASK)) ||
259186a7
AF
2079 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2080 cs->halted = 0;
6792a57b 2081 }
259186a7 2082 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
dd1750d7 2083 kvm_cpu_synchronize_state(cs);
232fc23b 2084 do_cpu_init(cpu);
0af691d7 2085 }
259186a7 2086 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
dd1750d7 2087 kvm_cpu_synchronize_state(cs);
232fc23b 2088 do_cpu_sipi(cpu);
0af691d7 2089 }
259186a7
AF
2090 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2091 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
dd1750d7 2092 kvm_cpu_synchronize_state(cs);
02e51483 2093 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
d362e757
JK
2094 env->tpr_access_type);
2095 }
0af691d7 2096
259186a7 2097 return cs->halted;
0af691d7
MT
2098}
2099
839b5630 2100static int kvm_handle_halt(X86CPU *cpu)
05330448 2101{
259186a7 2102 CPUState *cs = CPU(cpu);
839b5630
AF
2103 CPUX86State *env = &cpu->env;
2104
259186a7 2105 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
05330448 2106 (env->eflags & IF_MASK)) &&
259186a7
AF
2107 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2108 cs->halted = 1;
bb4ea393 2109 return EXCP_HLT;
05330448
AL
2110 }
2111
bb4ea393 2112 return 0;
05330448
AL
2113}
2114
f7575c96 2115static int kvm_handle_tpr_access(X86CPU *cpu)
d362e757 2116{
f7575c96
AF
2117 CPUState *cs = CPU(cpu);
2118 struct kvm_run *run = cs->kvm_run;
d362e757 2119
02e51483 2120 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
d362e757
JK
2121 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2122 : TPR_ACCESS_READ);
2123 return 1;
2124}
2125
f17ec444 2126int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9 2127{
38972938 2128 static const uint8_t int3 = 0xcc;
64bf3f4e 2129
f17ec444
AF
2130 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2131 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 2132 return -EINVAL;
b9bec74b 2133 }
e22a25c9
AL
2134 return 0;
2135}
2136
f17ec444 2137int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
2138{
2139 uint8_t int3;
2140
f17ec444
AF
2141 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2142 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 2143 return -EINVAL;
b9bec74b 2144 }
e22a25c9
AL
2145 return 0;
2146}
2147
2148static struct {
2149 target_ulong addr;
2150 int len;
2151 int type;
2152} hw_breakpoint[4];
2153
2154static int nb_hw_breakpoint;
2155
2156static int find_hw_breakpoint(target_ulong addr, int len, int type)
2157{
2158 int n;
2159
b9bec74b 2160 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 2161 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 2162 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 2163 return n;
b9bec74b
JK
2164 }
2165 }
e22a25c9
AL
2166 return -1;
2167}
2168
2169int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2170 target_ulong len, int type)
2171{
2172 switch (type) {
2173 case GDB_BREAKPOINT_HW:
2174 len = 1;
2175 break;
2176 case GDB_WATCHPOINT_WRITE:
2177 case GDB_WATCHPOINT_ACCESS:
2178 switch (len) {
2179 case 1:
2180 break;
2181 case 2:
2182 case 4:
2183 case 8:
b9bec74b 2184 if (addr & (len - 1)) {
e22a25c9 2185 return -EINVAL;
b9bec74b 2186 }
e22a25c9
AL
2187 break;
2188 default:
2189 return -EINVAL;
2190 }
2191 break;
2192 default:
2193 return -ENOSYS;
2194 }
2195
b9bec74b 2196 if (nb_hw_breakpoint == 4) {
e22a25c9 2197 return -ENOBUFS;
b9bec74b
JK
2198 }
2199 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 2200 return -EEXIST;
b9bec74b 2201 }
e22a25c9
AL
2202 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2203 hw_breakpoint[nb_hw_breakpoint].len = len;
2204 hw_breakpoint[nb_hw_breakpoint].type = type;
2205 nb_hw_breakpoint++;
2206
2207 return 0;
2208}
2209
2210int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2211 target_ulong len, int type)
2212{
2213 int n;
2214
2215 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 2216 if (n < 0) {
e22a25c9 2217 return -ENOENT;
b9bec74b 2218 }
e22a25c9
AL
2219 nb_hw_breakpoint--;
2220 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2221
2222 return 0;
2223}
2224
2225void kvm_arch_remove_all_hw_breakpoints(void)
2226{
2227 nb_hw_breakpoint = 0;
2228}
2229
2230static CPUWatchpoint hw_watchpoint;
2231
a60f24b5 2232static int kvm_handle_debug(X86CPU *cpu,
48405526 2233 struct kvm_debug_exit_arch *arch_info)
e22a25c9 2234{
ed2803da 2235 CPUState *cs = CPU(cpu);
a60f24b5 2236 CPUX86State *env = &cpu->env;
f2574737 2237 int ret = 0;
e22a25c9
AL
2238 int n;
2239
2240 if (arch_info->exception == 1) {
2241 if (arch_info->dr6 & (1 << 14)) {
ed2803da 2242 if (cs->singlestep_enabled) {
f2574737 2243 ret = EXCP_DEBUG;
b9bec74b 2244 }
e22a25c9 2245 } else {
b9bec74b
JK
2246 for (n = 0; n < 4; n++) {
2247 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
2248 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2249 case 0x0:
f2574737 2250 ret = EXCP_DEBUG;
e22a25c9
AL
2251 break;
2252 case 0x1:
f2574737 2253 ret = EXCP_DEBUG;
48405526 2254 env->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2255 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2256 hw_watchpoint.flags = BP_MEM_WRITE;
2257 break;
2258 case 0x3:
f2574737 2259 ret = EXCP_DEBUG;
48405526 2260 env->watchpoint_hit = &hw_watchpoint;
e22a25c9
AL
2261 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2262 hw_watchpoint.flags = BP_MEM_ACCESS;
2263 break;
2264 }
b9bec74b
JK
2265 }
2266 }
e22a25c9 2267 }
a60f24b5 2268 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
f2574737 2269 ret = EXCP_DEBUG;
b9bec74b 2270 }
f2574737 2271 if (ret == 0) {
cb446eca 2272 cpu_synchronize_state(CPU(cpu));
48405526 2273 assert(env->exception_injected == -1);
b0b1d690 2274
f2574737 2275 /* pass to guest */
48405526
BS
2276 env->exception_injected = arch_info->exception;
2277 env->has_error_code = 0;
b0b1d690 2278 }
e22a25c9 2279
f2574737 2280 return ret;
e22a25c9
AL
2281}
2282
20d695a9 2283void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
e22a25c9
AL
2284{
2285 const uint8_t type_code[] = {
2286 [GDB_BREAKPOINT_HW] = 0x0,
2287 [GDB_WATCHPOINT_WRITE] = 0x1,
2288 [GDB_WATCHPOINT_ACCESS] = 0x3
2289 };
2290 const uint8_t len_code[] = {
2291 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2292 };
2293 int n;
2294
a60f24b5 2295 if (kvm_sw_breakpoints_active(cpu)) {
e22a25c9 2296 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 2297 }
e22a25c9
AL
2298 if (nb_hw_breakpoint > 0) {
2299 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2300 dbg->arch.debugreg[7] = 0x0600;
2301 for (n = 0; n < nb_hw_breakpoint; n++) {
2302 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2303 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2304 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 2305 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
2306 }
2307 }
2308}
4513d923 2309
2a4dac83
JK
2310static bool host_supports_vmx(void)
2311{
2312 uint32_t ecx, unused;
2313
2314 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2315 return ecx & CPUID_EXT_VMX;
2316}
2317
2318#define VMX_INVALID_GUEST_STATE 0x80000021
2319
20d695a9 2320int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2a4dac83 2321{
20d695a9 2322 X86CPU *cpu = X86_CPU(cs);
2a4dac83
JK
2323 uint64_t code;
2324 int ret;
2325
2326 switch (run->exit_reason) {
2327 case KVM_EXIT_HLT:
2328 DPRINTF("handle_hlt\n");
839b5630 2329 ret = kvm_handle_halt(cpu);
2a4dac83
JK
2330 break;
2331 case KVM_EXIT_SET_TPR:
2332 ret = 0;
2333 break;
d362e757 2334 case KVM_EXIT_TPR_ACCESS:
f7575c96 2335 ret = kvm_handle_tpr_access(cpu);
d362e757 2336 break;
2a4dac83
JK
2337 case KVM_EXIT_FAIL_ENTRY:
2338 code = run->fail_entry.hardware_entry_failure_reason;
2339 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2340 code);
2341 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2342 fprintf(stderr,
12619721 2343 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2344 "unrestricted mode\n"
2345 "support, the failure can be most likely due to the guest "
2346 "entering an invalid\n"
2347 "state for Intel VT. For example, the guest maybe running "
2348 "in big real mode\n"
2349 "which is not supported on less recent Intel processors."
2350 "\n\n");
2351 }
2352 ret = -1;
2353 break;
2354 case KVM_EXIT_EXCEPTION:
2355 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2356 run->ex.exception, run->ex.error_code);
2357 ret = -1;
2358 break;
f2574737
JK
2359 case KVM_EXIT_DEBUG:
2360 DPRINTF("kvm_exit_debug\n");
a60f24b5 2361 ret = kvm_handle_debug(cpu, &run->debug.arch);
f2574737 2362 break;
2a4dac83
JK
2363 default:
2364 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2365 ret = -1;
2366 break;
2367 }
2368
2369 return ret;
2370}
2371
20d695a9 2372bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4513d923 2373{
20d695a9
AF
2374 X86CPU *cpu = X86_CPU(cs);
2375 CPUX86State *env = &cpu->env;
2376
dd1750d7 2377 kvm_cpu_synchronize_state(cs);
b9bec74b
JK
2378 return !(env->cr[0] & CR0_PE_MASK) ||
2379 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2380}
84b058d7
JK
2381
2382void kvm_arch_init_irq_routing(KVMState *s)
2383{
2384 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2385 /* If kernel can't do irq routing, interrupt source
2386 * override 0->2 cannot be set up as required by HPET.
2387 * So we have to disable it.
2388 */
2389 no_hpet = 1;
2390 }
cc7e0ddf 2391 /* We know at this point that we're using the in-kernel
614e41bc 2392 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2393 * we can use msi via irqfd and GSI routing.
cc7e0ddf
PM
2394 */
2395 kvm_irqfds_allowed = true;
614e41bc 2396 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2397 kvm_gsi_routing_allowed = true;
84b058d7 2398}
b139bd30
JK
2399
2400/* Classic KVM device assignment interface. Will remain x86 only. */
2401int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2402 uint32_t flags, uint32_t *dev_id)
2403{
2404 struct kvm_assigned_pci_dev dev_data = {
2405 .segnr = dev_addr->domain,
2406 .busnr = dev_addr->bus,
2407 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2408 .flags = flags,
2409 };
2410 int ret;
2411
2412 dev_data.assigned_dev_id =
2413 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2414
2415 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2416 if (ret < 0) {
2417 return ret;
2418 }
2419
2420 *dev_id = dev_data.assigned_dev_id;
2421
2422 return 0;
2423}
2424
2425int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2426{
2427 struct kvm_assigned_pci_dev dev_data = {
2428 .assigned_dev_id = dev_id,
2429 };
2430
2431 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2432}
2433
2434static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2435 uint32_t irq_type, uint32_t guest_irq)
2436{
2437 struct kvm_assigned_irq assigned_irq = {
2438 .assigned_dev_id = dev_id,
2439 .guest_irq = guest_irq,
2440 .flags = irq_type,
2441 };
2442
2443 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2444 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2445 } else {
2446 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2447 }
2448}
2449
2450int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2451 uint32_t guest_irq)
2452{
2453 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2454 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2455
2456 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2457}
2458
2459int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2460{
2461 struct kvm_assigned_pci_dev dev_data = {
2462 .assigned_dev_id = dev_id,
2463 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2464 };
2465
2466 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2467}
2468
2469static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2470 uint32_t type)
2471{
2472 struct kvm_assigned_irq assigned_irq = {
2473 .assigned_dev_id = dev_id,
2474 .flags = type,
2475 };
2476
2477 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2478}
2479
2480int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2481{
2482 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2483 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2484}
2485
2486int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2487{
2488 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2489 KVM_DEV_IRQ_GUEST_MSI, virq);
2490}
2491
2492int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2493{
2494 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2495 KVM_DEV_IRQ_HOST_MSI);
2496}
2497
2498bool kvm_device_msix_supported(KVMState *s)
2499{
2500 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2501 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2502 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2503}
2504
2505int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2506 uint32_t nr_vectors)
2507{
2508 struct kvm_assigned_msix_nr msix_nr = {
2509 .assigned_dev_id = dev_id,
2510 .entry_nr = nr_vectors,
2511 };
2512
2513 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2514}
2515
2516int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2517 int virq)
2518{
2519 struct kvm_assigned_msix_entry msix_entry = {
2520 .assigned_dev_id = dev_id,
2521 .gsi = virq,
2522 .entry = vector,
2523 };
2524
2525 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2526}
2527
2528int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2529{
2530 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2531 KVM_DEV_IRQ_GUEST_MSIX, 0);
2532}
2533
2534int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2535{
2536 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2537 KVM_DEV_IRQ_HOST_MSIX);
2538}