]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
i386: kvm: x2apic is not supported without in-kernel irqchip
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
24#include "sysemu.h"
25#include "kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
e22a25c9 28#include "gdbstub.h"
0e607a80 29#include "host-utils.h"
4c5b10b7 30#include "hw/pc.h"
408392b3 31#include "hw/apic.h"
35bed8ee 32#include "ioport.h"
eab70139 33#include "hyperv.h"
b139bd30 34#include "hw/pci.h"
05330448
AL
35
36//#define DEBUG_KVM
37
38#ifdef DEBUG_KVM
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41#else
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { } while (0)
44#endif
45
1a03675d
GC
46#define MSR_KVM_WALL_CLOCK 0x11
47#define MSR_KVM_SYSTEM_TIME 0x12
48
c0532a76
MT
49#ifndef BUS_MCEERR_AR
50#define BUS_MCEERR_AR 4
51#endif
52#ifndef BUS_MCEERR_AO
53#define BUS_MCEERR_AO 5
54#endif
55
94a8d39a
JK
56const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61};
25d2e361 62
c3a3a7d3
JK
63static bool has_msr_star;
64static bool has_msr_hsave_pa;
aa82ba54 65static bool has_msr_tsc_deadline;
c5999bfc 66static bool has_msr_async_pf_en;
bc9a839d 67static bool has_msr_pv_eoi_en;
21e87c46 68static bool has_msr_misc_enable;
25d2e361 69static int lm_capable_kernel;
b827df58 70
1d31f66b
PM
71bool kvm_allows_irq0_override(void)
72{
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74}
75
b827df58
AK
76static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77{
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
b827df58
AK
88 if (r < 0) {
89 if (r == -E2BIG) {
7267c094 90 g_free(cpuid);
b827df58
AK
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99}
100
dd87f8a6
EH
101/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
102 * for all entries.
103 */
104static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
105{
106 struct kvm_cpuid2 *cpuid;
107 int max = 1;
108 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
109 max *= 2;
110 }
111 return cpuid;
112}
113
0c31b744
GC
114struct kvm_para_features {
115 int cap;
116 int feature;
117} para_features[] = {
118 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
119 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
120 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 121 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
122 { -1, -1 }
123};
124
ba9bc59e 125static int get_para_features(KVMState *s)
0c31b744
GC
126{
127 int i, features = 0;
128
129 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 130 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
131 features |= (1 << para_features[i].feature);
132 }
133 }
134
135 return features;
136}
0c31b744
GC
137
138
829ae2f9
EH
139/* Returns the value for a specific register on the cpuid entry
140 */
141static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
142{
143 uint32_t ret = 0;
144 switch (reg) {
145 case R_EAX:
146 ret = entry->eax;
147 break;
148 case R_EBX:
149 ret = entry->ebx;
150 break;
151 case R_ECX:
152 ret = entry->ecx;
153 break;
154 case R_EDX:
155 ret = entry->edx;
156 break;
157 }
158 return ret;
159}
160
4fb73f1d
EH
161/* Find matching entry for function/index on kvm_cpuid2 struct
162 */
163static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
164 uint32_t function,
165 uint32_t index)
166{
167 int i;
168 for (i = 0; i < cpuid->nent; ++i) {
169 if (cpuid->entries[i].function == function &&
170 cpuid->entries[i].index == index) {
171 return &cpuid->entries[i];
172 }
173 }
174 /* not found: */
175 return NULL;
176}
177
ba9bc59e 178uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 179 uint32_t index, int reg)
b827df58
AK
180{
181 struct kvm_cpuid2 *cpuid;
b827df58
AK
182 uint32_t ret = 0;
183 uint32_t cpuid_1_edx;
8c723b79 184 bool found = false;
b827df58 185
dd87f8a6 186 cpuid = get_supported_cpuid(s);
b827df58 187
4fb73f1d
EH
188 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
189 if (entry) {
190 found = true;
191 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
192 }
193
7b46e5ce
EH
194 /* Fixups for the data returned by KVM, below */
195
c2acb022
EH
196 if (function == 1 && reg == R_EDX) {
197 /* KVM before 2.6.30 misreports the following features */
198 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
199 } else if (function == 1 && reg == R_ECX) {
200 /* We can set the hypervisor flag, even if KVM does not return it on
201 * GET_SUPPORTED_CPUID
202 */
203 ret |= CPUID_EXT_HYPERVISOR;
ac67ee26
EH
204 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
205 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
206 * and the irqchip is in the kernel.
207 */
208 if (kvm_irqchip_in_kernel() &&
209 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
210 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
211 }
41e5e76d
EH
212
213 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
214 * without the in-kernel irqchip
215 */
216 if (!kvm_irqchip_in_kernel()) {
217 ret &= ~CPUID_EXT_X2APIC;
218 }
c2acb022
EH
219 } else if (function == 0x80000001 && reg == R_EDX) {
220 /* On Intel, kvm returns cpuid according to the Intel spec,
221 * so add missing bits according to the AMD spec:
222 */
223 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
224 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
7b46e5ce
EH
225 }
226
7267c094 227 g_free(cpuid);
b827df58 228
0c31b744 229 /* fallback for older kernels */
8c723b79 230 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 231 ret = get_para_features(s);
b9bec74b 232 }
0c31b744
GC
233
234 return ret;
bb0300dc 235}
bb0300dc 236
3c85e74f
HY
237typedef struct HWPoisonPage {
238 ram_addr_t ram_addr;
239 QLIST_ENTRY(HWPoisonPage) list;
240} HWPoisonPage;
241
242static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
243 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
244
245static void kvm_unpoison_all(void *param)
246{
247 HWPoisonPage *page, *next_page;
248
249 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
250 QLIST_REMOVE(page, list);
251 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 252 g_free(page);
3c85e74f
HY
253 }
254}
255
3c85e74f
HY
256static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
257{
258 HWPoisonPage *page;
259
260 QLIST_FOREACH(page, &hwpoison_page_list, list) {
261 if (page->ram_addr == ram_addr) {
262 return;
263 }
264 }
7267c094 265 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
266 page->ram_addr = ram_addr;
267 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
268}
269
e7701825
MT
270static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
271 int *max_banks)
272{
273 int r;
274
14a09518 275 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
276 if (r > 0) {
277 *max_banks = r;
278 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
279 }
280 return -ENOSYS;
281}
282
a8170e5e 283static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
e7701825 284{
c34d440a
JK
285 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
286 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
287 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 288
c34d440a
JK
289 if (code == BUS_MCEERR_AR) {
290 status |= MCI_STATUS_AR | 0x134;
291 mcg_status |= MCG_STATUS_EIPV;
292 } else {
293 status |= 0xc0;
294 mcg_status |= MCG_STATUS_RIPV;
419fb20a 295 }
c34d440a
JK
296 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
297 (MCM_ADDR_PHYS << 6) | 0xc,
298 cpu_x86_support_mca_broadcast(env) ?
299 MCE_INJECT_BROADCAST : 0);
419fb20a 300}
419fb20a
JK
301
302static void hardware_memory_error(void)
303{
304 fprintf(stderr, "Hardware memory error!\n");
305 exit(1);
306}
307
317ac620 308int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
419fb20a 309{
419fb20a 310 ram_addr_t ram_addr;
a8170e5e 311 hwaddr paddr;
419fb20a
JK
312
313 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
314 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
315 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9 316 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
419fb20a
JK
317 fprintf(stderr, "Hardware memory error for memory used by "
318 "QEMU itself instead of guest system!\n");
319 /* Hope we are lucky for AO MCE */
320 if (code == BUS_MCEERR_AO) {
321 return 0;
322 } else {
323 hardware_memory_error();
324 }
325 }
3c85e74f 326 kvm_hwpoison_page_add(ram_addr);
c34d440a 327 kvm_mce_inject(env, paddr, code);
e56ff191 328 } else {
419fb20a
JK
329 if (code == BUS_MCEERR_AO) {
330 return 0;
331 } else if (code == BUS_MCEERR_AR) {
332 hardware_memory_error();
333 } else {
334 return 1;
335 }
336 }
337 return 0;
338}
339
340int kvm_arch_on_sigbus(int code, void *addr)
341{
419fb20a 342 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 343 ram_addr_t ram_addr;
a8170e5e 344 hwaddr paddr;
419fb20a
JK
345
346 /* Hope we are lucky for AO MCE */
c34d440a 347 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9
AK
348 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
349 &paddr)) {
419fb20a
JK
350 fprintf(stderr, "Hardware memory error for memory used by "
351 "QEMU itself instead of guest system!: %p\n", addr);
352 return 0;
353 }
3c85e74f 354 kvm_hwpoison_page_add(ram_addr);
c34d440a 355 kvm_mce_inject(first_cpu, paddr, code);
e56ff191 356 } else {
419fb20a
JK
357 if (code == BUS_MCEERR_AO) {
358 return 0;
359 } else if (code == BUS_MCEERR_AR) {
360 hardware_memory_error();
361 } else {
362 return 1;
363 }
364 }
365 return 0;
366}
e7701825 367
317ac620 368static int kvm_inject_mce_oldstyle(CPUX86State *env)
ab443475 369{
ab443475
JK
370 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
371 unsigned int bank, bank_num = env->mcg_cap & 0xff;
372 struct kvm_x86_mce mce;
373
374 env->exception_injected = -1;
375
376 /*
377 * There must be at least one bank in use if an MCE is pending.
378 * Find it and use its values for the event injection.
379 */
380 for (bank = 0; bank < bank_num; bank++) {
381 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
382 break;
383 }
384 }
385 assert(bank < bank_num);
386
387 mce.bank = bank;
388 mce.status = env->mce_banks[bank * 4 + 1];
389 mce.mcg_status = env->mcg_status;
390 mce.addr = env->mce_banks[bank * 4 + 2];
391 mce.misc = env->mce_banks[bank * 4 + 3];
392
393 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
394 }
ab443475
JK
395 return 0;
396}
397
1dfb4dd9 398static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 399{
317ac620 400 CPUX86State *env = opaque;
b8cc45d6
GC
401
402 if (running) {
403 env->tsc_valid = false;
404 }
405}
406
317ac620 407int kvm_arch_init_vcpu(CPUX86State *env)
05330448
AL
408{
409 struct {
486bd5a2
AL
410 struct kvm_cpuid2 cpuid;
411 struct kvm_cpuid_entry2 entries[100];
541dc0d4 412 } QEMU_PACKED cpuid_data;
ba9bc59e 413 KVMState *s = env->kvm_state;
486bd5a2 414 uint32_t limit, i, j, cpuid_i;
a33609ca 415 uint32_t unused;
bb0300dc 416 struct kvm_cpuid_entry2 *c;
bb0300dc 417 uint32_t signature[3];
e7429073 418 int r;
05330448 419
ba9bc59e 420 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
6c0d7ee8 421
ba9bc59e 422 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
6c0d7ee8 423
ba9bc59e 424 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 425 0, R_EDX);
ba9bc59e 426 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 427 0, R_ECX);
ba9bc59e 428 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
296acb64
JR
429 0, R_EDX);
430
05330448
AL
431 cpuid_i = 0;
432
bb0300dc 433 /* Paravirtualization CPUIDs */
bb0300dc
GN
434 c = &cpuid_data.entries[cpuid_i++];
435 memset(c, 0, sizeof(*c));
436 c->function = KVM_CPUID_SIGNATURE;
eab70139
VR
437 if (!hyperv_enabled()) {
438 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
439 c->eax = 0;
440 } else {
441 memcpy(signature, "Microsoft Hv", 12);
442 c->eax = HYPERV_CPUID_MIN;
443 }
bb0300dc
GN
444 c->ebx = signature[0];
445 c->ecx = signature[1];
446 c->edx = signature[2];
447
448 c = &cpuid_data.entries[cpuid_i++];
449 memset(c, 0, sizeof(*c));
450 c->function = KVM_CPUID_FEATURES;
ba9bc59e
JK
451 c->eax = env->cpuid_kvm_features &
452 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
0c31b744 453
eab70139
VR
454 if (hyperv_enabled()) {
455 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
456 c->eax = signature[0];
457
458 c = &cpuid_data.entries[cpuid_i++];
459 memset(c, 0, sizeof(*c));
460 c->function = HYPERV_CPUID_VERSION;
461 c->eax = 0x00001bbc;
462 c->ebx = 0x00060001;
463
464 c = &cpuid_data.entries[cpuid_i++];
465 memset(c, 0, sizeof(*c));
466 c->function = HYPERV_CPUID_FEATURES;
467 if (hyperv_relaxed_timing_enabled()) {
468 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
469 }
470 if (hyperv_vapic_recommended()) {
471 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
472 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
473 }
474
475 c = &cpuid_data.entries[cpuid_i++];
476 memset(c, 0, sizeof(*c));
477 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
478 if (hyperv_relaxed_timing_enabled()) {
479 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
480 }
481 if (hyperv_vapic_recommended()) {
482 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
483 }
484 c->ebx = hyperv_get_spinlock_retries();
485
486 c = &cpuid_data.entries[cpuid_i++];
487 memset(c, 0, sizeof(*c));
488 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
489 c->eax = 0x40;
490 c->ebx = 0x40;
491
492 c = &cpuid_data.entries[cpuid_i++];
493 memset(c, 0, sizeof(*c));
494 c->function = KVM_CPUID_SIGNATURE_NEXT;
495 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
496 c->eax = 0;
497 c->ebx = signature[0];
498 c->ecx = signature[1];
499 c->edx = signature[2];
500 }
501
0c31b744 502 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 503
bc9a839d
MT
504 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
505
a33609ca 506 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
507
508 for (i = 0; i <= limit; i++) {
bb0300dc 509 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
510
511 switch (i) {
a36b1029
AL
512 case 2: {
513 /* Keep reading function 2 till all the input is received */
514 int times;
515
a36b1029 516 c->function = i;
a33609ca
AL
517 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
518 KVM_CPUID_FLAG_STATE_READ_NEXT;
519 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
520 times = c->eax & 0xff;
a36b1029
AL
521
522 for (j = 1; j < times; ++j) {
a33609ca 523 c = &cpuid_data.entries[cpuid_i++];
a36b1029 524 c->function = i;
a33609ca
AL
525 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
526 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
527 }
528 break;
529 }
486bd5a2
AL
530 case 4:
531 case 0xb:
532 case 0xd:
533 for (j = 0; ; j++) {
31e8c696
AP
534 if (i == 0xd && j == 64) {
535 break;
536 }
486bd5a2
AL
537 c->function = i;
538 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
539 c->index = j;
a33609ca 540 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 541
b9bec74b 542 if (i == 4 && c->eax == 0) {
486bd5a2 543 break;
b9bec74b
JK
544 }
545 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 546 break;
b9bec74b
JK
547 }
548 if (i == 0xd && c->eax == 0) {
31e8c696 549 continue;
b9bec74b 550 }
a33609ca 551 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
552 }
553 break;
554 default:
486bd5a2 555 c->function = i;
a33609ca
AL
556 c->flags = 0;
557 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
558 break;
559 }
05330448 560 }
a33609ca 561 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
562
563 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 564 c = &cpuid_data.entries[cpuid_i++];
05330448 565
05330448 566 c->function = i;
a33609ca
AL
567 c->flags = 0;
568 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
569 }
570
b3baa152
BW
571 /* Call Centaur's CPUID instructions they are supported. */
572 if (env->cpuid_xlevel2 > 0) {
573 env->cpuid_ext4_features &=
ba9bc59e 574 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
b3baa152
BW
575 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
576
577 for (i = 0xC0000000; i <= limit; i++) {
578 c = &cpuid_data.entries[cpuid_i++];
579
580 c->function = i;
581 c->flags = 0;
582 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
583 }
584 }
585
05330448
AL
586 cpuid_data.cpuid.nent = cpuid_i;
587
e7701825
MT
588 if (((env->cpuid_version >> 8)&0xF) >= 6
589 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
590 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
591 uint64_t mcg_cap;
592 int banks;
32a42024 593 int ret;
e7701825 594
75d49497
JK
595 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
596 if (ret < 0) {
597 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
598 return ret;
e7701825 599 }
75d49497
JK
600
601 if (banks > MCE_BANKS_DEF) {
602 banks = MCE_BANKS_DEF;
603 }
604 mcg_cap &= MCE_CAP_DEF;
605 mcg_cap |= banks;
606 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
607 if (ret < 0) {
608 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
609 return ret;
610 }
611
612 env->mcg_cap = mcg_cap;
e7701825 613 }
e7701825 614
b8cc45d6
GC
615 qemu_add_vm_change_state_handler(cpu_update_state, env);
616
7e680753 617 cpuid_data.cpuid.padding = 0;
e7429073 618 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
619 if (r) {
620 return r;
621 }
e7429073 622
e7429073
JR
623 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
624 if (r && env->tsc_khz) {
625 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
626 if (r < 0) {
627 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
628 return r;
629 }
630 }
e7429073 631
fabacc0f
JK
632 if (kvm_has_xsave()) {
633 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
634 }
635
e7429073 636 return 0;
05330448
AL
637}
638
317ac620 639void kvm_arch_reset_vcpu(CPUX86State *env)
caa5af0f 640{
dd673288
IM
641 X86CPU *cpu = x86_env_get_cpu(env);
642
e73223a5 643 env->exception_injected = -1;
0e607a80 644 env->interrupt_injected = -1;
1a5e9d2f 645 env->xcr0 = 1;
ddced198 646 if (kvm_irqchip_in_kernel()) {
dd673288 647 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
648 KVM_MP_STATE_UNINITIALIZED;
649 } else {
650 env->mp_state = KVM_MP_STATE_RUNNABLE;
651 }
caa5af0f
JK
652}
653
c3a3a7d3 654static int kvm_get_supported_msrs(KVMState *s)
05330448 655{
75b10c43 656 static int kvm_supported_msrs;
c3a3a7d3 657 int ret = 0;
05330448
AL
658
659 /* first time */
75b10c43 660 if (kvm_supported_msrs == 0) {
05330448
AL
661 struct kvm_msr_list msr_list, *kvm_msr_list;
662
75b10c43 663 kvm_supported_msrs = -1;
05330448
AL
664
665 /* Obtain MSR list from KVM. These are the MSRs that we must
666 * save/restore */
4c9f7372 667 msr_list.nmsrs = 0;
c3a3a7d3 668 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 669 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 670 return ret;
6fb6d245 671 }
d9db889f
JK
672 /* Old kernel modules had a bug and could write beyond the provided
673 memory. Allocate at least a safe amount of 1K. */
7267c094 674 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
675 msr_list.nmsrs *
676 sizeof(msr_list.indices[0])));
05330448 677
55308450 678 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 679 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
680 if (ret >= 0) {
681 int i;
682
683 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
684 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 685 has_msr_star = true;
75b10c43
MT
686 continue;
687 }
688 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 689 has_msr_hsave_pa = true;
75b10c43 690 continue;
05330448 691 }
aa82ba54
LJ
692 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
693 has_msr_tsc_deadline = true;
694 continue;
695 }
21e87c46
AK
696 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
697 has_msr_misc_enable = true;
698 continue;
699 }
05330448
AL
700 }
701 }
702
7267c094 703 g_free(kvm_msr_list);
05330448
AL
704 }
705
c3a3a7d3 706 return ret;
05330448
AL
707}
708
cad1e282 709int kvm_arch_init(KVMState *s)
20420430 710{
39d6960a 711 QemuOptsList *list = qemu_find_opts("machine");
11076198 712 uint64_t identity_base = 0xfffbc000;
39d6960a 713 uint64_t shadow_mem;
20420430 714 int ret;
25d2e361 715 struct utsname utsname;
20420430 716
c3a3a7d3 717 ret = kvm_get_supported_msrs(s);
20420430 718 if (ret < 0) {
20420430
SY
719 return ret;
720 }
25d2e361
MT
721
722 uname(&utsname);
723 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
724
4c5b10b7 725 /*
11076198
JK
726 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
727 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
728 * Since these must be part of guest physical memory, we need to allocate
729 * them, both by setting their start addresses in the kernel and by
730 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
731 *
732 * Older KVM versions may not support setting the identity map base. In
733 * that case we need to stick with the default, i.e. a 256K maximum BIOS
734 * size.
4c5b10b7 735 */
11076198
JK
736 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
737 /* Allows up to 16M BIOSes. */
738 identity_base = 0xfeffc000;
739
740 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
741 if (ret < 0) {
742 return ret;
743 }
4c5b10b7 744 }
e56ff191 745
11076198
JK
746 /* Set TSS base one page after EPT identity map. */
747 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
748 if (ret < 0) {
749 return ret;
750 }
751
11076198
JK
752 /* Tell fw_cfg to notify the BIOS to reserve the range. */
753 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 754 if (ret < 0) {
11076198 755 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
756 return ret;
757 }
3c85e74f 758 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 759
39d6960a
JK
760 if (!QTAILQ_EMPTY(&list->head)) {
761 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
762 "kvm_shadow_mem", -1);
763 if (shadow_mem != -1) {
764 shadow_mem /= 4096;
765 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
766 if (ret < 0) {
767 return ret;
768 }
769 }
770 }
11076198 771 return 0;
05330448 772}
b9bec74b 773
05330448
AL
774static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
775{
776 lhs->selector = rhs->selector;
777 lhs->base = rhs->base;
778 lhs->limit = rhs->limit;
779 lhs->type = 3;
780 lhs->present = 1;
781 lhs->dpl = 3;
782 lhs->db = 0;
783 lhs->s = 1;
784 lhs->l = 0;
785 lhs->g = 0;
786 lhs->avl = 0;
787 lhs->unusable = 0;
788}
789
790static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
791{
792 unsigned flags = rhs->flags;
793 lhs->selector = rhs->selector;
794 lhs->base = rhs->base;
795 lhs->limit = rhs->limit;
796 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
797 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 798 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
799 lhs->db = (flags >> DESC_B_SHIFT) & 1;
800 lhs->s = (flags & DESC_S_MASK) != 0;
801 lhs->l = (flags >> DESC_L_SHIFT) & 1;
802 lhs->g = (flags & DESC_G_MASK) != 0;
803 lhs->avl = (flags & DESC_AVL_MASK) != 0;
804 lhs->unusable = 0;
7e680753 805 lhs->padding = 0;
05330448
AL
806}
807
808static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
809{
810 lhs->selector = rhs->selector;
811 lhs->base = rhs->base;
812 lhs->limit = rhs->limit;
b9bec74b
JK
813 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
814 (rhs->present * DESC_P_MASK) |
815 (rhs->dpl << DESC_DPL_SHIFT) |
816 (rhs->db << DESC_B_SHIFT) |
817 (rhs->s * DESC_S_MASK) |
818 (rhs->l << DESC_L_SHIFT) |
819 (rhs->g * DESC_G_MASK) |
820 (rhs->avl * DESC_AVL_MASK);
05330448
AL
821}
822
823static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
824{
b9bec74b 825 if (set) {
05330448 826 *kvm_reg = *qemu_reg;
b9bec74b 827 } else {
05330448 828 *qemu_reg = *kvm_reg;
b9bec74b 829 }
05330448
AL
830}
831
317ac620 832static int kvm_getput_regs(CPUX86State *env, int set)
05330448
AL
833{
834 struct kvm_regs regs;
835 int ret = 0;
836
837 if (!set) {
838 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 839 if (ret < 0) {
05330448 840 return ret;
b9bec74b 841 }
05330448
AL
842 }
843
844 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
845 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
846 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
847 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
848 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
849 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
850 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
851 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
852#ifdef TARGET_X86_64
853 kvm_getput_reg(&regs.r8, &env->regs[8], set);
854 kvm_getput_reg(&regs.r9, &env->regs[9], set);
855 kvm_getput_reg(&regs.r10, &env->regs[10], set);
856 kvm_getput_reg(&regs.r11, &env->regs[11], set);
857 kvm_getput_reg(&regs.r12, &env->regs[12], set);
858 kvm_getput_reg(&regs.r13, &env->regs[13], set);
859 kvm_getput_reg(&regs.r14, &env->regs[14], set);
860 kvm_getput_reg(&regs.r15, &env->regs[15], set);
861#endif
862
863 kvm_getput_reg(&regs.rflags, &env->eflags, set);
864 kvm_getput_reg(&regs.rip, &env->eip, set);
865
b9bec74b 866 if (set) {
05330448 867 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 868 }
05330448
AL
869
870 return ret;
871}
872
317ac620 873static int kvm_put_fpu(CPUX86State *env)
05330448
AL
874{
875 struct kvm_fpu fpu;
876 int i;
877
878 memset(&fpu, 0, sizeof fpu);
879 fpu.fsw = env->fpus & ~(7 << 11);
880 fpu.fsw |= (env->fpstt & 7) << 11;
881 fpu.fcw = env->fpuc;
42cc8fa6
JK
882 fpu.last_opcode = env->fpop;
883 fpu.last_ip = env->fpip;
884 fpu.last_dp = env->fpdp;
b9bec74b
JK
885 for (i = 0; i < 8; ++i) {
886 fpu.ftwx |= (!env->fptags[i]) << i;
887 }
05330448
AL
888 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
889 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
890 fpu.mxcsr = env->mxcsr;
891
892 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
893}
894
6b42494b
JK
895#define XSAVE_FCW_FSW 0
896#define XSAVE_FTW_FOP 1
f1665b21
SY
897#define XSAVE_CWD_RIP 2
898#define XSAVE_CWD_RDP 4
899#define XSAVE_MXCSR 6
900#define XSAVE_ST_SPACE 8
901#define XSAVE_XMM_SPACE 40
902#define XSAVE_XSTATE_BV 128
903#define XSAVE_YMMH_SPACE 144
f1665b21 904
317ac620 905static int kvm_put_xsave(CPUX86State *env)
f1665b21 906{
fabacc0f 907 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 908 uint16_t cwd, swd, twd;
fabacc0f 909 int i, r;
f1665b21 910
b9bec74b 911 if (!kvm_has_xsave()) {
f1665b21 912 return kvm_put_fpu(env);
b9bec74b 913 }
f1665b21 914
f1665b21 915 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 916 twd = 0;
f1665b21
SY
917 swd = env->fpus & ~(7 << 11);
918 swd |= (env->fpstt & 7) << 11;
919 cwd = env->fpuc;
b9bec74b 920 for (i = 0; i < 8; ++i) {
f1665b21 921 twd |= (!env->fptags[i]) << i;
b9bec74b 922 }
6b42494b
JK
923 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
924 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
925 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
926 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
927 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
928 sizeof env->fpregs);
929 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
930 sizeof env->xmm_regs);
931 xsave->region[XSAVE_MXCSR] = env->mxcsr;
932 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
933 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
934 sizeof env->ymmh_regs);
0f53994f 935 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
0f53994f 936 return r;
f1665b21
SY
937}
938
317ac620 939static int kvm_put_xcrs(CPUX86State *env)
f1665b21 940{
f1665b21
SY
941 struct kvm_xcrs xcrs;
942
b9bec74b 943 if (!kvm_has_xcrs()) {
f1665b21 944 return 0;
b9bec74b 945 }
f1665b21
SY
946
947 xcrs.nr_xcrs = 1;
948 xcrs.flags = 0;
949 xcrs.xcrs[0].xcr = 0;
950 xcrs.xcrs[0].value = env->xcr0;
951 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
f1665b21
SY
952}
953
317ac620 954static int kvm_put_sregs(CPUX86State *env)
05330448
AL
955{
956 struct kvm_sregs sregs;
957
0e607a80
JK
958 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
959 if (env->interrupt_injected >= 0) {
960 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
961 (uint64_t)1 << (env->interrupt_injected % 64);
962 }
05330448
AL
963
964 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
965 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
966 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
967 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
968 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
969 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
970 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 971 } else {
b9bec74b
JK
972 set_seg(&sregs.cs, &env->segs[R_CS]);
973 set_seg(&sregs.ds, &env->segs[R_DS]);
974 set_seg(&sregs.es, &env->segs[R_ES]);
975 set_seg(&sregs.fs, &env->segs[R_FS]);
976 set_seg(&sregs.gs, &env->segs[R_GS]);
977 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
978 }
979
980 set_seg(&sregs.tr, &env->tr);
981 set_seg(&sregs.ldt, &env->ldt);
982
983 sregs.idt.limit = env->idt.limit;
984 sregs.idt.base = env->idt.base;
7e680753 985 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
986 sregs.gdt.limit = env->gdt.limit;
987 sregs.gdt.base = env->gdt.base;
7e680753 988 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
989
990 sregs.cr0 = env->cr[0];
991 sregs.cr2 = env->cr[2];
992 sregs.cr3 = env->cr[3];
993 sregs.cr4 = env->cr[4];
994
4a942cea
BS
995 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
996 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
997
998 sregs.efer = env->efer;
999
1000 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
1001}
1002
1003static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1004 uint32_t index, uint64_t value)
1005{
1006 entry->index = index;
1007 entry->data = value;
1008}
1009
317ac620 1010static int kvm_put_msrs(CPUX86State *env, int level)
05330448
AL
1011{
1012 struct {
1013 struct kvm_msrs info;
1014 struct kvm_msr_entry entries[100];
1015 } msr_data;
1016 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 1017 int n = 0;
05330448
AL
1018
1019 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1020 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1021 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 1022 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 1023 if (has_msr_star) {
b9bec74b
JK
1024 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1025 }
c3a3a7d3 1026 if (has_msr_hsave_pa) {
75b10c43 1027 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1028 }
aa82ba54
LJ
1029 if (has_msr_tsc_deadline) {
1030 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1031 }
21e87c46
AK
1032 if (has_msr_misc_enable) {
1033 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1034 env->msr_ia32_misc_enable);
1035 }
05330448 1036#ifdef TARGET_X86_64
25d2e361
MT
1037 if (lm_capable_kernel) {
1038 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1039 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1040 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1041 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1042 }
05330448 1043#endif
ea643051 1044 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
1045 /*
1046 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1047 * writeback. Until this is fixed, we only write the offset to SMP
1048 * guests after migration, desynchronizing the VCPUs, but avoiding
1049 * huge jump-backs that would occur without any writeback at all.
1050 */
1051 if (smp_cpus == 1 || env->tsc != 0) {
1052 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1053 }
ff5c186b
JK
1054 }
1055 /*
1056 * The following paravirtual MSRs have side effects on the guest or are
1057 * too heavy for normal writeback. Limit them to reset or full state
1058 * updates.
1059 */
1060 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
1061 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1062 env->system_time_msr);
1063 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1064 if (has_msr_async_pf_en) {
1065 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1066 env->async_pf_en_msr);
1067 }
bc9a839d
MT
1068 if (has_msr_pv_eoi_en) {
1069 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1070 env->pv_eoi_en_msr);
1071 }
eab70139
VR
1072 if (hyperv_hypercall_available()) {
1073 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1074 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1075 }
1076 if (hyperv_vapic_recommended()) {
1077 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1078 }
ea643051 1079 }
57780495 1080 if (env->mcg_cap) {
d8da8574 1081 int i;
b9bec74b 1082
c34d440a
JK
1083 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1084 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1085 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1086 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1087 }
1088 }
1a03675d 1089
05330448
AL
1090 msr_data.info.nmsrs = n;
1091
1092 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1093
1094}
1095
1096
317ac620 1097static int kvm_get_fpu(CPUX86State *env)
05330448
AL
1098{
1099 struct kvm_fpu fpu;
1100 int i, ret;
1101
1102 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 1103 if (ret < 0) {
05330448 1104 return ret;
b9bec74b 1105 }
05330448
AL
1106
1107 env->fpstt = (fpu.fsw >> 11) & 7;
1108 env->fpus = fpu.fsw;
1109 env->fpuc = fpu.fcw;
42cc8fa6
JK
1110 env->fpop = fpu.last_opcode;
1111 env->fpip = fpu.last_ip;
1112 env->fpdp = fpu.last_dp;
b9bec74b
JK
1113 for (i = 0; i < 8; ++i) {
1114 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1115 }
05330448
AL
1116 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1117 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1118 env->mxcsr = fpu.mxcsr;
1119
1120 return 0;
1121}
1122
317ac620 1123static int kvm_get_xsave(CPUX86State *env)
f1665b21 1124{
fabacc0f 1125 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1126 int ret, i;
42cc8fa6 1127 uint16_t cwd, swd, twd;
f1665b21 1128
b9bec74b 1129 if (!kvm_has_xsave()) {
f1665b21 1130 return kvm_get_fpu(env);
b9bec74b 1131 }
f1665b21 1132
f1665b21 1133 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f 1134 if (ret < 0) {
f1665b21 1135 return ret;
0f53994f 1136 }
f1665b21 1137
6b42494b
JK
1138 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1139 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1140 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1141 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1142 env->fpstt = (swd >> 11) & 7;
1143 env->fpus = swd;
1144 env->fpuc = cwd;
b9bec74b 1145 for (i = 0; i < 8; ++i) {
f1665b21 1146 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1147 }
42cc8fa6
JK
1148 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1149 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1150 env->mxcsr = xsave->region[XSAVE_MXCSR];
1151 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1152 sizeof env->fpregs);
1153 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1154 sizeof env->xmm_regs);
1155 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1156 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1157 sizeof env->ymmh_regs);
1158 return 0;
f1665b21
SY
1159}
1160
317ac620 1161static int kvm_get_xcrs(CPUX86State *env)
f1665b21 1162{
f1665b21
SY
1163 int i, ret;
1164 struct kvm_xcrs xcrs;
1165
b9bec74b 1166 if (!kvm_has_xcrs()) {
f1665b21 1167 return 0;
b9bec74b 1168 }
f1665b21
SY
1169
1170 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1171 if (ret < 0) {
f1665b21 1172 return ret;
b9bec74b 1173 }
f1665b21 1174
b9bec74b 1175 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1176 /* Only support xcr0 now */
1177 if (xcrs.xcrs[0].xcr == 0) {
1178 env->xcr0 = xcrs.xcrs[0].value;
1179 break;
1180 }
b9bec74b 1181 }
f1665b21 1182 return 0;
f1665b21
SY
1183}
1184
317ac620 1185static int kvm_get_sregs(CPUX86State *env)
05330448
AL
1186{
1187 struct kvm_sregs sregs;
1188 uint32_t hflags;
0e607a80 1189 int bit, i, ret;
05330448
AL
1190
1191 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1192 if (ret < 0) {
05330448 1193 return ret;
b9bec74b 1194 }
05330448 1195
0e607a80
JK
1196 /* There can only be one pending IRQ set in the bitmap at a time, so try
1197 to find it and save its number instead (-1 for none). */
1198 env->interrupt_injected = -1;
1199 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1200 if (sregs.interrupt_bitmap[i]) {
1201 bit = ctz64(sregs.interrupt_bitmap[i]);
1202 env->interrupt_injected = i * 64 + bit;
1203 break;
1204 }
1205 }
05330448
AL
1206
1207 get_seg(&env->segs[R_CS], &sregs.cs);
1208 get_seg(&env->segs[R_DS], &sregs.ds);
1209 get_seg(&env->segs[R_ES], &sregs.es);
1210 get_seg(&env->segs[R_FS], &sregs.fs);
1211 get_seg(&env->segs[R_GS], &sregs.gs);
1212 get_seg(&env->segs[R_SS], &sregs.ss);
1213
1214 get_seg(&env->tr, &sregs.tr);
1215 get_seg(&env->ldt, &sregs.ldt);
1216
1217 env->idt.limit = sregs.idt.limit;
1218 env->idt.base = sregs.idt.base;
1219 env->gdt.limit = sregs.gdt.limit;
1220 env->gdt.base = sregs.gdt.base;
1221
1222 env->cr[0] = sregs.cr0;
1223 env->cr[2] = sregs.cr2;
1224 env->cr[3] = sregs.cr3;
1225 env->cr[4] = sregs.cr4;
1226
05330448 1227 env->efer = sregs.efer;
cce47516
JK
1228
1229 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1230
b9bec74b
JK
1231#define HFLAG_COPY_MASK \
1232 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1233 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1234 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1235 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1236
1237 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1238 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1239 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1240 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1241 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1242 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1243 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1244
1245 if (env->efer & MSR_EFER_LMA) {
1246 hflags |= HF_LMA_MASK;
1247 }
1248
1249 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1250 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1251 } else {
1252 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1253 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1254 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1255 (DESC_B_SHIFT - HF_SS32_SHIFT);
1256 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1257 !(hflags & HF_CS32_MASK)) {
1258 hflags |= HF_ADDSEG_MASK;
1259 } else {
1260 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1261 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1262 }
05330448
AL
1263 }
1264 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1265
1266 return 0;
1267}
1268
317ac620 1269static int kvm_get_msrs(CPUX86State *env)
05330448
AL
1270{
1271 struct {
1272 struct kvm_msrs info;
1273 struct kvm_msr_entry entries[100];
1274 } msr_data;
1275 struct kvm_msr_entry *msrs = msr_data.entries;
1276 int ret, i, n;
1277
1278 n = 0;
1279 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1280 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1281 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1282 msrs[n++].index = MSR_PAT;
c3a3a7d3 1283 if (has_msr_star) {
b9bec74b
JK
1284 msrs[n++].index = MSR_STAR;
1285 }
c3a3a7d3 1286 if (has_msr_hsave_pa) {
75b10c43 1287 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1288 }
aa82ba54
LJ
1289 if (has_msr_tsc_deadline) {
1290 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1291 }
21e87c46
AK
1292 if (has_msr_misc_enable) {
1293 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1294 }
b8cc45d6
GC
1295
1296 if (!env->tsc_valid) {
1297 msrs[n++].index = MSR_IA32_TSC;
1354869c 1298 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1299 }
1300
05330448 1301#ifdef TARGET_X86_64
25d2e361
MT
1302 if (lm_capable_kernel) {
1303 msrs[n++].index = MSR_CSTAR;
1304 msrs[n++].index = MSR_KERNELGSBASE;
1305 msrs[n++].index = MSR_FMASK;
1306 msrs[n++].index = MSR_LSTAR;
1307 }
05330448 1308#endif
1a03675d
GC
1309 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1310 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1311 if (has_msr_async_pf_en) {
1312 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1313 }
bc9a839d
MT
1314 if (has_msr_pv_eoi_en) {
1315 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1316 }
1a03675d 1317
57780495
MT
1318 if (env->mcg_cap) {
1319 msrs[n++].index = MSR_MCG_STATUS;
1320 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1321 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1322 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1323 }
57780495 1324 }
57780495 1325
05330448
AL
1326 msr_data.info.nmsrs = n;
1327 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1328 if (ret < 0) {
05330448 1329 return ret;
b9bec74b 1330 }
05330448
AL
1331
1332 for (i = 0; i < ret; i++) {
1333 switch (msrs[i].index) {
1334 case MSR_IA32_SYSENTER_CS:
1335 env->sysenter_cs = msrs[i].data;
1336 break;
1337 case MSR_IA32_SYSENTER_ESP:
1338 env->sysenter_esp = msrs[i].data;
1339 break;
1340 case MSR_IA32_SYSENTER_EIP:
1341 env->sysenter_eip = msrs[i].data;
1342 break;
0c03266a
JK
1343 case MSR_PAT:
1344 env->pat = msrs[i].data;
1345 break;
05330448
AL
1346 case MSR_STAR:
1347 env->star = msrs[i].data;
1348 break;
1349#ifdef TARGET_X86_64
1350 case MSR_CSTAR:
1351 env->cstar = msrs[i].data;
1352 break;
1353 case MSR_KERNELGSBASE:
1354 env->kernelgsbase = msrs[i].data;
1355 break;
1356 case MSR_FMASK:
1357 env->fmask = msrs[i].data;
1358 break;
1359 case MSR_LSTAR:
1360 env->lstar = msrs[i].data;
1361 break;
1362#endif
1363 case MSR_IA32_TSC:
1364 env->tsc = msrs[i].data;
1365 break;
aa82ba54
LJ
1366 case MSR_IA32_TSCDEADLINE:
1367 env->tsc_deadline = msrs[i].data;
1368 break;
aa851e36
MT
1369 case MSR_VM_HSAVE_PA:
1370 env->vm_hsave = msrs[i].data;
1371 break;
1a03675d
GC
1372 case MSR_KVM_SYSTEM_TIME:
1373 env->system_time_msr = msrs[i].data;
1374 break;
1375 case MSR_KVM_WALL_CLOCK:
1376 env->wall_clock_msr = msrs[i].data;
1377 break;
57780495
MT
1378 case MSR_MCG_STATUS:
1379 env->mcg_status = msrs[i].data;
1380 break;
1381 case MSR_MCG_CTL:
1382 env->mcg_ctl = msrs[i].data;
1383 break;
21e87c46
AK
1384 case MSR_IA32_MISC_ENABLE:
1385 env->msr_ia32_misc_enable = msrs[i].data;
1386 break;
57780495 1387 default:
57780495
MT
1388 if (msrs[i].index >= MSR_MC0_CTL &&
1389 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1390 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1391 }
d8da8574 1392 break;
f6584ee2
GN
1393 case MSR_KVM_ASYNC_PF_EN:
1394 env->async_pf_en_msr = msrs[i].data;
1395 break;
bc9a839d
MT
1396 case MSR_KVM_PV_EOI_EN:
1397 env->pv_eoi_en_msr = msrs[i].data;
1398 break;
05330448
AL
1399 }
1400 }
1401
1402 return 0;
1403}
1404
317ac620 1405static int kvm_put_mp_state(CPUX86State *env)
9bdbe550
HB
1406{
1407 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1408
1409 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1410}
1411
317ac620 1412static int kvm_get_mp_state(CPUX86State *env)
9bdbe550
HB
1413{
1414 struct kvm_mp_state mp_state;
1415 int ret;
1416
1417 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1418 if (ret < 0) {
1419 return ret;
1420 }
1421 env->mp_state = mp_state.mp_state;
c14750e8
JK
1422 if (kvm_irqchip_in_kernel()) {
1423 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1424 }
9bdbe550
HB
1425 return 0;
1426}
1427
317ac620 1428static int kvm_get_apic(CPUX86State *env)
680c1c6f
JK
1429{
1430 DeviceState *apic = env->apic_state;
1431 struct kvm_lapic_state kapic;
1432 int ret;
1433
3d4b2649 1434 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1435 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1436 if (ret < 0) {
1437 return ret;
1438 }
1439
1440 kvm_get_apic_state(apic, &kapic);
1441 }
1442 return 0;
1443}
1444
317ac620 1445static int kvm_put_apic(CPUX86State *env)
680c1c6f
JK
1446{
1447 DeviceState *apic = env->apic_state;
1448 struct kvm_lapic_state kapic;
1449
3d4b2649 1450 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1451 kvm_put_apic_state(apic, &kapic);
1452
1453 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1454 }
1455 return 0;
1456}
1457
317ac620 1458static int kvm_put_vcpu_events(CPUX86State *env, int level)
a0fb002c 1459{
a0fb002c
JK
1460 struct kvm_vcpu_events events;
1461
1462 if (!kvm_has_vcpu_events()) {
1463 return 0;
1464 }
1465
31827373
JK
1466 events.exception.injected = (env->exception_injected >= 0);
1467 events.exception.nr = env->exception_injected;
a0fb002c
JK
1468 events.exception.has_error_code = env->has_error_code;
1469 events.exception.error_code = env->error_code;
7e680753 1470 events.exception.pad = 0;
a0fb002c
JK
1471
1472 events.interrupt.injected = (env->interrupt_injected >= 0);
1473 events.interrupt.nr = env->interrupt_injected;
1474 events.interrupt.soft = env->soft_interrupt;
1475
1476 events.nmi.injected = env->nmi_injected;
1477 events.nmi.pending = env->nmi_pending;
1478 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1479 events.nmi.pad = 0;
a0fb002c
JK
1480
1481 events.sipi_vector = env->sipi_vector;
1482
ea643051
JK
1483 events.flags = 0;
1484 if (level >= KVM_PUT_RESET_STATE) {
1485 events.flags |=
1486 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1487 }
aee028b9 1488
a0fb002c 1489 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1490}
1491
317ac620 1492static int kvm_get_vcpu_events(CPUX86State *env)
a0fb002c 1493{
a0fb002c
JK
1494 struct kvm_vcpu_events events;
1495 int ret;
1496
1497 if (!kvm_has_vcpu_events()) {
1498 return 0;
1499 }
1500
1501 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1502 if (ret < 0) {
1503 return ret;
1504 }
31827373 1505 env->exception_injected =
a0fb002c
JK
1506 events.exception.injected ? events.exception.nr : -1;
1507 env->has_error_code = events.exception.has_error_code;
1508 env->error_code = events.exception.error_code;
1509
1510 env->interrupt_injected =
1511 events.interrupt.injected ? events.interrupt.nr : -1;
1512 env->soft_interrupt = events.interrupt.soft;
1513
1514 env->nmi_injected = events.nmi.injected;
1515 env->nmi_pending = events.nmi.pending;
1516 if (events.nmi.masked) {
1517 env->hflags2 |= HF2_NMI_MASK;
1518 } else {
1519 env->hflags2 &= ~HF2_NMI_MASK;
1520 }
1521
1522 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1523
1524 return 0;
1525}
1526
317ac620 1527static int kvm_guest_debug_workarounds(CPUX86State *env)
b0b1d690
JK
1528{
1529 int ret = 0;
b0b1d690
JK
1530 unsigned long reinject_trap = 0;
1531
1532 if (!kvm_has_vcpu_events()) {
1533 if (env->exception_injected == 1) {
1534 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1535 } else if (env->exception_injected == 3) {
1536 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1537 }
1538 env->exception_injected = -1;
1539 }
1540
1541 /*
1542 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1543 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1544 * by updating the debug state once again if single-stepping is on.
1545 * Another reason to call kvm_update_guest_debug here is a pending debug
1546 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1547 * reinject them via SET_GUEST_DEBUG.
1548 */
1549 if (reinject_trap ||
1550 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1551 ret = kvm_update_guest_debug(env, reinject_trap);
1552 }
b0b1d690
JK
1553 return ret;
1554}
1555
317ac620 1556static int kvm_put_debugregs(CPUX86State *env)
ff44f1a3 1557{
ff44f1a3
JK
1558 struct kvm_debugregs dbgregs;
1559 int i;
1560
1561 if (!kvm_has_debugregs()) {
1562 return 0;
1563 }
1564
1565 for (i = 0; i < 4; i++) {
1566 dbgregs.db[i] = env->dr[i];
1567 }
1568 dbgregs.dr6 = env->dr[6];
1569 dbgregs.dr7 = env->dr[7];
1570 dbgregs.flags = 0;
1571
1572 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1573}
1574
317ac620 1575static int kvm_get_debugregs(CPUX86State *env)
ff44f1a3 1576{
ff44f1a3
JK
1577 struct kvm_debugregs dbgregs;
1578 int i, ret;
1579
1580 if (!kvm_has_debugregs()) {
1581 return 0;
1582 }
1583
1584 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1585 if (ret < 0) {
b9bec74b 1586 return ret;
ff44f1a3
JK
1587 }
1588 for (i = 0; i < 4; i++) {
1589 env->dr[i] = dbgregs.db[i];
1590 }
1591 env->dr[4] = env->dr[6] = dbgregs.dr6;
1592 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1593
1594 return 0;
1595}
1596
317ac620 1597int kvm_arch_put_registers(CPUX86State *env, int level)
05330448
AL
1598{
1599 int ret;
1600
b7680cb6 1601 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1602
05330448 1603 ret = kvm_getput_regs(env, 1);
b9bec74b 1604 if (ret < 0) {
05330448 1605 return ret;
b9bec74b 1606 }
f1665b21 1607 ret = kvm_put_xsave(env);
b9bec74b 1608 if (ret < 0) {
f1665b21 1609 return ret;
b9bec74b 1610 }
f1665b21 1611 ret = kvm_put_xcrs(env);
b9bec74b 1612 if (ret < 0) {
05330448 1613 return ret;
b9bec74b 1614 }
05330448 1615 ret = kvm_put_sregs(env);
b9bec74b 1616 if (ret < 0) {
05330448 1617 return ret;
b9bec74b 1618 }
ab443475
JK
1619 /* must be before kvm_put_msrs */
1620 ret = kvm_inject_mce_oldstyle(env);
1621 if (ret < 0) {
1622 return ret;
1623 }
ea643051 1624 ret = kvm_put_msrs(env, level);
b9bec74b 1625 if (ret < 0) {
05330448 1626 return ret;
b9bec74b 1627 }
ea643051
JK
1628 if (level >= KVM_PUT_RESET_STATE) {
1629 ret = kvm_put_mp_state(env);
b9bec74b 1630 if (ret < 0) {
ea643051 1631 return ret;
b9bec74b 1632 }
680c1c6f
JK
1633 ret = kvm_put_apic(env);
1634 if (ret < 0) {
1635 return ret;
1636 }
ea643051 1637 }
ea643051 1638 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1639 if (ret < 0) {
a0fb002c 1640 return ret;
b9bec74b 1641 }
0d75a9ec 1642 ret = kvm_put_debugregs(env);
b9bec74b 1643 if (ret < 0) {
b0b1d690 1644 return ret;
b9bec74b 1645 }
b0b1d690
JK
1646 /* must be last */
1647 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1648 if (ret < 0) {
ff44f1a3 1649 return ret;
b9bec74b 1650 }
05330448
AL
1651 return 0;
1652}
1653
317ac620 1654int kvm_arch_get_registers(CPUX86State *env)
05330448
AL
1655{
1656 int ret;
1657
b7680cb6 1658 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1659
05330448 1660 ret = kvm_getput_regs(env, 0);
b9bec74b 1661 if (ret < 0) {
05330448 1662 return ret;
b9bec74b 1663 }
f1665b21 1664 ret = kvm_get_xsave(env);
b9bec74b 1665 if (ret < 0) {
f1665b21 1666 return ret;
b9bec74b 1667 }
f1665b21 1668 ret = kvm_get_xcrs(env);
b9bec74b 1669 if (ret < 0) {
05330448 1670 return ret;
b9bec74b 1671 }
05330448 1672 ret = kvm_get_sregs(env);
b9bec74b 1673 if (ret < 0) {
05330448 1674 return ret;
b9bec74b 1675 }
05330448 1676 ret = kvm_get_msrs(env);
b9bec74b 1677 if (ret < 0) {
05330448 1678 return ret;
b9bec74b 1679 }
5a2e3c2e 1680 ret = kvm_get_mp_state(env);
b9bec74b 1681 if (ret < 0) {
5a2e3c2e 1682 return ret;
b9bec74b 1683 }
680c1c6f
JK
1684 ret = kvm_get_apic(env);
1685 if (ret < 0) {
1686 return ret;
1687 }
a0fb002c 1688 ret = kvm_get_vcpu_events(env);
b9bec74b 1689 if (ret < 0) {
a0fb002c 1690 return ret;
b9bec74b 1691 }
ff44f1a3 1692 ret = kvm_get_debugregs(env);
b9bec74b 1693 if (ret < 0) {
ff44f1a3 1694 return ret;
b9bec74b 1695 }
05330448
AL
1696 return 0;
1697}
1698
317ac620 1699void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
05330448 1700{
ce377af3
JK
1701 int ret;
1702
276ce815
LJ
1703 /* Inject NMI */
1704 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1705 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1706 DPRINTF("injected NMI\n");
ce377af3
JK
1707 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1708 if (ret < 0) {
1709 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1710 strerror(-ret));
1711 }
276ce815
LJ
1712 }
1713
db1669bc 1714 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
1715 /* Force the VCPU out of its inner loop to process any INIT requests
1716 * or pending TPR access reports. */
1717 if (env->interrupt_request &
1718 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
db1669bc 1719 env->exit_request = 1;
05330448 1720 }
05330448 1721
db1669bc
JK
1722 /* Try to inject an interrupt if the guest can accept it */
1723 if (run->ready_for_interrupt_injection &&
1724 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1725 (env->eflags & IF_MASK)) {
1726 int irq;
1727
1728 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1729 irq = cpu_get_pic_interrupt(env);
1730 if (irq >= 0) {
1731 struct kvm_interrupt intr;
1732
1733 intr.irq = irq;
db1669bc 1734 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1735 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1736 if (ret < 0) {
1737 fprintf(stderr,
1738 "KVM: injection failed, interrupt lost (%s)\n",
1739 strerror(-ret));
1740 }
db1669bc
JK
1741 }
1742 }
05330448 1743
db1669bc
JK
1744 /* If we have an interrupt but the guest is not ready to receive an
1745 * interrupt, request an interrupt window exit. This will
1746 * cause a return to userspace as soon as the guest is ready to
1747 * receive interrupts. */
1748 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1749 run->request_interrupt_window = 1;
1750 } else {
1751 run->request_interrupt_window = 0;
1752 }
1753
1754 DPRINTF("setting tpr\n");
1755 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1756 }
05330448
AL
1757}
1758
317ac620 1759void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
05330448 1760{
b9bec74b 1761 if (run->if_flag) {
05330448 1762 env->eflags |= IF_MASK;
b9bec74b 1763 } else {
05330448 1764 env->eflags &= ~IF_MASK;
b9bec74b 1765 }
4a942cea
BS
1766 cpu_set_apic_tpr(env->apic_state, run->cr8);
1767 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1768}
1769
317ac620 1770int kvm_arch_process_async_events(CPUX86State *env)
0af691d7 1771{
232fc23b
AF
1772 X86CPU *cpu = x86_env_get_cpu(env);
1773
ab443475
JK
1774 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1775 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1776 assert(env->mcg_cap);
1777
1778 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1779
1780 kvm_cpu_synchronize_state(env);
1781
1782 if (env->exception_injected == EXCP08_DBLE) {
1783 /* this means triple fault */
1784 qemu_system_reset_request();
1785 env->exit_request = 1;
1786 return 0;
1787 }
1788 env->exception_injected = EXCP12_MCHK;
1789 env->has_error_code = 0;
1790
1791 env->halted = 0;
1792 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1793 env->mp_state = KVM_MP_STATE_RUNNABLE;
1794 }
1795 }
1796
db1669bc
JK
1797 if (kvm_irqchip_in_kernel()) {
1798 return 0;
1799 }
1800
5d62c43a
JK
1801 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1802 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1803 apic_poll_irq(env->apic_state);
1804 }
4601f7b0
JK
1805 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1806 (env->eflags & IF_MASK)) ||
1807 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1808 env->halted = 0;
1809 }
0af691d7
MT
1810 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1811 kvm_cpu_synchronize_state(env);
232fc23b 1812 do_cpu_init(cpu);
0af691d7 1813 }
0af691d7
MT
1814 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1815 kvm_cpu_synchronize_state(env);
232fc23b 1816 do_cpu_sipi(cpu);
0af691d7 1817 }
d362e757
JK
1818 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1819 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1820 kvm_cpu_synchronize_state(env);
1821 apic_handle_tpr_access_report(env->apic_state, env->eip,
1822 env->tpr_access_type);
1823 }
0af691d7
MT
1824
1825 return env->halted;
1826}
1827
317ac620 1828static int kvm_handle_halt(CPUX86State *env)
05330448
AL
1829{
1830 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1831 (env->eflags & IF_MASK)) &&
1832 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1833 env->halted = 1;
bb4ea393 1834 return EXCP_HLT;
05330448
AL
1835 }
1836
bb4ea393 1837 return 0;
05330448
AL
1838}
1839
317ac620 1840static int kvm_handle_tpr_access(CPUX86State *env)
d362e757
JK
1841{
1842 struct kvm_run *run = env->kvm_run;
1843
1844 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1845 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1846 : TPR_ACCESS_READ);
1847 return 1;
1848}
1849
317ac620 1850int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9 1851{
38972938 1852 static const uint8_t int3 = 0xcc;
64bf3f4e 1853
e22a25c9 1854 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1855 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1856 return -EINVAL;
b9bec74b 1857 }
e22a25c9
AL
1858 return 0;
1859}
1860
317ac620 1861int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
1862{
1863 uint8_t int3;
1864
1865 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1866 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1867 return -EINVAL;
b9bec74b 1868 }
e22a25c9
AL
1869 return 0;
1870}
1871
1872static struct {
1873 target_ulong addr;
1874 int len;
1875 int type;
1876} hw_breakpoint[4];
1877
1878static int nb_hw_breakpoint;
1879
1880static int find_hw_breakpoint(target_ulong addr, int len, int type)
1881{
1882 int n;
1883
b9bec74b 1884 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1885 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1886 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1887 return n;
b9bec74b
JK
1888 }
1889 }
e22a25c9
AL
1890 return -1;
1891}
1892
1893int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1894 target_ulong len, int type)
1895{
1896 switch (type) {
1897 case GDB_BREAKPOINT_HW:
1898 len = 1;
1899 break;
1900 case GDB_WATCHPOINT_WRITE:
1901 case GDB_WATCHPOINT_ACCESS:
1902 switch (len) {
1903 case 1:
1904 break;
1905 case 2:
1906 case 4:
1907 case 8:
b9bec74b 1908 if (addr & (len - 1)) {
e22a25c9 1909 return -EINVAL;
b9bec74b 1910 }
e22a25c9
AL
1911 break;
1912 default:
1913 return -EINVAL;
1914 }
1915 break;
1916 default:
1917 return -ENOSYS;
1918 }
1919
b9bec74b 1920 if (nb_hw_breakpoint == 4) {
e22a25c9 1921 return -ENOBUFS;
b9bec74b
JK
1922 }
1923 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1924 return -EEXIST;
b9bec74b 1925 }
e22a25c9
AL
1926 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1927 hw_breakpoint[nb_hw_breakpoint].len = len;
1928 hw_breakpoint[nb_hw_breakpoint].type = type;
1929 nb_hw_breakpoint++;
1930
1931 return 0;
1932}
1933
1934int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1935 target_ulong len, int type)
1936{
1937 int n;
1938
1939 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1940 if (n < 0) {
e22a25c9 1941 return -ENOENT;
b9bec74b 1942 }
e22a25c9
AL
1943 nb_hw_breakpoint--;
1944 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1945
1946 return 0;
1947}
1948
1949void kvm_arch_remove_all_hw_breakpoints(void)
1950{
1951 nb_hw_breakpoint = 0;
1952}
1953
1954static CPUWatchpoint hw_watchpoint;
1955
f2574737 1956static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
e22a25c9 1957{
f2574737 1958 int ret = 0;
e22a25c9
AL
1959 int n;
1960
1961 if (arch_info->exception == 1) {
1962 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1963 if (cpu_single_env->singlestep_enabled) {
f2574737 1964 ret = EXCP_DEBUG;
b9bec74b 1965 }
e22a25c9 1966 } else {
b9bec74b
JK
1967 for (n = 0; n < 4; n++) {
1968 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1969 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1970 case 0x0:
f2574737 1971 ret = EXCP_DEBUG;
e22a25c9
AL
1972 break;
1973 case 0x1:
f2574737 1974 ret = EXCP_DEBUG;
e22a25c9
AL
1975 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1976 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1977 hw_watchpoint.flags = BP_MEM_WRITE;
1978 break;
1979 case 0x3:
f2574737 1980 ret = EXCP_DEBUG;
e22a25c9
AL
1981 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1982 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1983 hw_watchpoint.flags = BP_MEM_ACCESS;
1984 break;
1985 }
b9bec74b
JK
1986 }
1987 }
e22a25c9 1988 }
b9bec74b 1989 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
f2574737 1990 ret = EXCP_DEBUG;
b9bec74b 1991 }
f2574737 1992 if (ret == 0) {
b0b1d690
JK
1993 cpu_synchronize_state(cpu_single_env);
1994 assert(cpu_single_env->exception_injected == -1);
1995
f2574737 1996 /* pass to guest */
b0b1d690
JK
1997 cpu_single_env->exception_injected = arch_info->exception;
1998 cpu_single_env->has_error_code = 0;
1999 }
e22a25c9 2000
f2574737 2001 return ret;
e22a25c9
AL
2002}
2003
317ac620 2004void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
e22a25c9
AL
2005{
2006 const uint8_t type_code[] = {
2007 [GDB_BREAKPOINT_HW] = 0x0,
2008 [GDB_WATCHPOINT_WRITE] = 0x1,
2009 [GDB_WATCHPOINT_ACCESS] = 0x3
2010 };
2011 const uint8_t len_code[] = {
2012 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2013 };
2014 int n;
2015
b9bec74b 2016 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 2017 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 2018 }
e22a25c9
AL
2019 if (nb_hw_breakpoint > 0) {
2020 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2021 dbg->arch.debugreg[7] = 0x0600;
2022 for (n = 0; n < nb_hw_breakpoint; n++) {
2023 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2024 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2025 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 2026 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
2027 }
2028 }
2029}
4513d923 2030
2a4dac83
JK
2031static bool host_supports_vmx(void)
2032{
2033 uint32_t ecx, unused;
2034
2035 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2036 return ecx & CPUID_EXT_VMX;
2037}
2038
2039#define VMX_INVALID_GUEST_STATE 0x80000021
2040
317ac620 2041int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2a4dac83
JK
2042{
2043 uint64_t code;
2044 int ret;
2045
2046 switch (run->exit_reason) {
2047 case KVM_EXIT_HLT:
2048 DPRINTF("handle_hlt\n");
2049 ret = kvm_handle_halt(env);
2050 break;
2051 case KVM_EXIT_SET_TPR:
2052 ret = 0;
2053 break;
d362e757
JK
2054 case KVM_EXIT_TPR_ACCESS:
2055 ret = kvm_handle_tpr_access(env);
2056 break;
2a4dac83
JK
2057 case KVM_EXIT_FAIL_ENTRY:
2058 code = run->fail_entry.hardware_entry_failure_reason;
2059 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2060 code);
2061 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2062 fprintf(stderr,
12619721 2063 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2064 "unrestricted mode\n"
2065 "support, the failure can be most likely due to the guest "
2066 "entering an invalid\n"
2067 "state for Intel VT. For example, the guest maybe running "
2068 "in big real mode\n"
2069 "which is not supported on less recent Intel processors."
2070 "\n\n");
2071 }
2072 ret = -1;
2073 break;
2074 case KVM_EXIT_EXCEPTION:
2075 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2076 run->ex.exception, run->ex.error_code);
2077 ret = -1;
2078 break;
f2574737
JK
2079 case KVM_EXIT_DEBUG:
2080 DPRINTF("kvm_exit_debug\n");
2081 ret = kvm_handle_debug(&run->debug.arch);
2082 break;
2a4dac83
JK
2083 default:
2084 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2085 ret = -1;
2086 break;
2087 }
2088
2089 return ret;
2090}
2091
317ac620 2092bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
4513d923 2093{
d1f86636 2094 kvm_cpu_synchronize_state(env);
b9bec74b
JK
2095 return !(env->cr[0] & CR0_PE_MASK) ||
2096 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2097}
84b058d7
JK
2098
2099void kvm_arch_init_irq_routing(KVMState *s)
2100{
2101 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2102 /* If kernel can't do irq routing, interrupt source
2103 * override 0->2 cannot be set up as required by HPET.
2104 * So we have to disable it.
2105 */
2106 no_hpet = 1;
2107 }
cc7e0ddf 2108 /* We know at this point that we're using the in-kernel
614e41bc 2109 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2110 * we can use msi via irqfd and GSI routing.
cc7e0ddf
PM
2111 */
2112 kvm_irqfds_allowed = true;
614e41bc 2113 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2114 kvm_gsi_routing_allowed = true;
84b058d7 2115}
b139bd30
JK
2116
2117/* Classic KVM device assignment interface. Will remain x86 only. */
2118int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2119 uint32_t flags, uint32_t *dev_id)
2120{
2121 struct kvm_assigned_pci_dev dev_data = {
2122 .segnr = dev_addr->domain,
2123 .busnr = dev_addr->bus,
2124 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2125 .flags = flags,
2126 };
2127 int ret;
2128
2129 dev_data.assigned_dev_id =
2130 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2131
2132 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2133 if (ret < 0) {
2134 return ret;
2135 }
2136
2137 *dev_id = dev_data.assigned_dev_id;
2138
2139 return 0;
2140}
2141
2142int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2143{
2144 struct kvm_assigned_pci_dev dev_data = {
2145 .assigned_dev_id = dev_id,
2146 };
2147
2148 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2149}
2150
2151static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2152 uint32_t irq_type, uint32_t guest_irq)
2153{
2154 struct kvm_assigned_irq assigned_irq = {
2155 .assigned_dev_id = dev_id,
2156 .guest_irq = guest_irq,
2157 .flags = irq_type,
2158 };
2159
2160 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2161 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2162 } else {
2163 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2164 }
2165}
2166
2167int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2168 uint32_t guest_irq)
2169{
2170 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2171 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2172
2173 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2174}
2175
2176int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2177{
2178 struct kvm_assigned_pci_dev dev_data = {
2179 .assigned_dev_id = dev_id,
2180 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2181 };
2182
2183 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2184}
2185
2186static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2187 uint32_t type)
2188{
2189 struct kvm_assigned_irq assigned_irq = {
2190 .assigned_dev_id = dev_id,
2191 .flags = type,
2192 };
2193
2194 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2195}
2196
2197int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2198{
2199 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2200 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2201}
2202
2203int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2204{
2205 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2206 KVM_DEV_IRQ_GUEST_MSI, virq);
2207}
2208
2209int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2210{
2211 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2212 KVM_DEV_IRQ_HOST_MSI);
2213}
2214
2215bool kvm_device_msix_supported(KVMState *s)
2216{
2217 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2218 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2219 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2220}
2221
2222int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2223 uint32_t nr_vectors)
2224{
2225 struct kvm_assigned_msix_nr msix_nr = {
2226 .assigned_dev_id = dev_id,
2227 .entry_nr = nr_vectors,
2228 };
2229
2230 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2231}
2232
2233int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2234 int virq)
2235{
2236 struct kvm_assigned_msix_entry msix_entry = {
2237 .assigned_dev_id = dev_id,
2238 .gsi = virq,
2239 .entry = vector,
2240 };
2241
2242 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2243}
2244
2245int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2246{
2247 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2248 KVM_DEV_IRQ_GUEST_MSIX, 0);
2249}
2250
2251int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2252{
2253 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2254 KVM_DEV_IRQ_HOST_MSIX);
2255}