]> git.proxmox.com Git - qemu.git/blame - target-i386/kvm.c
KVM: Fetch sub-leaf cpuid values for functions 4, 0xb, 0xd. (Amit Shah)
[qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
18
19#include <linux/kvm.h>
20
21#include "qemu-common.h"
22#include "sysemu.h"
23#include "kvm.h"
24#include "cpu.h"
25
26//#define DEBUG_KVM
27
28#ifdef DEBUG_KVM
29#define dprintf(fmt, ...) \
30 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
31#else
32#define dprintf(fmt, ...) \
33 do { } while (0)
34#endif
35
36int kvm_arch_init_vcpu(CPUState *env)
37{
38 struct {
486bd5a2
AL
39 struct kvm_cpuid2 cpuid;
40 struct kvm_cpuid_entry2 entries[100];
05330448 41 } __attribute__((packed)) cpuid_data;
486bd5a2 42 uint32_t limit, i, j, cpuid_i;
05330448
AL
43 uint32_t eax, ebx, ecx, edx;
44
45 cpuid_i = 0;
46
e00b6f80 47 cpu_x86_cpuid(env, 0, 0, &eax, &ebx, &ecx, &edx);
05330448
AL
48 limit = eax;
49
50 for (i = 0; i <= limit; i++) {
486bd5a2
AL
51 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
52
53 switch (i) {
54 case 4:
55 case 0xb:
56 case 0xd:
57 for (j = 0; ; j++) {
58 cpu_x86_cpuid(env, i, j, &eax, &ebx, &ecx, &edx);
59 c->function = i;
60 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
61 c->index = j;
62 c->eax = eax;
63 c->ebx = ebx;
64 c->ecx = ecx;
65 c->edx = edx;
66 c = &cpuid_data.entries[++cpuid_i];
67
68 if (i == 4 && eax == 0)
69 break;
70 if (i == 0xb && !(ecx & 0xff00))
71 break;
72 if (i == 0xd && eax == 0)
73 break;
74 }
75 break;
76 default:
77 cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
78 c->function = i;
79 c->eax = eax;
80 c->ebx = ebx;
81 c->ecx = ecx;
82 c->edx = edx;
83 break;
84 }
05330448 85 }
e00b6f80 86 cpu_x86_cpuid(env, 0x80000000, 0, &eax, &ebx, &ecx, &edx);
05330448
AL
87 limit = eax;
88
89 for (i = 0x80000000; i <= limit; i++) {
486bd5a2 90 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
05330448 91
e00b6f80 92 cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
05330448
AL
93 c->function = i;
94 c->eax = eax;
95 c->ebx = ebx;
96 c->ecx = ecx;
97 c->edx = edx;
98 }
99
100 cpuid_data.cpuid.nent = cpuid_i;
101
486bd5a2 102 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
103}
104
105static int kvm_has_msr_star(CPUState *env)
106{
107 static int has_msr_star;
108 int ret;
109
110 /* first time */
111 if (has_msr_star == 0) {
112 struct kvm_msr_list msr_list, *kvm_msr_list;
113
114 has_msr_star = -1;
115
116 /* Obtain MSR list from KVM. These are the MSRs that we must
117 * save/restore */
4c9f7372 118 msr_list.nmsrs = 0;
05330448
AL
119 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
120 if (ret < 0)
121 return 0;
122
05330448
AL
123 kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
124 msr_list.nmsrs * sizeof(msr_list.indices[0]));
05330448 125
55308450 126 kvm_msr_list->nmsrs = msr_list.nmsrs;
05330448
AL
127 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
128 if (ret >= 0) {
129 int i;
130
131 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
132 if (kvm_msr_list->indices[i] == MSR_STAR) {
133 has_msr_star = 1;
134 break;
135 }
136 }
137 }
138
139 free(kvm_msr_list);
140 }
141
142 if (has_msr_star == 1)
143 return 1;
144 return 0;
145}
146
147int kvm_arch_init(KVMState *s, int smp_cpus)
148{
149 int ret;
150
151 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
152 * directly. In order to use vm86 mode, a TSS is needed. Since this
153 * must be part of guest physical memory, we need to allocate it. Older
154 * versions of KVM just assumed that it would be at the end of physical
155 * memory but that doesn't work with more than 4GB of memory. We simply
156 * refuse to work with those older versions of KVM. */
984b5181 157 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
05330448
AL
158 if (ret <= 0) {
159 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
160 return ret;
161 }
162
163 /* this address is 3 pages before the bios, and the bios should present
164 * as unavaible memory. FIXME, need to ensure the e820 map deals with
165 * this?
166 */
984b5181 167 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
05330448
AL
168}
169
170static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
171{
172 lhs->selector = rhs->selector;
173 lhs->base = rhs->base;
174 lhs->limit = rhs->limit;
175 lhs->type = 3;
176 lhs->present = 1;
177 lhs->dpl = 3;
178 lhs->db = 0;
179 lhs->s = 1;
180 lhs->l = 0;
181 lhs->g = 0;
182 lhs->avl = 0;
183 lhs->unusable = 0;
184}
185
186static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
187{
188 unsigned flags = rhs->flags;
189 lhs->selector = rhs->selector;
190 lhs->base = rhs->base;
191 lhs->limit = rhs->limit;
192 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
193 lhs->present = (flags & DESC_P_MASK) != 0;
194 lhs->dpl = rhs->selector & 3;
195 lhs->db = (flags >> DESC_B_SHIFT) & 1;
196 lhs->s = (flags & DESC_S_MASK) != 0;
197 lhs->l = (flags >> DESC_L_SHIFT) & 1;
198 lhs->g = (flags & DESC_G_MASK) != 0;
199 lhs->avl = (flags & DESC_AVL_MASK) != 0;
200 lhs->unusable = 0;
201}
202
203static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
204{
205 lhs->selector = rhs->selector;
206 lhs->base = rhs->base;
207 lhs->limit = rhs->limit;
208 lhs->flags =
209 (rhs->type << DESC_TYPE_SHIFT)
210 | (rhs->present * DESC_P_MASK)
211 | (rhs->dpl << DESC_DPL_SHIFT)
212 | (rhs->db << DESC_B_SHIFT)
213 | (rhs->s * DESC_S_MASK)
214 | (rhs->l << DESC_L_SHIFT)
215 | (rhs->g * DESC_G_MASK)
216 | (rhs->avl * DESC_AVL_MASK);
217}
218
219static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
220{
221 if (set)
222 *kvm_reg = *qemu_reg;
223 else
224 *qemu_reg = *kvm_reg;
225}
226
227static int kvm_getput_regs(CPUState *env, int set)
228{
229 struct kvm_regs regs;
230 int ret = 0;
231
232 if (!set) {
233 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
234 if (ret < 0)
235 return ret;
236 }
237
238 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
239 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
240 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
241 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
242 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
243 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
244 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
245 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
246#ifdef TARGET_X86_64
247 kvm_getput_reg(&regs.r8, &env->regs[8], set);
248 kvm_getput_reg(&regs.r9, &env->regs[9], set);
249 kvm_getput_reg(&regs.r10, &env->regs[10], set);
250 kvm_getput_reg(&regs.r11, &env->regs[11], set);
251 kvm_getput_reg(&regs.r12, &env->regs[12], set);
252 kvm_getput_reg(&regs.r13, &env->regs[13], set);
253 kvm_getput_reg(&regs.r14, &env->regs[14], set);
254 kvm_getput_reg(&regs.r15, &env->regs[15], set);
255#endif
256
257 kvm_getput_reg(&regs.rflags, &env->eflags, set);
258 kvm_getput_reg(&regs.rip, &env->eip, set);
259
260 if (set)
261 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
262
263 return ret;
264}
265
266static int kvm_put_fpu(CPUState *env)
267{
268 struct kvm_fpu fpu;
269 int i;
270
271 memset(&fpu, 0, sizeof fpu);
272 fpu.fsw = env->fpus & ~(7 << 11);
273 fpu.fsw |= (env->fpstt & 7) << 11;
274 fpu.fcw = env->fpuc;
275 for (i = 0; i < 8; ++i)
276 fpu.ftwx |= (!env->fptags[i]) << i;
277 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
278 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
279 fpu.mxcsr = env->mxcsr;
280
281 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
282}
283
284static int kvm_put_sregs(CPUState *env)
285{
286 struct kvm_sregs sregs;
287
288 memcpy(sregs.interrupt_bitmap,
289 env->interrupt_bitmap,
290 sizeof(sregs.interrupt_bitmap));
291
292 if ((env->eflags & VM_MASK)) {
293 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
294 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
295 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
296 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
297 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
298 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
299 } else {
300 set_seg(&sregs.cs, &env->segs[R_CS]);
301 set_seg(&sregs.ds, &env->segs[R_DS]);
302 set_seg(&sregs.es, &env->segs[R_ES]);
303 set_seg(&sregs.fs, &env->segs[R_FS]);
304 set_seg(&sregs.gs, &env->segs[R_GS]);
305 set_seg(&sregs.ss, &env->segs[R_SS]);
306
307 if (env->cr[0] & CR0_PE_MASK) {
308 /* force ss cpl to cs cpl */
309 sregs.ss.selector = (sregs.ss.selector & ~3) |
310 (sregs.cs.selector & 3);
311 sregs.ss.dpl = sregs.ss.selector & 3;
312 }
313 }
314
315 set_seg(&sregs.tr, &env->tr);
316 set_seg(&sregs.ldt, &env->ldt);
317
318 sregs.idt.limit = env->idt.limit;
319 sregs.idt.base = env->idt.base;
320 sregs.gdt.limit = env->gdt.limit;
321 sregs.gdt.base = env->gdt.base;
322
323 sregs.cr0 = env->cr[0];
324 sregs.cr2 = env->cr[2];
325 sregs.cr3 = env->cr[3];
326 sregs.cr4 = env->cr[4];
327
328 sregs.cr8 = cpu_get_apic_tpr(env);
329 sregs.apic_base = cpu_get_apic_base(env);
330
331 sregs.efer = env->efer;
332
333 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
334}
335
336static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
337 uint32_t index, uint64_t value)
338{
339 entry->index = index;
340 entry->data = value;
341}
342
343static int kvm_put_msrs(CPUState *env)
344{
345 struct {
346 struct kvm_msrs info;
347 struct kvm_msr_entry entries[100];
348 } msr_data;
349 struct kvm_msr_entry *msrs = msr_data.entries;
350 int n = 0;
351
352 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
353 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
354 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
355 if (kvm_has_msr_star(env))
356 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
357 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
358#ifdef TARGET_X86_64
359 /* FIXME if lm capable */
360 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
361 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
362 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
363 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
364#endif
365 msr_data.info.nmsrs = n;
366
367 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
368
369}
370
371
372static int kvm_get_fpu(CPUState *env)
373{
374 struct kvm_fpu fpu;
375 int i, ret;
376
377 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
378 if (ret < 0)
379 return ret;
380
381 env->fpstt = (fpu.fsw >> 11) & 7;
382 env->fpus = fpu.fsw;
383 env->fpuc = fpu.fcw;
384 for (i = 0; i < 8; ++i)
385 env->fptags[i] = !((fpu.ftwx >> i) & 1);
386 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
387 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
388 env->mxcsr = fpu.mxcsr;
389
390 return 0;
391}
392
393static int kvm_get_sregs(CPUState *env)
394{
395 struct kvm_sregs sregs;
396 uint32_t hflags;
397 int ret;
398
399 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
400 if (ret < 0)
401 return ret;
402
403 memcpy(env->interrupt_bitmap,
404 sregs.interrupt_bitmap,
405 sizeof(sregs.interrupt_bitmap));
406
407 get_seg(&env->segs[R_CS], &sregs.cs);
408 get_seg(&env->segs[R_DS], &sregs.ds);
409 get_seg(&env->segs[R_ES], &sregs.es);
410 get_seg(&env->segs[R_FS], &sregs.fs);
411 get_seg(&env->segs[R_GS], &sregs.gs);
412 get_seg(&env->segs[R_SS], &sregs.ss);
413
414 get_seg(&env->tr, &sregs.tr);
415 get_seg(&env->ldt, &sregs.ldt);
416
417 env->idt.limit = sregs.idt.limit;
418 env->idt.base = sregs.idt.base;
419 env->gdt.limit = sregs.gdt.limit;
420 env->gdt.base = sregs.gdt.base;
421
422 env->cr[0] = sregs.cr0;
423 env->cr[2] = sregs.cr2;
424 env->cr[3] = sregs.cr3;
425 env->cr[4] = sregs.cr4;
426
427 cpu_set_apic_base(env, sregs.apic_base);
428
429 env->efer = sregs.efer;
430 //cpu_set_apic_tpr(env, sregs.cr8);
431
432#define HFLAG_COPY_MASK ~( \
433 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
434 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
435 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
436 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
437
438
439
440 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
441 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
442 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
443 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
444 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
445 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
446 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
447
448 if (env->efer & MSR_EFER_LMA) {
449 hflags |= HF_LMA_MASK;
450 }
451
452 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
453 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
454 } else {
455 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
456 (DESC_B_SHIFT - HF_CS32_SHIFT);
457 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
458 (DESC_B_SHIFT - HF_SS32_SHIFT);
459 if (!(env->cr[0] & CR0_PE_MASK) ||
460 (env->eflags & VM_MASK) ||
461 !(hflags & HF_CS32_MASK)) {
462 hflags |= HF_ADDSEG_MASK;
463 } else {
464 hflags |= ((env->segs[R_DS].base |
465 env->segs[R_ES].base |
466 env->segs[R_SS].base) != 0) <<
467 HF_ADDSEG_SHIFT;
468 }
469 }
470 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
471
472 return 0;
473}
474
475static int kvm_get_msrs(CPUState *env)
476{
477 struct {
478 struct kvm_msrs info;
479 struct kvm_msr_entry entries[100];
480 } msr_data;
481 struct kvm_msr_entry *msrs = msr_data.entries;
482 int ret, i, n;
483
484 n = 0;
485 msrs[n++].index = MSR_IA32_SYSENTER_CS;
486 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
487 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
488 if (kvm_has_msr_star(env))
489 msrs[n++].index = MSR_STAR;
490 msrs[n++].index = MSR_IA32_TSC;
491#ifdef TARGET_X86_64
492 /* FIXME lm_capable_kernel */
493 msrs[n++].index = MSR_CSTAR;
494 msrs[n++].index = MSR_KERNELGSBASE;
495 msrs[n++].index = MSR_FMASK;
496 msrs[n++].index = MSR_LSTAR;
497#endif
498 msr_data.info.nmsrs = n;
499 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
500 if (ret < 0)
501 return ret;
502
503 for (i = 0; i < ret; i++) {
504 switch (msrs[i].index) {
505 case MSR_IA32_SYSENTER_CS:
506 env->sysenter_cs = msrs[i].data;
507 break;
508 case MSR_IA32_SYSENTER_ESP:
509 env->sysenter_esp = msrs[i].data;
510 break;
511 case MSR_IA32_SYSENTER_EIP:
512 env->sysenter_eip = msrs[i].data;
513 break;
514 case MSR_STAR:
515 env->star = msrs[i].data;
516 break;
517#ifdef TARGET_X86_64
518 case MSR_CSTAR:
519 env->cstar = msrs[i].data;
520 break;
521 case MSR_KERNELGSBASE:
522 env->kernelgsbase = msrs[i].data;
523 break;
524 case MSR_FMASK:
525 env->fmask = msrs[i].data;
526 break;
527 case MSR_LSTAR:
528 env->lstar = msrs[i].data;
529 break;
530#endif
531 case MSR_IA32_TSC:
532 env->tsc = msrs[i].data;
533 break;
534 }
535 }
536
537 return 0;
538}
539
540int kvm_arch_put_registers(CPUState *env)
541{
542 int ret;
543
544 ret = kvm_getput_regs(env, 1);
545 if (ret < 0)
546 return ret;
547
548 ret = kvm_put_fpu(env);
549 if (ret < 0)
550 return ret;
551
552 ret = kvm_put_sregs(env);
553 if (ret < 0)
554 return ret;
555
556 ret = kvm_put_msrs(env);
557 if (ret < 0)
558 return ret;
559
560 return 0;
561}
562
563int kvm_arch_get_registers(CPUState *env)
564{
565 int ret;
566
567 ret = kvm_getput_regs(env, 0);
568 if (ret < 0)
569 return ret;
570
571 ret = kvm_get_fpu(env);
572 if (ret < 0)
573 return ret;
574
575 ret = kvm_get_sregs(env);
576 if (ret < 0)
577 return ret;
578
579 ret = kvm_get_msrs(env);
580 if (ret < 0)
581 return ret;
582
583 return 0;
584}
585
586int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
587{
588 /* Try to inject an interrupt if the guest can accept it */
589 if (run->ready_for_interrupt_injection &&
590 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
591 (env->eflags & IF_MASK)) {
592 int irq;
593
594 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
595 irq = cpu_get_pic_interrupt(env);
596 if (irq >= 0) {
597 struct kvm_interrupt intr;
598 intr.irq = irq;
599 /* FIXME: errors */
600 dprintf("injected interrupt %d\n", irq);
601 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
602 }
603 }
604
605 /* If we have an interrupt but the guest is not ready to receive an
606 * interrupt, request an interrupt window exit. This will
607 * cause a return to userspace as soon as the guest is ready to
608 * receive interrupts. */
609 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
610 run->request_interrupt_window = 1;
611 else
612 run->request_interrupt_window = 0;
613
614 dprintf("setting tpr\n");
615 run->cr8 = cpu_get_apic_tpr(env);
616
617 return 0;
618}
619
620int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
621{
622 if (run->if_flag)
623 env->eflags |= IF_MASK;
624 else
625 env->eflags &= ~IF_MASK;
626
627 cpu_set_apic_tpr(env, run->cr8);
628 cpu_set_apic_base(env, run->apic_base);
629
630 return 0;
631}
632
633static int kvm_handle_halt(CPUState *env)
634{
635 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
636 (env->eflags & IF_MASK)) &&
637 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
638 env->halted = 1;
639 env->exception_index = EXCP_HLT;
640 return 0;
641 }
642
643 return 1;
644}
645
646int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
647{
648 int ret = 0;
649
650 switch (run->exit_reason) {
651 case KVM_EXIT_HLT:
652 dprintf("handle_hlt\n");
653 ret = kvm_handle_halt(env);
654 break;
655 }
656
657 return ret;
658}