]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
i386: kvm: set CPUID_EXT_HYPERVISOR on kvm_arch_get_supported_cpuid()
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
24#include "sysemu.h"
25#include "kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
e22a25c9 28#include "gdbstub.h"
0e607a80 29#include "host-utils.h"
4c5b10b7 30#include "hw/pc.h"
408392b3 31#include "hw/apic.h"
35bed8ee 32#include "ioport.h"
eab70139 33#include "hyperv.h"
b139bd30 34#include "hw/pci.h"
05330448
AL
35
36//#define DEBUG_KVM
37
38#ifdef DEBUG_KVM
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41#else
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { } while (0)
44#endif
45
1a03675d
GC
46#define MSR_KVM_WALL_CLOCK 0x11
47#define MSR_KVM_SYSTEM_TIME 0x12
48
c0532a76
MT
49#ifndef BUS_MCEERR_AR
50#define BUS_MCEERR_AR 4
51#endif
52#ifndef BUS_MCEERR_AO
53#define BUS_MCEERR_AO 5
54#endif
55
94a8d39a
JK
56const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61};
25d2e361 62
c3a3a7d3
JK
63static bool has_msr_star;
64static bool has_msr_hsave_pa;
aa82ba54 65static bool has_msr_tsc_deadline;
c5999bfc 66static bool has_msr_async_pf_en;
bc9a839d 67static bool has_msr_pv_eoi_en;
21e87c46 68static bool has_msr_misc_enable;
25d2e361 69static int lm_capable_kernel;
b827df58 70
1d31f66b
PM
71bool kvm_allows_irq0_override(void)
72{
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74}
75
b827df58
AK
76static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77{
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
b827df58
AK
88 if (r < 0) {
89 if (r == -E2BIG) {
7267c094 90 g_free(cpuid);
b827df58
AK
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99}
100
dd87f8a6
EH
101/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
102 * for all entries.
103 */
104static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
105{
106 struct kvm_cpuid2 *cpuid;
107 int max = 1;
108 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
109 max *= 2;
110 }
111 return cpuid;
112}
113
0c31b744
GC
114struct kvm_para_features {
115 int cap;
116 int feature;
117} para_features[] = {
118 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
119 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
120 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 121 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
122 { -1, -1 }
123};
124
ba9bc59e 125static int get_para_features(KVMState *s)
0c31b744
GC
126{
127 int i, features = 0;
128
129 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 130 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
131 features |= (1 << para_features[i].feature);
132 }
133 }
134
135 return features;
136}
0c31b744
GC
137
138
829ae2f9
EH
139/* Returns the value for a specific register on the cpuid entry
140 */
141static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
142{
143 uint32_t ret = 0;
144 switch (reg) {
145 case R_EAX:
146 ret = entry->eax;
147 break;
148 case R_EBX:
149 ret = entry->ebx;
150 break;
151 case R_ECX:
152 ret = entry->ecx;
153 break;
154 case R_EDX:
155 ret = entry->edx;
156 break;
157 }
158 return ret;
159}
160
4fb73f1d
EH
161/* Find matching entry for function/index on kvm_cpuid2 struct
162 */
163static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
164 uint32_t function,
165 uint32_t index)
166{
167 int i;
168 for (i = 0; i < cpuid->nent; ++i) {
169 if (cpuid->entries[i].function == function &&
170 cpuid->entries[i].index == index) {
171 return &cpuid->entries[i];
172 }
173 }
174 /* not found: */
175 return NULL;
176}
177
ba9bc59e 178uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 179 uint32_t index, int reg)
b827df58
AK
180{
181 struct kvm_cpuid2 *cpuid;
b827df58
AK
182 uint32_t ret = 0;
183 uint32_t cpuid_1_edx;
8c723b79 184 bool found = false;
b827df58 185
dd87f8a6 186 cpuid = get_supported_cpuid(s);
b827df58 187
4fb73f1d
EH
188 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
189 if (entry) {
190 found = true;
191 ret = cpuid_entry_get_reg(entry, reg);
b827df58
AK
192 }
193
7b46e5ce
EH
194 /* Fixups for the data returned by KVM, below */
195
c2acb022
EH
196 if (function == 1 && reg == R_EDX) {
197 /* KVM before 2.6.30 misreports the following features */
198 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
84bd945c
EH
199 } else if (function == 1 && reg == R_ECX) {
200 /* We can set the hypervisor flag, even if KVM does not return it on
201 * GET_SUPPORTED_CPUID
202 */
203 ret |= CPUID_EXT_HYPERVISOR;
c2acb022
EH
204 } else if (function == 0x80000001 && reg == R_EDX) {
205 /* On Intel, kvm returns cpuid according to the Intel spec,
206 * so add missing bits according to the AMD spec:
207 */
208 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
209 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
7b46e5ce
EH
210 }
211
7267c094 212 g_free(cpuid);
b827df58 213
0c31b744 214 /* fallback for older kernels */
8c723b79 215 if ((function == KVM_CPUID_FEATURES) && !found) {
ba9bc59e 216 ret = get_para_features(s);
b9bec74b 217 }
0c31b744
GC
218
219 return ret;
bb0300dc 220}
bb0300dc 221
3c85e74f
HY
222typedef struct HWPoisonPage {
223 ram_addr_t ram_addr;
224 QLIST_ENTRY(HWPoisonPage) list;
225} HWPoisonPage;
226
227static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
228 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
229
230static void kvm_unpoison_all(void *param)
231{
232 HWPoisonPage *page, *next_page;
233
234 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
235 QLIST_REMOVE(page, list);
236 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 237 g_free(page);
3c85e74f
HY
238 }
239}
240
3c85e74f
HY
241static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
242{
243 HWPoisonPage *page;
244
245 QLIST_FOREACH(page, &hwpoison_page_list, list) {
246 if (page->ram_addr == ram_addr) {
247 return;
248 }
249 }
7267c094 250 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
251 page->ram_addr = ram_addr;
252 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
253}
254
e7701825
MT
255static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
256 int *max_banks)
257{
258 int r;
259
14a09518 260 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
261 if (r > 0) {
262 *max_banks = r;
263 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
264 }
265 return -ENOSYS;
266}
267
a8170e5e 268static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
e7701825 269{
c34d440a
JK
270 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
271 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
272 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 273
c34d440a
JK
274 if (code == BUS_MCEERR_AR) {
275 status |= MCI_STATUS_AR | 0x134;
276 mcg_status |= MCG_STATUS_EIPV;
277 } else {
278 status |= 0xc0;
279 mcg_status |= MCG_STATUS_RIPV;
419fb20a 280 }
c34d440a
JK
281 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
282 (MCM_ADDR_PHYS << 6) | 0xc,
283 cpu_x86_support_mca_broadcast(env) ?
284 MCE_INJECT_BROADCAST : 0);
419fb20a 285}
419fb20a
JK
286
287static void hardware_memory_error(void)
288{
289 fprintf(stderr, "Hardware memory error!\n");
290 exit(1);
291}
292
317ac620 293int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
419fb20a 294{
419fb20a 295 ram_addr_t ram_addr;
a8170e5e 296 hwaddr paddr;
419fb20a
JK
297
298 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
299 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
300 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9 301 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
419fb20a
JK
302 fprintf(stderr, "Hardware memory error for memory used by "
303 "QEMU itself instead of guest system!\n");
304 /* Hope we are lucky for AO MCE */
305 if (code == BUS_MCEERR_AO) {
306 return 0;
307 } else {
308 hardware_memory_error();
309 }
310 }
3c85e74f 311 kvm_hwpoison_page_add(ram_addr);
c34d440a 312 kvm_mce_inject(env, paddr, code);
e56ff191 313 } else {
419fb20a
JK
314 if (code == BUS_MCEERR_AO) {
315 return 0;
316 } else if (code == BUS_MCEERR_AR) {
317 hardware_memory_error();
318 } else {
319 return 1;
320 }
321 }
322 return 0;
323}
324
325int kvm_arch_on_sigbus(int code, void *addr)
326{
419fb20a 327 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 328 ram_addr_t ram_addr;
a8170e5e 329 hwaddr paddr;
419fb20a
JK
330
331 /* Hope we are lucky for AO MCE */
c34d440a 332 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9
AK
333 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
334 &paddr)) {
419fb20a
JK
335 fprintf(stderr, "Hardware memory error for memory used by "
336 "QEMU itself instead of guest system!: %p\n", addr);
337 return 0;
338 }
3c85e74f 339 kvm_hwpoison_page_add(ram_addr);
c34d440a 340 kvm_mce_inject(first_cpu, paddr, code);
e56ff191 341 } else {
419fb20a
JK
342 if (code == BUS_MCEERR_AO) {
343 return 0;
344 } else if (code == BUS_MCEERR_AR) {
345 hardware_memory_error();
346 } else {
347 return 1;
348 }
349 }
350 return 0;
351}
e7701825 352
317ac620 353static int kvm_inject_mce_oldstyle(CPUX86State *env)
ab443475 354{
ab443475
JK
355 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
356 unsigned int bank, bank_num = env->mcg_cap & 0xff;
357 struct kvm_x86_mce mce;
358
359 env->exception_injected = -1;
360
361 /*
362 * There must be at least one bank in use if an MCE is pending.
363 * Find it and use its values for the event injection.
364 */
365 for (bank = 0; bank < bank_num; bank++) {
366 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
367 break;
368 }
369 }
370 assert(bank < bank_num);
371
372 mce.bank = bank;
373 mce.status = env->mce_banks[bank * 4 + 1];
374 mce.mcg_status = env->mcg_status;
375 mce.addr = env->mce_banks[bank * 4 + 2];
376 mce.misc = env->mce_banks[bank * 4 + 3];
377
378 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
379 }
ab443475
JK
380 return 0;
381}
382
1dfb4dd9 383static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 384{
317ac620 385 CPUX86State *env = opaque;
b8cc45d6
GC
386
387 if (running) {
388 env->tsc_valid = false;
389 }
390}
391
317ac620 392int kvm_arch_init_vcpu(CPUX86State *env)
05330448
AL
393{
394 struct {
486bd5a2
AL
395 struct kvm_cpuid2 cpuid;
396 struct kvm_cpuid_entry2 entries[100];
541dc0d4 397 } QEMU_PACKED cpuid_data;
ba9bc59e 398 KVMState *s = env->kvm_state;
486bd5a2 399 uint32_t limit, i, j, cpuid_i;
a33609ca 400 uint32_t unused;
bb0300dc 401 struct kvm_cpuid_entry2 *c;
bb0300dc 402 uint32_t signature[3];
e7429073 403 int r;
05330448 404
ba9bc59e 405 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
6c0d7ee8 406
a75b3e0f 407 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
ba9bc59e 408 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
a75b3e0f
LJ
409 if (j && kvm_irqchip_in_kernel() &&
410 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
411 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
412 }
6c0d7ee8 413
ba9bc59e 414 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 415 0, R_EDX);
ba9bc59e 416 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 417 0, R_ECX);
ba9bc59e 418 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
296acb64
JR
419 0, R_EDX);
420
05330448
AL
421 cpuid_i = 0;
422
bb0300dc 423 /* Paravirtualization CPUIDs */
bb0300dc
GN
424 c = &cpuid_data.entries[cpuid_i++];
425 memset(c, 0, sizeof(*c));
426 c->function = KVM_CPUID_SIGNATURE;
eab70139
VR
427 if (!hyperv_enabled()) {
428 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
429 c->eax = 0;
430 } else {
431 memcpy(signature, "Microsoft Hv", 12);
432 c->eax = HYPERV_CPUID_MIN;
433 }
bb0300dc
GN
434 c->ebx = signature[0];
435 c->ecx = signature[1];
436 c->edx = signature[2];
437
438 c = &cpuid_data.entries[cpuid_i++];
439 memset(c, 0, sizeof(*c));
440 c->function = KVM_CPUID_FEATURES;
ba9bc59e
JK
441 c->eax = env->cpuid_kvm_features &
442 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
0c31b744 443
eab70139
VR
444 if (hyperv_enabled()) {
445 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
446 c->eax = signature[0];
447
448 c = &cpuid_data.entries[cpuid_i++];
449 memset(c, 0, sizeof(*c));
450 c->function = HYPERV_CPUID_VERSION;
451 c->eax = 0x00001bbc;
452 c->ebx = 0x00060001;
453
454 c = &cpuid_data.entries[cpuid_i++];
455 memset(c, 0, sizeof(*c));
456 c->function = HYPERV_CPUID_FEATURES;
457 if (hyperv_relaxed_timing_enabled()) {
458 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
459 }
460 if (hyperv_vapic_recommended()) {
461 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
462 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
463 }
464
465 c = &cpuid_data.entries[cpuid_i++];
466 memset(c, 0, sizeof(*c));
467 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
468 if (hyperv_relaxed_timing_enabled()) {
469 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
470 }
471 if (hyperv_vapic_recommended()) {
472 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
473 }
474 c->ebx = hyperv_get_spinlock_retries();
475
476 c = &cpuid_data.entries[cpuid_i++];
477 memset(c, 0, sizeof(*c));
478 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
479 c->eax = 0x40;
480 c->ebx = 0x40;
481
482 c = &cpuid_data.entries[cpuid_i++];
483 memset(c, 0, sizeof(*c));
484 c->function = KVM_CPUID_SIGNATURE_NEXT;
485 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
486 c->eax = 0;
487 c->ebx = signature[0];
488 c->ecx = signature[1];
489 c->edx = signature[2];
490 }
491
0c31b744 492 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 493
bc9a839d
MT
494 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
495
a33609ca 496 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
497
498 for (i = 0; i <= limit; i++) {
bb0300dc 499 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
500
501 switch (i) {
a36b1029
AL
502 case 2: {
503 /* Keep reading function 2 till all the input is received */
504 int times;
505
a36b1029 506 c->function = i;
a33609ca
AL
507 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
508 KVM_CPUID_FLAG_STATE_READ_NEXT;
509 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
510 times = c->eax & 0xff;
a36b1029
AL
511
512 for (j = 1; j < times; ++j) {
a33609ca 513 c = &cpuid_data.entries[cpuid_i++];
a36b1029 514 c->function = i;
a33609ca
AL
515 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
516 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
517 }
518 break;
519 }
486bd5a2
AL
520 case 4:
521 case 0xb:
522 case 0xd:
523 for (j = 0; ; j++) {
31e8c696
AP
524 if (i == 0xd && j == 64) {
525 break;
526 }
486bd5a2
AL
527 c->function = i;
528 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
529 c->index = j;
a33609ca 530 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 531
b9bec74b 532 if (i == 4 && c->eax == 0) {
486bd5a2 533 break;
b9bec74b
JK
534 }
535 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 536 break;
b9bec74b
JK
537 }
538 if (i == 0xd && c->eax == 0) {
31e8c696 539 continue;
b9bec74b 540 }
a33609ca 541 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
542 }
543 break;
544 default:
486bd5a2 545 c->function = i;
a33609ca
AL
546 c->flags = 0;
547 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
548 break;
549 }
05330448 550 }
a33609ca 551 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
552
553 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 554 c = &cpuid_data.entries[cpuid_i++];
05330448 555
05330448 556 c->function = i;
a33609ca
AL
557 c->flags = 0;
558 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
559 }
560
b3baa152
BW
561 /* Call Centaur's CPUID instructions they are supported. */
562 if (env->cpuid_xlevel2 > 0) {
563 env->cpuid_ext4_features &=
ba9bc59e 564 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
b3baa152
BW
565 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
566
567 for (i = 0xC0000000; i <= limit; i++) {
568 c = &cpuid_data.entries[cpuid_i++];
569
570 c->function = i;
571 c->flags = 0;
572 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
573 }
574 }
575
05330448
AL
576 cpuid_data.cpuid.nent = cpuid_i;
577
e7701825
MT
578 if (((env->cpuid_version >> 8)&0xF) >= 6
579 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
580 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
581 uint64_t mcg_cap;
582 int banks;
32a42024 583 int ret;
e7701825 584
75d49497
JK
585 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
586 if (ret < 0) {
587 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
588 return ret;
e7701825 589 }
75d49497
JK
590
591 if (banks > MCE_BANKS_DEF) {
592 banks = MCE_BANKS_DEF;
593 }
594 mcg_cap &= MCE_CAP_DEF;
595 mcg_cap |= banks;
596 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
597 if (ret < 0) {
598 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
599 return ret;
600 }
601
602 env->mcg_cap = mcg_cap;
e7701825 603 }
e7701825 604
b8cc45d6
GC
605 qemu_add_vm_change_state_handler(cpu_update_state, env);
606
7e680753 607 cpuid_data.cpuid.padding = 0;
e7429073 608 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
609 if (r) {
610 return r;
611 }
e7429073 612
e7429073
JR
613 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
614 if (r && env->tsc_khz) {
615 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
616 if (r < 0) {
617 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
618 return r;
619 }
620 }
e7429073 621
fabacc0f
JK
622 if (kvm_has_xsave()) {
623 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
624 }
625
e7429073 626 return 0;
05330448
AL
627}
628
317ac620 629void kvm_arch_reset_vcpu(CPUX86State *env)
caa5af0f 630{
dd673288
IM
631 X86CPU *cpu = x86_env_get_cpu(env);
632
e73223a5 633 env->exception_injected = -1;
0e607a80 634 env->interrupt_injected = -1;
1a5e9d2f 635 env->xcr0 = 1;
ddced198 636 if (kvm_irqchip_in_kernel()) {
dd673288 637 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
638 KVM_MP_STATE_UNINITIALIZED;
639 } else {
640 env->mp_state = KVM_MP_STATE_RUNNABLE;
641 }
caa5af0f
JK
642}
643
c3a3a7d3 644static int kvm_get_supported_msrs(KVMState *s)
05330448 645{
75b10c43 646 static int kvm_supported_msrs;
c3a3a7d3 647 int ret = 0;
05330448
AL
648
649 /* first time */
75b10c43 650 if (kvm_supported_msrs == 0) {
05330448
AL
651 struct kvm_msr_list msr_list, *kvm_msr_list;
652
75b10c43 653 kvm_supported_msrs = -1;
05330448
AL
654
655 /* Obtain MSR list from KVM. These are the MSRs that we must
656 * save/restore */
4c9f7372 657 msr_list.nmsrs = 0;
c3a3a7d3 658 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 659 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 660 return ret;
6fb6d245 661 }
d9db889f
JK
662 /* Old kernel modules had a bug and could write beyond the provided
663 memory. Allocate at least a safe amount of 1K. */
7267c094 664 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
665 msr_list.nmsrs *
666 sizeof(msr_list.indices[0])));
05330448 667
55308450 668 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 669 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
670 if (ret >= 0) {
671 int i;
672
673 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
674 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 675 has_msr_star = true;
75b10c43
MT
676 continue;
677 }
678 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 679 has_msr_hsave_pa = true;
75b10c43 680 continue;
05330448 681 }
aa82ba54
LJ
682 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
683 has_msr_tsc_deadline = true;
684 continue;
685 }
21e87c46
AK
686 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
687 has_msr_misc_enable = true;
688 continue;
689 }
05330448
AL
690 }
691 }
692
7267c094 693 g_free(kvm_msr_list);
05330448
AL
694 }
695
c3a3a7d3 696 return ret;
05330448
AL
697}
698
cad1e282 699int kvm_arch_init(KVMState *s)
20420430 700{
39d6960a 701 QemuOptsList *list = qemu_find_opts("machine");
11076198 702 uint64_t identity_base = 0xfffbc000;
39d6960a 703 uint64_t shadow_mem;
20420430 704 int ret;
25d2e361 705 struct utsname utsname;
20420430 706
c3a3a7d3 707 ret = kvm_get_supported_msrs(s);
20420430 708 if (ret < 0) {
20420430
SY
709 return ret;
710 }
25d2e361
MT
711
712 uname(&utsname);
713 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
714
4c5b10b7 715 /*
11076198
JK
716 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
717 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
718 * Since these must be part of guest physical memory, we need to allocate
719 * them, both by setting their start addresses in the kernel and by
720 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
721 *
722 * Older KVM versions may not support setting the identity map base. In
723 * that case we need to stick with the default, i.e. a 256K maximum BIOS
724 * size.
4c5b10b7 725 */
11076198
JK
726 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
727 /* Allows up to 16M BIOSes. */
728 identity_base = 0xfeffc000;
729
730 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
731 if (ret < 0) {
732 return ret;
733 }
4c5b10b7 734 }
e56ff191 735
11076198
JK
736 /* Set TSS base one page after EPT identity map. */
737 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
738 if (ret < 0) {
739 return ret;
740 }
741
11076198
JK
742 /* Tell fw_cfg to notify the BIOS to reserve the range. */
743 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 744 if (ret < 0) {
11076198 745 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
746 return ret;
747 }
3c85e74f 748 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 749
39d6960a
JK
750 if (!QTAILQ_EMPTY(&list->head)) {
751 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
752 "kvm_shadow_mem", -1);
753 if (shadow_mem != -1) {
754 shadow_mem /= 4096;
755 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
756 if (ret < 0) {
757 return ret;
758 }
759 }
760 }
11076198 761 return 0;
05330448 762}
b9bec74b 763
05330448
AL
764static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
765{
766 lhs->selector = rhs->selector;
767 lhs->base = rhs->base;
768 lhs->limit = rhs->limit;
769 lhs->type = 3;
770 lhs->present = 1;
771 lhs->dpl = 3;
772 lhs->db = 0;
773 lhs->s = 1;
774 lhs->l = 0;
775 lhs->g = 0;
776 lhs->avl = 0;
777 lhs->unusable = 0;
778}
779
780static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
781{
782 unsigned flags = rhs->flags;
783 lhs->selector = rhs->selector;
784 lhs->base = rhs->base;
785 lhs->limit = rhs->limit;
786 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
787 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 788 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
789 lhs->db = (flags >> DESC_B_SHIFT) & 1;
790 lhs->s = (flags & DESC_S_MASK) != 0;
791 lhs->l = (flags >> DESC_L_SHIFT) & 1;
792 lhs->g = (flags & DESC_G_MASK) != 0;
793 lhs->avl = (flags & DESC_AVL_MASK) != 0;
794 lhs->unusable = 0;
7e680753 795 lhs->padding = 0;
05330448
AL
796}
797
798static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
799{
800 lhs->selector = rhs->selector;
801 lhs->base = rhs->base;
802 lhs->limit = rhs->limit;
b9bec74b
JK
803 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
804 (rhs->present * DESC_P_MASK) |
805 (rhs->dpl << DESC_DPL_SHIFT) |
806 (rhs->db << DESC_B_SHIFT) |
807 (rhs->s * DESC_S_MASK) |
808 (rhs->l << DESC_L_SHIFT) |
809 (rhs->g * DESC_G_MASK) |
810 (rhs->avl * DESC_AVL_MASK);
05330448
AL
811}
812
813static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
814{
b9bec74b 815 if (set) {
05330448 816 *kvm_reg = *qemu_reg;
b9bec74b 817 } else {
05330448 818 *qemu_reg = *kvm_reg;
b9bec74b 819 }
05330448
AL
820}
821
317ac620 822static int kvm_getput_regs(CPUX86State *env, int set)
05330448
AL
823{
824 struct kvm_regs regs;
825 int ret = 0;
826
827 if (!set) {
828 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 829 if (ret < 0) {
05330448 830 return ret;
b9bec74b 831 }
05330448
AL
832 }
833
834 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
835 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
836 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
837 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
838 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
839 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
840 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
841 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
842#ifdef TARGET_X86_64
843 kvm_getput_reg(&regs.r8, &env->regs[8], set);
844 kvm_getput_reg(&regs.r9, &env->regs[9], set);
845 kvm_getput_reg(&regs.r10, &env->regs[10], set);
846 kvm_getput_reg(&regs.r11, &env->regs[11], set);
847 kvm_getput_reg(&regs.r12, &env->regs[12], set);
848 kvm_getput_reg(&regs.r13, &env->regs[13], set);
849 kvm_getput_reg(&regs.r14, &env->regs[14], set);
850 kvm_getput_reg(&regs.r15, &env->regs[15], set);
851#endif
852
853 kvm_getput_reg(&regs.rflags, &env->eflags, set);
854 kvm_getput_reg(&regs.rip, &env->eip, set);
855
b9bec74b 856 if (set) {
05330448 857 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 858 }
05330448
AL
859
860 return ret;
861}
862
317ac620 863static int kvm_put_fpu(CPUX86State *env)
05330448
AL
864{
865 struct kvm_fpu fpu;
866 int i;
867
868 memset(&fpu, 0, sizeof fpu);
869 fpu.fsw = env->fpus & ~(7 << 11);
870 fpu.fsw |= (env->fpstt & 7) << 11;
871 fpu.fcw = env->fpuc;
42cc8fa6
JK
872 fpu.last_opcode = env->fpop;
873 fpu.last_ip = env->fpip;
874 fpu.last_dp = env->fpdp;
b9bec74b
JK
875 for (i = 0; i < 8; ++i) {
876 fpu.ftwx |= (!env->fptags[i]) << i;
877 }
05330448
AL
878 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
879 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
880 fpu.mxcsr = env->mxcsr;
881
882 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
883}
884
6b42494b
JK
885#define XSAVE_FCW_FSW 0
886#define XSAVE_FTW_FOP 1
f1665b21
SY
887#define XSAVE_CWD_RIP 2
888#define XSAVE_CWD_RDP 4
889#define XSAVE_MXCSR 6
890#define XSAVE_ST_SPACE 8
891#define XSAVE_XMM_SPACE 40
892#define XSAVE_XSTATE_BV 128
893#define XSAVE_YMMH_SPACE 144
f1665b21 894
317ac620 895static int kvm_put_xsave(CPUX86State *env)
f1665b21 896{
fabacc0f 897 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 898 uint16_t cwd, swd, twd;
fabacc0f 899 int i, r;
f1665b21 900
b9bec74b 901 if (!kvm_has_xsave()) {
f1665b21 902 return kvm_put_fpu(env);
b9bec74b 903 }
f1665b21 904
f1665b21 905 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 906 twd = 0;
f1665b21
SY
907 swd = env->fpus & ~(7 << 11);
908 swd |= (env->fpstt & 7) << 11;
909 cwd = env->fpuc;
b9bec74b 910 for (i = 0; i < 8; ++i) {
f1665b21 911 twd |= (!env->fptags[i]) << i;
b9bec74b 912 }
6b42494b
JK
913 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
914 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
915 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
916 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
917 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
918 sizeof env->fpregs);
919 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
920 sizeof env->xmm_regs);
921 xsave->region[XSAVE_MXCSR] = env->mxcsr;
922 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
923 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
924 sizeof env->ymmh_regs);
0f53994f 925 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
0f53994f 926 return r;
f1665b21
SY
927}
928
317ac620 929static int kvm_put_xcrs(CPUX86State *env)
f1665b21 930{
f1665b21
SY
931 struct kvm_xcrs xcrs;
932
b9bec74b 933 if (!kvm_has_xcrs()) {
f1665b21 934 return 0;
b9bec74b 935 }
f1665b21
SY
936
937 xcrs.nr_xcrs = 1;
938 xcrs.flags = 0;
939 xcrs.xcrs[0].xcr = 0;
940 xcrs.xcrs[0].value = env->xcr0;
941 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
f1665b21
SY
942}
943
317ac620 944static int kvm_put_sregs(CPUX86State *env)
05330448
AL
945{
946 struct kvm_sregs sregs;
947
0e607a80
JK
948 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
949 if (env->interrupt_injected >= 0) {
950 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
951 (uint64_t)1 << (env->interrupt_injected % 64);
952 }
05330448
AL
953
954 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
955 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
956 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
957 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
958 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
959 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
960 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 961 } else {
b9bec74b
JK
962 set_seg(&sregs.cs, &env->segs[R_CS]);
963 set_seg(&sregs.ds, &env->segs[R_DS]);
964 set_seg(&sregs.es, &env->segs[R_ES]);
965 set_seg(&sregs.fs, &env->segs[R_FS]);
966 set_seg(&sregs.gs, &env->segs[R_GS]);
967 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
968 }
969
970 set_seg(&sregs.tr, &env->tr);
971 set_seg(&sregs.ldt, &env->ldt);
972
973 sregs.idt.limit = env->idt.limit;
974 sregs.idt.base = env->idt.base;
7e680753 975 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
976 sregs.gdt.limit = env->gdt.limit;
977 sregs.gdt.base = env->gdt.base;
7e680753 978 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
979
980 sregs.cr0 = env->cr[0];
981 sregs.cr2 = env->cr[2];
982 sregs.cr3 = env->cr[3];
983 sregs.cr4 = env->cr[4];
984
4a942cea
BS
985 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
986 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
987
988 sregs.efer = env->efer;
989
990 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
991}
992
993static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
994 uint32_t index, uint64_t value)
995{
996 entry->index = index;
997 entry->data = value;
998}
999
317ac620 1000static int kvm_put_msrs(CPUX86State *env, int level)
05330448
AL
1001{
1002 struct {
1003 struct kvm_msrs info;
1004 struct kvm_msr_entry entries[100];
1005 } msr_data;
1006 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 1007 int n = 0;
05330448
AL
1008
1009 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1010 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1011 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 1012 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 1013 if (has_msr_star) {
b9bec74b
JK
1014 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1015 }
c3a3a7d3 1016 if (has_msr_hsave_pa) {
75b10c43 1017 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 1018 }
aa82ba54
LJ
1019 if (has_msr_tsc_deadline) {
1020 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1021 }
21e87c46
AK
1022 if (has_msr_misc_enable) {
1023 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1024 env->msr_ia32_misc_enable);
1025 }
05330448 1026#ifdef TARGET_X86_64
25d2e361
MT
1027 if (lm_capable_kernel) {
1028 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1029 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1030 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1031 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1032 }
05330448 1033#endif
ea643051 1034 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
1035 /*
1036 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1037 * writeback. Until this is fixed, we only write the offset to SMP
1038 * guests after migration, desynchronizing the VCPUs, but avoiding
1039 * huge jump-backs that would occur without any writeback at all.
1040 */
1041 if (smp_cpus == 1 || env->tsc != 0) {
1042 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1043 }
ff5c186b
JK
1044 }
1045 /*
1046 * The following paravirtual MSRs have side effects on the guest or are
1047 * too heavy for normal writeback. Limit them to reset or full state
1048 * updates.
1049 */
1050 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
1051 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1052 env->system_time_msr);
1053 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1054 if (has_msr_async_pf_en) {
1055 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1056 env->async_pf_en_msr);
1057 }
bc9a839d
MT
1058 if (has_msr_pv_eoi_en) {
1059 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1060 env->pv_eoi_en_msr);
1061 }
eab70139
VR
1062 if (hyperv_hypercall_available()) {
1063 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1064 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1065 }
1066 if (hyperv_vapic_recommended()) {
1067 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1068 }
ea643051 1069 }
57780495 1070 if (env->mcg_cap) {
d8da8574 1071 int i;
b9bec74b 1072
c34d440a
JK
1073 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1074 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1075 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1076 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1077 }
1078 }
1a03675d 1079
05330448
AL
1080 msr_data.info.nmsrs = n;
1081
1082 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1083
1084}
1085
1086
317ac620 1087static int kvm_get_fpu(CPUX86State *env)
05330448
AL
1088{
1089 struct kvm_fpu fpu;
1090 int i, ret;
1091
1092 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 1093 if (ret < 0) {
05330448 1094 return ret;
b9bec74b 1095 }
05330448
AL
1096
1097 env->fpstt = (fpu.fsw >> 11) & 7;
1098 env->fpus = fpu.fsw;
1099 env->fpuc = fpu.fcw;
42cc8fa6
JK
1100 env->fpop = fpu.last_opcode;
1101 env->fpip = fpu.last_ip;
1102 env->fpdp = fpu.last_dp;
b9bec74b
JK
1103 for (i = 0; i < 8; ++i) {
1104 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1105 }
05330448
AL
1106 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1107 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1108 env->mxcsr = fpu.mxcsr;
1109
1110 return 0;
1111}
1112
317ac620 1113static int kvm_get_xsave(CPUX86State *env)
f1665b21 1114{
fabacc0f 1115 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1116 int ret, i;
42cc8fa6 1117 uint16_t cwd, swd, twd;
f1665b21 1118
b9bec74b 1119 if (!kvm_has_xsave()) {
f1665b21 1120 return kvm_get_fpu(env);
b9bec74b 1121 }
f1665b21 1122
f1665b21 1123 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f 1124 if (ret < 0) {
f1665b21 1125 return ret;
0f53994f 1126 }
f1665b21 1127
6b42494b
JK
1128 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1129 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1130 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1131 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1132 env->fpstt = (swd >> 11) & 7;
1133 env->fpus = swd;
1134 env->fpuc = cwd;
b9bec74b 1135 for (i = 0; i < 8; ++i) {
f1665b21 1136 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1137 }
42cc8fa6
JK
1138 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1139 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1140 env->mxcsr = xsave->region[XSAVE_MXCSR];
1141 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1142 sizeof env->fpregs);
1143 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1144 sizeof env->xmm_regs);
1145 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1146 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1147 sizeof env->ymmh_regs);
1148 return 0;
f1665b21
SY
1149}
1150
317ac620 1151static int kvm_get_xcrs(CPUX86State *env)
f1665b21 1152{
f1665b21
SY
1153 int i, ret;
1154 struct kvm_xcrs xcrs;
1155
b9bec74b 1156 if (!kvm_has_xcrs()) {
f1665b21 1157 return 0;
b9bec74b 1158 }
f1665b21
SY
1159
1160 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1161 if (ret < 0) {
f1665b21 1162 return ret;
b9bec74b 1163 }
f1665b21 1164
b9bec74b 1165 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1166 /* Only support xcr0 now */
1167 if (xcrs.xcrs[0].xcr == 0) {
1168 env->xcr0 = xcrs.xcrs[0].value;
1169 break;
1170 }
b9bec74b 1171 }
f1665b21 1172 return 0;
f1665b21
SY
1173}
1174
317ac620 1175static int kvm_get_sregs(CPUX86State *env)
05330448
AL
1176{
1177 struct kvm_sregs sregs;
1178 uint32_t hflags;
0e607a80 1179 int bit, i, ret;
05330448
AL
1180
1181 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1182 if (ret < 0) {
05330448 1183 return ret;
b9bec74b 1184 }
05330448 1185
0e607a80
JK
1186 /* There can only be one pending IRQ set in the bitmap at a time, so try
1187 to find it and save its number instead (-1 for none). */
1188 env->interrupt_injected = -1;
1189 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1190 if (sregs.interrupt_bitmap[i]) {
1191 bit = ctz64(sregs.interrupt_bitmap[i]);
1192 env->interrupt_injected = i * 64 + bit;
1193 break;
1194 }
1195 }
05330448
AL
1196
1197 get_seg(&env->segs[R_CS], &sregs.cs);
1198 get_seg(&env->segs[R_DS], &sregs.ds);
1199 get_seg(&env->segs[R_ES], &sregs.es);
1200 get_seg(&env->segs[R_FS], &sregs.fs);
1201 get_seg(&env->segs[R_GS], &sregs.gs);
1202 get_seg(&env->segs[R_SS], &sregs.ss);
1203
1204 get_seg(&env->tr, &sregs.tr);
1205 get_seg(&env->ldt, &sregs.ldt);
1206
1207 env->idt.limit = sregs.idt.limit;
1208 env->idt.base = sregs.idt.base;
1209 env->gdt.limit = sregs.gdt.limit;
1210 env->gdt.base = sregs.gdt.base;
1211
1212 env->cr[0] = sregs.cr0;
1213 env->cr[2] = sregs.cr2;
1214 env->cr[3] = sregs.cr3;
1215 env->cr[4] = sregs.cr4;
1216
05330448 1217 env->efer = sregs.efer;
cce47516
JK
1218
1219 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1220
b9bec74b
JK
1221#define HFLAG_COPY_MASK \
1222 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1223 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1224 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1225 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1226
1227 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1228 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1229 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1230 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1231 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1232 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1233 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1234
1235 if (env->efer & MSR_EFER_LMA) {
1236 hflags |= HF_LMA_MASK;
1237 }
1238
1239 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1240 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1241 } else {
1242 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1243 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1244 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1245 (DESC_B_SHIFT - HF_SS32_SHIFT);
1246 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1247 !(hflags & HF_CS32_MASK)) {
1248 hflags |= HF_ADDSEG_MASK;
1249 } else {
1250 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1251 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1252 }
05330448
AL
1253 }
1254 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1255
1256 return 0;
1257}
1258
317ac620 1259static int kvm_get_msrs(CPUX86State *env)
05330448
AL
1260{
1261 struct {
1262 struct kvm_msrs info;
1263 struct kvm_msr_entry entries[100];
1264 } msr_data;
1265 struct kvm_msr_entry *msrs = msr_data.entries;
1266 int ret, i, n;
1267
1268 n = 0;
1269 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1270 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1271 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1272 msrs[n++].index = MSR_PAT;
c3a3a7d3 1273 if (has_msr_star) {
b9bec74b
JK
1274 msrs[n++].index = MSR_STAR;
1275 }
c3a3a7d3 1276 if (has_msr_hsave_pa) {
75b10c43 1277 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1278 }
aa82ba54
LJ
1279 if (has_msr_tsc_deadline) {
1280 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1281 }
21e87c46
AK
1282 if (has_msr_misc_enable) {
1283 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1284 }
b8cc45d6
GC
1285
1286 if (!env->tsc_valid) {
1287 msrs[n++].index = MSR_IA32_TSC;
1354869c 1288 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1289 }
1290
05330448 1291#ifdef TARGET_X86_64
25d2e361
MT
1292 if (lm_capable_kernel) {
1293 msrs[n++].index = MSR_CSTAR;
1294 msrs[n++].index = MSR_KERNELGSBASE;
1295 msrs[n++].index = MSR_FMASK;
1296 msrs[n++].index = MSR_LSTAR;
1297 }
05330448 1298#endif
1a03675d
GC
1299 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1300 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1301 if (has_msr_async_pf_en) {
1302 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1303 }
bc9a839d
MT
1304 if (has_msr_pv_eoi_en) {
1305 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1306 }
1a03675d 1307
57780495
MT
1308 if (env->mcg_cap) {
1309 msrs[n++].index = MSR_MCG_STATUS;
1310 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1311 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1312 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1313 }
57780495 1314 }
57780495 1315
05330448
AL
1316 msr_data.info.nmsrs = n;
1317 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1318 if (ret < 0) {
05330448 1319 return ret;
b9bec74b 1320 }
05330448
AL
1321
1322 for (i = 0; i < ret; i++) {
1323 switch (msrs[i].index) {
1324 case MSR_IA32_SYSENTER_CS:
1325 env->sysenter_cs = msrs[i].data;
1326 break;
1327 case MSR_IA32_SYSENTER_ESP:
1328 env->sysenter_esp = msrs[i].data;
1329 break;
1330 case MSR_IA32_SYSENTER_EIP:
1331 env->sysenter_eip = msrs[i].data;
1332 break;
0c03266a
JK
1333 case MSR_PAT:
1334 env->pat = msrs[i].data;
1335 break;
05330448
AL
1336 case MSR_STAR:
1337 env->star = msrs[i].data;
1338 break;
1339#ifdef TARGET_X86_64
1340 case MSR_CSTAR:
1341 env->cstar = msrs[i].data;
1342 break;
1343 case MSR_KERNELGSBASE:
1344 env->kernelgsbase = msrs[i].data;
1345 break;
1346 case MSR_FMASK:
1347 env->fmask = msrs[i].data;
1348 break;
1349 case MSR_LSTAR:
1350 env->lstar = msrs[i].data;
1351 break;
1352#endif
1353 case MSR_IA32_TSC:
1354 env->tsc = msrs[i].data;
1355 break;
aa82ba54
LJ
1356 case MSR_IA32_TSCDEADLINE:
1357 env->tsc_deadline = msrs[i].data;
1358 break;
aa851e36
MT
1359 case MSR_VM_HSAVE_PA:
1360 env->vm_hsave = msrs[i].data;
1361 break;
1a03675d
GC
1362 case MSR_KVM_SYSTEM_TIME:
1363 env->system_time_msr = msrs[i].data;
1364 break;
1365 case MSR_KVM_WALL_CLOCK:
1366 env->wall_clock_msr = msrs[i].data;
1367 break;
57780495
MT
1368 case MSR_MCG_STATUS:
1369 env->mcg_status = msrs[i].data;
1370 break;
1371 case MSR_MCG_CTL:
1372 env->mcg_ctl = msrs[i].data;
1373 break;
21e87c46
AK
1374 case MSR_IA32_MISC_ENABLE:
1375 env->msr_ia32_misc_enable = msrs[i].data;
1376 break;
57780495 1377 default:
57780495
MT
1378 if (msrs[i].index >= MSR_MC0_CTL &&
1379 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1380 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1381 }
d8da8574 1382 break;
f6584ee2
GN
1383 case MSR_KVM_ASYNC_PF_EN:
1384 env->async_pf_en_msr = msrs[i].data;
1385 break;
bc9a839d
MT
1386 case MSR_KVM_PV_EOI_EN:
1387 env->pv_eoi_en_msr = msrs[i].data;
1388 break;
05330448
AL
1389 }
1390 }
1391
1392 return 0;
1393}
1394
317ac620 1395static int kvm_put_mp_state(CPUX86State *env)
9bdbe550
HB
1396{
1397 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1398
1399 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1400}
1401
317ac620 1402static int kvm_get_mp_state(CPUX86State *env)
9bdbe550
HB
1403{
1404 struct kvm_mp_state mp_state;
1405 int ret;
1406
1407 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1408 if (ret < 0) {
1409 return ret;
1410 }
1411 env->mp_state = mp_state.mp_state;
c14750e8
JK
1412 if (kvm_irqchip_in_kernel()) {
1413 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1414 }
9bdbe550
HB
1415 return 0;
1416}
1417
317ac620 1418static int kvm_get_apic(CPUX86State *env)
680c1c6f
JK
1419{
1420 DeviceState *apic = env->apic_state;
1421 struct kvm_lapic_state kapic;
1422 int ret;
1423
3d4b2649 1424 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1425 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1426 if (ret < 0) {
1427 return ret;
1428 }
1429
1430 kvm_get_apic_state(apic, &kapic);
1431 }
1432 return 0;
1433}
1434
317ac620 1435static int kvm_put_apic(CPUX86State *env)
680c1c6f
JK
1436{
1437 DeviceState *apic = env->apic_state;
1438 struct kvm_lapic_state kapic;
1439
3d4b2649 1440 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1441 kvm_put_apic_state(apic, &kapic);
1442
1443 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1444 }
1445 return 0;
1446}
1447
317ac620 1448static int kvm_put_vcpu_events(CPUX86State *env, int level)
a0fb002c 1449{
a0fb002c
JK
1450 struct kvm_vcpu_events events;
1451
1452 if (!kvm_has_vcpu_events()) {
1453 return 0;
1454 }
1455
31827373
JK
1456 events.exception.injected = (env->exception_injected >= 0);
1457 events.exception.nr = env->exception_injected;
a0fb002c
JK
1458 events.exception.has_error_code = env->has_error_code;
1459 events.exception.error_code = env->error_code;
7e680753 1460 events.exception.pad = 0;
a0fb002c
JK
1461
1462 events.interrupt.injected = (env->interrupt_injected >= 0);
1463 events.interrupt.nr = env->interrupt_injected;
1464 events.interrupt.soft = env->soft_interrupt;
1465
1466 events.nmi.injected = env->nmi_injected;
1467 events.nmi.pending = env->nmi_pending;
1468 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1469 events.nmi.pad = 0;
a0fb002c
JK
1470
1471 events.sipi_vector = env->sipi_vector;
1472
ea643051
JK
1473 events.flags = 0;
1474 if (level >= KVM_PUT_RESET_STATE) {
1475 events.flags |=
1476 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1477 }
aee028b9 1478
a0fb002c 1479 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1480}
1481
317ac620 1482static int kvm_get_vcpu_events(CPUX86State *env)
a0fb002c 1483{
a0fb002c
JK
1484 struct kvm_vcpu_events events;
1485 int ret;
1486
1487 if (!kvm_has_vcpu_events()) {
1488 return 0;
1489 }
1490
1491 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1492 if (ret < 0) {
1493 return ret;
1494 }
31827373 1495 env->exception_injected =
a0fb002c
JK
1496 events.exception.injected ? events.exception.nr : -1;
1497 env->has_error_code = events.exception.has_error_code;
1498 env->error_code = events.exception.error_code;
1499
1500 env->interrupt_injected =
1501 events.interrupt.injected ? events.interrupt.nr : -1;
1502 env->soft_interrupt = events.interrupt.soft;
1503
1504 env->nmi_injected = events.nmi.injected;
1505 env->nmi_pending = events.nmi.pending;
1506 if (events.nmi.masked) {
1507 env->hflags2 |= HF2_NMI_MASK;
1508 } else {
1509 env->hflags2 &= ~HF2_NMI_MASK;
1510 }
1511
1512 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1513
1514 return 0;
1515}
1516
317ac620 1517static int kvm_guest_debug_workarounds(CPUX86State *env)
b0b1d690
JK
1518{
1519 int ret = 0;
b0b1d690
JK
1520 unsigned long reinject_trap = 0;
1521
1522 if (!kvm_has_vcpu_events()) {
1523 if (env->exception_injected == 1) {
1524 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1525 } else if (env->exception_injected == 3) {
1526 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1527 }
1528 env->exception_injected = -1;
1529 }
1530
1531 /*
1532 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1533 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1534 * by updating the debug state once again if single-stepping is on.
1535 * Another reason to call kvm_update_guest_debug here is a pending debug
1536 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1537 * reinject them via SET_GUEST_DEBUG.
1538 */
1539 if (reinject_trap ||
1540 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1541 ret = kvm_update_guest_debug(env, reinject_trap);
1542 }
b0b1d690
JK
1543 return ret;
1544}
1545
317ac620 1546static int kvm_put_debugregs(CPUX86State *env)
ff44f1a3 1547{
ff44f1a3
JK
1548 struct kvm_debugregs dbgregs;
1549 int i;
1550
1551 if (!kvm_has_debugregs()) {
1552 return 0;
1553 }
1554
1555 for (i = 0; i < 4; i++) {
1556 dbgregs.db[i] = env->dr[i];
1557 }
1558 dbgregs.dr6 = env->dr[6];
1559 dbgregs.dr7 = env->dr[7];
1560 dbgregs.flags = 0;
1561
1562 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1563}
1564
317ac620 1565static int kvm_get_debugregs(CPUX86State *env)
ff44f1a3 1566{
ff44f1a3
JK
1567 struct kvm_debugregs dbgregs;
1568 int i, ret;
1569
1570 if (!kvm_has_debugregs()) {
1571 return 0;
1572 }
1573
1574 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1575 if (ret < 0) {
b9bec74b 1576 return ret;
ff44f1a3
JK
1577 }
1578 for (i = 0; i < 4; i++) {
1579 env->dr[i] = dbgregs.db[i];
1580 }
1581 env->dr[4] = env->dr[6] = dbgregs.dr6;
1582 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1583
1584 return 0;
1585}
1586
317ac620 1587int kvm_arch_put_registers(CPUX86State *env, int level)
05330448
AL
1588{
1589 int ret;
1590
b7680cb6 1591 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1592
05330448 1593 ret = kvm_getput_regs(env, 1);
b9bec74b 1594 if (ret < 0) {
05330448 1595 return ret;
b9bec74b 1596 }
f1665b21 1597 ret = kvm_put_xsave(env);
b9bec74b 1598 if (ret < 0) {
f1665b21 1599 return ret;
b9bec74b 1600 }
f1665b21 1601 ret = kvm_put_xcrs(env);
b9bec74b 1602 if (ret < 0) {
05330448 1603 return ret;
b9bec74b 1604 }
05330448 1605 ret = kvm_put_sregs(env);
b9bec74b 1606 if (ret < 0) {
05330448 1607 return ret;
b9bec74b 1608 }
ab443475
JK
1609 /* must be before kvm_put_msrs */
1610 ret = kvm_inject_mce_oldstyle(env);
1611 if (ret < 0) {
1612 return ret;
1613 }
ea643051 1614 ret = kvm_put_msrs(env, level);
b9bec74b 1615 if (ret < 0) {
05330448 1616 return ret;
b9bec74b 1617 }
ea643051
JK
1618 if (level >= KVM_PUT_RESET_STATE) {
1619 ret = kvm_put_mp_state(env);
b9bec74b 1620 if (ret < 0) {
ea643051 1621 return ret;
b9bec74b 1622 }
680c1c6f
JK
1623 ret = kvm_put_apic(env);
1624 if (ret < 0) {
1625 return ret;
1626 }
ea643051 1627 }
ea643051 1628 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1629 if (ret < 0) {
a0fb002c 1630 return ret;
b9bec74b 1631 }
0d75a9ec 1632 ret = kvm_put_debugregs(env);
b9bec74b 1633 if (ret < 0) {
b0b1d690 1634 return ret;
b9bec74b 1635 }
b0b1d690
JK
1636 /* must be last */
1637 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1638 if (ret < 0) {
ff44f1a3 1639 return ret;
b9bec74b 1640 }
05330448
AL
1641 return 0;
1642}
1643
317ac620 1644int kvm_arch_get_registers(CPUX86State *env)
05330448
AL
1645{
1646 int ret;
1647
b7680cb6 1648 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1649
05330448 1650 ret = kvm_getput_regs(env, 0);
b9bec74b 1651 if (ret < 0) {
05330448 1652 return ret;
b9bec74b 1653 }
f1665b21 1654 ret = kvm_get_xsave(env);
b9bec74b 1655 if (ret < 0) {
f1665b21 1656 return ret;
b9bec74b 1657 }
f1665b21 1658 ret = kvm_get_xcrs(env);
b9bec74b 1659 if (ret < 0) {
05330448 1660 return ret;
b9bec74b 1661 }
05330448 1662 ret = kvm_get_sregs(env);
b9bec74b 1663 if (ret < 0) {
05330448 1664 return ret;
b9bec74b 1665 }
05330448 1666 ret = kvm_get_msrs(env);
b9bec74b 1667 if (ret < 0) {
05330448 1668 return ret;
b9bec74b 1669 }
5a2e3c2e 1670 ret = kvm_get_mp_state(env);
b9bec74b 1671 if (ret < 0) {
5a2e3c2e 1672 return ret;
b9bec74b 1673 }
680c1c6f
JK
1674 ret = kvm_get_apic(env);
1675 if (ret < 0) {
1676 return ret;
1677 }
a0fb002c 1678 ret = kvm_get_vcpu_events(env);
b9bec74b 1679 if (ret < 0) {
a0fb002c 1680 return ret;
b9bec74b 1681 }
ff44f1a3 1682 ret = kvm_get_debugregs(env);
b9bec74b 1683 if (ret < 0) {
ff44f1a3 1684 return ret;
b9bec74b 1685 }
05330448
AL
1686 return 0;
1687}
1688
317ac620 1689void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
05330448 1690{
ce377af3
JK
1691 int ret;
1692
276ce815
LJ
1693 /* Inject NMI */
1694 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1695 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1696 DPRINTF("injected NMI\n");
ce377af3
JK
1697 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1698 if (ret < 0) {
1699 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1700 strerror(-ret));
1701 }
276ce815
LJ
1702 }
1703
db1669bc 1704 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
1705 /* Force the VCPU out of its inner loop to process any INIT requests
1706 * or pending TPR access reports. */
1707 if (env->interrupt_request &
1708 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
db1669bc 1709 env->exit_request = 1;
05330448 1710 }
05330448 1711
db1669bc
JK
1712 /* Try to inject an interrupt if the guest can accept it */
1713 if (run->ready_for_interrupt_injection &&
1714 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1715 (env->eflags & IF_MASK)) {
1716 int irq;
1717
1718 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1719 irq = cpu_get_pic_interrupt(env);
1720 if (irq >= 0) {
1721 struct kvm_interrupt intr;
1722
1723 intr.irq = irq;
db1669bc 1724 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1725 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1726 if (ret < 0) {
1727 fprintf(stderr,
1728 "KVM: injection failed, interrupt lost (%s)\n",
1729 strerror(-ret));
1730 }
db1669bc
JK
1731 }
1732 }
05330448 1733
db1669bc
JK
1734 /* If we have an interrupt but the guest is not ready to receive an
1735 * interrupt, request an interrupt window exit. This will
1736 * cause a return to userspace as soon as the guest is ready to
1737 * receive interrupts. */
1738 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1739 run->request_interrupt_window = 1;
1740 } else {
1741 run->request_interrupt_window = 0;
1742 }
1743
1744 DPRINTF("setting tpr\n");
1745 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1746 }
05330448
AL
1747}
1748
317ac620 1749void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
05330448 1750{
b9bec74b 1751 if (run->if_flag) {
05330448 1752 env->eflags |= IF_MASK;
b9bec74b 1753 } else {
05330448 1754 env->eflags &= ~IF_MASK;
b9bec74b 1755 }
4a942cea
BS
1756 cpu_set_apic_tpr(env->apic_state, run->cr8);
1757 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1758}
1759
317ac620 1760int kvm_arch_process_async_events(CPUX86State *env)
0af691d7 1761{
232fc23b
AF
1762 X86CPU *cpu = x86_env_get_cpu(env);
1763
ab443475
JK
1764 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1765 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1766 assert(env->mcg_cap);
1767
1768 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1769
1770 kvm_cpu_synchronize_state(env);
1771
1772 if (env->exception_injected == EXCP08_DBLE) {
1773 /* this means triple fault */
1774 qemu_system_reset_request();
1775 env->exit_request = 1;
1776 return 0;
1777 }
1778 env->exception_injected = EXCP12_MCHK;
1779 env->has_error_code = 0;
1780
1781 env->halted = 0;
1782 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1783 env->mp_state = KVM_MP_STATE_RUNNABLE;
1784 }
1785 }
1786
db1669bc
JK
1787 if (kvm_irqchip_in_kernel()) {
1788 return 0;
1789 }
1790
5d62c43a
JK
1791 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1792 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1793 apic_poll_irq(env->apic_state);
1794 }
4601f7b0
JK
1795 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1796 (env->eflags & IF_MASK)) ||
1797 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1798 env->halted = 0;
1799 }
0af691d7
MT
1800 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1801 kvm_cpu_synchronize_state(env);
232fc23b 1802 do_cpu_init(cpu);
0af691d7 1803 }
0af691d7
MT
1804 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1805 kvm_cpu_synchronize_state(env);
232fc23b 1806 do_cpu_sipi(cpu);
0af691d7 1807 }
d362e757
JK
1808 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1809 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1810 kvm_cpu_synchronize_state(env);
1811 apic_handle_tpr_access_report(env->apic_state, env->eip,
1812 env->tpr_access_type);
1813 }
0af691d7
MT
1814
1815 return env->halted;
1816}
1817
317ac620 1818static int kvm_handle_halt(CPUX86State *env)
05330448
AL
1819{
1820 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1821 (env->eflags & IF_MASK)) &&
1822 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1823 env->halted = 1;
bb4ea393 1824 return EXCP_HLT;
05330448
AL
1825 }
1826
bb4ea393 1827 return 0;
05330448
AL
1828}
1829
317ac620 1830static int kvm_handle_tpr_access(CPUX86State *env)
d362e757
JK
1831{
1832 struct kvm_run *run = env->kvm_run;
1833
1834 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1835 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1836 : TPR_ACCESS_READ);
1837 return 1;
1838}
1839
317ac620 1840int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9 1841{
38972938 1842 static const uint8_t int3 = 0xcc;
64bf3f4e 1843
e22a25c9 1844 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1845 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1846 return -EINVAL;
b9bec74b 1847 }
e22a25c9
AL
1848 return 0;
1849}
1850
317ac620 1851int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
1852{
1853 uint8_t int3;
1854
1855 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1856 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1857 return -EINVAL;
b9bec74b 1858 }
e22a25c9
AL
1859 return 0;
1860}
1861
1862static struct {
1863 target_ulong addr;
1864 int len;
1865 int type;
1866} hw_breakpoint[4];
1867
1868static int nb_hw_breakpoint;
1869
1870static int find_hw_breakpoint(target_ulong addr, int len, int type)
1871{
1872 int n;
1873
b9bec74b 1874 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1875 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1876 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1877 return n;
b9bec74b
JK
1878 }
1879 }
e22a25c9
AL
1880 return -1;
1881}
1882
1883int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1884 target_ulong len, int type)
1885{
1886 switch (type) {
1887 case GDB_BREAKPOINT_HW:
1888 len = 1;
1889 break;
1890 case GDB_WATCHPOINT_WRITE:
1891 case GDB_WATCHPOINT_ACCESS:
1892 switch (len) {
1893 case 1:
1894 break;
1895 case 2:
1896 case 4:
1897 case 8:
b9bec74b 1898 if (addr & (len - 1)) {
e22a25c9 1899 return -EINVAL;
b9bec74b 1900 }
e22a25c9
AL
1901 break;
1902 default:
1903 return -EINVAL;
1904 }
1905 break;
1906 default:
1907 return -ENOSYS;
1908 }
1909
b9bec74b 1910 if (nb_hw_breakpoint == 4) {
e22a25c9 1911 return -ENOBUFS;
b9bec74b
JK
1912 }
1913 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1914 return -EEXIST;
b9bec74b 1915 }
e22a25c9
AL
1916 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1917 hw_breakpoint[nb_hw_breakpoint].len = len;
1918 hw_breakpoint[nb_hw_breakpoint].type = type;
1919 nb_hw_breakpoint++;
1920
1921 return 0;
1922}
1923
1924int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1925 target_ulong len, int type)
1926{
1927 int n;
1928
1929 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1930 if (n < 0) {
e22a25c9 1931 return -ENOENT;
b9bec74b 1932 }
e22a25c9
AL
1933 nb_hw_breakpoint--;
1934 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1935
1936 return 0;
1937}
1938
1939void kvm_arch_remove_all_hw_breakpoints(void)
1940{
1941 nb_hw_breakpoint = 0;
1942}
1943
1944static CPUWatchpoint hw_watchpoint;
1945
f2574737 1946static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
e22a25c9 1947{
f2574737 1948 int ret = 0;
e22a25c9
AL
1949 int n;
1950
1951 if (arch_info->exception == 1) {
1952 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1953 if (cpu_single_env->singlestep_enabled) {
f2574737 1954 ret = EXCP_DEBUG;
b9bec74b 1955 }
e22a25c9 1956 } else {
b9bec74b
JK
1957 for (n = 0; n < 4; n++) {
1958 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1959 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1960 case 0x0:
f2574737 1961 ret = EXCP_DEBUG;
e22a25c9
AL
1962 break;
1963 case 0x1:
f2574737 1964 ret = EXCP_DEBUG;
e22a25c9
AL
1965 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1966 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1967 hw_watchpoint.flags = BP_MEM_WRITE;
1968 break;
1969 case 0x3:
f2574737 1970 ret = EXCP_DEBUG;
e22a25c9
AL
1971 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1972 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1973 hw_watchpoint.flags = BP_MEM_ACCESS;
1974 break;
1975 }
b9bec74b
JK
1976 }
1977 }
e22a25c9 1978 }
b9bec74b 1979 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
f2574737 1980 ret = EXCP_DEBUG;
b9bec74b 1981 }
f2574737 1982 if (ret == 0) {
b0b1d690
JK
1983 cpu_synchronize_state(cpu_single_env);
1984 assert(cpu_single_env->exception_injected == -1);
1985
f2574737 1986 /* pass to guest */
b0b1d690
JK
1987 cpu_single_env->exception_injected = arch_info->exception;
1988 cpu_single_env->has_error_code = 0;
1989 }
e22a25c9 1990
f2574737 1991 return ret;
e22a25c9
AL
1992}
1993
317ac620 1994void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
e22a25c9
AL
1995{
1996 const uint8_t type_code[] = {
1997 [GDB_BREAKPOINT_HW] = 0x0,
1998 [GDB_WATCHPOINT_WRITE] = 0x1,
1999 [GDB_WATCHPOINT_ACCESS] = 0x3
2000 };
2001 const uint8_t len_code[] = {
2002 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2003 };
2004 int n;
2005
b9bec74b 2006 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 2007 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 2008 }
e22a25c9
AL
2009 if (nb_hw_breakpoint > 0) {
2010 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2011 dbg->arch.debugreg[7] = 0x0600;
2012 for (n = 0; n < nb_hw_breakpoint; n++) {
2013 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2014 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2015 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 2016 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
2017 }
2018 }
2019}
4513d923 2020
2a4dac83
JK
2021static bool host_supports_vmx(void)
2022{
2023 uint32_t ecx, unused;
2024
2025 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2026 return ecx & CPUID_EXT_VMX;
2027}
2028
2029#define VMX_INVALID_GUEST_STATE 0x80000021
2030
317ac620 2031int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2a4dac83
JK
2032{
2033 uint64_t code;
2034 int ret;
2035
2036 switch (run->exit_reason) {
2037 case KVM_EXIT_HLT:
2038 DPRINTF("handle_hlt\n");
2039 ret = kvm_handle_halt(env);
2040 break;
2041 case KVM_EXIT_SET_TPR:
2042 ret = 0;
2043 break;
d362e757
JK
2044 case KVM_EXIT_TPR_ACCESS:
2045 ret = kvm_handle_tpr_access(env);
2046 break;
2a4dac83
JK
2047 case KVM_EXIT_FAIL_ENTRY:
2048 code = run->fail_entry.hardware_entry_failure_reason;
2049 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2050 code);
2051 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2052 fprintf(stderr,
12619721 2053 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2054 "unrestricted mode\n"
2055 "support, the failure can be most likely due to the guest "
2056 "entering an invalid\n"
2057 "state for Intel VT. For example, the guest maybe running "
2058 "in big real mode\n"
2059 "which is not supported on less recent Intel processors."
2060 "\n\n");
2061 }
2062 ret = -1;
2063 break;
2064 case KVM_EXIT_EXCEPTION:
2065 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2066 run->ex.exception, run->ex.error_code);
2067 ret = -1;
2068 break;
f2574737
JK
2069 case KVM_EXIT_DEBUG:
2070 DPRINTF("kvm_exit_debug\n");
2071 ret = kvm_handle_debug(&run->debug.arch);
2072 break;
2a4dac83
JK
2073 default:
2074 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2075 ret = -1;
2076 break;
2077 }
2078
2079 return ret;
2080}
2081
317ac620 2082bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
4513d923 2083{
d1f86636 2084 kvm_cpu_synchronize_state(env);
b9bec74b
JK
2085 return !(env->cr[0] & CR0_PE_MASK) ||
2086 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2087}
84b058d7
JK
2088
2089void kvm_arch_init_irq_routing(KVMState *s)
2090{
2091 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2092 /* If kernel can't do irq routing, interrupt source
2093 * override 0->2 cannot be set up as required by HPET.
2094 * So we have to disable it.
2095 */
2096 no_hpet = 1;
2097 }
cc7e0ddf 2098 /* We know at this point that we're using the in-kernel
614e41bc 2099 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2100 * we can use msi via irqfd and GSI routing.
cc7e0ddf
PM
2101 */
2102 kvm_irqfds_allowed = true;
614e41bc 2103 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2104 kvm_gsi_routing_allowed = true;
84b058d7 2105}
b139bd30
JK
2106
2107/* Classic KVM device assignment interface. Will remain x86 only. */
2108int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2109 uint32_t flags, uint32_t *dev_id)
2110{
2111 struct kvm_assigned_pci_dev dev_data = {
2112 .segnr = dev_addr->domain,
2113 .busnr = dev_addr->bus,
2114 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2115 .flags = flags,
2116 };
2117 int ret;
2118
2119 dev_data.assigned_dev_id =
2120 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2121
2122 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2123 if (ret < 0) {
2124 return ret;
2125 }
2126
2127 *dev_id = dev_data.assigned_dev_id;
2128
2129 return 0;
2130}
2131
2132int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2133{
2134 struct kvm_assigned_pci_dev dev_data = {
2135 .assigned_dev_id = dev_id,
2136 };
2137
2138 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2139}
2140
2141static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2142 uint32_t irq_type, uint32_t guest_irq)
2143{
2144 struct kvm_assigned_irq assigned_irq = {
2145 .assigned_dev_id = dev_id,
2146 .guest_irq = guest_irq,
2147 .flags = irq_type,
2148 };
2149
2150 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2151 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2152 } else {
2153 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2154 }
2155}
2156
2157int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2158 uint32_t guest_irq)
2159{
2160 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2161 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2162
2163 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2164}
2165
2166int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2167{
2168 struct kvm_assigned_pci_dev dev_data = {
2169 .assigned_dev_id = dev_id,
2170 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2171 };
2172
2173 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2174}
2175
2176static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2177 uint32_t type)
2178{
2179 struct kvm_assigned_irq assigned_irq = {
2180 .assigned_dev_id = dev_id,
2181 .flags = type,
2182 };
2183
2184 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2185}
2186
2187int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2188{
2189 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2190 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2191}
2192
2193int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2194{
2195 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2196 KVM_DEV_IRQ_GUEST_MSI, virq);
2197}
2198
2199int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2200{
2201 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2202 KVM_DEV_IRQ_HOST_MSI);
2203}
2204
2205bool kvm_device_msix_supported(KVMState *s)
2206{
2207 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2208 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2209 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2210}
2211
2212int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2213 uint32_t nr_vectors)
2214{
2215 struct kvm_assigned_msix_nr msix_nr = {
2216 .assigned_dev_id = dev_id,
2217 .entry_nr = nr_vectors,
2218 };
2219
2220 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2221}
2222
2223int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2224 int virq)
2225{
2226 struct kvm_assigned_msix_entry msix_entry = {
2227 .assigned_dev_id = dev_id,
2228 .gsi = virq,
2229 .entry = vector,
2230 };
2231
2232 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2233}
2234
2235int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2236{
2237 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2238 KVM_DEV_IRQ_GUEST_MSIX, 0);
2239}
2240
2241int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2242{
2243 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2244 KVM_DEV_IRQ_HOST_MSIX);
2245}