]> git.proxmox.com Git - mirror_qemu.git/blame - target-i386/kvm.c
target-i386: Pass X86CPU to kvm_mce_inject()
[mirror_qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
5802e066 21#include <linux/kvm_para.h>
05330448
AL
22
23#include "qemu-common.h"
24#include "sysemu.h"
25#include "kvm.h"
1d31f66b 26#include "kvm_i386.h"
05330448 27#include "cpu.h"
e22a25c9 28#include "gdbstub.h"
0e607a80 29#include "host-utils.h"
4c5b10b7 30#include "hw/pc.h"
408392b3 31#include "hw/apic.h"
35bed8ee 32#include "ioport.h"
eab70139 33#include "hyperv.h"
b139bd30 34#include "hw/pci.h"
05330448
AL
35
36//#define DEBUG_KVM
37
38#ifdef DEBUG_KVM
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41#else
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { } while (0)
44#endif
45
1a03675d
GC
46#define MSR_KVM_WALL_CLOCK 0x11
47#define MSR_KVM_SYSTEM_TIME 0x12
48
c0532a76
MT
49#ifndef BUS_MCEERR_AR
50#define BUS_MCEERR_AR 4
51#endif
52#ifndef BUS_MCEERR_AO
53#define BUS_MCEERR_AO 5
54#endif
55
94a8d39a
JK
56const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61};
25d2e361 62
c3a3a7d3
JK
63static bool has_msr_star;
64static bool has_msr_hsave_pa;
aa82ba54 65static bool has_msr_tsc_deadline;
c5999bfc 66static bool has_msr_async_pf_en;
bc9a839d 67static bool has_msr_pv_eoi_en;
21e87c46 68static bool has_msr_misc_enable;
25d2e361 69static int lm_capable_kernel;
b827df58 70
1d31f66b
PM
71bool kvm_allows_irq0_override(void)
72{
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74}
75
b827df58
AK
76static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77{
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
7267c094 82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
b827df58
AK
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
b827df58
AK
88 if (r < 0) {
89 if (r == -E2BIG) {
7267c094 90 g_free(cpuid);
b827df58
AK
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99}
100
0c31b744
GC
101struct kvm_para_features {
102 int cap;
103 int feature;
104} para_features[] = {
105 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
106 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
107 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
0c31b744 108 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
0c31b744
GC
109 { -1, -1 }
110};
111
ba9bc59e 112static int get_para_features(KVMState *s)
0c31b744
GC
113{
114 int i, features = 0;
115
116 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
ba9bc59e 117 if (kvm_check_extension(s, para_features[i].cap)) {
0c31b744
GC
118 features |= (1 << para_features[i].feature);
119 }
120 }
121
122 return features;
123}
0c31b744
GC
124
125
ba9bc59e 126uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
c958a8bd 127 uint32_t index, int reg)
b827df58
AK
128{
129 struct kvm_cpuid2 *cpuid;
130 int i, max;
131 uint32_t ret = 0;
132 uint32_t cpuid_1_edx;
0c31b744 133 int has_kvm_features = 0;
b827df58 134
b827df58 135 max = 1;
ba9bc59e 136 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
b827df58
AK
137 max *= 2;
138 }
139
140 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
141 if (cpuid->entries[i].function == function &&
142 cpuid->entries[i].index == index) {
0c31b744
GC
143 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
144 has_kvm_features = 1;
145 }
b827df58
AK
146 switch (reg) {
147 case R_EAX:
148 ret = cpuid->entries[i].eax;
149 break;
150 case R_EBX:
151 ret = cpuid->entries[i].ebx;
152 break;
153 case R_ECX:
154 ret = cpuid->entries[i].ecx;
155 break;
156 case R_EDX:
157 ret = cpuid->entries[i].edx;
19ccb8ea
JK
158 switch (function) {
159 case 1:
160 /* KVM before 2.6.30 misreports the following features */
161 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
162 break;
163 case 0x80000001:
b827df58
AK
164 /* On Intel, kvm returns cpuid according to the Intel spec,
165 * so add missing bits according to the AMD spec:
166 */
ba9bc59e 167 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
8fad4b44 168 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
19ccb8ea 169 break;
b827df58
AK
170 }
171 break;
172 }
173 }
174 }
175
7267c094 176 g_free(cpuid);
b827df58 177
0c31b744
GC
178 /* fallback for older kernels */
179 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
ba9bc59e 180 ret = get_para_features(s);
b9bec74b 181 }
0c31b744
GC
182
183 return ret;
bb0300dc 184}
bb0300dc 185
3c85e74f
HY
186typedef struct HWPoisonPage {
187 ram_addr_t ram_addr;
188 QLIST_ENTRY(HWPoisonPage) list;
189} HWPoisonPage;
190
191static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
192 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
193
194static void kvm_unpoison_all(void *param)
195{
196 HWPoisonPage *page, *next_page;
197
198 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
199 QLIST_REMOVE(page, list);
200 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
7267c094 201 g_free(page);
3c85e74f
HY
202 }
203}
204
3c85e74f
HY
205static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
206{
207 HWPoisonPage *page;
208
209 QLIST_FOREACH(page, &hwpoison_page_list, list) {
210 if (page->ram_addr == ram_addr) {
211 return;
212 }
213 }
7267c094 214 page = g_malloc(sizeof(HWPoisonPage));
3c85e74f
HY
215 page->ram_addr = ram_addr;
216 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
217}
218
e7701825
MT
219static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
220 int *max_banks)
221{
222 int r;
223
14a09518 224 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
225 if (r > 0) {
226 *max_banks = r;
227 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
228 }
229 return -ENOSYS;
230}
231
bee615d4 232static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
e7701825 233{
bee615d4 234 CPUX86State *env = &cpu->env;
c34d440a
JK
235 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
236 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
237 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 238
c34d440a
JK
239 if (code == BUS_MCEERR_AR) {
240 status |= MCI_STATUS_AR | 0x134;
241 mcg_status |= MCG_STATUS_EIPV;
242 } else {
243 status |= 0xc0;
244 mcg_status |= MCG_STATUS_RIPV;
419fb20a 245 }
c34d440a
JK
246 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
247 (MCM_ADDR_PHYS << 6) | 0xc,
248 cpu_x86_support_mca_broadcast(env) ?
249 MCE_INJECT_BROADCAST : 0);
419fb20a 250}
419fb20a
JK
251
252static void hardware_memory_error(void)
253{
254 fprintf(stderr, "Hardware memory error!\n");
255 exit(1);
256}
257
317ac620 258int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
419fb20a 259{
bee615d4 260 X86CPU *cpu = x86_env_get_cpu(env);
419fb20a 261 ram_addr_t ram_addr;
a8170e5e 262 hwaddr paddr;
419fb20a
JK
263
264 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
265 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
266 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9 267 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
419fb20a
JK
268 fprintf(stderr, "Hardware memory error for memory used by "
269 "QEMU itself instead of guest system!\n");
270 /* Hope we are lucky for AO MCE */
271 if (code == BUS_MCEERR_AO) {
272 return 0;
273 } else {
274 hardware_memory_error();
275 }
276 }
3c85e74f 277 kvm_hwpoison_page_add(ram_addr);
bee615d4 278 kvm_mce_inject(cpu, paddr, code);
e56ff191 279 } else {
419fb20a
JK
280 if (code == BUS_MCEERR_AO) {
281 return 0;
282 } else if (code == BUS_MCEERR_AR) {
283 hardware_memory_error();
284 } else {
285 return 1;
286 }
287 }
288 return 0;
289}
290
291int kvm_arch_on_sigbus(int code, void *addr)
292{
419fb20a 293 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a 294 ram_addr_t ram_addr;
a8170e5e 295 hwaddr paddr;
419fb20a
JK
296
297 /* Hope we are lucky for AO MCE */
c34d440a 298 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
9f213ed9
AK
299 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
300 &paddr)) {
419fb20a
JK
301 fprintf(stderr, "Hardware memory error for memory used by "
302 "QEMU itself instead of guest system!: %p\n", addr);
303 return 0;
304 }
3c85e74f 305 kvm_hwpoison_page_add(ram_addr);
bee615d4 306 kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
e56ff191 307 } else {
419fb20a
JK
308 if (code == BUS_MCEERR_AO) {
309 return 0;
310 } else if (code == BUS_MCEERR_AR) {
311 hardware_memory_error();
312 } else {
313 return 1;
314 }
315 }
316 return 0;
317}
e7701825 318
317ac620 319static int kvm_inject_mce_oldstyle(CPUX86State *env)
ab443475 320{
ab443475
JK
321 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
322 unsigned int bank, bank_num = env->mcg_cap & 0xff;
323 struct kvm_x86_mce mce;
324
325 env->exception_injected = -1;
326
327 /*
328 * There must be at least one bank in use if an MCE is pending.
329 * Find it and use its values for the event injection.
330 */
331 for (bank = 0; bank < bank_num; bank++) {
332 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
333 break;
334 }
335 }
336 assert(bank < bank_num);
337
338 mce.bank = bank;
339 mce.status = env->mce_banks[bank * 4 + 1];
340 mce.mcg_status = env->mcg_status;
341 mce.addr = env->mce_banks[bank * 4 + 2];
342 mce.misc = env->mce_banks[bank * 4 + 3];
343
344 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
345 }
ab443475
JK
346 return 0;
347}
348
1dfb4dd9 349static void cpu_update_state(void *opaque, int running, RunState state)
b8cc45d6 350{
317ac620 351 CPUX86State *env = opaque;
b8cc45d6
GC
352
353 if (running) {
354 env->tsc_valid = false;
355 }
356}
357
317ac620 358int kvm_arch_init_vcpu(CPUX86State *env)
05330448
AL
359{
360 struct {
486bd5a2
AL
361 struct kvm_cpuid2 cpuid;
362 struct kvm_cpuid_entry2 entries[100];
541dc0d4 363 } QEMU_PACKED cpuid_data;
ba9bc59e 364 KVMState *s = env->kvm_state;
486bd5a2 365 uint32_t limit, i, j, cpuid_i;
a33609ca 366 uint32_t unused;
bb0300dc 367 struct kvm_cpuid_entry2 *c;
bb0300dc 368 uint32_t signature[3];
e7429073 369 int r;
05330448 370
ba9bc59e 371 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
6c0d7ee8
AP
372
373 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
a75b3e0f 374 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
ba9bc59e 375 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
6c0d7ee8 376 env->cpuid_ext_features |= i;
a75b3e0f
LJ
377 if (j && kvm_irqchip_in_kernel() &&
378 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
379 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
380 }
6c0d7ee8 381
ba9bc59e 382 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 383 0, R_EDX);
ba9bc59e 384 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
c958a8bd 385 0, R_ECX);
ba9bc59e 386 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
296acb64
JR
387 0, R_EDX);
388
05330448
AL
389 cpuid_i = 0;
390
bb0300dc 391 /* Paravirtualization CPUIDs */
bb0300dc
GN
392 c = &cpuid_data.entries[cpuid_i++];
393 memset(c, 0, sizeof(*c));
394 c->function = KVM_CPUID_SIGNATURE;
eab70139
VR
395 if (!hyperv_enabled()) {
396 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
397 c->eax = 0;
398 } else {
399 memcpy(signature, "Microsoft Hv", 12);
400 c->eax = HYPERV_CPUID_MIN;
401 }
bb0300dc
GN
402 c->ebx = signature[0];
403 c->ecx = signature[1];
404 c->edx = signature[2];
405
406 c = &cpuid_data.entries[cpuid_i++];
407 memset(c, 0, sizeof(*c));
408 c->function = KVM_CPUID_FEATURES;
ba9bc59e
JK
409 c->eax = env->cpuid_kvm_features &
410 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
0c31b744 411
eab70139
VR
412 if (hyperv_enabled()) {
413 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
414 c->eax = signature[0];
415
416 c = &cpuid_data.entries[cpuid_i++];
417 memset(c, 0, sizeof(*c));
418 c->function = HYPERV_CPUID_VERSION;
419 c->eax = 0x00001bbc;
420 c->ebx = 0x00060001;
421
422 c = &cpuid_data.entries[cpuid_i++];
423 memset(c, 0, sizeof(*c));
424 c->function = HYPERV_CPUID_FEATURES;
425 if (hyperv_relaxed_timing_enabled()) {
426 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
427 }
428 if (hyperv_vapic_recommended()) {
429 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
430 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
431 }
432
433 c = &cpuid_data.entries[cpuid_i++];
434 memset(c, 0, sizeof(*c));
435 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
436 if (hyperv_relaxed_timing_enabled()) {
437 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
438 }
439 if (hyperv_vapic_recommended()) {
440 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
441 }
442 c->ebx = hyperv_get_spinlock_retries();
443
444 c = &cpuid_data.entries[cpuid_i++];
445 memset(c, 0, sizeof(*c));
446 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
447 c->eax = 0x40;
448 c->ebx = 0x40;
449
450 c = &cpuid_data.entries[cpuid_i++];
451 memset(c, 0, sizeof(*c));
452 c->function = KVM_CPUID_SIGNATURE_NEXT;
453 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
454 c->eax = 0;
455 c->ebx = signature[0];
456 c->ecx = signature[1];
457 c->edx = signature[2];
458 }
459
0c31b744 460 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
bb0300dc 461
bc9a839d
MT
462 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
463
a33609ca 464 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
465
466 for (i = 0; i <= limit; i++) {
bb0300dc 467 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
468
469 switch (i) {
a36b1029
AL
470 case 2: {
471 /* Keep reading function 2 till all the input is received */
472 int times;
473
a36b1029 474 c->function = i;
a33609ca
AL
475 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
476 KVM_CPUID_FLAG_STATE_READ_NEXT;
477 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
478 times = c->eax & 0xff;
a36b1029
AL
479
480 for (j = 1; j < times; ++j) {
a33609ca 481 c = &cpuid_data.entries[cpuid_i++];
a36b1029 482 c->function = i;
a33609ca
AL
483 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
484 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
485 }
486 break;
487 }
486bd5a2
AL
488 case 4:
489 case 0xb:
490 case 0xd:
491 for (j = 0; ; j++) {
31e8c696
AP
492 if (i == 0xd && j == 64) {
493 break;
494 }
486bd5a2
AL
495 c->function = i;
496 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
497 c->index = j;
a33609ca 498 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 499
b9bec74b 500 if (i == 4 && c->eax == 0) {
486bd5a2 501 break;
b9bec74b
JK
502 }
503 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 504 break;
b9bec74b
JK
505 }
506 if (i == 0xd && c->eax == 0) {
31e8c696 507 continue;
b9bec74b 508 }
a33609ca 509 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
510 }
511 break;
512 default:
486bd5a2 513 c->function = i;
a33609ca
AL
514 c->flags = 0;
515 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
516 break;
517 }
05330448 518 }
a33609ca 519 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
520
521 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 522 c = &cpuid_data.entries[cpuid_i++];
05330448 523
05330448 524 c->function = i;
a33609ca
AL
525 c->flags = 0;
526 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
527 }
528
b3baa152
BW
529 /* Call Centaur's CPUID instructions they are supported. */
530 if (env->cpuid_xlevel2 > 0) {
531 env->cpuid_ext4_features &=
ba9bc59e 532 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
b3baa152
BW
533 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
534
535 for (i = 0xC0000000; i <= limit; i++) {
536 c = &cpuid_data.entries[cpuid_i++];
537
538 c->function = i;
539 c->flags = 0;
540 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
541 }
542 }
543
05330448
AL
544 cpuid_data.cpuid.nent = cpuid_i;
545
e7701825
MT
546 if (((env->cpuid_version >> 8)&0xF) >= 6
547 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
548 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
549 uint64_t mcg_cap;
550 int banks;
32a42024 551 int ret;
e7701825 552
75d49497
JK
553 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
554 if (ret < 0) {
555 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
556 return ret;
e7701825 557 }
75d49497
JK
558
559 if (banks > MCE_BANKS_DEF) {
560 banks = MCE_BANKS_DEF;
561 }
562 mcg_cap &= MCE_CAP_DEF;
563 mcg_cap |= banks;
564 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
565 if (ret < 0) {
566 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
567 return ret;
568 }
569
570 env->mcg_cap = mcg_cap;
e7701825 571 }
e7701825 572
b8cc45d6
GC
573 qemu_add_vm_change_state_handler(cpu_update_state, env);
574
7e680753 575 cpuid_data.cpuid.padding = 0;
e7429073 576 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
fdc9c41a
JK
577 if (r) {
578 return r;
579 }
e7429073 580
e7429073
JR
581 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
582 if (r && env->tsc_khz) {
583 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
584 if (r < 0) {
585 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
586 return r;
587 }
588 }
e7429073 589
fabacc0f
JK
590 if (kvm_has_xsave()) {
591 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
592 }
593
e7429073 594 return 0;
05330448
AL
595}
596
317ac620 597void kvm_arch_reset_vcpu(CPUX86State *env)
caa5af0f 598{
dd673288
IM
599 X86CPU *cpu = x86_env_get_cpu(env);
600
e73223a5 601 env->exception_injected = -1;
0e607a80 602 env->interrupt_injected = -1;
1a5e9d2f 603 env->xcr0 = 1;
ddced198 604 if (kvm_irqchip_in_kernel()) {
dd673288 605 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
ddced198
MT
606 KVM_MP_STATE_UNINITIALIZED;
607 } else {
608 env->mp_state = KVM_MP_STATE_RUNNABLE;
609 }
caa5af0f
JK
610}
611
c3a3a7d3 612static int kvm_get_supported_msrs(KVMState *s)
05330448 613{
75b10c43 614 static int kvm_supported_msrs;
c3a3a7d3 615 int ret = 0;
05330448
AL
616
617 /* first time */
75b10c43 618 if (kvm_supported_msrs == 0) {
05330448
AL
619 struct kvm_msr_list msr_list, *kvm_msr_list;
620
75b10c43 621 kvm_supported_msrs = -1;
05330448
AL
622
623 /* Obtain MSR list from KVM. These are the MSRs that we must
624 * save/restore */
4c9f7372 625 msr_list.nmsrs = 0;
c3a3a7d3 626 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 627 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 628 return ret;
6fb6d245 629 }
d9db889f
JK
630 /* Old kernel modules had a bug and could write beyond the provided
631 memory. Allocate at least a safe amount of 1K. */
7267c094 632 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
d9db889f
JK
633 msr_list.nmsrs *
634 sizeof(msr_list.indices[0])));
05330448 635
55308450 636 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 637 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
638 if (ret >= 0) {
639 int i;
640
641 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
642 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 643 has_msr_star = true;
75b10c43
MT
644 continue;
645 }
646 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 647 has_msr_hsave_pa = true;
75b10c43 648 continue;
05330448 649 }
aa82ba54
LJ
650 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
651 has_msr_tsc_deadline = true;
652 continue;
653 }
21e87c46
AK
654 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
655 has_msr_misc_enable = true;
656 continue;
657 }
05330448
AL
658 }
659 }
660
7267c094 661 g_free(kvm_msr_list);
05330448
AL
662 }
663
c3a3a7d3 664 return ret;
05330448
AL
665}
666
cad1e282 667int kvm_arch_init(KVMState *s)
20420430 668{
39d6960a 669 QemuOptsList *list = qemu_find_opts("machine");
11076198 670 uint64_t identity_base = 0xfffbc000;
39d6960a 671 uint64_t shadow_mem;
20420430 672 int ret;
25d2e361 673 struct utsname utsname;
20420430 674
c3a3a7d3 675 ret = kvm_get_supported_msrs(s);
20420430 676 if (ret < 0) {
20420430
SY
677 return ret;
678 }
25d2e361
MT
679
680 uname(&utsname);
681 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
682
4c5b10b7 683 /*
11076198
JK
684 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
685 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
686 * Since these must be part of guest physical memory, we need to allocate
687 * them, both by setting their start addresses in the kernel and by
688 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
689 *
690 * Older KVM versions may not support setting the identity map base. In
691 * that case we need to stick with the default, i.e. a 256K maximum BIOS
692 * size.
4c5b10b7 693 */
11076198
JK
694 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
695 /* Allows up to 16M BIOSes. */
696 identity_base = 0xfeffc000;
697
698 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
699 if (ret < 0) {
700 return ret;
701 }
4c5b10b7 702 }
e56ff191 703
11076198
JK
704 /* Set TSS base one page after EPT identity map. */
705 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
706 if (ret < 0) {
707 return ret;
708 }
709
11076198
JK
710 /* Tell fw_cfg to notify the BIOS to reserve the range. */
711 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 712 if (ret < 0) {
11076198 713 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
714 return ret;
715 }
3c85e74f 716 qemu_register_reset(kvm_unpoison_all, NULL);
20420430 717
39d6960a
JK
718 if (!QTAILQ_EMPTY(&list->head)) {
719 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
720 "kvm_shadow_mem", -1);
721 if (shadow_mem != -1) {
722 shadow_mem /= 4096;
723 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
724 if (ret < 0) {
725 return ret;
726 }
727 }
728 }
11076198 729 return 0;
05330448 730}
b9bec74b 731
05330448
AL
732static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
733{
734 lhs->selector = rhs->selector;
735 lhs->base = rhs->base;
736 lhs->limit = rhs->limit;
737 lhs->type = 3;
738 lhs->present = 1;
739 lhs->dpl = 3;
740 lhs->db = 0;
741 lhs->s = 1;
742 lhs->l = 0;
743 lhs->g = 0;
744 lhs->avl = 0;
745 lhs->unusable = 0;
746}
747
748static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
749{
750 unsigned flags = rhs->flags;
751 lhs->selector = rhs->selector;
752 lhs->base = rhs->base;
753 lhs->limit = rhs->limit;
754 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
755 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 756 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
757 lhs->db = (flags >> DESC_B_SHIFT) & 1;
758 lhs->s = (flags & DESC_S_MASK) != 0;
759 lhs->l = (flags >> DESC_L_SHIFT) & 1;
760 lhs->g = (flags & DESC_G_MASK) != 0;
761 lhs->avl = (flags & DESC_AVL_MASK) != 0;
762 lhs->unusable = 0;
7e680753 763 lhs->padding = 0;
05330448
AL
764}
765
766static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
767{
768 lhs->selector = rhs->selector;
769 lhs->base = rhs->base;
770 lhs->limit = rhs->limit;
b9bec74b
JK
771 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
772 (rhs->present * DESC_P_MASK) |
773 (rhs->dpl << DESC_DPL_SHIFT) |
774 (rhs->db << DESC_B_SHIFT) |
775 (rhs->s * DESC_S_MASK) |
776 (rhs->l << DESC_L_SHIFT) |
777 (rhs->g * DESC_G_MASK) |
778 (rhs->avl * DESC_AVL_MASK);
05330448
AL
779}
780
781static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
782{
b9bec74b 783 if (set) {
05330448 784 *kvm_reg = *qemu_reg;
b9bec74b 785 } else {
05330448 786 *qemu_reg = *kvm_reg;
b9bec74b 787 }
05330448
AL
788}
789
317ac620 790static int kvm_getput_regs(CPUX86State *env, int set)
05330448
AL
791{
792 struct kvm_regs regs;
793 int ret = 0;
794
795 if (!set) {
796 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 797 if (ret < 0) {
05330448 798 return ret;
b9bec74b 799 }
05330448
AL
800 }
801
802 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
803 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
804 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
805 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
806 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
807 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
808 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
809 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
810#ifdef TARGET_X86_64
811 kvm_getput_reg(&regs.r8, &env->regs[8], set);
812 kvm_getput_reg(&regs.r9, &env->regs[9], set);
813 kvm_getput_reg(&regs.r10, &env->regs[10], set);
814 kvm_getput_reg(&regs.r11, &env->regs[11], set);
815 kvm_getput_reg(&regs.r12, &env->regs[12], set);
816 kvm_getput_reg(&regs.r13, &env->regs[13], set);
817 kvm_getput_reg(&regs.r14, &env->regs[14], set);
818 kvm_getput_reg(&regs.r15, &env->regs[15], set);
819#endif
820
821 kvm_getput_reg(&regs.rflags, &env->eflags, set);
822 kvm_getput_reg(&regs.rip, &env->eip, set);
823
b9bec74b 824 if (set) {
05330448 825 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 826 }
05330448
AL
827
828 return ret;
829}
830
317ac620 831static int kvm_put_fpu(CPUX86State *env)
05330448
AL
832{
833 struct kvm_fpu fpu;
834 int i;
835
836 memset(&fpu, 0, sizeof fpu);
837 fpu.fsw = env->fpus & ~(7 << 11);
838 fpu.fsw |= (env->fpstt & 7) << 11;
839 fpu.fcw = env->fpuc;
42cc8fa6
JK
840 fpu.last_opcode = env->fpop;
841 fpu.last_ip = env->fpip;
842 fpu.last_dp = env->fpdp;
b9bec74b
JK
843 for (i = 0; i < 8; ++i) {
844 fpu.ftwx |= (!env->fptags[i]) << i;
845 }
05330448
AL
846 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
847 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
848 fpu.mxcsr = env->mxcsr;
849
850 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
851}
852
6b42494b
JK
853#define XSAVE_FCW_FSW 0
854#define XSAVE_FTW_FOP 1
f1665b21
SY
855#define XSAVE_CWD_RIP 2
856#define XSAVE_CWD_RDP 4
857#define XSAVE_MXCSR 6
858#define XSAVE_ST_SPACE 8
859#define XSAVE_XMM_SPACE 40
860#define XSAVE_XSTATE_BV 128
861#define XSAVE_YMMH_SPACE 144
f1665b21 862
317ac620 863static int kvm_put_xsave(CPUX86State *env)
f1665b21 864{
fabacc0f 865 struct kvm_xsave* xsave = env->kvm_xsave_buf;
42cc8fa6 866 uint16_t cwd, swd, twd;
fabacc0f 867 int i, r;
f1665b21 868
b9bec74b 869 if (!kvm_has_xsave()) {
f1665b21 870 return kvm_put_fpu(env);
b9bec74b 871 }
f1665b21 872
f1665b21 873 memset(xsave, 0, sizeof(struct kvm_xsave));
6115c0a8 874 twd = 0;
f1665b21
SY
875 swd = env->fpus & ~(7 << 11);
876 swd |= (env->fpstt & 7) << 11;
877 cwd = env->fpuc;
b9bec74b 878 for (i = 0; i < 8; ++i) {
f1665b21 879 twd |= (!env->fptags[i]) << i;
b9bec74b 880 }
6b42494b
JK
881 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
882 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
42cc8fa6
JK
883 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
884 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
f1665b21
SY
885 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
886 sizeof env->fpregs);
887 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
888 sizeof env->xmm_regs);
889 xsave->region[XSAVE_MXCSR] = env->mxcsr;
890 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
891 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
892 sizeof env->ymmh_regs);
0f53994f 893 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
0f53994f 894 return r;
f1665b21
SY
895}
896
317ac620 897static int kvm_put_xcrs(CPUX86State *env)
f1665b21 898{
f1665b21
SY
899 struct kvm_xcrs xcrs;
900
b9bec74b 901 if (!kvm_has_xcrs()) {
f1665b21 902 return 0;
b9bec74b 903 }
f1665b21
SY
904
905 xcrs.nr_xcrs = 1;
906 xcrs.flags = 0;
907 xcrs.xcrs[0].xcr = 0;
908 xcrs.xcrs[0].value = env->xcr0;
909 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
f1665b21
SY
910}
911
317ac620 912static int kvm_put_sregs(CPUX86State *env)
05330448
AL
913{
914 struct kvm_sregs sregs;
915
0e607a80
JK
916 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
917 if (env->interrupt_injected >= 0) {
918 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
919 (uint64_t)1 << (env->interrupt_injected % 64);
920 }
05330448
AL
921
922 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
923 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
924 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
925 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
926 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
927 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
928 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 929 } else {
b9bec74b
JK
930 set_seg(&sregs.cs, &env->segs[R_CS]);
931 set_seg(&sregs.ds, &env->segs[R_DS]);
932 set_seg(&sregs.es, &env->segs[R_ES]);
933 set_seg(&sregs.fs, &env->segs[R_FS]);
934 set_seg(&sregs.gs, &env->segs[R_GS]);
935 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
936 }
937
938 set_seg(&sregs.tr, &env->tr);
939 set_seg(&sregs.ldt, &env->ldt);
940
941 sregs.idt.limit = env->idt.limit;
942 sregs.idt.base = env->idt.base;
7e680753 943 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
05330448
AL
944 sregs.gdt.limit = env->gdt.limit;
945 sregs.gdt.base = env->gdt.base;
7e680753 946 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
05330448
AL
947
948 sregs.cr0 = env->cr[0];
949 sregs.cr2 = env->cr[2];
950 sregs.cr3 = env->cr[3];
951 sregs.cr4 = env->cr[4];
952
4a942cea
BS
953 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
954 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
955
956 sregs.efer = env->efer;
957
958 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
959}
960
961static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
962 uint32_t index, uint64_t value)
963{
964 entry->index = index;
965 entry->data = value;
966}
967
317ac620 968static int kvm_put_msrs(CPUX86State *env, int level)
05330448
AL
969{
970 struct {
971 struct kvm_msrs info;
972 struct kvm_msr_entry entries[100];
973 } msr_data;
974 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 975 int n = 0;
05330448
AL
976
977 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
978 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
979 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
0c03266a 980 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
c3a3a7d3 981 if (has_msr_star) {
b9bec74b
JK
982 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
983 }
c3a3a7d3 984 if (has_msr_hsave_pa) {
75b10c43 985 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 986 }
aa82ba54
LJ
987 if (has_msr_tsc_deadline) {
988 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
989 }
21e87c46
AK
990 if (has_msr_misc_enable) {
991 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
992 env->msr_ia32_misc_enable);
993 }
05330448 994#ifdef TARGET_X86_64
25d2e361
MT
995 if (lm_capable_kernel) {
996 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
997 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
998 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
999 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1000 }
05330448 1001#endif
ea643051 1002 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
1003 /*
1004 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1005 * writeback. Until this is fixed, we only write the offset to SMP
1006 * guests after migration, desynchronizing the VCPUs, but avoiding
1007 * huge jump-backs that would occur without any writeback at all.
1008 */
1009 if (smp_cpus == 1 || env->tsc != 0) {
1010 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1011 }
ff5c186b
JK
1012 }
1013 /*
1014 * The following paravirtual MSRs have side effects on the guest or are
1015 * too heavy for normal writeback. Limit them to reset or full state
1016 * updates.
1017 */
1018 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
1019 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1020 env->system_time_msr);
1021 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
c5999bfc
JK
1022 if (has_msr_async_pf_en) {
1023 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1024 env->async_pf_en_msr);
1025 }
bc9a839d
MT
1026 if (has_msr_pv_eoi_en) {
1027 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1028 env->pv_eoi_en_msr);
1029 }
eab70139
VR
1030 if (hyperv_hypercall_available()) {
1031 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1032 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1033 }
1034 if (hyperv_vapic_recommended()) {
1035 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1036 }
ea643051 1037 }
57780495 1038 if (env->mcg_cap) {
d8da8574 1039 int i;
b9bec74b 1040
c34d440a
JK
1041 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1042 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1043 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1044 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
1045 }
1046 }
1a03675d 1047
05330448
AL
1048 msr_data.info.nmsrs = n;
1049
1050 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1051
1052}
1053
1054
317ac620 1055static int kvm_get_fpu(CPUX86State *env)
05330448
AL
1056{
1057 struct kvm_fpu fpu;
1058 int i, ret;
1059
1060 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 1061 if (ret < 0) {
05330448 1062 return ret;
b9bec74b 1063 }
05330448
AL
1064
1065 env->fpstt = (fpu.fsw >> 11) & 7;
1066 env->fpus = fpu.fsw;
1067 env->fpuc = fpu.fcw;
42cc8fa6
JK
1068 env->fpop = fpu.last_opcode;
1069 env->fpip = fpu.last_ip;
1070 env->fpdp = fpu.last_dp;
b9bec74b
JK
1071 for (i = 0; i < 8; ++i) {
1072 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1073 }
05330448
AL
1074 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1075 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1076 env->mxcsr = fpu.mxcsr;
1077
1078 return 0;
1079}
1080
317ac620 1081static int kvm_get_xsave(CPUX86State *env)
f1665b21 1082{
fabacc0f 1083 struct kvm_xsave* xsave = env->kvm_xsave_buf;
f1665b21 1084 int ret, i;
42cc8fa6 1085 uint16_t cwd, swd, twd;
f1665b21 1086
b9bec74b 1087 if (!kvm_has_xsave()) {
f1665b21 1088 return kvm_get_fpu(env);
b9bec74b 1089 }
f1665b21 1090
f1665b21 1091 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f 1092 if (ret < 0) {
f1665b21 1093 return ret;
0f53994f 1094 }
f1665b21 1095
6b42494b
JK
1096 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1097 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1098 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1099 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
f1665b21
SY
1100 env->fpstt = (swd >> 11) & 7;
1101 env->fpus = swd;
1102 env->fpuc = cwd;
b9bec74b 1103 for (i = 0; i < 8; ++i) {
f1665b21 1104 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 1105 }
42cc8fa6
JK
1106 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1107 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
f1665b21
SY
1108 env->mxcsr = xsave->region[XSAVE_MXCSR];
1109 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1110 sizeof env->fpregs);
1111 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1112 sizeof env->xmm_regs);
1113 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1114 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1115 sizeof env->ymmh_regs);
1116 return 0;
f1665b21
SY
1117}
1118
317ac620 1119static int kvm_get_xcrs(CPUX86State *env)
f1665b21 1120{
f1665b21
SY
1121 int i, ret;
1122 struct kvm_xcrs xcrs;
1123
b9bec74b 1124 if (!kvm_has_xcrs()) {
f1665b21 1125 return 0;
b9bec74b 1126 }
f1665b21
SY
1127
1128 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 1129 if (ret < 0) {
f1665b21 1130 return ret;
b9bec74b 1131 }
f1665b21 1132
b9bec74b 1133 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
1134 /* Only support xcr0 now */
1135 if (xcrs.xcrs[0].xcr == 0) {
1136 env->xcr0 = xcrs.xcrs[0].value;
1137 break;
1138 }
b9bec74b 1139 }
f1665b21 1140 return 0;
f1665b21
SY
1141}
1142
317ac620 1143static int kvm_get_sregs(CPUX86State *env)
05330448
AL
1144{
1145 struct kvm_sregs sregs;
1146 uint32_t hflags;
0e607a80 1147 int bit, i, ret;
05330448
AL
1148
1149 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 1150 if (ret < 0) {
05330448 1151 return ret;
b9bec74b 1152 }
05330448 1153
0e607a80
JK
1154 /* There can only be one pending IRQ set in the bitmap at a time, so try
1155 to find it and save its number instead (-1 for none). */
1156 env->interrupt_injected = -1;
1157 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1158 if (sregs.interrupt_bitmap[i]) {
1159 bit = ctz64(sregs.interrupt_bitmap[i]);
1160 env->interrupt_injected = i * 64 + bit;
1161 break;
1162 }
1163 }
05330448
AL
1164
1165 get_seg(&env->segs[R_CS], &sregs.cs);
1166 get_seg(&env->segs[R_DS], &sregs.ds);
1167 get_seg(&env->segs[R_ES], &sregs.es);
1168 get_seg(&env->segs[R_FS], &sregs.fs);
1169 get_seg(&env->segs[R_GS], &sregs.gs);
1170 get_seg(&env->segs[R_SS], &sregs.ss);
1171
1172 get_seg(&env->tr, &sregs.tr);
1173 get_seg(&env->ldt, &sregs.ldt);
1174
1175 env->idt.limit = sregs.idt.limit;
1176 env->idt.base = sregs.idt.base;
1177 env->gdt.limit = sregs.gdt.limit;
1178 env->gdt.base = sregs.gdt.base;
1179
1180 env->cr[0] = sregs.cr0;
1181 env->cr[2] = sregs.cr2;
1182 env->cr[3] = sregs.cr3;
1183 env->cr[4] = sregs.cr4;
1184
05330448 1185 env->efer = sregs.efer;
cce47516
JK
1186
1187 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
05330448 1188
b9bec74b
JK
1189#define HFLAG_COPY_MASK \
1190 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1191 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1192 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1193 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1194
1195 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1196 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1197 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1198 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1199 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1200 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1201 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1202
1203 if (env->efer & MSR_EFER_LMA) {
1204 hflags |= HF_LMA_MASK;
1205 }
1206
1207 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1208 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1209 } else {
1210 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1211 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1212 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1213 (DESC_B_SHIFT - HF_SS32_SHIFT);
1214 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1215 !(hflags & HF_CS32_MASK)) {
1216 hflags |= HF_ADDSEG_MASK;
1217 } else {
1218 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1219 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1220 }
05330448
AL
1221 }
1222 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1223
1224 return 0;
1225}
1226
317ac620 1227static int kvm_get_msrs(CPUX86State *env)
05330448
AL
1228{
1229 struct {
1230 struct kvm_msrs info;
1231 struct kvm_msr_entry entries[100];
1232 } msr_data;
1233 struct kvm_msr_entry *msrs = msr_data.entries;
1234 int ret, i, n;
1235
1236 n = 0;
1237 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1238 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1239 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
0c03266a 1240 msrs[n++].index = MSR_PAT;
c3a3a7d3 1241 if (has_msr_star) {
b9bec74b
JK
1242 msrs[n++].index = MSR_STAR;
1243 }
c3a3a7d3 1244 if (has_msr_hsave_pa) {
75b10c43 1245 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1246 }
aa82ba54
LJ
1247 if (has_msr_tsc_deadline) {
1248 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1249 }
21e87c46
AK
1250 if (has_msr_misc_enable) {
1251 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1252 }
b8cc45d6
GC
1253
1254 if (!env->tsc_valid) {
1255 msrs[n++].index = MSR_IA32_TSC;
1354869c 1256 env->tsc_valid = !runstate_is_running();
b8cc45d6
GC
1257 }
1258
05330448 1259#ifdef TARGET_X86_64
25d2e361
MT
1260 if (lm_capable_kernel) {
1261 msrs[n++].index = MSR_CSTAR;
1262 msrs[n++].index = MSR_KERNELGSBASE;
1263 msrs[n++].index = MSR_FMASK;
1264 msrs[n++].index = MSR_LSTAR;
1265 }
05330448 1266#endif
1a03675d
GC
1267 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1268 msrs[n++].index = MSR_KVM_WALL_CLOCK;
c5999bfc
JK
1269 if (has_msr_async_pf_en) {
1270 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1271 }
bc9a839d
MT
1272 if (has_msr_pv_eoi_en) {
1273 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1274 }
1a03675d 1275
57780495
MT
1276 if (env->mcg_cap) {
1277 msrs[n++].index = MSR_MCG_STATUS;
1278 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1279 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1280 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1281 }
57780495 1282 }
57780495 1283
05330448
AL
1284 msr_data.info.nmsrs = n;
1285 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1286 if (ret < 0) {
05330448 1287 return ret;
b9bec74b 1288 }
05330448
AL
1289
1290 for (i = 0; i < ret; i++) {
1291 switch (msrs[i].index) {
1292 case MSR_IA32_SYSENTER_CS:
1293 env->sysenter_cs = msrs[i].data;
1294 break;
1295 case MSR_IA32_SYSENTER_ESP:
1296 env->sysenter_esp = msrs[i].data;
1297 break;
1298 case MSR_IA32_SYSENTER_EIP:
1299 env->sysenter_eip = msrs[i].data;
1300 break;
0c03266a
JK
1301 case MSR_PAT:
1302 env->pat = msrs[i].data;
1303 break;
05330448
AL
1304 case MSR_STAR:
1305 env->star = msrs[i].data;
1306 break;
1307#ifdef TARGET_X86_64
1308 case MSR_CSTAR:
1309 env->cstar = msrs[i].data;
1310 break;
1311 case MSR_KERNELGSBASE:
1312 env->kernelgsbase = msrs[i].data;
1313 break;
1314 case MSR_FMASK:
1315 env->fmask = msrs[i].data;
1316 break;
1317 case MSR_LSTAR:
1318 env->lstar = msrs[i].data;
1319 break;
1320#endif
1321 case MSR_IA32_TSC:
1322 env->tsc = msrs[i].data;
1323 break;
aa82ba54
LJ
1324 case MSR_IA32_TSCDEADLINE:
1325 env->tsc_deadline = msrs[i].data;
1326 break;
aa851e36
MT
1327 case MSR_VM_HSAVE_PA:
1328 env->vm_hsave = msrs[i].data;
1329 break;
1a03675d
GC
1330 case MSR_KVM_SYSTEM_TIME:
1331 env->system_time_msr = msrs[i].data;
1332 break;
1333 case MSR_KVM_WALL_CLOCK:
1334 env->wall_clock_msr = msrs[i].data;
1335 break;
57780495
MT
1336 case MSR_MCG_STATUS:
1337 env->mcg_status = msrs[i].data;
1338 break;
1339 case MSR_MCG_CTL:
1340 env->mcg_ctl = msrs[i].data;
1341 break;
21e87c46
AK
1342 case MSR_IA32_MISC_ENABLE:
1343 env->msr_ia32_misc_enable = msrs[i].data;
1344 break;
57780495 1345 default:
57780495
MT
1346 if (msrs[i].index >= MSR_MC0_CTL &&
1347 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1348 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495 1349 }
d8da8574 1350 break;
f6584ee2
GN
1351 case MSR_KVM_ASYNC_PF_EN:
1352 env->async_pf_en_msr = msrs[i].data;
1353 break;
bc9a839d
MT
1354 case MSR_KVM_PV_EOI_EN:
1355 env->pv_eoi_en_msr = msrs[i].data;
1356 break;
05330448
AL
1357 }
1358 }
1359
1360 return 0;
1361}
1362
317ac620 1363static int kvm_put_mp_state(CPUX86State *env)
9bdbe550
HB
1364{
1365 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1366
1367 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1368}
1369
317ac620 1370static int kvm_get_mp_state(CPUX86State *env)
9bdbe550
HB
1371{
1372 struct kvm_mp_state mp_state;
1373 int ret;
1374
1375 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1376 if (ret < 0) {
1377 return ret;
1378 }
1379 env->mp_state = mp_state.mp_state;
c14750e8
JK
1380 if (kvm_irqchip_in_kernel()) {
1381 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1382 }
9bdbe550
HB
1383 return 0;
1384}
1385
317ac620 1386static int kvm_get_apic(CPUX86State *env)
680c1c6f
JK
1387{
1388 DeviceState *apic = env->apic_state;
1389 struct kvm_lapic_state kapic;
1390 int ret;
1391
3d4b2649 1392 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1393 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1394 if (ret < 0) {
1395 return ret;
1396 }
1397
1398 kvm_get_apic_state(apic, &kapic);
1399 }
1400 return 0;
1401}
1402
317ac620 1403static int kvm_put_apic(CPUX86State *env)
680c1c6f
JK
1404{
1405 DeviceState *apic = env->apic_state;
1406 struct kvm_lapic_state kapic;
1407
3d4b2649 1408 if (apic && kvm_irqchip_in_kernel()) {
680c1c6f
JK
1409 kvm_put_apic_state(apic, &kapic);
1410
1411 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1412 }
1413 return 0;
1414}
1415
317ac620 1416static int kvm_put_vcpu_events(CPUX86State *env, int level)
a0fb002c 1417{
a0fb002c
JK
1418 struct kvm_vcpu_events events;
1419
1420 if (!kvm_has_vcpu_events()) {
1421 return 0;
1422 }
1423
31827373
JK
1424 events.exception.injected = (env->exception_injected >= 0);
1425 events.exception.nr = env->exception_injected;
a0fb002c
JK
1426 events.exception.has_error_code = env->has_error_code;
1427 events.exception.error_code = env->error_code;
7e680753 1428 events.exception.pad = 0;
a0fb002c
JK
1429
1430 events.interrupt.injected = (env->interrupt_injected >= 0);
1431 events.interrupt.nr = env->interrupt_injected;
1432 events.interrupt.soft = env->soft_interrupt;
1433
1434 events.nmi.injected = env->nmi_injected;
1435 events.nmi.pending = env->nmi_pending;
1436 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
7e680753 1437 events.nmi.pad = 0;
a0fb002c
JK
1438
1439 events.sipi_vector = env->sipi_vector;
1440
ea643051
JK
1441 events.flags = 0;
1442 if (level >= KVM_PUT_RESET_STATE) {
1443 events.flags |=
1444 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1445 }
aee028b9 1446
a0fb002c 1447 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
a0fb002c
JK
1448}
1449
317ac620 1450static int kvm_get_vcpu_events(CPUX86State *env)
a0fb002c 1451{
a0fb002c
JK
1452 struct kvm_vcpu_events events;
1453 int ret;
1454
1455 if (!kvm_has_vcpu_events()) {
1456 return 0;
1457 }
1458
1459 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1460 if (ret < 0) {
1461 return ret;
1462 }
31827373 1463 env->exception_injected =
a0fb002c
JK
1464 events.exception.injected ? events.exception.nr : -1;
1465 env->has_error_code = events.exception.has_error_code;
1466 env->error_code = events.exception.error_code;
1467
1468 env->interrupt_injected =
1469 events.interrupt.injected ? events.interrupt.nr : -1;
1470 env->soft_interrupt = events.interrupt.soft;
1471
1472 env->nmi_injected = events.nmi.injected;
1473 env->nmi_pending = events.nmi.pending;
1474 if (events.nmi.masked) {
1475 env->hflags2 |= HF2_NMI_MASK;
1476 } else {
1477 env->hflags2 &= ~HF2_NMI_MASK;
1478 }
1479
1480 env->sipi_vector = events.sipi_vector;
a0fb002c
JK
1481
1482 return 0;
1483}
1484
317ac620 1485static int kvm_guest_debug_workarounds(CPUX86State *env)
b0b1d690
JK
1486{
1487 int ret = 0;
b0b1d690
JK
1488 unsigned long reinject_trap = 0;
1489
1490 if (!kvm_has_vcpu_events()) {
1491 if (env->exception_injected == 1) {
1492 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1493 } else if (env->exception_injected == 3) {
1494 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1495 }
1496 env->exception_injected = -1;
1497 }
1498
1499 /*
1500 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1501 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1502 * by updating the debug state once again if single-stepping is on.
1503 * Another reason to call kvm_update_guest_debug here is a pending debug
1504 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1505 * reinject them via SET_GUEST_DEBUG.
1506 */
1507 if (reinject_trap ||
1508 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1509 ret = kvm_update_guest_debug(env, reinject_trap);
1510 }
b0b1d690
JK
1511 return ret;
1512}
1513
317ac620 1514static int kvm_put_debugregs(CPUX86State *env)
ff44f1a3 1515{
ff44f1a3
JK
1516 struct kvm_debugregs dbgregs;
1517 int i;
1518
1519 if (!kvm_has_debugregs()) {
1520 return 0;
1521 }
1522
1523 for (i = 0; i < 4; i++) {
1524 dbgregs.db[i] = env->dr[i];
1525 }
1526 dbgregs.dr6 = env->dr[6];
1527 dbgregs.dr7 = env->dr[7];
1528 dbgregs.flags = 0;
1529
1530 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
ff44f1a3
JK
1531}
1532
317ac620 1533static int kvm_get_debugregs(CPUX86State *env)
ff44f1a3 1534{
ff44f1a3
JK
1535 struct kvm_debugregs dbgregs;
1536 int i, ret;
1537
1538 if (!kvm_has_debugregs()) {
1539 return 0;
1540 }
1541
1542 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1543 if (ret < 0) {
b9bec74b 1544 return ret;
ff44f1a3
JK
1545 }
1546 for (i = 0; i < 4; i++) {
1547 env->dr[i] = dbgregs.db[i];
1548 }
1549 env->dr[4] = env->dr[6] = dbgregs.dr6;
1550 env->dr[5] = env->dr[7] = dbgregs.dr7;
ff44f1a3
JK
1551
1552 return 0;
1553}
1554
317ac620 1555int kvm_arch_put_registers(CPUX86State *env, int level)
05330448 1556{
60e82579 1557 CPUState *cpu = ENV_GET_CPU(env);
05330448
AL
1558 int ret;
1559
2fa45344 1560 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 1561
05330448 1562 ret = kvm_getput_regs(env, 1);
b9bec74b 1563 if (ret < 0) {
05330448 1564 return ret;
b9bec74b 1565 }
f1665b21 1566 ret = kvm_put_xsave(env);
b9bec74b 1567 if (ret < 0) {
f1665b21 1568 return ret;
b9bec74b 1569 }
f1665b21 1570 ret = kvm_put_xcrs(env);
b9bec74b 1571 if (ret < 0) {
05330448 1572 return ret;
b9bec74b 1573 }
05330448 1574 ret = kvm_put_sregs(env);
b9bec74b 1575 if (ret < 0) {
05330448 1576 return ret;
b9bec74b 1577 }
ab443475
JK
1578 /* must be before kvm_put_msrs */
1579 ret = kvm_inject_mce_oldstyle(env);
1580 if (ret < 0) {
1581 return ret;
1582 }
ea643051 1583 ret = kvm_put_msrs(env, level);
b9bec74b 1584 if (ret < 0) {
05330448 1585 return ret;
b9bec74b 1586 }
ea643051
JK
1587 if (level >= KVM_PUT_RESET_STATE) {
1588 ret = kvm_put_mp_state(env);
b9bec74b 1589 if (ret < 0) {
ea643051 1590 return ret;
b9bec74b 1591 }
680c1c6f
JK
1592 ret = kvm_put_apic(env);
1593 if (ret < 0) {
1594 return ret;
1595 }
ea643051 1596 }
ea643051 1597 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1598 if (ret < 0) {
a0fb002c 1599 return ret;
b9bec74b 1600 }
0d75a9ec 1601 ret = kvm_put_debugregs(env);
b9bec74b 1602 if (ret < 0) {
b0b1d690 1603 return ret;
b9bec74b 1604 }
b0b1d690
JK
1605 /* must be last */
1606 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1607 if (ret < 0) {
ff44f1a3 1608 return ret;
b9bec74b 1609 }
05330448
AL
1610 return 0;
1611}
1612
317ac620 1613int kvm_arch_get_registers(CPUX86State *env)
05330448 1614{
60e82579 1615 CPUState *cpu = ENV_GET_CPU(env);
05330448
AL
1616 int ret;
1617
2fa45344 1618 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
dbaa07c4 1619
05330448 1620 ret = kvm_getput_regs(env, 0);
b9bec74b 1621 if (ret < 0) {
05330448 1622 return ret;
b9bec74b 1623 }
f1665b21 1624 ret = kvm_get_xsave(env);
b9bec74b 1625 if (ret < 0) {
f1665b21 1626 return ret;
b9bec74b 1627 }
f1665b21 1628 ret = kvm_get_xcrs(env);
b9bec74b 1629 if (ret < 0) {
05330448 1630 return ret;
b9bec74b 1631 }
05330448 1632 ret = kvm_get_sregs(env);
b9bec74b 1633 if (ret < 0) {
05330448 1634 return ret;
b9bec74b 1635 }
05330448 1636 ret = kvm_get_msrs(env);
b9bec74b 1637 if (ret < 0) {
05330448 1638 return ret;
b9bec74b 1639 }
5a2e3c2e 1640 ret = kvm_get_mp_state(env);
b9bec74b 1641 if (ret < 0) {
5a2e3c2e 1642 return ret;
b9bec74b 1643 }
680c1c6f
JK
1644 ret = kvm_get_apic(env);
1645 if (ret < 0) {
1646 return ret;
1647 }
a0fb002c 1648 ret = kvm_get_vcpu_events(env);
b9bec74b 1649 if (ret < 0) {
a0fb002c 1650 return ret;
b9bec74b 1651 }
ff44f1a3 1652 ret = kvm_get_debugregs(env);
b9bec74b 1653 if (ret < 0) {
ff44f1a3 1654 return ret;
b9bec74b 1655 }
05330448
AL
1656 return 0;
1657}
1658
317ac620 1659void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
05330448 1660{
ce377af3
JK
1661 int ret;
1662
276ce815
LJ
1663 /* Inject NMI */
1664 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1665 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1666 DPRINTF("injected NMI\n");
ce377af3
JK
1667 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1668 if (ret < 0) {
1669 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1670 strerror(-ret));
1671 }
276ce815
LJ
1672 }
1673
db1669bc 1674 if (!kvm_irqchip_in_kernel()) {
d362e757
JK
1675 /* Force the VCPU out of its inner loop to process any INIT requests
1676 * or pending TPR access reports. */
1677 if (env->interrupt_request &
1678 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
db1669bc 1679 env->exit_request = 1;
05330448 1680 }
05330448 1681
db1669bc
JK
1682 /* Try to inject an interrupt if the guest can accept it */
1683 if (run->ready_for_interrupt_injection &&
1684 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1685 (env->eflags & IF_MASK)) {
1686 int irq;
1687
1688 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1689 irq = cpu_get_pic_interrupt(env);
1690 if (irq >= 0) {
1691 struct kvm_interrupt intr;
1692
1693 intr.irq = irq;
db1669bc 1694 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1695 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1696 if (ret < 0) {
1697 fprintf(stderr,
1698 "KVM: injection failed, interrupt lost (%s)\n",
1699 strerror(-ret));
1700 }
db1669bc
JK
1701 }
1702 }
05330448 1703
db1669bc
JK
1704 /* If we have an interrupt but the guest is not ready to receive an
1705 * interrupt, request an interrupt window exit. This will
1706 * cause a return to userspace as soon as the guest is ready to
1707 * receive interrupts. */
1708 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1709 run->request_interrupt_window = 1;
1710 } else {
1711 run->request_interrupt_window = 0;
1712 }
1713
1714 DPRINTF("setting tpr\n");
1715 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1716 }
05330448
AL
1717}
1718
317ac620 1719void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
05330448 1720{
b9bec74b 1721 if (run->if_flag) {
05330448 1722 env->eflags |= IF_MASK;
b9bec74b 1723 } else {
05330448 1724 env->eflags &= ~IF_MASK;
b9bec74b 1725 }
4a942cea
BS
1726 cpu_set_apic_tpr(env->apic_state, run->cr8);
1727 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1728}
1729
317ac620 1730int kvm_arch_process_async_events(CPUX86State *env)
0af691d7 1731{
232fc23b
AF
1732 X86CPU *cpu = x86_env_get_cpu(env);
1733
ab443475
JK
1734 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1735 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1736 assert(env->mcg_cap);
1737
1738 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1739
1740 kvm_cpu_synchronize_state(env);
1741
1742 if (env->exception_injected == EXCP08_DBLE) {
1743 /* this means triple fault */
1744 qemu_system_reset_request();
1745 env->exit_request = 1;
1746 return 0;
1747 }
1748 env->exception_injected = EXCP12_MCHK;
1749 env->has_error_code = 0;
1750
1751 env->halted = 0;
1752 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1753 env->mp_state = KVM_MP_STATE_RUNNABLE;
1754 }
1755 }
1756
db1669bc
JK
1757 if (kvm_irqchip_in_kernel()) {
1758 return 0;
1759 }
1760
5d62c43a
JK
1761 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1762 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1763 apic_poll_irq(env->apic_state);
1764 }
4601f7b0
JK
1765 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1766 (env->eflags & IF_MASK)) ||
1767 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
6792a57b
JK
1768 env->halted = 0;
1769 }
0af691d7
MT
1770 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1771 kvm_cpu_synchronize_state(env);
232fc23b 1772 do_cpu_init(cpu);
0af691d7 1773 }
0af691d7
MT
1774 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1775 kvm_cpu_synchronize_state(env);
232fc23b 1776 do_cpu_sipi(cpu);
0af691d7 1777 }
d362e757
JK
1778 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1779 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1780 kvm_cpu_synchronize_state(env);
1781 apic_handle_tpr_access_report(env->apic_state, env->eip,
1782 env->tpr_access_type);
1783 }
0af691d7
MT
1784
1785 return env->halted;
1786}
1787
317ac620 1788static int kvm_handle_halt(CPUX86State *env)
05330448
AL
1789{
1790 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1791 (env->eflags & IF_MASK)) &&
1792 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1793 env->halted = 1;
bb4ea393 1794 return EXCP_HLT;
05330448
AL
1795 }
1796
bb4ea393 1797 return 0;
05330448
AL
1798}
1799
317ac620 1800static int kvm_handle_tpr_access(CPUX86State *env)
d362e757
JK
1801{
1802 struct kvm_run *run = env->kvm_run;
1803
1804 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1805 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1806 : TPR_ACCESS_READ);
1807 return 1;
1808}
1809
317ac620 1810int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9 1811{
38972938 1812 static const uint8_t int3 = 0xcc;
64bf3f4e 1813
e22a25c9 1814 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1815 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1816 return -EINVAL;
b9bec74b 1817 }
e22a25c9
AL
1818 return 0;
1819}
1820
317ac620 1821int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
e22a25c9
AL
1822{
1823 uint8_t int3;
1824
1825 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1826 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1827 return -EINVAL;
b9bec74b 1828 }
e22a25c9
AL
1829 return 0;
1830}
1831
1832static struct {
1833 target_ulong addr;
1834 int len;
1835 int type;
1836} hw_breakpoint[4];
1837
1838static int nb_hw_breakpoint;
1839
1840static int find_hw_breakpoint(target_ulong addr, int len, int type)
1841{
1842 int n;
1843
b9bec74b 1844 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1845 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1846 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1847 return n;
b9bec74b
JK
1848 }
1849 }
e22a25c9
AL
1850 return -1;
1851}
1852
1853int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1854 target_ulong len, int type)
1855{
1856 switch (type) {
1857 case GDB_BREAKPOINT_HW:
1858 len = 1;
1859 break;
1860 case GDB_WATCHPOINT_WRITE:
1861 case GDB_WATCHPOINT_ACCESS:
1862 switch (len) {
1863 case 1:
1864 break;
1865 case 2:
1866 case 4:
1867 case 8:
b9bec74b 1868 if (addr & (len - 1)) {
e22a25c9 1869 return -EINVAL;
b9bec74b 1870 }
e22a25c9
AL
1871 break;
1872 default:
1873 return -EINVAL;
1874 }
1875 break;
1876 default:
1877 return -ENOSYS;
1878 }
1879
b9bec74b 1880 if (nb_hw_breakpoint == 4) {
e22a25c9 1881 return -ENOBUFS;
b9bec74b
JK
1882 }
1883 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1884 return -EEXIST;
b9bec74b 1885 }
e22a25c9
AL
1886 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1887 hw_breakpoint[nb_hw_breakpoint].len = len;
1888 hw_breakpoint[nb_hw_breakpoint].type = type;
1889 nb_hw_breakpoint++;
1890
1891 return 0;
1892}
1893
1894int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1895 target_ulong len, int type)
1896{
1897 int n;
1898
1899 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1900 if (n < 0) {
e22a25c9 1901 return -ENOENT;
b9bec74b 1902 }
e22a25c9
AL
1903 nb_hw_breakpoint--;
1904 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1905
1906 return 0;
1907}
1908
1909void kvm_arch_remove_all_hw_breakpoints(void)
1910{
1911 nb_hw_breakpoint = 0;
1912}
1913
1914static CPUWatchpoint hw_watchpoint;
1915
f2574737 1916static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
e22a25c9 1917{
f2574737 1918 int ret = 0;
e22a25c9
AL
1919 int n;
1920
1921 if (arch_info->exception == 1) {
1922 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1923 if (cpu_single_env->singlestep_enabled) {
f2574737 1924 ret = EXCP_DEBUG;
b9bec74b 1925 }
e22a25c9 1926 } else {
b9bec74b
JK
1927 for (n = 0; n < 4; n++) {
1928 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1929 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1930 case 0x0:
f2574737 1931 ret = EXCP_DEBUG;
e22a25c9
AL
1932 break;
1933 case 0x1:
f2574737 1934 ret = EXCP_DEBUG;
e22a25c9
AL
1935 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1936 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1937 hw_watchpoint.flags = BP_MEM_WRITE;
1938 break;
1939 case 0x3:
f2574737 1940 ret = EXCP_DEBUG;
e22a25c9
AL
1941 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1942 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1943 hw_watchpoint.flags = BP_MEM_ACCESS;
1944 break;
1945 }
b9bec74b
JK
1946 }
1947 }
e22a25c9 1948 }
b9bec74b 1949 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
f2574737 1950 ret = EXCP_DEBUG;
b9bec74b 1951 }
f2574737 1952 if (ret == 0) {
b0b1d690
JK
1953 cpu_synchronize_state(cpu_single_env);
1954 assert(cpu_single_env->exception_injected == -1);
1955
f2574737 1956 /* pass to guest */
b0b1d690
JK
1957 cpu_single_env->exception_injected = arch_info->exception;
1958 cpu_single_env->has_error_code = 0;
1959 }
e22a25c9 1960
f2574737 1961 return ret;
e22a25c9
AL
1962}
1963
317ac620 1964void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
e22a25c9
AL
1965{
1966 const uint8_t type_code[] = {
1967 [GDB_BREAKPOINT_HW] = 0x0,
1968 [GDB_WATCHPOINT_WRITE] = 0x1,
1969 [GDB_WATCHPOINT_ACCESS] = 0x3
1970 };
1971 const uint8_t len_code[] = {
1972 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1973 };
1974 int n;
1975
b9bec74b 1976 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1977 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1978 }
e22a25c9
AL
1979 if (nb_hw_breakpoint > 0) {
1980 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1981 dbg->arch.debugreg[7] = 0x0600;
1982 for (n = 0; n < nb_hw_breakpoint; n++) {
1983 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1984 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1985 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1986 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1987 }
1988 }
1989}
4513d923 1990
2a4dac83
JK
1991static bool host_supports_vmx(void)
1992{
1993 uint32_t ecx, unused;
1994
1995 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1996 return ecx & CPUID_EXT_VMX;
1997}
1998
1999#define VMX_INVALID_GUEST_STATE 0x80000021
2000
317ac620 2001int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2a4dac83
JK
2002{
2003 uint64_t code;
2004 int ret;
2005
2006 switch (run->exit_reason) {
2007 case KVM_EXIT_HLT:
2008 DPRINTF("handle_hlt\n");
2009 ret = kvm_handle_halt(env);
2010 break;
2011 case KVM_EXIT_SET_TPR:
2012 ret = 0;
2013 break;
d362e757
JK
2014 case KVM_EXIT_TPR_ACCESS:
2015 ret = kvm_handle_tpr_access(env);
2016 break;
2a4dac83
JK
2017 case KVM_EXIT_FAIL_ENTRY:
2018 code = run->fail_entry.hardware_entry_failure_reason;
2019 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2020 code);
2021 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2022 fprintf(stderr,
12619721 2023 "\nIf you're running a guest on an Intel machine without "
2a4dac83
JK
2024 "unrestricted mode\n"
2025 "support, the failure can be most likely due to the guest "
2026 "entering an invalid\n"
2027 "state for Intel VT. For example, the guest maybe running "
2028 "in big real mode\n"
2029 "which is not supported on less recent Intel processors."
2030 "\n\n");
2031 }
2032 ret = -1;
2033 break;
2034 case KVM_EXIT_EXCEPTION:
2035 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2036 run->ex.exception, run->ex.error_code);
2037 ret = -1;
2038 break;
f2574737
JK
2039 case KVM_EXIT_DEBUG:
2040 DPRINTF("kvm_exit_debug\n");
2041 ret = kvm_handle_debug(&run->debug.arch);
2042 break;
2a4dac83
JK
2043 default:
2044 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2045 ret = -1;
2046 break;
2047 }
2048
2049 return ret;
2050}
2051
317ac620 2052bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
4513d923 2053{
d1f86636 2054 kvm_cpu_synchronize_state(env);
b9bec74b
JK
2055 return !(env->cr[0] & CR0_PE_MASK) ||
2056 ((env->segs[R_CS].selector & 3) != 3);
4513d923 2057}
84b058d7
JK
2058
2059void kvm_arch_init_irq_routing(KVMState *s)
2060{
2061 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2062 /* If kernel can't do irq routing, interrupt source
2063 * override 0->2 cannot be set up as required by HPET.
2064 * So we have to disable it.
2065 */
2066 no_hpet = 1;
2067 }
cc7e0ddf 2068 /* We know at this point that we're using the in-kernel
614e41bc 2069 * irqchip, so we can use irqfds, and on x86 we know
f3e1bed8 2070 * we can use msi via irqfd and GSI routing.
cc7e0ddf
PM
2071 */
2072 kvm_irqfds_allowed = true;
614e41bc 2073 kvm_msi_via_irqfd_allowed = true;
f3e1bed8 2074 kvm_gsi_routing_allowed = true;
84b058d7 2075}
b139bd30
JK
2076
2077/* Classic KVM device assignment interface. Will remain x86 only. */
2078int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2079 uint32_t flags, uint32_t *dev_id)
2080{
2081 struct kvm_assigned_pci_dev dev_data = {
2082 .segnr = dev_addr->domain,
2083 .busnr = dev_addr->bus,
2084 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2085 .flags = flags,
2086 };
2087 int ret;
2088
2089 dev_data.assigned_dev_id =
2090 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2091
2092 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2093 if (ret < 0) {
2094 return ret;
2095 }
2096
2097 *dev_id = dev_data.assigned_dev_id;
2098
2099 return 0;
2100}
2101
2102int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2103{
2104 struct kvm_assigned_pci_dev dev_data = {
2105 .assigned_dev_id = dev_id,
2106 };
2107
2108 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2109}
2110
2111static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2112 uint32_t irq_type, uint32_t guest_irq)
2113{
2114 struct kvm_assigned_irq assigned_irq = {
2115 .assigned_dev_id = dev_id,
2116 .guest_irq = guest_irq,
2117 .flags = irq_type,
2118 };
2119
2120 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2121 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2122 } else {
2123 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2124 }
2125}
2126
2127int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2128 uint32_t guest_irq)
2129{
2130 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2131 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2132
2133 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2134}
2135
2136int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2137{
2138 struct kvm_assigned_pci_dev dev_data = {
2139 .assigned_dev_id = dev_id,
2140 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2141 };
2142
2143 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2144}
2145
2146static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2147 uint32_t type)
2148{
2149 struct kvm_assigned_irq assigned_irq = {
2150 .assigned_dev_id = dev_id,
2151 .flags = type,
2152 };
2153
2154 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2155}
2156
2157int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2158{
2159 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2160 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2161}
2162
2163int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2164{
2165 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2166 KVM_DEV_IRQ_GUEST_MSI, virq);
2167}
2168
2169int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2170{
2171 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2172 KVM_DEV_IRQ_HOST_MSI);
2173}
2174
2175bool kvm_device_msix_supported(KVMState *s)
2176{
2177 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2178 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2179 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2180}
2181
2182int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2183 uint32_t nr_vectors)
2184{
2185 struct kvm_assigned_msix_nr msix_nr = {
2186 .assigned_dev_id = dev_id,
2187 .entry_nr = nr_vectors,
2188 };
2189
2190 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2191}
2192
2193int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2194 int virq)
2195{
2196 struct kvm_assigned_msix_entry msix_entry = {
2197 .assigned_dev_id = dev_id,
2198 .gsi = virq,
2199 .entry = vector,
2200 };
2201
2202 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2203}
2204
2205int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2206{
2207 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2208 KVM_DEV_IRQ_GUEST_MSIX, 0);
2209}
2210
2211int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2212{
2213 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2214 KVM_DEV_IRQ_HOST_MSIX);
2215}