]> git.proxmox.com Git - qemu.git/blame - target-i386/kvm.c
Add qemu_ram_remap
[qemu.git] / target-i386 / kvm.c
CommitLineData
05330448
AL
1/*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15#include <sys/types.h>
16#include <sys/ioctl.h>
17#include <sys/mman.h>
25d2e361 18#include <sys/utsname.h>
05330448
AL
19
20#include <linux/kvm.h>
21
22#include "qemu-common.h"
23#include "sysemu.h"
24#include "kvm.h"
25#include "cpu.h"
e22a25c9 26#include "gdbstub.h"
0e607a80 27#include "host-utils.h"
4c5b10b7 28#include "hw/pc.h"
408392b3 29#include "hw/apic.h"
35bed8ee 30#include "ioport.h"
05330448 31
bb0300dc
GN
32#ifdef CONFIG_KVM_PARA
33#include <linux/kvm_para.h>
34#endif
35//
05330448
AL
36//#define DEBUG_KVM
37
38#ifdef DEBUG_KVM
8c0d577e 39#define DPRINTF(fmt, ...) \
05330448
AL
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41#else
8c0d577e 42#define DPRINTF(fmt, ...) \
05330448
AL
43 do { } while (0)
44#endif
45
1a03675d
GC
46#define MSR_KVM_WALL_CLOCK 0x11
47#define MSR_KVM_SYSTEM_TIME 0x12
48
c0532a76
MT
49#ifndef BUS_MCEERR_AR
50#define BUS_MCEERR_AR 4
51#endif
52#ifndef BUS_MCEERR_AO
53#define BUS_MCEERR_AO 5
54#endif
55
94a8d39a
JK
56const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61};
25d2e361 62
c3a3a7d3
JK
63static bool has_msr_star;
64static bool has_msr_hsave_pa;
c5999bfc
JK
65#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66static bool has_msr_async_pf_en;
67#endif
25d2e361 68static int lm_capable_kernel;
b827df58
AK
69
70static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
71{
72 struct kvm_cpuid2 *cpuid;
73 int r, size;
74
75 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77 cpuid->nent = max;
78 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
76ae317f
MM
79 if (r == 0 && cpuid->nent >= max) {
80 r = -E2BIG;
81 }
b827df58
AK
82 if (r < 0) {
83 if (r == -E2BIG) {
84 qemu_free(cpuid);
85 return NULL;
86 } else {
87 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88 strerror(-r));
89 exit(1);
90 }
91 }
92 return cpuid;
93}
94
c958a8bd
SY
95uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
96 uint32_t index, int reg)
b827df58
AK
97{
98 struct kvm_cpuid2 *cpuid;
99 int i, max;
100 uint32_t ret = 0;
101 uint32_t cpuid_1_edx;
102
b827df58
AK
103 max = 1;
104 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
105 max *= 2;
106 }
107
108 for (i = 0; i < cpuid->nent; ++i) {
c958a8bd
SY
109 if (cpuid->entries[i].function == function &&
110 cpuid->entries[i].index == index) {
b827df58
AK
111 switch (reg) {
112 case R_EAX:
113 ret = cpuid->entries[i].eax;
114 break;
115 case R_EBX:
116 ret = cpuid->entries[i].ebx;
117 break;
118 case R_ECX:
119 ret = cpuid->entries[i].ecx;
120 break;
121 case R_EDX:
122 ret = cpuid->entries[i].edx;
19ccb8ea
JK
123 switch (function) {
124 case 1:
125 /* KVM before 2.6.30 misreports the following features */
126 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
127 break;
128 case 0x80000001:
b827df58
AK
129 /* On Intel, kvm returns cpuid according to the Intel spec,
130 * so add missing bits according to the AMD spec:
131 */
c958a8bd 132 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
c1667e40 133 ret |= cpuid_1_edx & 0x183f7ff;
19ccb8ea 134 break;
b827df58
AK
135 }
136 break;
137 }
138 }
139 }
140
141 qemu_free(cpuid);
142
143 return ret;
144}
145
bb0300dc
GN
146#ifdef CONFIG_KVM_PARA
147struct kvm_para_features {
b9bec74b
JK
148 int cap;
149 int feature;
bb0300dc 150} para_features[] = {
b9bec74b 151 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
b9bec74b 152 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
b9bec74b 153 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
f6584ee2 154#ifdef KVM_CAP_ASYNC_PF
b9bec74b 155 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
bb0300dc 156#endif
b9bec74b 157 { -1, -1 }
bb0300dc
GN
158};
159
160static int get_para_features(CPUState *env)
161{
b9bec74b 162 int i, features = 0;
bb0300dc 163
b9bec74b
JK
164 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
165 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
166 features |= (1 << para_features[i].feature);
bb0300dc 167 }
b9bec74b 168 }
b3a98367 169#ifdef KVM_CAP_ASYNC_PF
c5999bfc 170 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
b3a98367 171#endif
b9bec74b 172 return features;
bb0300dc 173}
419fb20a 174#endif /* CONFIG_KVM_PARA */
bb0300dc 175
e7701825
MT
176#ifdef KVM_CAP_MCE
177static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
178 int *max_banks)
179{
180 int r;
181
14a09518 182 r = kvm_check_extension(s, KVM_CAP_MCE);
e7701825
MT
183 if (r > 0) {
184 *max_banks = r;
185 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
186 }
187 return -ENOSYS;
188}
189
c34d440a 190static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
e7701825 191{
c34d440a
JK
192 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
193 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
194 uint64_t mcg_status = MCG_STATUS_MCIP;
e7701825 195
c34d440a
JK
196 if (code == BUS_MCEERR_AR) {
197 status |= MCI_STATUS_AR | 0x134;
198 mcg_status |= MCG_STATUS_EIPV;
199 } else {
200 status |= 0xc0;
201 mcg_status |= MCG_STATUS_RIPV;
419fb20a 202 }
c34d440a
JK
203 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
204 (MCM_ADDR_PHYS << 6) | 0xc,
205 cpu_x86_support_mca_broadcast(env) ?
206 MCE_INJECT_BROADCAST : 0);
419fb20a
JK
207}
208#endif /* KVM_CAP_MCE */
209
210static void hardware_memory_error(void)
211{
212 fprintf(stderr, "Hardware memory error!\n");
213 exit(1);
214}
215
216int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
217{
218#ifdef KVM_CAP_MCE
419fb20a
JK
219 ram_addr_t ram_addr;
220 target_phys_addr_t paddr;
221
222 if ((env->mcg_cap & MCG_SER_P) && addr
c34d440a
JK
223 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
224 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
225 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
226 &paddr)) {
419fb20a
JK
227 fprintf(stderr, "Hardware memory error for memory used by "
228 "QEMU itself instead of guest system!\n");
229 /* Hope we are lucky for AO MCE */
230 if (code == BUS_MCEERR_AO) {
231 return 0;
232 } else {
233 hardware_memory_error();
234 }
235 }
c34d440a 236 kvm_mce_inject(env, paddr, code);
419fb20a
JK
237 } else
238#endif /* KVM_CAP_MCE */
239 {
240 if (code == BUS_MCEERR_AO) {
241 return 0;
242 } else if (code == BUS_MCEERR_AR) {
243 hardware_memory_error();
244 } else {
245 return 1;
246 }
247 }
248 return 0;
249}
250
251int kvm_arch_on_sigbus(int code, void *addr)
252{
253#ifdef KVM_CAP_MCE
254 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
419fb20a
JK
255 ram_addr_t ram_addr;
256 target_phys_addr_t paddr;
257
258 /* Hope we are lucky for AO MCE */
c34d440a 259 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
419fb20a
JK
260 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
261 &paddr)) {
262 fprintf(stderr, "Hardware memory error for memory used by "
263 "QEMU itself instead of guest system!: %p\n", addr);
264 return 0;
265 }
c34d440a 266 kvm_mce_inject(first_cpu, paddr, code);
419fb20a
JK
267 } else
268#endif /* KVM_CAP_MCE */
269 {
270 if (code == BUS_MCEERR_AO) {
271 return 0;
272 } else if (code == BUS_MCEERR_AR) {
273 hardware_memory_error();
274 } else {
275 return 1;
276 }
277 }
278 return 0;
279}
e7701825 280
ab443475
JK
281static int kvm_inject_mce_oldstyle(CPUState *env)
282{
283#ifdef KVM_CAP_MCE
284 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
285 unsigned int bank, bank_num = env->mcg_cap & 0xff;
286 struct kvm_x86_mce mce;
287
288 env->exception_injected = -1;
289
290 /*
291 * There must be at least one bank in use if an MCE is pending.
292 * Find it and use its values for the event injection.
293 */
294 for (bank = 0; bank < bank_num; bank++) {
295 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
296 break;
297 }
298 }
299 assert(bank < bank_num);
300
301 mce.bank = bank;
302 mce.status = env->mce_banks[bank * 4 + 1];
303 mce.mcg_status = env->mcg_status;
304 mce.addr = env->mce_banks[bank * 4 + 2];
305 mce.misc = env->mce_banks[bank * 4 + 3];
306
307 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
308 }
309#endif /* KVM_CAP_MCE */
310 return 0;
311}
312
b8cc45d6
GC
313static void cpu_update_state(void *opaque, int running, int reason)
314{
315 CPUState *env = opaque;
316
317 if (running) {
318 env->tsc_valid = false;
319 }
320}
321
05330448
AL
322int kvm_arch_init_vcpu(CPUState *env)
323{
324 struct {
486bd5a2
AL
325 struct kvm_cpuid2 cpuid;
326 struct kvm_cpuid_entry2 entries[100];
05330448 327 } __attribute__((packed)) cpuid_data;
486bd5a2 328 uint32_t limit, i, j, cpuid_i;
a33609ca 329 uint32_t unused;
bb0300dc 330 struct kvm_cpuid_entry2 *c;
521f0798 331#ifdef CONFIG_KVM_PARA
bb0300dc
GN
332 uint32_t signature[3];
333#endif
05330448 334
c958a8bd 335 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
6c0d7ee8
AP
336
337 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
c958a8bd 338 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
6c0d7ee8
AP
339 env->cpuid_ext_features |= i;
340
457dfed6 341 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 342 0, R_EDX);
457dfed6 343 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
c958a8bd 344 0, R_ECX);
296acb64
JR
345 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
346 0, R_EDX);
347
6c1f42fe 348
05330448
AL
349 cpuid_i = 0;
350
bb0300dc
GN
351#ifdef CONFIG_KVM_PARA
352 /* Paravirtualization CPUIDs */
353 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
354 c = &cpuid_data.entries[cpuid_i++];
355 memset(c, 0, sizeof(*c));
356 c->function = KVM_CPUID_SIGNATURE;
357 c->eax = 0;
358 c->ebx = signature[0];
359 c->ecx = signature[1];
360 c->edx = signature[2];
361
362 c = &cpuid_data.entries[cpuid_i++];
363 memset(c, 0, sizeof(*c));
364 c->function = KVM_CPUID_FEATURES;
365 c->eax = env->cpuid_kvm_features & get_para_features(env);
366#endif
367
a33609ca 368 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
05330448
AL
369
370 for (i = 0; i <= limit; i++) {
bb0300dc 371 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
372
373 switch (i) {
a36b1029
AL
374 case 2: {
375 /* Keep reading function 2 till all the input is received */
376 int times;
377
a36b1029 378 c->function = i;
a33609ca
AL
379 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
380 KVM_CPUID_FLAG_STATE_READ_NEXT;
381 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
382 times = c->eax & 0xff;
a36b1029
AL
383
384 for (j = 1; j < times; ++j) {
a33609ca 385 c = &cpuid_data.entries[cpuid_i++];
a36b1029 386 c->function = i;
a33609ca
AL
387 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
388 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
a36b1029
AL
389 }
390 break;
391 }
486bd5a2
AL
392 case 4:
393 case 0xb:
394 case 0xd:
395 for (j = 0; ; j++) {
486bd5a2
AL
396 c->function = i;
397 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
398 c->index = j;
a33609ca 399 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2 400
b9bec74b 401 if (i == 4 && c->eax == 0) {
486bd5a2 402 break;
b9bec74b
JK
403 }
404 if (i == 0xb && !(c->ecx & 0xff00)) {
486bd5a2 405 break;
b9bec74b
JK
406 }
407 if (i == 0xd && c->eax == 0) {
486bd5a2 408 break;
b9bec74b 409 }
a33609ca 410 c = &cpuid_data.entries[cpuid_i++];
486bd5a2
AL
411 }
412 break;
413 default:
486bd5a2 414 c->function = i;
a33609ca
AL
415 c->flags = 0;
416 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
486bd5a2
AL
417 break;
418 }
05330448 419 }
a33609ca 420 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
05330448
AL
421
422 for (i = 0x80000000; i <= limit; i++) {
bb0300dc 423 c = &cpuid_data.entries[cpuid_i++];
05330448 424
05330448 425 c->function = i;
a33609ca
AL
426 c->flags = 0;
427 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
05330448
AL
428 }
429
430 cpuid_data.cpuid.nent = cpuid_i;
431
e7701825
MT
432#ifdef KVM_CAP_MCE
433 if (((env->cpuid_version >> 8)&0xF) >= 6
434 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
435 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
436 uint64_t mcg_cap;
437 int banks;
32a42024 438 int ret;
e7701825 439
75d49497
JK
440 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
441 if (ret < 0) {
442 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
443 return ret;
e7701825 444 }
75d49497
JK
445
446 if (banks > MCE_BANKS_DEF) {
447 banks = MCE_BANKS_DEF;
448 }
449 mcg_cap &= MCE_CAP_DEF;
450 mcg_cap |= banks;
451 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
452 if (ret < 0) {
453 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
454 return ret;
455 }
456
457 env->mcg_cap = mcg_cap;
e7701825
MT
458 }
459#endif
460
b8cc45d6
GC
461 qemu_add_vm_change_state_handler(cpu_update_state, env);
462
486bd5a2 463 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
05330448
AL
464}
465
caa5af0f
JK
466void kvm_arch_reset_vcpu(CPUState *env)
467{
e73223a5 468 env->exception_injected = -1;
0e607a80 469 env->interrupt_injected = -1;
1a5e9d2f 470 env->xcr0 = 1;
ddced198
MT
471 if (kvm_irqchip_in_kernel()) {
472 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
473 KVM_MP_STATE_UNINITIALIZED;
474 } else {
475 env->mp_state = KVM_MP_STATE_RUNNABLE;
476 }
caa5af0f
JK
477}
478
c3a3a7d3 479static int kvm_get_supported_msrs(KVMState *s)
05330448 480{
75b10c43 481 static int kvm_supported_msrs;
c3a3a7d3 482 int ret = 0;
05330448
AL
483
484 /* first time */
75b10c43 485 if (kvm_supported_msrs == 0) {
05330448
AL
486 struct kvm_msr_list msr_list, *kvm_msr_list;
487
75b10c43 488 kvm_supported_msrs = -1;
05330448
AL
489
490 /* Obtain MSR list from KVM. These are the MSRs that we must
491 * save/restore */
4c9f7372 492 msr_list.nmsrs = 0;
c3a3a7d3 493 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
6fb6d245 494 if (ret < 0 && ret != -E2BIG) {
c3a3a7d3 495 return ret;
6fb6d245 496 }
d9db889f
JK
497 /* Old kernel modules had a bug and could write beyond the provided
498 memory. Allocate at least a safe amount of 1K. */
499 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
500 msr_list.nmsrs *
501 sizeof(msr_list.indices[0])));
05330448 502
55308450 503 kvm_msr_list->nmsrs = msr_list.nmsrs;
c3a3a7d3 504 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
05330448
AL
505 if (ret >= 0) {
506 int i;
507
508 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
509 if (kvm_msr_list->indices[i] == MSR_STAR) {
c3a3a7d3 510 has_msr_star = true;
75b10c43
MT
511 continue;
512 }
513 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
c3a3a7d3 514 has_msr_hsave_pa = true;
75b10c43 515 continue;
05330448
AL
516 }
517 }
518 }
519
520 free(kvm_msr_list);
521 }
522
c3a3a7d3 523 return ret;
05330448
AL
524}
525
cad1e282 526int kvm_arch_init(KVMState *s)
20420430 527{
11076198 528 uint64_t identity_base = 0xfffbc000;
20420430 529 int ret;
25d2e361 530 struct utsname utsname;
20420430 531
c3a3a7d3 532 ret = kvm_get_supported_msrs(s);
20420430 533 if (ret < 0) {
20420430
SY
534 return ret;
535 }
25d2e361
MT
536
537 uname(&utsname);
538 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
539
4c5b10b7 540 /*
11076198
JK
541 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
542 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
543 * Since these must be part of guest physical memory, we need to allocate
544 * them, both by setting their start addresses in the kernel and by
545 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
546 *
547 * Older KVM versions may not support setting the identity map base. In
548 * that case we need to stick with the default, i.e. a 256K maximum BIOS
549 * size.
4c5b10b7 550 */
11076198
JK
551#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
552 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
553 /* Allows up to 16M BIOSes. */
554 identity_base = 0xfeffc000;
555
556 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
557 if (ret < 0) {
558 return ret;
559 }
4c5b10b7 560 }
11076198
JK
561#endif
562 /* Set TSS base one page after EPT identity map. */
563 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
20420430
SY
564 if (ret < 0) {
565 return ret;
566 }
567
11076198
JK
568 /* Tell fw_cfg to notify the BIOS to reserve the range. */
569 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
20420430 570 if (ret < 0) {
11076198 571 fprintf(stderr, "e820_add_entry() table is full\n");
20420430
SY
572 return ret;
573 }
574
11076198 575 return 0;
05330448 576}
b9bec74b 577
05330448
AL
578static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
579{
580 lhs->selector = rhs->selector;
581 lhs->base = rhs->base;
582 lhs->limit = rhs->limit;
583 lhs->type = 3;
584 lhs->present = 1;
585 lhs->dpl = 3;
586 lhs->db = 0;
587 lhs->s = 1;
588 lhs->l = 0;
589 lhs->g = 0;
590 lhs->avl = 0;
591 lhs->unusable = 0;
592}
593
594static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
595{
596 unsigned flags = rhs->flags;
597 lhs->selector = rhs->selector;
598 lhs->base = rhs->base;
599 lhs->limit = rhs->limit;
600 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
601 lhs->present = (flags & DESC_P_MASK) != 0;
acaa7550 602 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
05330448
AL
603 lhs->db = (flags >> DESC_B_SHIFT) & 1;
604 lhs->s = (flags & DESC_S_MASK) != 0;
605 lhs->l = (flags >> DESC_L_SHIFT) & 1;
606 lhs->g = (flags & DESC_G_MASK) != 0;
607 lhs->avl = (flags & DESC_AVL_MASK) != 0;
608 lhs->unusable = 0;
609}
610
611static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
612{
613 lhs->selector = rhs->selector;
614 lhs->base = rhs->base;
615 lhs->limit = rhs->limit;
b9bec74b
JK
616 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
617 (rhs->present * DESC_P_MASK) |
618 (rhs->dpl << DESC_DPL_SHIFT) |
619 (rhs->db << DESC_B_SHIFT) |
620 (rhs->s * DESC_S_MASK) |
621 (rhs->l << DESC_L_SHIFT) |
622 (rhs->g * DESC_G_MASK) |
623 (rhs->avl * DESC_AVL_MASK);
05330448
AL
624}
625
626static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
627{
b9bec74b 628 if (set) {
05330448 629 *kvm_reg = *qemu_reg;
b9bec74b 630 } else {
05330448 631 *qemu_reg = *kvm_reg;
b9bec74b 632 }
05330448
AL
633}
634
635static int kvm_getput_regs(CPUState *env, int set)
636{
637 struct kvm_regs regs;
638 int ret = 0;
639
640 if (!set) {
641 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
b9bec74b 642 if (ret < 0) {
05330448 643 return ret;
b9bec74b 644 }
05330448
AL
645 }
646
647 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
648 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
649 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
650 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
651 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
652 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
653 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
654 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
655#ifdef TARGET_X86_64
656 kvm_getput_reg(&regs.r8, &env->regs[8], set);
657 kvm_getput_reg(&regs.r9, &env->regs[9], set);
658 kvm_getput_reg(&regs.r10, &env->regs[10], set);
659 kvm_getput_reg(&regs.r11, &env->regs[11], set);
660 kvm_getput_reg(&regs.r12, &env->regs[12], set);
661 kvm_getput_reg(&regs.r13, &env->regs[13], set);
662 kvm_getput_reg(&regs.r14, &env->regs[14], set);
663 kvm_getput_reg(&regs.r15, &env->regs[15], set);
664#endif
665
666 kvm_getput_reg(&regs.rflags, &env->eflags, set);
667 kvm_getput_reg(&regs.rip, &env->eip, set);
668
b9bec74b 669 if (set) {
05330448 670 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
b9bec74b 671 }
05330448
AL
672
673 return ret;
674}
675
676static int kvm_put_fpu(CPUState *env)
677{
678 struct kvm_fpu fpu;
679 int i;
680
681 memset(&fpu, 0, sizeof fpu);
682 fpu.fsw = env->fpus & ~(7 << 11);
683 fpu.fsw |= (env->fpstt & 7) << 11;
684 fpu.fcw = env->fpuc;
b9bec74b
JK
685 for (i = 0; i < 8; ++i) {
686 fpu.ftwx |= (!env->fptags[i]) << i;
687 }
05330448
AL
688 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
689 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
690 fpu.mxcsr = env->mxcsr;
691
692 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
693}
694
f1665b21
SY
695#ifdef KVM_CAP_XSAVE
696#define XSAVE_CWD_RIP 2
697#define XSAVE_CWD_RDP 4
698#define XSAVE_MXCSR 6
699#define XSAVE_ST_SPACE 8
700#define XSAVE_XMM_SPACE 40
701#define XSAVE_XSTATE_BV 128
702#define XSAVE_YMMH_SPACE 144
703#endif
704
705static int kvm_put_xsave(CPUState *env)
706{
707#ifdef KVM_CAP_XSAVE
0f53994f 708 int i, r;
f1665b21
SY
709 struct kvm_xsave* xsave;
710 uint16_t cwd, swd, twd, fop;
711
b9bec74b 712 if (!kvm_has_xsave()) {
f1665b21 713 return kvm_put_fpu(env);
b9bec74b 714 }
f1665b21
SY
715
716 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
717 memset(xsave, 0, sizeof(struct kvm_xsave));
718 cwd = swd = twd = fop = 0;
719 swd = env->fpus & ~(7 << 11);
720 swd |= (env->fpstt & 7) << 11;
721 cwd = env->fpuc;
b9bec74b 722 for (i = 0; i < 8; ++i) {
f1665b21 723 twd |= (!env->fptags[i]) << i;
b9bec74b 724 }
f1665b21
SY
725 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
726 xsave->region[1] = (uint32_t)(fop << 16) + twd;
727 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
728 sizeof env->fpregs);
729 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
730 sizeof env->xmm_regs);
731 xsave->region[XSAVE_MXCSR] = env->mxcsr;
732 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
733 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
734 sizeof env->ymmh_regs);
0f53994f
MT
735 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
736 qemu_free(xsave);
737 return r;
f1665b21
SY
738#else
739 return kvm_put_fpu(env);
740#endif
741}
742
743static int kvm_put_xcrs(CPUState *env)
744{
745#ifdef KVM_CAP_XCRS
746 struct kvm_xcrs xcrs;
747
b9bec74b 748 if (!kvm_has_xcrs()) {
f1665b21 749 return 0;
b9bec74b 750 }
f1665b21
SY
751
752 xcrs.nr_xcrs = 1;
753 xcrs.flags = 0;
754 xcrs.xcrs[0].xcr = 0;
755 xcrs.xcrs[0].value = env->xcr0;
756 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
757#else
758 return 0;
759#endif
760}
761
05330448
AL
762static int kvm_put_sregs(CPUState *env)
763{
764 struct kvm_sregs sregs;
765
0e607a80
JK
766 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
767 if (env->interrupt_injected >= 0) {
768 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
769 (uint64_t)1 << (env->interrupt_injected % 64);
770 }
05330448
AL
771
772 if ((env->eflags & VM_MASK)) {
b9bec74b
JK
773 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
774 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
775 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
776 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
777 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
778 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
05330448 779 } else {
b9bec74b
JK
780 set_seg(&sregs.cs, &env->segs[R_CS]);
781 set_seg(&sregs.ds, &env->segs[R_DS]);
782 set_seg(&sregs.es, &env->segs[R_ES]);
783 set_seg(&sregs.fs, &env->segs[R_FS]);
784 set_seg(&sregs.gs, &env->segs[R_GS]);
785 set_seg(&sregs.ss, &env->segs[R_SS]);
05330448
AL
786 }
787
788 set_seg(&sregs.tr, &env->tr);
789 set_seg(&sregs.ldt, &env->ldt);
790
791 sregs.idt.limit = env->idt.limit;
792 sregs.idt.base = env->idt.base;
793 sregs.gdt.limit = env->gdt.limit;
794 sregs.gdt.base = env->gdt.base;
795
796 sregs.cr0 = env->cr[0];
797 sregs.cr2 = env->cr[2];
798 sregs.cr3 = env->cr[3];
799 sregs.cr4 = env->cr[4];
800
4a942cea
BS
801 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
802 sregs.apic_base = cpu_get_apic_base(env->apic_state);
05330448
AL
803
804 sregs.efer = env->efer;
805
806 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
807}
808
809static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
810 uint32_t index, uint64_t value)
811{
812 entry->index = index;
813 entry->data = value;
814}
815
ea643051 816static int kvm_put_msrs(CPUState *env, int level)
05330448
AL
817{
818 struct {
819 struct kvm_msrs info;
820 struct kvm_msr_entry entries[100];
821 } msr_data;
822 struct kvm_msr_entry *msrs = msr_data.entries;
d8da8574 823 int n = 0;
05330448
AL
824
825 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
826 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
827 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
c3a3a7d3 828 if (has_msr_star) {
b9bec74b
JK
829 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
830 }
c3a3a7d3 831 if (has_msr_hsave_pa) {
75b10c43 832 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
b9bec74b 833 }
05330448 834#ifdef TARGET_X86_64
25d2e361
MT
835 if (lm_capable_kernel) {
836 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
837 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
838 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
839 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
840 }
05330448 841#endif
ea643051 842 if (level == KVM_PUT_FULL_STATE) {
384331a6
MT
843 /*
844 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
845 * writeback. Until this is fixed, we only write the offset to SMP
846 * guests after migration, desynchronizing the VCPUs, but avoiding
847 * huge jump-backs that would occur without any writeback at all.
848 */
849 if (smp_cpus == 1 || env->tsc != 0) {
850 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
851 }
ff5c186b
JK
852 }
853 /*
854 * The following paravirtual MSRs have side effects on the guest or are
855 * too heavy for normal writeback. Limit them to reset or full state
856 * updates.
857 */
858 if (level >= KVM_PUT_RESET_STATE) {
ea643051
JK
859 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
860 env->system_time_msr);
861 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
521f0798 862#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
863 if (has_msr_async_pf_en) {
864 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
865 env->async_pf_en_msr);
866 }
f6584ee2 867#endif
ea643051 868 }
57780495
MT
869#ifdef KVM_CAP_MCE
870 if (env->mcg_cap) {
d8da8574 871 int i;
b9bec74b 872
c34d440a
JK
873 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
874 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
875 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
876 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
57780495
MT
877 }
878 }
879#endif
1a03675d 880
05330448
AL
881 msr_data.info.nmsrs = n;
882
883 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
884
885}
886
887
888static int kvm_get_fpu(CPUState *env)
889{
890 struct kvm_fpu fpu;
891 int i, ret;
892
893 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
b9bec74b 894 if (ret < 0) {
05330448 895 return ret;
b9bec74b 896 }
05330448
AL
897
898 env->fpstt = (fpu.fsw >> 11) & 7;
899 env->fpus = fpu.fsw;
900 env->fpuc = fpu.fcw;
b9bec74b
JK
901 for (i = 0; i < 8; ++i) {
902 env->fptags[i] = !((fpu.ftwx >> i) & 1);
903 }
05330448
AL
904 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
905 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
906 env->mxcsr = fpu.mxcsr;
907
908 return 0;
909}
910
f1665b21
SY
911static int kvm_get_xsave(CPUState *env)
912{
913#ifdef KVM_CAP_XSAVE
914 struct kvm_xsave* xsave;
915 int ret, i;
916 uint16_t cwd, swd, twd, fop;
917
b9bec74b 918 if (!kvm_has_xsave()) {
f1665b21 919 return kvm_get_fpu(env);
b9bec74b 920 }
f1665b21
SY
921
922 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
923 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
0f53994f
MT
924 if (ret < 0) {
925 qemu_free(xsave);
f1665b21 926 return ret;
0f53994f 927 }
f1665b21
SY
928
929 cwd = (uint16_t)xsave->region[0];
930 swd = (uint16_t)(xsave->region[0] >> 16);
931 twd = (uint16_t)xsave->region[1];
932 fop = (uint16_t)(xsave->region[1] >> 16);
933 env->fpstt = (swd >> 11) & 7;
934 env->fpus = swd;
935 env->fpuc = cwd;
b9bec74b 936 for (i = 0; i < 8; ++i) {
f1665b21 937 env->fptags[i] = !((twd >> i) & 1);
b9bec74b 938 }
f1665b21
SY
939 env->mxcsr = xsave->region[XSAVE_MXCSR];
940 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
941 sizeof env->fpregs);
942 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
943 sizeof env->xmm_regs);
944 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
945 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
946 sizeof env->ymmh_regs);
0f53994f 947 qemu_free(xsave);
f1665b21
SY
948 return 0;
949#else
950 return kvm_get_fpu(env);
951#endif
952}
953
954static int kvm_get_xcrs(CPUState *env)
955{
956#ifdef KVM_CAP_XCRS
957 int i, ret;
958 struct kvm_xcrs xcrs;
959
b9bec74b 960 if (!kvm_has_xcrs()) {
f1665b21 961 return 0;
b9bec74b 962 }
f1665b21
SY
963
964 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
b9bec74b 965 if (ret < 0) {
f1665b21 966 return ret;
b9bec74b 967 }
f1665b21 968
b9bec74b 969 for (i = 0; i < xcrs.nr_xcrs; i++) {
f1665b21
SY
970 /* Only support xcr0 now */
971 if (xcrs.xcrs[0].xcr == 0) {
972 env->xcr0 = xcrs.xcrs[0].value;
973 break;
974 }
b9bec74b 975 }
f1665b21
SY
976 return 0;
977#else
978 return 0;
979#endif
980}
981
05330448
AL
982static int kvm_get_sregs(CPUState *env)
983{
984 struct kvm_sregs sregs;
985 uint32_t hflags;
0e607a80 986 int bit, i, ret;
05330448
AL
987
988 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
b9bec74b 989 if (ret < 0) {
05330448 990 return ret;
b9bec74b 991 }
05330448 992
0e607a80
JK
993 /* There can only be one pending IRQ set in the bitmap at a time, so try
994 to find it and save its number instead (-1 for none). */
995 env->interrupt_injected = -1;
996 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
997 if (sregs.interrupt_bitmap[i]) {
998 bit = ctz64(sregs.interrupt_bitmap[i]);
999 env->interrupt_injected = i * 64 + bit;
1000 break;
1001 }
1002 }
05330448
AL
1003
1004 get_seg(&env->segs[R_CS], &sregs.cs);
1005 get_seg(&env->segs[R_DS], &sregs.ds);
1006 get_seg(&env->segs[R_ES], &sregs.es);
1007 get_seg(&env->segs[R_FS], &sregs.fs);
1008 get_seg(&env->segs[R_GS], &sregs.gs);
1009 get_seg(&env->segs[R_SS], &sregs.ss);
1010
1011 get_seg(&env->tr, &sregs.tr);
1012 get_seg(&env->ldt, &sregs.ldt);
1013
1014 env->idt.limit = sregs.idt.limit;
1015 env->idt.base = sregs.idt.base;
1016 env->gdt.limit = sregs.gdt.limit;
1017 env->gdt.base = sregs.gdt.base;
1018
1019 env->cr[0] = sregs.cr0;
1020 env->cr[2] = sregs.cr2;
1021 env->cr[3] = sregs.cr3;
1022 env->cr[4] = sregs.cr4;
1023
4a942cea 1024 cpu_set_apic_base(env->apic_state, sregs.apic_base);
05330448
AL
1025
1026 env->efer = sregs.efer;
4a942cea 1027 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
05330448 1028
b9bec74b
JK
1029#define HFLAG_COPY_MASK \
1030 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1031 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1032 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1033 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
05330448
AL
1034
1035 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1036 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1037 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
b9bec74b 1038 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
05330448
AL
1039 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1040 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
b9bec74b 1041 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
05330448
AL
1042
1043 if (env->efer & MSR_EFER_LMA) {
1044 hflags |= HF_LMA_MASK;
1045 }
1046
1047 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1048 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1049 } else {
1050 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
b9bec74b 1051 (DESC_B_SHIFT - HF_CS32_SHIFT);
05330448 1052 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
b9bec74b
JK
1053 (DESC_B_SHIFT - HF_SS32_SHIFT);
1054 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1055 !(hflags & HF_CS32_MASK)) {
1056 hflags |= HF_ADDSEG_MASK;
1057 } else {
1058 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1059 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1060 }
05330448
AL
1061 }
1062 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
05330448
AL
1063
1064 return 0;
1065}
1066
1067static int kvm_get_msrs(CPUState *env)
1068{
1069 struct {
1070 struct kvm_msrs info;
1071 struct kvm_msr_entry entries[100];
1072 } msr_data;
1073 struct kvm_msr_entry *msrs = msr_data.entries;
1074 int ret, i, n;
1075
1076 n = 0;
1077 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1078 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1079 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
c3a3a7d3 1080 if (has_msr_star) {
b9bec74b
JK
1081 msrs[n++].index = MSR_STAR;
1082 }
c3a3a7d3 1083 if (has_msr_hsave_pa) {
75b10c43 1084 msrs[n++].index = MSR_VM_HSAVE_PA;
b9bec74b 1085 }
b8cc45d6
GC
1086
1087 if (!env->tsc_valid) {
1088 msrs[n++].index = MSR_IA32_TSC;
1089 env->tsc_valid = !vm_running;
1090 }
1091
05330448 1092#ifdef TARGET_X86_64
25d2e361
MT
1093 if (lm_capable_kernel) {
1094 msrs[n++].index = MSR_CSTAR;
1095 msrs[n++].index = MSR_KERNELGSBASE;
1096 msrs[n++].index = MSR_FMASK;
1097 msrs[n++].index = MSR_LSTAR;
1098 }
05330448 1099#endif
1a03675d
GC
1100 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1101 msrs[n++].index = MSR_KVM_WALL_CLOCK;
521f0798 1102#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
c5999bfc
JK
1103 if (has_msr_async_pf_en) {
1104 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1105 }
f6584ee2 1106#endif
1a03675d 1107
57780495
MT
1108#ifdef KVM_CAP_MCE
1109 if (env->mcg_cap) {
1110 msrs[n++].index = MSR_MCG_STATUS;
1111 msrs[n++].index = MSR_MCG_CTL;
b9bec74b 1112 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
57780495 1113 msrs[n++].index = MSR_MC0_CTL + i;
b9bec74b 1114 }
57780495
MT
1115 }
1116#endif
1117
05330448
AL
1118 msr_data.info.nmsrs = n;
1119 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
b9bec74b 1120 if (ret < 0) {
05330448 1121 return ret;
b9bec74b 1122 }
05330448
AL
1123
1124 for (i = 0; i < ret; i++) {
1125 switch (msrs[i].index) {
1126 case MSR_IA32_SYSENTER_CS:
1127 env->sysenter_cs = msrs[i].data;
1128 break;
1129 case MSR_IA32_SYSENTER_ESP:
1130 env->sysenter_esp = msrs[i].data;
1131 break;
1132 case MSR_IA32_SYSENTER_EIP:
1133 env->sysenter_eip = msrs[i].data;
1134 break;
1135 case MSR_STAR:
1136 env->star = msrs[i].data;
1137 break;
1138#ifdef TARGET_X86_64
1139 case MSR_CSTAR:
1140 env->cstar = msrs[i].data;
1141 break;
1142 case MSR_KERNELGSBASE:
1143 env->kernelgsbase = msrs[i].data;
1144 break;
1145 case MSR_FMASK:
1146 env->fmask = msrs[i].data;
1147 break;
1148 case MSR_LSTAR:
1149 env->lstar = msrs[i].data;
1150 break;
1151#endif
1152 case MSR_IA32_TSC:
1153 env->tsc = msrs[i].data;
1154 break;
aa851e36
MT
1155 case MSR_VM_HSAVE_PA:
1156 env->vm_hsave = msrs[i].data;
1157 break;
1a03675d
GC
1158 case MSR_KVM_SYSTEM_TIME:
1159 env->system_time_msr = msrs[i].data;
1160 break;
1161 case MSR_KVM_WALL_CLOCK:
1162 env->wall_clock_msr = msrs[i].data;
1163 break;
57780495
MT
1164#ifdef KVM_CAP_MCE
1165 case MSR_MCG_STATUS:
1166 env->mcg_status = msrs[i].data;
1167 break;
1168 case MSR_MCG_CTL:
1169 env->mcg_ctl = msrs[i].data;
1170 break;
1171#endif
1172 default:
1173#ifdef KVM_CAP_MCE
1174 if (msrs[i].index >= MSR_MC0_CTL &&
1175 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1176 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
57780495
MT
1177 }
1178#endif
d8da8574 1179 break;
521f0798 1180#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
f6584ee2
GN
1181 case MSR_KVM_ASYNC_PF_EN:
1182 env->async_pf_en_msr = msrs[i].data;
1183 break;
1184#endif
05330448
AL
1185 }
1186 }
1187
1188 return 0;
1189}
1190
9bdbe550
HB
1191static int kvm_put_mp_state(CPUState *env)
1192{
1193 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1194
1195 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1196}
1197
1198static int kvm_get_mp_state(CPUState *env)
1199{
1200 struct kvm_mp_state mp_state;
1201 int ret;
1202
1203 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1204 if (ret < 0) {
1205 return ret;
1206 }
1207 env->mp_state = mp_state.mp_state;
c14750e8
JK
1208 if (kvm_irqchip_in_kernel()) {
1209 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1210 }
9bdbe550
HB
1211 return 0;
1212}
1213
ea643051 1214static int kvm_put_vcpu_events(CPUState *env, int level)
a0fb002c
JK
1215{
1216#ifdef KVM_CAP_VCPU_EVENTS
1217 struct kvm_vcpu_events events;
1218
1219 if (!kvm_has_vcpu_events()) {
1220 return 0;
1221 }
1222
31827373
JK
1223 events.exception.injected = (env->exception_injected >= 0);
1224 events.exception.nr = env->exception_injected;
a0fb002c
JK
1225 events.exception.has_error_code = env->has_error_code;
1226 events.exception.error_code = env->error_code;
1227
1228 events.interrupt.injected = (env->interrupt_injected >= 0);
1229 events.interrupt.nr = env->interrupt_injected;
1230 events.interrupt.soft = env->soft_interrupt;
1231
1232 events.nmi.injected = env->nmi_injected;
1233 events.nmi.pending = env->nmi_pending;
1234 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1235
1236 events.sipi_vector = env->sipi_vector;
1237
ea643051
JK
1238 events.flags = 0;
1239 if (level >= KVM_PUT_RESET_STATE) {
1240 events.flags |=
1241 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1242 }
aee028b9 1243
a0fb002c
JK
1244 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1245#else
1246 return 0;
1247#endif
1248}
1249
1250static int kvm_get_vcpu_events(CPUState *env)
1251{
1252#ifdef KVM_CAP_VCPU_EVENTS
1253 struct kvm_vcpu_events events;
1254 int ret;
1255
1256 if (!kvm_has_vcpu_events()) {
1257 return 0;
1258 }
1259
1260 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1261 if (ret < 0) {
1262 return ret;
1263 }
31827373 1264 env->exception_injected =
a0fb002c
JK
1265 events.exception.injected ? events.exception.nr : -1;
1266 env->has_error_code = events.exception.has_error_code;
1267 env->error_code = events.exception.error_code;
1268
1269 env->interrupt_injected =
1270 events.interrupt.injected ? events.interrupt.nr : -1;
1271 env->soft_interrupt = events.interrupt.soft;
1272
1273 env->nmi_injected = events.nmi.injected;
1274 env->nmi_pending = events.nmi.pending;
1275 if (events.nmi.masked) {
1276 env->hflags2 |= HF2_NMI_MASK;
1277 } else {
1278 env->hflags2 &= ~HF2_NMI_MASK;
1279 }
1280
1281 env->sipi_vector = events.sipi_vector;
1282#endif
1283
1284 return 0;
1285}
1286
b0b1d690
JK
1287static int kvm_guest_debug_workarounds(CPUState *env)
1288{
1289 int ret = 0;
1290#ifdef KVM_CAP_SET_GUEST_DEBUG
1291 unsigned long reinject_trap = 0;
1292
1293 if (!kvm_has_vcpu_events()) {
1294 if (env->exception_injected == 1) {
1295 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1296 } else if (env->exception_injected == 3) {
1297 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1298 }
1299 env->exception_injected = -1;
1300 }
1301
1302 /*
1303 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1304 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1305 * by updating the debug state once again if single-stepping is on.
1306 * Another reason to call kvm_update_guest_debug here is a pending debug
1307 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1308 * reinject them via SET_GUEST_DEBUG.
1309 */
1310 if (reinject_trap ||
1311 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1312 ret = kvm_update_guest_debug(env, reinject_trap);
1313 }
1314#endif /* KVM_CAP_SET_GUEST_DEBUG */
1315 return ret;
1316}
1317
ff44f1a3
JK
1318static int kvm_put_debugregs(CPUState *env)
1319{
1320#ifdef KVM_CAP_DEBUGREGS
1321 struct kvm_debugregs dbgregs;
1322 int i;
1323
1324 if (!kvm_has_debugregs()) {
1325 return 0;
1326 }
1327
1328 for (i = 0; i < 4; i++) {
1329 dbgregs.db[i] = env->dr[i];
1330 }
1331 dbgregs.dr6 = env->dr[6];
1332 dbgregs.dr7 = env->dr[7];
1333 dbgregs.flags = 0;
1334
1335 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1336#else
1337 return 0;
1338#endif
1339}
1340
1341static int kvm_get_debugregs(CPUState *env)
1342{
1343#ifdef KVM_CAP_DEBUGREGS
1344 struct kvm_debugregs dbgregs;
1345 int i, ret;
1346
1347 if (!kvm_has_debugregs()) {
1348 return 0;
1349 }
1350
1351 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1352 if (ret < 0) {
b9bec74b 1353 return ret;
ff44f1a3
JK
1354 }
1355 for (i = 0; i < 4; i++) {
1356 env->dr[i] = dbgregs.db[i];
1357 }
1358 env->dr[4] = env->dr[6] = dbgregs.dr6;
1359 env->dr[5] = env->dr[7] = dbgregs.dr7;
1360#endif
1361
1362 return 0;
1363}
1364
ea375f9a 1365int kvm_arch_put_registers(CPUState *env, int level)
05330448
AL
1366{
1367 int ret;
1368
b7680cb6 1369 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1370
05330448 1371 ret = kvm_getput_regs(env, 1);
b9bec74b 1372 if (ret < 0) {
05330448 1373 return ret;
b9bec74b 1374 }
f1665b21 1375 ret = kvm_put_xsave(env);
b9bec74b 1376 if (ret < 0) {
f1665b21 1377 return ret;
b9bec74b 1378 }
f1665b21 1379 ret = kvm_put_xcrs(env);
b9bec74b 1380 if (ret < 0) {
05330448 1381 return ret;
b9bec74b 1382 }
05330448 1383 ret = kvm_put_sregs(env);
b9bec74b 1384 if (ret < 0) {
05330448 1385 return ret;
b9bec74b 1386 }
ab443475
JK
1387 /* must be before kvm_put_msrs */
1388 ret = kvm_inject_mce_oldstyle(env);
1389 if (ret < 0) {
1390 return ret;
1391 }
ea643051 1392 ret = kvm_put_msrs(env, level);
b9bec74b 1393 if (ret < 0) {
05330448 1394 return ret;
b9bec74b 1395 }
ea643051
JK
1396 if (level >= KVM_PUT_RESET_STATE) {
1397 ret = kvm_put_mp_state(env);
b9bec74b 1398 if (ret < 0) {
ea643051 1399 return ret;
b9bec74b 1400 }
ea643051 1401 }
ea643051 1402 ret = kvm_put_vcpu_events(env, level);
b9bec74b 1403 if (ret < 0) {
a0fb002c 1404 return ret;
b9bec74b 1405 }
0d75a9ec 1406 ret = kvm_put_debugregs(env);
b9bec74b 1407 if (ret < 0) {
b0b1d690 1408 return ret;
b9bec74b 1409 }
b0b1d690
JK
1410 /* must be last */
1411 ret = kvm_guest_debug_workarounds(env);
b9bec74b 1412 if (ret < 0) {
ff44f1a3 1413 return ret;
b9bec74b 1414 }
05330448
AL
1415 return 0;
1416}
1417
1418int kvm_arch_get_registers(CPUState *env)
1419{
1420 int ret;
1421
b7680cb6 1422 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
dbaa07c4 1423
05330448 1424 ret = kvm_getput_regs(env, 0);
b9bec74b 1425 if (ret < 0) {
05330448 1426 return ret;
b9bec74b 1427 }
f1665b21 1428 ret = kvm_get_xsave(env);
b9bec74b 1429 if (ret < 0) {
f1665b21 1430 return ret;
b9bec74b 1431 }
f1665b21 1432 ret = kvm_get_xcrs(env);
b9bec74b 1433 if (ret < 0) {
05330448 1434 return ret;
b9bec74b 1435 }
05330448 1436 ret = kvm_get_sregs(env);
b9bec74b 1437 if (ret < 0) {
05330448 1438 return ret;
b9bec74b 1439 }
05330448 1440 ret = kvm_get_msrs(env);
b9bec74b 1441 if (ret < 0) {
05330448 1442 return ret;
b9bec74b 1443 }
5a2e3c2e 1444 ret = kvm_get_mp_state(env);
b9bec74b 1445 if (ret < 0) {
5a2e3c2e 1446 return ret;
b9bec74b 1447 }
a0fb002c 1448 ret = kvm_get_vcpu_events(env);
b9bec74b 1449 if (ret < 0) {
a0fb002c 1450 return ret;
b9bec74b 1451 }
ff44f1a3 1452 ret = kvm_get_debugregs(env);
b9bec74b 1453 if (ret < 0) {
ff44f1a3 1454 return ret;
b9bec74b 1455 }
05330448
AL
1456 return 0;
1457}
1458
7a39fe58 1459void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
05330448 1460{
ce377af3
JK
1461 int ret;
1462
276ce815
LJ
1463 /* Inject NMI */
1464 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1465 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1466 DPRINTF("injected NMI\n");
ce377af3
JK
1467 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1468 if (ret < 0) {
1469 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1470 strerror(-ret));
1471 }
276ce815
LJ
1472 }
1473
db1669bc
JK
1474 if (!kvm_irqchip_in_kernel()) {
1475 /* Force the VCPU out of its inner loop to process the INIT request */
1476 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1477 env->exit_request = 1;
05330448 1478 }
05330448 1479
db1669bc
JK
1480 /* Try to inject an interrupt if the guest can accept it */
1481 if (run->ready_for_interrupt_injection &&
1482 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1483 (env->eflags & IF_MASK)) {
1484 int irq;
1485
1486 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1487 irq = cpu_get_pic_interrupt(env);
1488 if (irq >= 0) {
1489 struct kvm_interrupt intr;
1490
1491 intr.irq = irq;
db1669bc 1492 DPRINTF("injected interrupt %d\n", irq);
ce377af3
JK
1493 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1494 if (ret < 0) {
1495 fprintf(stderr,
1496 "KVM: injection failed, interrupt lost (%s)\n",
1497 strerror(-ret));
1498 }
db1669bc
JK
1499 }
1500 }
05330448 1501
db1669bc
JK
1502 /* If we have an interrupt but the guest is not ready to receive an
1503 * interrupt, request an interrupt window exit. This will
1504 * cause a return to userspace as soon as the guest is ready to
1505 * receive interrupts. */
1506 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1507 run->request_interrupt_window = 1;
1508 } else {
1509 run->request_interrupt_window = 0;
1510 }
1511
1512 DPRINTF("setting tpr\n");
1513 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1514 }
05330448
AL
1515}
1516
7a39fe58 1517void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
05330448 1518{
b9bec74b 1519 if (run->if_flag) {
05330448 1520 env->eflags |= IF_MASK;
b9bec74b 1521 } else {
05330448 1522 env->eflags &= ~IF_MASK;
b9bec74b 1523 }
4a942cea
BS
1524 cpu_set_apic_tpr(env->apic_state, run->cr8);
1525 cpu_set_apic_base(env->apic_state, run->apic_base);
05330448
AL
1526}
1527
99036865 1528int kvm_arch_process_async_events(CPUState *env)
0af691d7 1529{
ab443475
JK
1530 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1531 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1532 assert(env->mcg_cap);
1533
1534 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1535
1536 kvm_cpu_synchronize_state(env);
1537
1538 if (env->exception_injected == EXCP08_DBLE) {
1539 /* this means triple fault */
1540 qemu_system_reset_request();
1541 env->exit_request = 1;
1542 return 0;
1543 }
1544 env->exception_injected = EXCP12_MCHK;
1545 env->has_error_code = 0;
1546
1547 env->halted = 0;
1548 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1549 env->mp_state = KVM_MP_STATE_RUNNABLE;
1550 }
1551 }
1552
db1669bc
JK
1553 if (kvm_irqchip_in_kernel()) {
1554 return 0;
1555 }
1556
6792a57b
JK
1557 if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1558 env->halted = 0;
1559 }
0af691d7
MT
1560 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1561 kvm_cpu_synchronize_state(env);
1562 do_cpu_init(env);
0af691d7 1563 }
0af691d7
MT
1564 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1565 kvm_cpu_synchronize_state(env);
1566 do_cpu_sipi(env);
1567 }
1568
1569 return env->halted;
1570}
1571
05330448
AL
1572static int kvm_handle_halt(CPUState *env)
1573{
1574 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1575 (env->eflags & IF_MASK)) &&
1576 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1577 env->halted = 1;
05330448
AL
1578 return 0;
1579 }
1580
1581 return 1;
1582}
1583
bb44e0d1
JK
1584static bool host_supports_vmx(void)
1585{
1586 uint32_t ecx, unused;
1587
1588 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1589 return ecx & CPUID_EXT_VMX;
1590}
1591
1592#define VMX_INVALID_GUEST_STATE 0x80000021
1593
05330448
AL
1594int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1595{
bb44e0d1 1596 uint64_t code;
05330448
AL
1597 int ret = 0;
1598
1599 switch (run->exit_reason) {
1600 case KVM_EXIT_HLT:
8c0d577e 1601 DPRINTF("handle_hlt\n");
05330448
AL
1602 ret = kvm_handle_halt(env);
1603 break;
646042e1
JK
1604 case KVM_EXIT_SET_TPR:
1605 ret = 1;
1606 break;
bb44e0d1
JK
1607 case KVM_EXIT_FAIL_ENTRY:
1608 code = run->fail_entry.hardware_entry_failure_reason;
1609 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1610 code);
1611 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1612 fprintf(stderr,
1613 "\nIf you're runnning a guest on an Intel machine without "
1614 "unrestricted mode\n"
1615 "support, the failure can be most likely due to the guest "
1616 "entering an invalid\n"
1617 "state for Intel VT. For example, the guest maybe running "
1618 "in big real mode\n"
1619 "which is not supported on less recent Intel processors."
1620 "\n\n");
1621 }
1622 ret = -1;
1623 break;
1624 case KVM_EXIT_EXCEPTION:
1625 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1626 run->ex.exception, run->ex.error_code);
1627 ret = -1;
1628 break;
73aaec4a
JK
1629 default:
1630 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1631 ret = -1;
1632 break;
05330448
AL
1633 }
1634
1635 return ret;
1636}
e22a25c9
AL
1637
1638#ifdef KVM_CAP_SET_GUEST_DEBUG
e22a25c9
AL
1639int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1640{
38972938 1641 static const uint8_t int3 = 0xcc;
64bf3f4e 1642
e22a25c9 1643 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
b9bec74b 1644 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
e22a25c9 1645 return -EINVAL;
b9bec74b 1646 }
e22a25c9
AL
1647 return 0;
1648}
1649
1650int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1651{
1652 uint8_t int3;
1653
1654 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
b9bec74b 1655 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
e22a25c9 1656 return -EINVAL;
b9bec74b 1657 }
e22a25c9
AL
1658 return 0;
1659}
1660
1661static struct {
1662 target_ulong addr;
1663 int len;
1664 int type;
1665} hw_breakpoint[4];
1666
1667static int nb_hw_breakpoint;
1668
1669static int find_hw_breakpoint(target_ulong addr, int len, int type)
1670{
1671 int n;
1672
b9bec74b 1673 for (n = 0; n < nb_hw_breakpoint; n++) {
e22a25c9 1674 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
b9bec74b 1675 (hw_breakpoint[n].len == len || len == -1)) {
e22a25c9 1676 return n;
b9bec74b
JK
1677 }
1678 }
e22a25c9
AL
1679 return -1;
1680}
1681
1682int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1683 target_ulong len, int type)
1684{
1685 switch (type) {
1686 case GDB_BREAKPOINT_HW:
1687 len = 1;
1688 break;
1689 case GDB_WATCHPOINT_WRITE:
1690 case GDB_WATCHPOINT_ACCESS:
1691 switch (len) {
1692 case 1:
1693 break;
1694 case 2:
1695 case 4:
1696 case 8:
b9bec74b 1697 if (addr & (len - 1)) {
e22a25c9 1698 return -EINVAL;
b9bec74b 1699 }
e22a25c9
AL
1700 break;
1701 default:
1702 return -EINVAL;
1703 }
1704 break;
1705 default:
1706 return -ENOSYS;
1707 }
1708
b9bec74b 1709 if (nb_hw_breakpoint == 4) {
e22a25c9 1710 return -ENOBUFS;
b9bec74b
JK
1711 }
1712 if (find_hw_breakpoint(addr, len, type) >= 0) {
e22a25c9 1713 return -EEXIST;
b9bec74b 1714 }
e22a25c9
AL
1715 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1716 hw_breakpoint[nb_hw_breakpoint].len = len;
1717 hw_breakpoint[nb_hw_breakpoint].type = type;
1718 nb_hw_breakpoint++;
1719
1720 return 0;
1721}
1722
1723int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1724 target_ulong len, int type)
1725{
1726 int n;
1727
1728 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
b9bec74b 1729 if (n < 0) {
e22a25c9 1730 return -ENOENT;
b9bec74b 1731 }
e22a25c9
AL
1732 nb_hw_breakpoint--;
1733 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1734
1735 return 0;
1736}
1737
1738void kvm_arch_remove_all_hw_breakpoints(void)
1739{
1740 nb_hw_breakpoint = 0;
1741}
1742
1743static CPUWatchpoint hw_watchpoint;
1744
1745int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1746{
1747 int handle = 0;
1748 int n;
1749
1750 if (arch_info->exception == 1) {
1751 if (arch_info->dr6 & (1 << 14)) {
b9bec74b 1752 if (cpu_single_env->singlestep_enabled) {
e22a25c9 1753 handle = 1;
b9bec74b 1754 }
e22a25c9 1755 } else {
b9bec74b
JK
1756 for (n = 0; n < 4; n++) {
1757 if (arch_info->dr6 & (1 << n)) {
e22a25c9
AL
1758 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1759 case 0x0:
1760 handle = 1;
1761 break;
1762 case 0x1:
1763 handle = 1;
1764 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1765 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1766 hw_watchpoint.flags = BP_MEM_WRITE;
1767 break;
1768 case 0x3:
1769 handle = 1;
1770 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1771 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1772 hw_watchpoint.flags = BP_MEM_ACCESS;
1773 break;
1774 }
b9bec74b
JK
1775 }
1776 }
e22a25c9 1777 }
b9bec74b 1778 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
e22a25c9 1779 handle = 1;
b9bec74b 1780 }
b0b1d690
JK
1781 if (!handle) {
1782 cpu_synchronize_state(cpu_single_env);
1783 assert(cpu_single_env->exception_injected == -1);
1784
1785 cpu_single_env->exception_injected = arch_info->exception;
1786 cpu_single_env->has_error_code = 0;
1787 }
e22a25c9
AL
1788
1789 return handle;
1790}
1791
1792void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1793{
1794 const uint8_t type_code[] = {
1795 [GDB_BREAKPOINT_HW] = 0x0,
1796 [GDB_WATCHPOINT_WRITE] = 0x1,
1797 [GDB_WATCHPOINT_ACCESS] = 0x3
1798 };
1799 const uint8_t len_code[] = {
1800 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1801 };
1802 int n;
1803
b9bec74b 1804 if (kvm_sw_breakpoints_active(env)) {
e22a25c9 1805 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
b9bec74b 1806 }
e22a25c9
AL
1807 if (nb_hw_breakpoint > 0) {
1808 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1809 dbg->arch.debugreg[7] = 0x0600;
1810 for (n = 0; n < nb_hw_breakpoint; n++) {
1811 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1812 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1813 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
95c077c9 1814 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
e22a25c9
AL
1815 }
1816 }
1817}
1818#endif /* KVM_CAP_SET_GUEST_DEBUG */
4513d923
GN
1819
1820bool kvm_arch_stop_on_emulation_error(CPUState *env)
1821{
b9bec74b
JK
1822 return !(env->cr[0] & CR0_PE_MASK) ||
1823 ((env->segs[R_CS].selector & 3) != 3);
4513d923 1824}