]> git.proxmox.com Git - qemu.git/blame - target-ppc/kvm.c
qom: move include files to include/qom/
[qemu.git] / target-ppc / kvm.c
CommitLineData
d76d1650
AJ
1/*
2 * PowerPC implementation of KVM hooks
3 *
4 * Copyright IBM Corp. 2007
90dc8812 5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
d76d1650
AJ
6 *
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
14 *
15 */
16
eadaada1 17#include <dirent.h>
d76d1650
AJ
18#include <sys/types.h>
19#include <sys/ioctl.h>
20#include <sys/mman.h>
4656e1f0 21#include <sys/vfs.h>
d76d1650
AJ
22
23#include <linux/kvm.h>
24
25#include "qemu-common.h"
26#include "qemu-timer.h"
27#include "sysemu.h"
28#include "kvm.h"
29#include "kvm_ppc.h"
30#include "cpu.h"
12b1143b 31#include "cpus.h"
d76d1650 32#include "device_tree.h"
0f5cb298 33#include "hw/sysbus.h"
e97c3636 34#include "hw/spapr.h"
d76d1650 35
f61b4bed
AG
36#include "hw/sysbus.h"
37#include "hw/spapr.h"
38#include "hw/spapr_vio.h"
39
d76d1650
AJ
40//#define DEBUG_KVM
41
42#ifdef DEBUG_KVM
43#define dprintf(fmt, ...) \
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45#else
46#define dprintf(fmt, ...) \
47 do { } while (0)
48#endif
49
eadaada1
AG
50#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
51
94a8d39a
JK
52const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
53 KVM_CAP_LAST_INFO
54};
55
fc87e185
AG
56static int cap_interrupt_unset = false;
57static int cap_interrupt_level = false;
90dc8812 58static int cap_segstate;
90dc8812 59static int cap_booke_sregs;
e97c3636 60static int cap_ppc_smt;
354ac20a 61static int cap_ppc_rma;
0f5cb298 62static int cap_spapr_tce;
f1af19d7 63static int cap_hior;
fc87e185 64
c821c2bd
AG
65/* XXX We have a race condition where we actually have a level triggered
66 * interrupt, but the infrastructure can't expose that yet, so the guest
67 * takes but ignores it, goes to sleep and never gets notified that there's
68 * still an interrupt pending.
c6a94ba5 69 *
c821c2bd
AG
70 * As a quick workaround, let's just wake up again 20 ms after we injected
71 * an interrupt. That way we can assure that we're always reinjecting
72 * interrupts in case the guest swallowed them.
c6a94ba5
AG
73 */
74static QEMUTimer *idle_timer;
75
d5a68146 76static void kvm_kick_cpu(void *opaque)
c6a94ba5 77{
d5a68146 78 PowerPCCPU *cpu = opaque;
d5a68146 79
c08d7424 80 qemu_cpu_kick(CPU(cpu));
c6a94ba5
AG
81}
82
cad1e282 83int kvm_arch_init(KVMState *s)
d76d1650 84{
fc87e185 85 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
fc87e185 86 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
90dc8812 87 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
90dc8812 88 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
e97c3636 89 cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
354ac20a 90 cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
0f5cb298 91 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
f1af19d7 92 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
fc87e185
AG
93
94 if (!cap_interrupt_level) {
95 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
96 "VM to stall at times!\n");
97 }
98
d76d1650
AJ
99 return 0;
100}
101
1328c2bf 102static int kvm_arch_sync_sregs(CPUPPCState *cenv)
d76d1650 103{
861bbc80 104 struct kvm_sregs sregs;
5666ca4a
SW
105 int ret;
106
107 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
64e07be5
AG
108 /* What we're really trying to say is "if we're on BookE, we use
109 the native PVR for now". This is the only sane way to check
110 it though, so we potentially confuse users that they can run
111 BookE guests on BookS. Let's hope nobody dares enough :) */
5666ca4a
SW
112 return 0;
113 } else {
90dc8812 114 if (!cap_segstate) {
64e07be5
AG
115 fprintf(stderr, "kvm error: missing PVR setting capability\n");
116 return -ENOSYS;
5666ca4a 117 }
5666ca4a
SW
118 }
119
120 ret = kvm_vcpu_ioctl(cenv, KVM_GET_SREGS, &sregs);
121 if (ret) {
122 return ret;
123 }
861bbc80
AG
124
125 sregs.pvr = cenv->spr[SPR_PVR];
5666ca4a
SW
126 return kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
127}
128
93dd5e85 129/* Set up a shared TLB array with KVM */
1328c2bf 130static int kvm_booke206_tlb_init(CPUPPCState *env)
93dd5e85
SW
131{
132 struct kvm_book3e_206_tlb_params params = {};
133 struct kvm_config_tlb cfg = {};
134 struct kvm_enable_cap encap = {};
135 unsigned int entries = 0;
136 int ret, i;
137
138 if (!kvm_enabled() ||
139 !kvm_check_extension(env->kvm_state, KVM_CAP_SW_TLB)) {
140 return 0;
141 }
142
143 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
144
145 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
146 params.tlb_sizes[i] = booke206_tlb_size(env, i);
147 params.tlb_ways[i] = booke206_tlb_ways(env, i);
148 entries += params.tlb_sizes[i];
149 }
150
151 assert(entries == env->nb_tlb);
152 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
153
154 env->tlb_dirty = true;
155
156 cfg.array = (uintptr_t)env->tlb.tlbm;
157 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
158 cfg.params = (uintptr_t)&params;
159 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
160
161 encap.cap = KVM_CAP_SW_TLB;
162 encap.args[0] = (uintptr_t)&cfg;
163
164 ret = kvm_vcpu_ioctl(env, KVM_ENABLE_CAP, &encap);
165 if (ret < 0) {
166 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
167 __func__, strerror(-ret));
168 return ret;
169 }
170
171 env->kvm_sw_tlb = true;
172 return 0;
173}
174
4656e1f0
BH
175
176#if defined(TARGET_PPC64)
177static void kvm_get_fallback_smmu_info(CPUPPCState *env,
178 struct kvm_ppc_smmu_info *info)
179{
180 memset(info, 0, sizeof(*info));
181
182 /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
183 * need to "guess" what the supported page sizes are.
184 *
185 * For that to work we make a few assumptions:
186 *
187 * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
188 * KVM which only supports 4K and 16M pages, but supports them
189 * regardless of the backing store characteritics. We also don't
190 * support 1T segments.
191 *
192 * This is safe as if HV KVM ever supports that capability or PR
193 * KVM grows supports for more page/segment sizes, those versions
194 * will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
195 * will not hit this fallback
196 *
197 * - Else we are running HV KVM. This means we only support page
198 * sizes that fit in the backing store. Additionally we only
199 * advertize 64K pages if the processor is ARCH 2.06 and we assume
200 * P7 encodings for the SLB and hash table. Here too, we assume
201 * support for any newer processor will mean a kernel that
202 * implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
203 * this fallback.
204 */
205 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
206 /* No flags */
207 info->flags = 0;
208 info->slb_size = 64;
209
210 /* Standard 4k base page size segment */
211 info->sps[0].page_shift = 12;
212 info->sps[0].slb_enc = 0;
213 info->sps[0].enc[0].page_shift = 12;
214 info->sps[0].enc[0].pte_enc = 0;
215
216 /* Standard 16M large page size segment */
217 info->sps[1].page_shift = 24;
218 info->sps[1].slb_enc = SLB_VSID_L;
219 info->sps[1].enc[0].page_shift = 24;
220 info->sps[1].enc[0].pte_enc = 0;
221 } else {
222 int i = 0;
223
224 /* HV KVM has backing store size restrictions */
225 info->flags = KVM_PPC_PAGE_SIZES_REAL;
226
227 if (env->mmu_model & POWERPC_MMU_1TSEG) {
228 info->flags |= KVM_PPC_1T_SEGMENTS;
229 }
230
231 if (env->mmu_model == POWERPC_MMU_2_06) {
232 info->slb_size = 32;
233 } else {
234 info->slb_size = 64;
235 }
236
237 /* Standard 4k base page size segment */
238 info->sps[i].page_shift = 12;
239 info->sps[i].slb_enc = 0;
240 info->sps[i].enc[0].page_shift = 12;
241 info->sps[i].enc[0].pte_enc = 0;
242 i++;
243
244 /* 64K on MMU 2.06 */
245 if (env->mmu_model == POWERPC_MMU_2_06) {
246 info->sps[i].page_shift = 16;
247 info->sps[i].slb_enc = 0x110;
248 info->sps[i].enc[0].page_shift = 16;
249 info->sps[i].enc[0].pte_enc = 1;
250 i++;
251 }
252
253 /* Standard 16M large page size segment */
254 info->sps[i].page_shift = 24;
255 info->sps[i].slb_enc = SLB_VSID_L;
256 info->sps[i].enc[0].page_shift = 24;
257 info->sps[i].enc[0].pte_enc = 0;
258 }
259}
260
261static void kvm_get_smmu_info(CPUPPCState *env, struct kvm_ppc_smmu_info *info)
262{
263 int ret;
264
265 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
266 ret = kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
267 if (ret == 0) {
268 return;
269 }
270 }
271
272 kvm_get_fallback_smmu_info(env, info);
273}
274
275static long getrampagesize(void)
276{
277 struct statfs fs;
278 int ret;
279
280 if (!mem_path) {
281 /* guest RAM is backed by normal anonymous pages */
282 return getpagesize();
283 }
284
285 do {
286 ret = statfs(mem_path, &fs);
287 } while (ret != 0 && errno == EINTR);
288
289 if (ret != 0) {
290 fprintf(stderr, "Couldn't statfs() memory path: %s\n",
291 strerror(errno));
292 exit(1);
293 }
294
295#define HUGETLBFS_MAGIC 0x958458f6
296
297 if (fs.f_type != HUGETLBFS_MAGIC) {
298 /* Explicit mempath, but it's ordinary pages */
299 return getpagesize();
300 }
301
302 /* It's hugepage, return the huge page size */
303 return fs.f_bsize;
304}
305
306static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
307{
308 if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
309 return true;
310 }
311
312 return (1ul << shift) <= rampgsize;
313}
314
315static void kvm_fixup_page_sizes(CPUPPCState *env)
316{
317 static struct kvm_ppc_smmu_info smmu_info;
318 static bool has_smmu_info;
319 long rampagesize;
320 int iq, ik, jq, jk;
321
322 /* We only handle page sizes for 64-bit server guests for now */
323 if (!(env->mmu_model & POWERPC_MMU_64)) {
324 return;
325 }
326
327 /* Collect MMU info from kernel if not already */
328 if (!has_smmu_info) {
329 kvm_get_smmu_info(env, &smmu_info);
330 has_smmu_info = true;
331 }
332
333 rampagesize = getrampagesize();
334
335 /* Convert to QEMU form */
336 memset(&env->sps, 0, sizeof(env->sps));
337
338 for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
339 struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
340 struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];
341
342 if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
343 ksps->page_shift)) {
344 continue;
345 }
346 qsps->page_shift = ksps->page_shift;
347 qsps->slb_enc = ksps->slb_enc;
348 for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
349 if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
350 ksps->enc[jk].page_shift)) {
351 continue;
352 }
353 qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
354 qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
355 if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
356 break;
357 }
358 }
359 if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
360 break;
361 }
362 }
363 env->slb_nr = smmu_info.slb_size;
364 if (smmu_info.flags & KVM_PPC_1T_SEGMENTS) {
365 env->mmu_model |= POWERPC_MMU_1TSEG;
366 } else {
367 env->mmu_model &= ~POWERPC_MMU_1TSEG;
368 }
369}
370#else /* defined (TARGET_PPC64) */
371
372static inline void kvm_fixup_page_sizes(CPUPPCState *env)
373{
374}
375
376#endif /* !defined (TARGET_PPC64) */
377
1328c2bf 378int kvm_arch_init_vcpu(CPUPPCState *cenv)
5666ca4a 379{
d5a68146 380 PowerPCCPU *cpu = ppc_env_get_cpu(cenv);
5666ca4a
SW
381 int ret;
382
4656e1f0
BH
383 /* Gather server mmu info from KVM and update the CPU state */
384 kvm_fixup_page_sizes(cenv);
385
386 /* Synchronize sregs with kvm */
5666ca4a
SW
387 ret = kvm_arch_sync_sregs(cenv);
388 if (ret) {
389 return ret;
390 }
861bbc80 391
d5a68146 392 idle_timer = qemu_new_timer_ns(vm_clock, kvm_kick_cpu, cpu);
c821c2bd 393
93dd5e85
SW
394 /* Some targets support access to KVM's guest TLB. */
395 switch (cenv->mmu_model) {
396 case POWERPC_MMU_BOOKE206:
397 ret = kvm_booke206_tlb_init(cenv);
398 break;
399 default:
400 break;
401 }
402
861bbc80 403 return ret;
d76d1650
AJ
404}
405
1328c2bf 406void kvm_arch_reset_vcpu(CPUPPCState *env)
caa5af0f
JK
407{
408}
409
1328c2bf 410static void kvm_sw_tlb_put(CPUPPCState *env)
93dd5e85
SW
411{
412 struct kvm_dirty_tlb dirty_tlb;
413 unsigned char *bitmap;
414 int ret;
415
416 if (!env->kvm_sw_tlb) {
417 return;
418 }
419
420 bitmap = g_malloc((env->nb_tlb + 7) / 8);
421 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
422
423 dirty_tlb.bitmap = (uintptr_t)bitmap;
424 dirty_tlb.num_dirty = env->nb_tlb;
425
426 ret = kvm_vcpu_ioctl(env, KVM_DIRTY_TLB, &dirty_tlb);
427 if (ret) {
428 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
429 __func__, strerror(-ret));
430 }
431
432 g_free(bitmap);
433}
434
1328c2bf 435int kvm_arch_put_registers(CPUPPCState *env, int level)
d76d1650
AJ
436{
437 struct kvm_regs regs;
438 int ret;
439 int i;
440
441 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
442 if (ret < 0)
443 return ret;
444
445 regs.ctr = env->ctr;
446 regs.lr = env->lr;
447 regs.xer = env->xer;
448 regs.msr = env->msr;
449 regs.pc = env->nip;
450
451 regs.srr0 = env->spr[SPR_SRR0];
452 regs.srr1 = env->spr[SPR_SRR1];
453
454 regs.sprg0 = env->spr[SPR_SPRG0];
455 regs.sprg1 = env->spr[SPR_SPRG1];
456 regs.sprg2 = env->spr[SPR_SPRG2];
457 regs.sprg3 = env->spr[SPR_SPRG3];
458 regs.sprg4 = env->spr[SPR_SPRG4];
459 regs.sprg5 = env->spr[SPR_SPRG5];
460 regs.sprg6 = env->spr[SPR_SPRG6];
461 regs.sprg7 = env->spr[SPR_SPRG7];
462
90dc8812
SW
463 regs.pid = env->spr[SPR_BOOKE_PID];
464
d76d1650
AJ
465 for (i = 0;i < 32; i++)
466 regs.gpr[i] = env->gpr[i];
467
468 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
469 if (ret < 0)
470 return ret;
471
93dd5e85
SW
472 if (env->tlb_dirty) {
473 kvm_sw_tlb_put(env);
474 env->tlb_dirty = false;
475 }
476
f1af19d7
DG
477 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
478 struct kvm_sregs sregs;
479
480 sregs.pvr = env->spr[SPR_PVR];
481
482 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
483
484 /* Sync SLB */
485#ifdef TARGET_PPC64
486 for (i = 0; i < 64; i++) {
487 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
488 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
489 }
490#endif
491
492 /* Sync SRs */
493 for (i = 0; i < 16; i++) {
494 sregs.u.s.ppc32.sr[i] = env->sr[i];
495 }
496
497 /* Sync BATs */
498 for (i = 0; i < 8; i++) {
ef8beb0e
AG
499 /* Beware. We have to swap upper and lower bits here */
500 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
501 | env->DBAT[1][i];
502 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
503 | env->IBAT[1][i];
f1af19d7
DG
504 }
505
506 ret = kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
507 if (ret) {
508 return ret;
509 }
510 }
511
512 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
513 uint64_t hior = env->spr[SPR_HIOR];
514 struct kvm_one_reg reg = {
515 .id = KVM_REG_PPC_HIOR,
516 .addr = (uintptr_t) &hior,
517 };
518
519 ret = kvm_vcpu_ioctl(env, KVM_SET_ONE_REG, &reg);
520 if (ret) {
521 return ret;
522 }
523 }
524
d76d1650
AJ
525 return ret;
526}
527
1328c2bf 528int kvm_arch_get_registers(CPUPPCState *env)
d76d1650
AJ
529{
530 struct kvm_regs regs;
ba5e5090 531 struct kvm_sregs sregs;
90dc8812 532 uint32_t cr;
138b38b6 533 int i, ret;
d76d1650
AJ
534
535 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
536 if (ret < 0)
537 return ret;
538
90dc8812
SW
539 cr = regs.cr;
540 for (i = 7; i >= 0; i--) {
541 env->crf[i] = cr & 15;
542 cr >>= 4;
543 }
ba5e5090 544
d76d1650
AJ
545 env->ctr = regs.ctr;
546 env->lr = regs.lr;
547 env->xer = regs.xer;
548 env->msr = regs.msr;
549 env->nip = regs.pc;
550
551 env->spr[SPR_SRR0] = regs.srr0;
552 env->spr[SPR_SRR1] = regs.srr1;
553
554 env->spr[SPR_SPRG0] = regs.sprg0;
555 env->spr[SPR_SPRG1] = regs.sprg1;
556 env->spr[SPR_SPRG2] = regs.sprg2;
557 env->spr[SPR_SPRG3] = regs.sprg3;
558 env->spr[SPR_SPRG4] = regs.sprg4;
559 env->spr[SPR_SPRG5] = regs.sprg5;
560 env->spr[SPR_SPRG6] = regs.sprg6;
561 env->spr[SPR_SPRG7] = regs.sprg7;
562
90dc8812
SW
563 env->spr[SPR_BOOKE_PID] = regs.pid;
564
d76d1650
AJ
565 for (i = 0;i < 32; i++)
566 env->gpr[i] = regs.gpr[i];
567
90dc8812
SW
568 if (cap_booke_sregs) {
569 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
570 if (ret < 0) {
571 return ret;
572 }
573
574 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
575 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
576 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
577 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
578 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
579 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
580 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
581 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
582 env->spr[SPR_DECR] = sregs.u.e.dec;
583 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
584 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
585 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
586 }
587
588 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
589 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
590 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
591 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
592 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
593 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
594 }
595
596 if (sregs.u.e.features & KVM_SREGS_E_64) {
597 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
598 }
599
600 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
601 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
602 }
603
604 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
605 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
606 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
607 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
608 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
609 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
610 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
611 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
612 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
613 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
614 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
615 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
616 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
617 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
618 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
619 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
620 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
621
622 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
623 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
624 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
625 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
626 }
627
628 if (sregs.u.e.features & KVM_SREGS_E_PM) {
629 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
630 }
631
632 if (sregs.u.e.features & KVM_SREGS_E_PC) {
633 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
634 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
635 }
636 }
637
638 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
639 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
640 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
641 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
642 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
643 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
644 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
645 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
646 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
647 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
648 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
649 }
650
651 if (sregs.u.e.features & KVM_SREGS_EXP) {
652 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
653 }
654
655 if (sregs.u.e.features & KVM_SREGS_E_PD) {
656 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
657 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
658 }
659
660 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
661 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
662 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
663 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
664
665 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
666 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
667 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
668 }
669 }
fafc0b6a 670 }
90dc8812 671
90dc8812
SW
672 if (cap_segstate) {
673 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
674 if (ret < 0) {
675 return ret;
676 }
677
bb593904 678 ppc_store_sdr1(env, sregs.u.s.sdr1);
ba5e5090
AG
679
680 /* Sync SLB */
82c09f2f 681#ifdef TARGET_PPC64
ba5e5090
AG
682 for (i = 0; i < 64; i++) {
683 ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
684 sregs.u.s.ppc64.slb[i].slbv);
685 }
82c09f2f 686#endif
ba5e5090
AG
687
688 /* Sync SRs */
689 for (i = 0; i < 16; i++) {
690 env->sr[i] = sregs.u.s.ppc32.sr[i];
691 }
692
693 /* Sync BATs */
694 for (i = 0; i < 8; i++) {
695 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
696 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
697 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
698 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
699 }
fafc0b6a 700 }
ba5e5090 701
d76d1650
AJ
702 return 0;
703}
704
1328c2bf 705int kvmppc_set_interrupt(CPUPPCState *env, int irq, int level)
fc87e185
AG
706{
707 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
708
709 if (irq != PPC_INTERRUPT_EXT) {
710 return 0;
711 }
712
713 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
714 return 0;
715 }
716
717 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq);
718
719 return 0;
720}
721
16415335
AG
722#if defined(TARGET_PPCEMB)
723#define PPC_INPUT_INT PPC40x_INPUT_INT
724#elif defined(TARGET_PPC64)
725#define PPC_INPUT_INT PPC970_INPUT_INT
726#else
727#define PPC_INPUT_INT PPC6xx_INPUT_INT
728#endif
729
1328c2bf 730void kvm_arch_pre_run(CPUPPCState *env, struct kvm_run *run)
d76d1650
AJ
731{
732 int r;
733 unsigned irq;
734
5cbdb3a3 735 /* PowerPC QEMU tracks the various core input pins (interrupt, critical
d76d1650 736 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
fc87e185
AG
737 if (!cap_interrupt_level &&
738 run->ready_for_interrupt_injection &&
d76d1650 739 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
16415335 740 (env->irq_input_state & (1<<PPC_INPUT_INT)))
d76d1650
AJ
741 {
742 /* For now KVM disregards the 'irq' argument. However, in the
743 * future KVM could cache it in-kernel to avoid a heavyweight exit
744 * when reading the UIC.
745 */
fc87e185 746 irq = KVM_INTERRUPT_SET;
d76d1650
AJ
747
748 dprintf("injected interrupt %d\n", irq);
749 r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
750 if (r < 0)
751 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
c821c2bd
AG
752
753 /* Always wake up soon in case the interrupt was level based */
74475455 754 qemu_mod_timer(idle_timer, qemu_get_clock_ns(vm_clock) +
c821c2bd 755 (get_ticks_per_sec() / 50));
d76d1650
AJ
756 }
757
758 /* We don't know if there are more interrupts pending after this. However,
759 * the guest will return to userspace in the course of handling this one
760 * anyways, so we will get a chance to deliver the rest. */
d76d1650
AJ
761}
762
1328c2bf 763void kvm_arch_post_run(CPUPPCState *env, struct kvm_run *run)
d76d1650 764{
d76d1650
AJ
765}
766
1328c2bf 767int kvm_arch_process_async_events(CPUPPCState *env)
0af691d7 768{
157feead 769 return env->halted;
0af691d7
MT
770}
771
1328c2bf 772static int kvmppc_handle_halt(CPUPPCState *env)
d76d1650
AJ
773{
774 if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
775 env->halted = 1;
776 env->exception_index = EXCP_HLT;
777 }
778
bb4ea393 779 return 0;
d76d1650
AJ
780}
781
782/* map dcr access to existing qemu dcr emulation */
1328c2bf 783static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
d76d1650
AJ
784{
785 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
786 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
787
bb4ea393 788 return 0;
d76d1650
AJ
789}
790
1328c2bf 791static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
d76d1650
AJ
792{
793 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
794 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
795
bb4ea393 796 return 0;
d76d1650
AJ
797}
798
1328c2bf 799int kvm_arch_handle_exit(CPUPPCState *env, struct kvm_run *run)
d76d1650 800{
bb4ea393 801 int ret;
d76d1650
AJ
802
803 switch (run->exit_reason) {
804 case KVM_EXIT_DCR:
805 if (run->dcr.is_write) {
806 dprintf("handle dcr write\n");
807 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
808 } else {
809 dprintf("handle dcr read\n");
810 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
811 }
812 break;
813 case KVM_EXIT_HLT:
814 dprintf("handle halt\n");
815 ret = kvmppc_handle_halt(env);
816 break;
f61b4bed
AG
817#ifdef CONFIG_PSERIES
818 case KVM_EXIT_PAPR_HCALL:
819 dprintf("handle PAPR hypercall\n");
aa100fa4
AF
820 run->papr_hcall.ret = spapr_hypercall(ppc_env_get_cpu(env),
821 run->papr_hcall.nr,
f61b4bed 822 run->papr_hcall.args);
78e8fde2 823 ret = 0;
f61b4bed
AG
824 break;
825#endif
73aaec4a
JK
826 default:
827 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
828 ret = -1;
829 break;
d76d1650
AJ
830 }
831
832 return ret;
833}
834
dc333cd6
AG
835static int read_cpuinfo(const char *field, char *value, int len)
836{
837 FILE *f;
838 int ret = -1;
839 int field_len = strlen(field);
840 char line[512];
841
842 f = fopen("/proc/cpuinfo", "r");
843 if (!f) {
844 return -1;
845 }
846
847 do {
848 if(!fgets(line, sizeof(line), f)) {
849 break;
850 }
851 if (!strncmp(line, field, field_len)) {
ae215068 852 pstrcpy(value, len, line);
dc333cd6
AG
853 ret = 0;
854 break;
855 }
856 } while(*line);
857
858 fclose(f);
859
860 return ret;
861}
862
863uint32_t kvmppc_get_tbfreq(void)
864{
865 char line[512];
866 char *ns;
867 uint32_t retval = get_ticks_per_sec();
868
869 if (read_cpuinfo("timebase", line, sizeof(line))) {
870 return retval;
871 }
872
873 if (!(ns = strchr(line, ':'))) {
874 return retval;
875 }
876
877 ns++;
878
879 retval = atoi(ns);
880 return retval;
881}
4513d923 882
eadaada1
AG
883/* Try to find a device tree node for a CPU with clock-frequency property */
884static int kvmppc_find_cpu_dt(char *buf, int buf_len)
885{
886 struct dirent *dirp;
887 DIR *dp;
888
889 if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
890 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
891 return -1;
892 }
893
894 buf[0] = '\0';
895 while ((dirp = readdir(dp)) != NULL) {
896 FILE *f;
897 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
898 dirp->d_name);
899 f = fopen(buf, "r");
900 if (f) {
901 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
902 fclose(f);
903 break;
904 }
905 buf[0] = '\0';
906 }
907 closedir(dp);
908 if (buf[0] == '\0') {
909 printf("Unknown host!\n");
910 return -1;
911 }
912
913 return 0;
914}
915
9bc884b7
DG
916/* Read a CPU node property from the host device tree that's a single
917 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
918 * (can't find or open the property, or doesn't understand the
919 * format) */
920static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
eadaada1 921{
9bc884b7
DG
922 char buf[PATH_MAX];
923 union {
924 uint32_t v32;
925 uint64_t v64;
926 } u;
eadaada1
AG
927 FILE *f;
928 int len;
929
930 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
9bc884b7 931 return -1;
eadaada1
AG
932 }
933
9bc884b7
DG
934 strncat(buf, "/", sizeof(buf) - strlen(buf));
935 strncat(buf, propname, sizeof(buf) - strlen(buf));
eadaada1
AG
936
937 f = fopen(buf, "rb");
938 if (!f) {
939 return -1;
940 }
941
9bc884b7 942 len = fread(&u, 1, sizeof(u), f);
eadaada1
AG
943 fclose(f);
944 switch (len) {
9bc884b7
DG
945 case 4:
946 /* property is a 32-bit quantity */
947 return be32_to_cpu(u.v32);
948 case 8:
949 return be64_to_cpu(u.v64);
eadaada1
AG
950 }
951
952 return 0;
953}
954
9bc884b7
DG
955uint64_t kvmppc_get_clockfreq(void)
956{
957 return kvmppc_read_int_cpu_dt("clock-frequency");
958}
959
6659394f
DG
960uint32_t kvmppc_get_vmx(void)
961{
962 return kvmppc_read_int_cpu_dt("ibm,vmx");
963}
964
965uint32_t kvmppc_get_dfp(void)
966{
967 return kvmppc_read_int_cpu_dt("ibm,dfp");
968}
969
1328c2bf 970int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
45024f09
AG
971{
972 uint32_t *hc = (uint32_t*)buf;
973
45024f09
AG
974 struct kvm_ppc_pvinfo pvinfo;
975
976 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
977 !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
978 memcpy(buf, pvinfo.hcall, buf_len);
979
980 return 0;
981 }
45024f09
AG
982
983 /*
984 * Fallback to always fail hypercalls:
985 *
986 * li r3, -1
987 * nop
988 * nop
989 * nop
990 */
991
992 hc[0] = 0x3860ffff;
993 hc[1] = 0x60000000;
994 hc[2] = 0x60000000;
995 hc[3] = 0x60000000;
996
997 return 0;
998}
999
1328c2bf 1000void kvmppc_set_papr(CPUPPCState *env)
f61b4bed 1001{
94135e81 1002 struct kvm_enable_cap cap = {};
f61b4bed
AG
1003 int ret;
1004
f61b4bed
AG
1005 cap.cap = KVM_CAP_PPC_PAPR;
1006 ret = kvm_vcpu_ioctl(env, KVM_ENABLE_CAP, &cap);
1007
1008 if (ret) {
f1af19d7 1009 cpu_abort(env, "This KVM version does not support PAPR\n");
94135e81 1010 }
f61b4bed
AG
1011}
1012
e97c3636
DG
1013int kvmppc_smt_threads(void)
1014{
1015 return cap_ppc_smt ? cap_ppc_smt : 1;
1016}
1017
7f763a5d 1018#ifdef TARGET_PPC64
354ac20a
DG
1019off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem)
1020{
1021 void *rma;
1022 off_t size;
1023 int fd;
1024 struct kvm_allocate_rma ret;
1025 MemoryRegion *rma_region;
1026
1027 /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
1028 * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
1029 * not necessary on this hardware
1030 * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
1031 *
1032 * FIXME: We should allow the user to force contiguous RMA
1033 * allocation in the cap_ppc_rma==1 case.
1034 */
1035 if (cap_ppc_rma < 2) {
1036 return 0;
1037 }
1038
1039 fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
1040 if (fd < 0) {
1041 fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
1042 strerror(errno));
1043 return -1;
1044 }
1045
1046 size = MIN(ret.rma_size, 256ul << 20);
1047
1048 rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
1049 if (rma == MAP_FAILED) {
1050 fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
1051 return -1;
1052 };
1053
1054 rma_region = g_new(MemoryRegion, 1);
6148b23d
AK
1055 memory_region_init_ram_ptr(rma_region, name, size, rma);
1056 vmstate_register_ram_global(rma_region);
354ac20a
DG
1057 memory_region_add_subregion(sysmem, 0, rma_region);
1058
1059 return size;
1060}
1061
7f763a5d
DG
1062uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
1063{
1064 if (cap_ppc_rma >= 2) {
1065 return current_size;
1066 }
1067 return MIN(current_size,
1068 getrampagesize() << (hash_shift - 7));
1069}
1070#endif
1071
0f5cb298
DG
1072void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd)
1073{
1074 struct kvm_create_spapr_tce args = {
1075 .liobn = liobn,
1076 .window_size = window_size,
1077 };
1078 long len;
1079 int fd;
1080 void *table;
1081
b5aec396
DG
1082 /* Must set fd to -1 so we don't try to munmap when called for
1083 * destroying the table, which the upper layers -will- do
1084 */
1085 *pfd = -1;
0f5cb298
DG
1086 if (!cap_spapr_tce) {
1087 return NULL;
1088 }
1089
1090 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
1091 if (fd < 0) {
b5aec396
DG
1092 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
1093 liobn);
0f5cb298
DG
1094 return NULL;
1095 }
1096
ad0ebb91 1097 len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(sPAPRTCE);
0f5cb298
DG
1098 /* FIXME: round this up to page size */
1099
74b41e56 1100 table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
0f5cb298 1101 if (table == MAP_FAILED) {
b5aec396
DG
1102 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
1103 liobn);
0f5cb298
DG
1104 close(fd);
1105 return NULL;
1106 }
1107
1108 *pfd = fd;
1109 return table;
1110}
1111
1112int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t window_size)
1113{
1114 long len;
1115
1116 if (fd < 0) {
1117 return -1;
1118 }
1119
ad0ebb91 1120 len = (window_size / SPAPR_TCE_PAGE_SIZE)*sizeof(sPAPRTCE);
0f5cb298
DG
1121 if ((munmap(table, len) < 0) ||
1122 (close(fd) < 0)) {
b5aec396
DG
1123 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
1124 strerror(errno));
0f5cb298
DG
1125 /* Leak the table */
1126 }
1127
1128 return 0;
1129}
1130
7f763a5d
DG
1131int kvmppc_reset_htab(int shift_hint)
1132{
1133 uint32_t shift = shift_hint;
1134
ace9a2cb
DG
1135 if (!kvm_enabled()) {
1136 /* Full emulation, tell caller to allocate htab itself */
1137 return 0;
1138 }
1139 if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
7f763a5d
DG
1140 int ret;
1141 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
ace9a2cb
DG
1142 if (ret == -ENOTTY) {
1143 /* At least some versions of PR KVM advertise the
1144 * capability, but don't implement the ioctl(). Oops.
1145 * Return 0 so that we allocate the htab in qemu, as is
1146 * correct for PR. */
1147 return 0;
1148 } else if (ret < 0) {
7f763a5d
DG
1149 return ret;
1150 }
1151 return shift;
1152 }
1153
ace9a2cb
DG
1154 /* We have a kernel that predates the htab reset calls. For PR
1155 * KVM, we need to allocate the htab ourselves, for an HV KVM of
1156 * this era, it has allocated a 16MB fixed size hash table
1157 * already. Kernels of this era have the GET_PVINFO capability
1158 * only on PR, so we use this hack to determine the right
1159 * answer */
1160 if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
1161 /* PR - tell caller to allocate htab */
1162 return 0;
1163 } else {
1164 /* HV - assume 16MB kernel allocated htab */
1165 return 24;
1166 }
7f763a5d
DG
1167}
1168
a1e98583
DG
1169static inline uint32_t mfpvr(void)
1170{
1171 uint32_t pvr;
1172
1173 asm ("mfpvr %0"
1174 : "=r"(pvr));
1175 return pvr;
1176}
1177
a7342588
DG
1178static void alter_insns(uint64_t *word, uint64_t flags, bool on)
1179{
1180 if (on) {
1181 *word |= flags;
1182 } else {
1183 *word &= ~flags;
1184 }
1185}
1186
a1e98583
DG
1187const ppc_def_t *kvmppc_host_cpu_def(void)
1188{
1189 uint32_t host_pvr = mfpvr();
1190 const ppc_def_t *base_spec;
a7342588
DG
1191 ppc_def_t *spec;
1192 uint32_t vmx = kvmppc_get_vmx();
1193 uint32_t dfp = kvmppc_get_dfp();
a1e98583
DG
1194
1195 base_spec = ppc_find_by_pvr(host_pvr);
1196
a7342588
DG
1197 spec = g_malloc0(sizeof(*spec));
1198 memcpy(spec, base_spec, sizeof(*spec));
1199
1200 /* Now fix up the spec with information we can query from the host */
1201
70bca53f
AG
1202 if (vmx != -1) {
1203 /* Only override when we know what the host supports */
1204 alter_insns(&spec->insns_flags, PPC_ALTIVEC, vmx > 0);
1205 alter_insns(&spec->insns_flags2, PPC2_VSX, vmx > 1);
1206 }
1207 if (dfp != -1) {
1208 /* Only override when we know what the host supports */
1209 alter_insns(&spec->insns_flags2, PPC2_DFP, dfp);
1210 }
a7342588
DG
1211
1212 return spec;
a1e98583
DG
1213}
1214
12b1143b
DG
1215int kvmppc_fixup_cpu(CPUPPCState *env)
1216{
1217 int smt;
1218
1219 /* Adjust cpu index for SMT */
1220 smt = kvmppc_smt_threads();
1221 env->cpu_index = (env->cpu_index / smp_threads) * smt
1222 + (env->cpu_index % smp_threads);
1223
1224 return 0;
1225}
1226
1227
1328c2bf 1228bool kvm_arch_stop_on_emulation_error(CPUPPCState *env)
4513d923
GN
1229{
1230 return true;
1231}
a1b87fe0 1232
1328c2bf 1233int kvm_arch_on_sigbus_vcpu(CPUPPCState *env, int code, void *addr)
a1b87fe0
JK
1234{
1235 return 1;
1236}
1237
1238int kvm_arch_on_sigbus(int code, void *addr)
1239{
1240 return 1;
1241}