]> git.proxmox.com Git - qemu.git/blame - target-ppc/kvm.c
aio / timers: Switch entire codebase to the new timer API
[qemu.git] / target-ppc / kvm.c
CommitLineData
d76d1650
AJ
1/*
2 * PowerPC implementation of KVM hooks
3 *
4 * Copyright IBM Corp. 2007
90dc8812 5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
d76d1650
AJ
6 *
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
14 *
15 */
16
eadaada1 17#include <dirent.h>
d76d1650
AJ
18#include <sys/types.h>
19#include <sys/ioctl.h>
20#include <sys/mman.h>
4656e1f0 21#include <sys/vfs.h>
d76d1650
AJ
22
23#include <linux/kvm.h>
24
25#include "qemu-common.h"
1de7afc9 26#include "qemu/timer.h"
9c17d615
PB
27#include "sysemu/sysemu.h"
28#include "sysemu/kvm.h"
d76d1650
AJ
29#include "kvm_ppc.h"
30#include "cpu.h"
9c17d615
PB
31#include "sysemu/cpus.h"
32#include "sysemu/device_tree.h"
d5aea6f3 33#include "mmu-hash64.h"
d76d1650 34
f61b4bed 35#include "hw/sysbus.h"
0d09e41a
PB
36#include "hw/ppc/spapr.h"
37#include "hw/ppc/spapr_vio.h"
31f2cb8f 38#include "sysemu/watchdog.h"
f61b4bed 39
d76d1650
AJ
40//#define DEBUG_KVM
41
42#ifdef DEBUG_KVM
da56ff91 43#define DPRINTF(fmt, ...) \
d76d1650
AJ
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45#else
da56ff91 46#define DPRINTF(fmt, ...) \
d76d1650
AJ
47 do { } while (0)
48#endif
49
eadaada1
AG
50#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
51
94a8d39a
JK
52const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
53 KVM_CAP_LAST_INFO
54};
55
fc87e185
AG
56static int cap_interrupt_unset = false;
57static int cap_interrupt_level = false;
90dc8812 58static int cap_segstate;
90dc8812 59static int cap_booke_sregs;
e97c3636 60static int cap_ppc_smt;
354ac20a 61static int cap_ppc_rma;
0f5cb298 62static int cap_spapr_tce;
f1af19d7 63static int cap_hior;
d67d40ea 64static int cap_one_reg;
3b961124 65static int cap_epr;
31f2cb8f 66static int cap_ppc_watchdog;
9b00ea49 67static int cap_papr;
e68cb8b4 68static int cap_htab_fd;
fc87e185 69
c821c2bd
AG
70/* XXX We have a race condition where we actually have a level triggered
71 * interrupt, but the infrastructure can't expose that yet, so the guest
72 * takes but ignores it, goes to sleep and never gets notified that there's
73 * still an interrupt pending.
c6a94ba5 74 *
c821c2bd
AG
75 * As a quick workaround, let's just wake up again 20 ms after we injected
76 * an interrupt. That way we can assure that we're always reinjecting
77 * interrupts in case the guest swallowed them.
c6a94ba5
AG
78 */
79static QEMUTimer *idle_timer;
80
d5a68146 81static void kvm_kick_cpu(void *opaque)
c6a94ba5 82{
d5a68146 83 PowerPCCPU *cpu = opaque;
d5a68146 84
c08d7424 85 qemu_cpu_kick(CPU(cpu));
c6a94ba5
AG
86}
87
5ba4576b
AF
88static int kvm_ppc_register_host_cpu_type(void);
89
cad1e282 90int kvm_arch_init(KVMState *s)
d76d1650 91{
fc87e185 92 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
fc87e185 93 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
90dc8812 94 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
90dc8812 95 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
e97c3636 96 cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
354ac20a 97 cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
0f5cb298 98 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
d67d40ea 99 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
f1af19d7 100 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
3b961124 101 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
31f2cb8f 102 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
9b00ea49
DG
103 /* Note: we don't set cap_papr here, because this capability is
104 * only activated after this by kvmppc_set_papr() */
e68cb8b4 105 cap_htab_fd = kvm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
fc87e185
AG
106
107 if (!cap_interrupt_level) {
108 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
109 "VM to stall at times!\n");
110 }
111
5ba4576b
AF
112 kvm_ppc_register_host_cpu_type();
113
d76d1650
AJ
114 return 0;
115}
116
1bc22652 117static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
d76d1650 118{
1bc22652
AF
119 CPUPPCState *cenv = &cpu->env;
120 CPUState *cs = CPU(cpu);
861bbc80 121 struct kvm_sregs sregs;
5666ca4a
SW
122 int ret;
123
124 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
64e07be5
AG
125 /* What we're really trying to say is "if we're on BookE, we use
126 the native PVR for now". This is the only sane way to check
127 it though, so we potentially confuse users that they can run
128 BookE guests on BookS. Let's hope nobody dares enough :) */
5666ca4a
SW
129 return 0;
130 } else {
90dc8812 131 if (!cap_segstate) {
64e07be5
AG
132 fprintf(stderr, "kvm error: missing PVR setting capability\n");
133 return -ENOSYS;
5666ca4a 134 }
5666ca4a
SW
135 }
136
1bc22652 137 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
5666ca4a
SW
138 if (ret) {
139 return ret;
140 }
861bbc80
AG
141
142 sregs.pvr = cenv->spr[SPR_PVR];
1bc22652 143 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
5666ca4a
SW
144}
145
93dd5e85 146/* Set up a shared TLB array with KVM */
1bc22652 147static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
93dd5e85 148{
1bc22652
AF
149 CPUPPCState *env = &cpu->env;
150 CPUState *cs = CPU(cpu);
93dd5e85
SW
151 struct kvm_book3e_206_tlb_params params = {};
152 struct kvm_config_tlb cfg = {};
153 struct kvm_enable_cap encap = {};
154 unsigned int entries = 0;
155 int ret, i;
156
157 if (!kvm_enabled() ||
a60f24b5 158 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
93dd5e85
SW
159 return 0;
160 }
161
162 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
163
164 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
165 params.tlb_sizes[i] = booke206_tlb_size(env, i);
166 params.tlb_ways[i] = booke206_tlb_ways(env, i);
167 entries += params.tlb_sizes[i];
168 }
169
170 assert(entries == env->nb_tlb);
171 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
172
173 env->tlb_dirty = true;
174
175 cfg.array = (uintptr_t)env->tlb.tlbm;
176 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
177 cfg.params = (uintptr_t)&params;
178 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
179
180 encap.cap = KVM_CAP_SW_TLB;
181 encap.args[0] = (uintptr_t)&cfg;
182
1bc22652 183 ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &encap);
93dd5e85
SW
184 if (ret < 0) {
185 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
186 __func__, strerror(-ret));
187 return ret;
188 }
189
190 env->kvm_sw_tlb = true;
191 return 0;
192}
193
4656e1f0
BH
194
195#if defined(TARGET_PPC64)
a60f24b5 196static void kvm_get_fallback_smmu_info(PowerPCCPU *cpu,
4656e1f0
BH
197 struct kvm_ppc_smmu_info *info)
198{
a60f24b5
AF
199 CPUPPCState *env = &cpu->env;
200 CPUState *cs = CPU(cpu);
201
4656e1f0
BH
202 memset(info, 0, sizeof(*info));
203
204 /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
205 * need to "guess" what the supported page sizes are.
206 *
207 * For that to work we make a few assumptions:
208 *
209 * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
210 * KVM which only supports 4K and 16M pages, but supports them
211 * regardless of the backing store characteritics. We also don't
212 * support 1T segments.
213 *
214 * This is safe as if HV KVM ever supports that capability or PR
215 * KVM grows supports for more page/segment sizes, those versions
216 * will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
217 * will not hit this fallback
218 *
219 * - Else we are running HV KVM. This means we only support page
220 * sizes that fit in the backing store. Additionally we only
221 * advertize 64K pages if the processor is ARCH 2.06 and we assume
222 * P7 encodings for the SLB and hash table. Here too, we assume
223 * support for any newer processor will mean a kernel that
224 * implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
225 * this fallback.
226 */
a60f24b5 227 if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
4656e1f0
BH
228 /* No flags */
229 info->flags = 0;
230 info->slb_size = 64;
231
232 /* Standard 4k base page size segment */
233 info->sps[0].page_shift = 12;
234 info->sps[0].slb_enc = 0;
235 info->sps[0].enc[0].page_shift = 12;
236 info->sps[0].enc[0].pte_enc = 0;
237
238 /* Standard 16M large page size segment */
239 info->sps[1].page_shift = 24;
240 info->sps[1].slb_enc = SLB_VSID_L;
241 info->sps[1].enc[0].page_shift = 24;
242 info->sps[1].enc[0].pte_enc = 0;
243 } else {
244 int i = 0;
245
246 /* HV KVM has backing store size restrictions */
247 info->flags = KVM_PPC_PAGE_SIZES_REAL;
248
249 if (env->mmu_model & POWERPC_MMU_1TSEG) {
250 info->flags |= KVM_PPC_1T_SEGMENTS;
251 }
252
253 if (env->mmu_model == POWERPC_MMU_2_06) {
254 info->slb_size = 32;
255 } else {
256 info->slb_size = 64;
257 }
258
259 /* Standard 4k base page size segment */
260 info->sps[i].page_shift = 12;
261 info->sps[i].slb_enc = 0;
262 info->sps[i].enc[0].page_shift = 12;
263 info->sps[i].enc[0].pte_enc = 0;
264 i++;
265
266 /* 64K on MMU 2.06 */
267 if (env->mmu_model == POWERPC_MMU_2_06) {
268 info->sps[i].page_shift = 16;
269 info->sps[i].slb_enc = 0x110;
270 info->sps[i].enc[0].page_shift = 16;
271 info->sps[i].enc[0].pte_enc = 1;
272 i++;
273 }
274
275 /* Standard 16M large page size segment */
276 info->sps[i].page_shift = 24;
277 info->sps[i].slb_enc = SLB_VSID_L;
278 info->sps[i].enc[0].page_shift = 24;
279 info->sps[i].enc[0].pte_enc = 0;
280 }
281}
282
a60f24b5 283static void kvm_get_smmu_info(PowerPCCPU *cpu, struct kvm_ppc_smmu_info *info)
4656e1f0 284{
a60f24b5 285 CPUState *cs = CPU(cpu);
4656e1f0
BH
286 int ret;
287
a60f24b5
AF
288 if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
289 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
4656e1f0
BH
290 if (ret == 0) {
291 return;
292 }
293 }
294
a60f24b5 295 kvm_get_fallback_smmu_info(cpu, info);
4656e1f0
BH
296}
297
298static long getrampagesize(void)
299{
300 struct statfs fs;
301 int ret;
302
303 if (!mem_path) {
304 /* guest RAM is backed by normal anonymous pages */
305 return getpagesize();
306 }
307
308 do {
309 ret = statfs(mem_path, &fs);
310 } while (ret != 0 && errno == EINTR);
311
312 if (ret != 0) {
313 fprintf(stderr, "Couldn't statfs() memory path: %s\n",
314 strerror(errno));
315 exit(1);
316 }
317
318#define HUGETLBFS_MAGIC 0x958458f6
319
320 if (fs.f_type != HUGETLBFS_MAGIC) {
321 /* Explicit mempath, but it's ordinary pages */
322 return getpagesize();
323 }
324
325 /* It's hugepage, return the huge page size */
326 return fs.f_bsize;
327}
328
329static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
330{
331 if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
332 return true;
333 }
334
335 return (1ul << shift) <= rampgsize;
336}
337
a60f24b5 338static void kvm_fixup_page_sizes(PowerPCCPU *cpu)
4656e1f0
BH
339{
340 static struct kvm_ppc_smmu_info smmu_info;
341 static bool has_smmu_info;
a60f24b5 342 CPUPPCState *env = &cpu->env;
4656e1f0
BH
343 long rampagesize;
344 int iq, ik, jq, jk;
345
346 /* We only handle page sizes for 64-bit server guests for now */
347 if (!(env->mmu_model & POWERPC_MMU_64)) {
348 return;
349 }
350
351 /* Collect MMU info from kernel if not already */
352 if (!has_smmu_info) {
a60f24b5 353 kvm_get_smmu_info(cpu, &smmu_info);
4656e1f0
BH
354 has_smmu_info = true;
355 }
356
357 rampagesize = getrampagesize();
358
359 /* Convert to QEMU form */
360 memset(&env->sps, 0, sizeof(env->sps));
361
362 for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
363 struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
364 struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];
365
366 if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
367 ksps->page_shift)) {
368 continue;
369 }
370 qsps->page_shift = ksps->page_shift;
371 qsps->slb_enc = ksps->slb_enc;
372 for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
373 if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
374 ksps->enc[jk].page_shift)) {
375 continue;
376 }
377 qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
378 qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
379 if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
380 break;
381 }
382 }
383 if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
384 break;
385 }
386 }
387 env->slb_nr = smmu_info.slb_size;
388 if (smmu_info.flags & KVM_PPC_1T_SEGMENTS) {
389 env->mmu_model |= POWERPC_MMU_1TSEG;
390 } else {
391 env->mmu_model &= ~POWERPC_MMU_1TSEG;
392 }
393}
394#else /* defined (TARGET_PPC64) */
395
a60f24b5 396static inline void kvm_fixup_page_sizes(PowerPCCPU *cpu)
4656e1f0
BH
397{
398}
399
400#endif /* !defined (TARGET_PPC64) */
401
b164e48e
EH
402unsigned long kvm_arch_vcpu_id(CPUState *cpu)
403{
404 return cpu->cpu_index;
405}
406
20d695a9 407int kvm_arch_init_vcpu(CPUState *cs)
5666ca4a 408{
20d695a9
AF
409 PowerPCCPU *cpu = POWERPC_CPU(cs);
410 CPUPPCState *cenv = &cpu->env;
5666ca4a
SW
411 int ret;
412
4656e1f0 413 /* Gather server mmu info from KVM and update the CPU state */
a60f24b5 414 kvm_fixup_page_sizes(cpu);
4656e1f0
BH
415
416 /* Synchronize sregs with kvm */
1bc22652 417 ret = kvm_arch_sync_sregs(cpu);
5666ca4a
SW
418 if (ret) {
419 return ret;
420 }
861bbc80 421
bc72ad67 422 idle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, kvm_kick_cpu, cpu);
c821c2bd 423
93dd5e85
SW
424 /* Some targets support access to KVM's guest TLB. */
425 switch (cenv->mmu_model) {
426 case POWERPC_MMU_BOOKE206:
1bc22652 427 ret = kvm_booke206_tlb_init(cpu);
93dd5e85
SW
428 break;
429 default:
430 break;
431 }
432
861bbc80 433 return ret;
d76d1650
AJ
434}
435
20d695a9 436void kvm_arch_reset_vcpu(CPUState *cpu)
caa5af0f
JK
437{
438}
439
1bc22652 440static void kvm_sw_tlb_put(PowerPCCPU *cpu)
93dd5e85 441{
1bc22652
AF
442 CPUPPCState *env = &cpu->env;
443 CPUState *cs = CPU(cpu);
93dd5e85
SW
444 struct kvm_dirty_tlb dirty_tlb;
445 unsigned char *bitmap;
446 int ret;
447
448 if (!env->kvm_sw_tlb) {
449 return;
450 }
451
452 bitmap = g_malloc((env->nb_tlb + 7) / 8);
453 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
454
455 dirty_tlb.bitmap = (uintptr_t)bitmap;
456 dirty_tlb.num_dirty = env->nb_tlb;
457
1bc22652 458 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
93dd5e85
SW
459 if (ret) {
460 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
461 __func__, strerror(-ret));
462 }
463
464 g_free(bitmap);
465}
466
d67d40ea
DG
467static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
468{
469 PowerPCCPU *cpu = POWERPC_CPU(cs);
470 CPUPPCState *env = &cpu->env;
471 union {
472 uint32_t u32;
473 uint64_t u64;
474 } val;
475 struct kvm_one_reg reg = {
476 .id = id,
477 .addr = (uintptr_t) &val,
478 };
479 int ret;
480
481 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
482 if (ret != 0) {
483 fprintf(stderr, "Warning: Unable to retrieve SPR %d from KVM: %s\n",
484 spr, strerror(errno));
485 } else {
486 switch (id & KVM_REG_SIZE_MASK) {
487 case KVM_REG_SIZE_U32:
488 env->spr[spr] = val.u32;
489 break;
490
491 case KVM_REG_SIZE_U64:
492 env->spr[spr] = val.u64;
493 break;
494
495 default:
496 /* Don't handle this size yet */
497 abort();
498 }
499 }
500}
501
502static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
503{
504 PowerPCCPU *cpu = POWERPC_CPU(cs);
505 CPUPPCState *env = &cpu->env;
506 union {
507 uint32_t u32;
508 uint64_t u64;
509 } val;
510 struct kvm_one_reg reg = {
511 .id = id,
512 .addr = (uintptr_t) &val,
513 };
514 int ret;
515
516 switch (id & KVM_REG_SIZE_MASK) {
517 case KVM_REG_SIZE_U32:
518 val.u32 = env->spr[spr];
519 break;
520
521 case KVM_REG_SIZE_U64:
522 val.u64 = env->spr[spr];
523 break;
524
525 default:
526 /* Don't handle this size yet */
527 abort();
528 }
529
530 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
531 if (ret != 0) {
532 fprintf(stderr, "Warning: Unable to set SPR %d to KVM: %s\n",
533 spr, strerror(errno));
534 }
535}
536
70b79849
DG
537static int kvm_put_fp(CPUState *cs)
538{
539 PowerPCCPU *cpu = POWERPC_CPU(cs);
540 CPUPPCState *env = &cpu->env;
541 struct kvm_one_reg reg;
542 int i;
543 int ret;
544
545 if (env->insns_flags & PPC_FLOAT) {
546 uint64_t fpscr = env->fpscr;
547 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
548
549 reg.id = KVM_REG_PPC_FPSCR;
550 reg.addr = (uintptr_t)&fpscr;
551 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
552 if (ret < 0) {
da56ff91 553 DPRINTF("Unable to set FPSCR to KVM: %s\n", strerror(errno));
70b79849
DG
554 return ret;
555 }
556
557 for (i = 0; i < 32; i++) {
558 uint64_t vsr[2];
559
560 vsr[0] = float64_val(env->fpr[i]);
561 vsr[1] = env->vsr[i];
562 reg.addr = (uintptr_t) &vsr;
563 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
564
565 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
566 if (ret < 0) {
da56ff91 567 DPRINTF("Unable to set %s%d to KVM: %s\n", vsx ? "VSR" : "FPR",
70b79849
DG
568 i, strerror(errno));
569 return ret;
570 }
571 }
572 }
573
574 if (env->insns_flags & PPC_ALTIVEC) {
575 reg.id = KVM_REG_PPC_VSCR;
576 reg.addr = (uintptr_t)&env->vscr;
577 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
578 if (ret < 0) {
da56ff91 579 DPRINTF("Unable to set VSCR to KVM: %s\n", strerror(errno));
70b79849
DG
580 return ret;
581 }
582
583 for (i = 0; i < 32; i++) {
584 reg.id = KVM_REG_PPC_VR(i);
585 reg.addr = (uintptr_t)&env->avr[i];
586 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
587 if (ret < 0) {
da56ff91 588 DPRINTF("Unable to set VR%d to KVM: %s\n", i, strerror(errno));
70b79849
DG
589 return ret;
590 }
591 }
592 }
593
594 return 0;
595}
596
597static int kvm_get_fp(CPUState *cs)
598{
599 PowerPCCPU *cpu = POWERPC_CPU(cs);
600 CPUPPCState *env = &cpu->env;
601 struct kvm_one_reg reg;
602 int i;
603 int ret;
604
605 if (env->insns_flags & PPC_FLOAT) {
606 uint64_t fpscr;
607 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
608
609 reg.id = KVM_REG_PPC_FPSCR;
610 reg.addr = (uintptr_t)&fpscr;
611 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
612 if (ret < 0) {
da56ff91 613 DPRINTF("Unable to get FPSCR from KVM: %s\n", strerror(errno));
70b79849
DG
614 return ret;
615 } else {
616 env->fpscr = fpscr;
617 }
618
619 for (i = 0; i < 32; i++) {
620 uint64_t vsr[2];
621
622 reg.addr = (uintptr_t) &vsr;
623 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
624
625 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
626 if (ret < 0) {
da56ff91 627 DPRINTF("Unable to get %s%d from KVM: %s\n",
70b79849
DG
628 vsx ? "VSR" : "FPR", i, strerror(errno));
629 return ret;
630 } else {
631 env->fpr[i] = vsr[0];
632 if (vsx) {
633 env->vsr[i] = vsr[1];
634 }
635 }
636 }
637 }
638
639 if (env->insns_flags & PPC_ALTIVEC) {
640 reg.id = KVM_REG_PPC_VSCR;
641 reg.addr = (uintptr_t)&env->vscr;
642 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
643 if (ret < 0) {
da56ff91 644 DPRINTF("Unable to get VSCR from KVM: %s\n", strerror(errno));
70b79849
DG
645 return ret;
646 }
647
648 for (i = 0; i < 32; i++) {
649 reg.id = KVM_REG_PPC_VR(i);
650 reg.addr = (uintptr_t)&env->avr[i];
651 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
652 if (ret < 0) {
da56ff91 653 DPRINTF("Unable to get VR%d from KVM: %s\n",
70b79849
DG
654 i, strerror(errno));
655 return ret;
656 }
657 }
658 }
659
660 return 0;
661}
662
9b00ea49
DG
663#if defined(TARGET_PPC64)
664static int kvm_get_vpa(CPUState *cs)
665{
666 PowerPCCPU *cpu = POWERPC_CPU(cs);
667 CPUPPCState *env = &cpu->env;
668 struct kvm_one_reg reg;
669 int ret;
670
671 reg.id = KVM_REG_PPC_VPA_ADDR;
672 reg.addr = (uintptr_t)&env->vpa_addr;
673 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
674 if (ret < 0) {
da56ff91 675 DPRINTF("Unable to get VPA address from KVM: %s\n", strerror(errno));
9b00ea49
DG
676 return ret;
677 }
678
679 assert((uintptr_t)&env->slb_shadow_size
680 == ((uintptr_t)&env->slb_shadow_addr + 8));
681 reg.id = KVM_REG_PPC_VPA_SLB;
682 reg.addr = (uintptr_t)&env->slb_shadow_addr;
683 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
684 if (ret < 0) {
da56ff91 685 DPRINTF("Unable to get SLB shadow state from KVM: %s\n",
9b00ea49
DG
686 strerror(errno));
687 return ret;
688 }
689
690 assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
691 reg.id = KVM_REG_PPC_VPA_DTL;
692 reg.addr = (uintptr_t)&env->dtl_addr;
693 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
694 if (ret < 0) {
da56ff91 695 DPRINTF("Unable to get dispatch trace log state from KVM: %s\n",
9b00ea49
DG
696 strerror(errno));
697 return ret;
698 }
699
700 return 0;
701}
702
703static int kvm_put_vpa(CPUState *cs)
704{
705 PowerPCCPU *cpu = POWERPC_CPU(cs);
706 CPUPPCState *env = &cpu->env;
707 struct kvm_one_reg reg;
708 int ret;
709
710 /* SLB shadow or DTL can't be registered unless a master VPA is
711 * registered. That means when restoring state, if a VPA *is*
712 * registered, we need to set that up first. If not, we need to
713 * deregister the others before deregistering the master VPA */
714 assert(env->vpa_addr || !(env->slb_shadow_addr || env->dtl_addr));
715
716 if (env->vpa_addr) {
717 reg.id = KVM_REG_PPC_VPA_ADDR;
718 reg.addr = (uintptr_t)&env->vpa_addr;
719 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
720 if (ret < 0) {
da56ff91 721 DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
9b00ea49
DG
722 return ret;
723 }
724 }
725
726 assert((uintptr_t)&env->slb_shadow_size
727 == ((uintptr_t)&env->slb_shadow_addr + 8));
728 reg.id = KVM_REG_PPC_VPA_SLB;
729 reg.addr = (uintptr_t)&env->slb_shadow_addr;
730 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
731 if (ret < 0) {
da56ff91 732 DPRINTF("Unable to set SLB shadow state to KVM: %s\n", strerror(errno));
9b00ea49
DG
733 return ret;
734 }
735
736 assert((uintptr_t)&env->dtl_size == ((uintptr_t)&env->dtl_addr + 8));
737 reg.id = KVM_REG_PPC_VPA_DTL;
738 reg.addr = (uintptr_t)&env->dtl_addr;
739 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
740 if (ret < 0) {
da56ff91 741 DPRINTF("Unable to set dispatch trace log state to KVM: %s\n",
9b00ea49
DG
742 strerror(errno));
743 return ret;
744 }
745
746 if (!env->vpa_addr) {
747 reg.id = KVM_REG_PPC_VPA_ADDR;
748 reg.addr = (uintptr_t)&env->vpa_addr;
749 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
750 if (ret < 0) {
da56ff91 751 DPRINTF("Unable to set VPA address to KVM: %s\n", strerror(errno));
9b00ea49
DG
752 return ret;
753 }
754 }
755
756 return 0;
757}
758#endif /* TARGET_PPC64 */
759
20d695a9 760int kvm_arch_put_registers(CPUState *cs, int level)
d76d1650 761{
20d695a9
AF
762 PowerPCCPU *cpu = POWERPC_CPU(cs);
763 CPUPPCState *env = &cpu->env;
d76d1650
AJ
764 struct kvm_regs regs;
765 int ret;
766 int i;
767
1bc22652
AF
768 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
769 if (ret < 0) {
d76d1650 770 return ret;
1bc22652 771 }
d76d1650
AJ
772
773 regs.ctr = env->ctr;
774 regs.lr = env->lr;
da91a00f 775 regs.xer = cpu_read_xer(env);
d76d1650
AJ
776 regs.msr = env->msr;
777 regs.pc = env->nip;
778
779 regs.srr0 = env->spr[SPR_SRR0];
780 regs.srr1 = env->spr[SPR_SRR1];
781
782 regs.sprg0 = env->spr[SPR_SPRG0];
783 regs.sprg1 = env->spr[SPR_SPRG1];
784 regs.sprg2 = env->spr[SPR_SPRG2];
785 regs.sprg3 = env->spr[SPR_SPRG3];
786 regs.sprg4 = env->spr[SPR_SPRG4];
787 regs.sprg5 = env->spr[SPR_SPRG5];
788 regs.sprg6 = env->spr[SPR_SPRG6];
789 regs.sprg7 = env->spr[SPR_SPRG7];
790
90dc8812
SW
791 regs.pid = env->spr[SPR_BOOKE_PID];
792
d76d1650
AJ
793 for (i = 0;i < 32; i++)
794 regs.gpr[i] = env->gpr[i];
795
4bddaf55
AK
796 regs.cr = 0;
797 for (i = 0; i < 8; i++) {
798 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
799 }
800
1bc22652 801 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
d76d1650
AJ
802 if (ret < 0)
803 return ret;
804
70b79849
DG
805 kvm_put_fp(cs);
806
93dd5e85 807 if (env->tlb_dirty) {
1bc22652 808 kvm_sw_tlb_put(cpu);
93dd5e85
SW
809 env->tlb_dirty = false;
810 }
811
f1af19d7
DG
812 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
813 struct kvm_sregs sregs;
814
815 sregs.pvr = env->spr[SPR_PVR];
816
817 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
818
819 /* Sync SLB */
820#ifdef TARGET_PPC64
821 for (i = 0; i < 64; i++) {
822 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
823 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
824 }
825#endif
826
827 /* Sync SRs */
828 for (i = 0; i < 16; i++) {
829 sregs.u.s.ppc32.sr[i] = env->sr[i];
830 }
831
832 /* Sync BATs */
833 for (i = 0; i < 8; i++) {
ef8beb0e
AG
834 /* Beware. We have to swap upper and lower bits here */
835 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
836 | env->DBAT[1][i];
837 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
838 | env->IBAT[1][i];
f1af19d7
DG
839 }
840
1bc22652 841 ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
f1af19d7
DG
842 if (ret) {
843 return ret;
844 }
845 }
846
847 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
d67d40ea
DG
848 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
849 }
f1af19d7 850
d67d40ea
DG
851 if (cap_one_reg) {
852 int i;
853
854 /* We deliberately ignore errors here, for kernels which have
855 * the ONE_REG calls, but don't support the specific
856 * registers, there's a reasonable chance things will still
857 * work, at least until we try to migrate. */
858 for (i = 0; i < 1024; i++) {
859 uint64_t id = env->spr_cb[i].one_reg_id;
860
861 if (id != 0) {
862 kvm_put_one_spr(cs, id, i);
863 }
f1af19d7 864 }
9b00ea49
DG
865
866#ifdef TARGET_PPC64
867 if (cap_papr) {
868 if (kvm_put_vpa(cs) < 0) {
da56ff91 869 DPRINTF("Warning: Unable to set VPA information to KVM\n");
9b00ea49
DG
870 }
871 }
872#endif /* TARGET_PPC64 */
f1af19d7
DG
873 }
874
d76d1650
AJ
875 return ret;
876}
877
20d695a9 878int kvm_arch_get_registers(CPUState *cs)
d76d1650 879{
20d695a9
AF
880 PowerPCCPU *cpu = POWERPC_CPU(cs);
881 CPUPPCState *env = &cpu->env;
d76d1650 882 struct kvm_regs regs;
ba5e5090 883 struct kvm_sregs sregs;
90dc8812 884 uint32_t cr;
138b38b6 885 int i, ret;
d76d1650 886
1bc22652 887 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
d76d1650
AJ
888 if (ret < 0)
889 return ret;
890
90dc8812
SW
891 cr = regs.cr;
892 for (i = 7; i >= 0; i--) {
893 env->crf[i] = cr & 15;
894 cr >>= 4;
895 }
ba5e5090 896
d76d1650
AJ
897 env->ctr = regs.ctr;
898 env->lr = regs.lr;
da91a00f 899 cpu_write_xer(env, regs.xer);
d76d1650
AJ
900 env->msr = regs.msr;
901 env->nip = regs.pc;
902
903 env->spr[SPR_SRR0] = regs.srr0;
904 env->spr[SPR_SRR1] = regs.srr1;
905
906 env->spr[SPR_SPRG0] = regs.sprg0;
907 env->spr[SPR_SPRG1] = regs.sprg1;
908 env->spr[SPR_SPRG2] = regs.sprg2;
909 env->spr[SPR_SPRG3] = regs.sprg3;
910 env->spr[SPR_SPRG4] = regs.sprg4;
911 env->spr[SPR_SPRG5] = regs.sprg5;
912 env->spr[SPR_SPRG6] = regs.sprg6;
913 env->spr[SPR_SPRG7] = regs.sprg7;
914
90dc8812
SW
915 env->spr[SPR_BOOKE_PID] = regs.pid;
916
d76d1650
AJ
917 for (i = 0;i < 32; i++)
918 env->gpr[i] = regs.gpr[i];
919
70b79849
DG
920 kvm_get_fp(cs);
921
90dc8812 922 if (cap_booke_sregs) {
1bc22652 923 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
90dc8812
SW
924 if (ret < 0) {
925 return ret;
926 }
927
928 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
929 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
930 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
931 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
932 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
933 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
934 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
935 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
936 env->spr[SPR_DECR] = sregs.u.e.dec;
937 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
938 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
939 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
940 }
941
942 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
943 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
944 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
945 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
946 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
947 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
948 }
949
950 if (sregs.u.e.features & KVM_SREGS_E_64) {
951 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
952 }
953
954 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
955 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
956 }
957
958 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
959 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
960 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
961 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
962 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
963 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
964 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
965 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
966 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
967 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
968 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
969 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
970 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
971 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
972 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
973 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
974 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
975
976 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
977 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
978 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
979 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
980 }
981
982 if (sregs.u.e.features & KVM_SREGS_E_PM) {
983 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
984 }
985
986 if (sregs.u.e.features & KVM_SREGS_E_PC) {
987 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
988 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
989 }
990 }
991
992 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
993 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
994 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
995 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
996 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
997 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
998 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
999 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1000 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1001 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1002 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1003 }
1004
1005 if (sregs.u.e.features & KVM_SREGS_EXP) {
1006 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1007 }
1008
1009 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1010 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1011 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1012 }
1013
1014 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1015 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1016 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1017 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1018
1019 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1020 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1021 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1022 }
1023 }
fafc0b6a 1024 }
90dc8812 1025
90dc8812 1026 if (cap_segstate) {
1bc22652 1027 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
90dc8812
SW
1028 if (ret < 0) {
1029 return ret;
1030 }
1031
bb593904 1032 ppc_store_sdr1(env, sregs.u.s.sdr1);
ba5e5090
AG
1033
1034 /* Sync SLB */
82c09f2f 1035#ifdef TARGET_PPC64
ba5e5090
AG
1036 for (i = 0; i < 64; i++) {
1037 ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
1038 sregs.u.s.ppc64.slb[i].slbv);
1039 }
82c09f2f 1040#endif
ba5e5090
AG
1041
1042 /* Sync SRs */
1043 for (i = 0; i < 16; i++) {
1044 env->sr[i] = sregs.u.s.ppc32.sr[i];
1045 }
1046
1047 /* Sync BATs */
1048 for (i = 0; i < 8; i++) {
1049 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1050 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1051 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1052 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1053 }
fafc0b6a 1054 }
ba5e5090 1055
d67d40ea
DG
1056 if (cap_hior) {
1057 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1058 }
1059
1060 if (cap_one_reg) {
1061 int i;
1062
1063 /* We deliberately ignore errors here, for kernels which have
1064 * the ONE_REG calls, but don't support the specific
1065 * registers, there's a reasonable chance things will still
1066 * work, at least until we try to migrate. */
1067 for (i = 0; i < 1024; i++) {
1068 uint64_t id = env->spr_cb[i].one_reg_id;
1069
1070 if (id != 0) {
1071 kvm_get_one_spr(cs, id, i);
1072 }
1073 }
9b00ea49
DG
1074
1075#ifdef TARGET_PPC64
1076 if (cap_papr) {
1077 if (kvm_get_vpa(cs) < 0) {
da56ff91 1078 DPRINTF("Warning: Unable to get VPA information from KVM\n");
9b00ea49
DG
1079 }
1080 }
1081#endif
d67d40ea
DG
1082 }
1083
d76d1650
AJ
1084 return 0;
1085}
1086
1bc22652 1087int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
fc87e185
AG
1088{
1089 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1090
1091 if (irq != PPC_INTERRUPT_EXT) {
1092 return 0;
1093 }
1094
1095 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
1096 return 0;
1097 }
1098
1bc22652 1099 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
fc87e185
AG
1100
1101 return 0;
1102}
1103
16415335
AG
1104#if defined(TARGET_PPCEMB)
1105#define PPC_INPUT_INT PPC40x_INPUT_INT
1106#elif defined(TARGET_PPC64)
1107#define PPC_INPUT_INT PPC970_INPUT_INT
1108#else
1109#define PPC_INPUT_INT PPC6xx_INPUT_INT
1110#endif
1111
20d695a9 1112void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
d76d1650 1113{
20d695a9
AF
1114 PowerPCCPU *cpu = POWERPC_CPU(cs);
1115 CPUPPCState *env = &cpu->env;
d76d1650
AJ
1116 int r;
1117 unsigned irq;
1118
5cbdb3a3 1119 /* PowerPC QEMU tracks the various core input pins (interrupt, critical
d76d1650 1120 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
fc87e185
AG
1121 if (!cap_interrupt_level &&
1122 run->ready_for_interrupt_injection &&
259186a7 1123 (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
16415335 1124 (env->irq_input_state & (1<<PPC_INPUT_INT)))
d76d1650
AJ
1125 {
1126 /* For now KVM disregards the 'irq' argument. However, in the
1127 * future KVM could cache it in-kernel to avoid a heavyweight exit
1128 * when reading the UIC.
1129 */
fc87e185 1130 irq = KVM_INTERRUPT_SET;
d76d1650 1131
da56ff91 1132 DPRINTF("injected interrupt %d\n", irq);
1bc22652 1133 r = kvm_vcpu_ioctl(cs, KVM_INTERRUPT, &irq);
55e5c285
AF
1134 if (r < 0) {
1135 printf("cpu %d fail inject %x\n", cs->cpu_index, irq);
1136 }
c821c2bd
AG
1137
1138 /* Always wake up soon in case the interrupt was level based */
bc72ad67 1139 timer_mod(idle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
c821c2bd 1140 (get_ticks_per_sec() / 50));
d76d1650
AJ
1141 }
1142
1143 /* We don't know if there are more interrupts pending after this. However,
1144 * the guest will return to userspace in the course of handling this one
1145 * anyways, so we will get a chance to deliver the rest. */
d76d1650
AJ
1146}
1147
20d695a9 1148void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
d76d1650 1149{
d76d1650
AJ
1150}
1151
20d695a9 1152int kvm_arch_process_async_events(CPUState *cs)
0af691d7 1153{
259186a7 1154 return cs->halted;
0af691d7
MT
1155}
1156
259186a7 1157static int kvmppc_handle_halt(PowerPCCPU *cpu)
d76d1650 1158{
259186a7
AF
1159 CPUState *cs = CPU(cpu);
1160 CPUPPCState *env = &cpu->env;
1161
1162 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1163 cs->halted = 1;
d76d1650
AJ
1164 env->exception_index = EXCP_HLT;
1165 }
1166
bb4ea393 1167 return 0;
d76d1650
AJ
1168}
1169
1170/* map dcr access to existing qemu dcr emulation */
1328c2bf 1171static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
d76d1650
AJ
1172{
1173 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
1174 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1175
bb4ea393 1176 return 0;
d76d1650
AJ
1177}
1178
1328c2bf 1179static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
d76d1650
AJ
1180{
1181 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
1182 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1183
bb4ea393 1184 return 0;
d76d1650
AJ
1185}
1186
20d695a9 1187int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
d76d1650 1188{
20d695a9
AF
1189 PowerPCCPU *cpu = POWERPC_CPU(cs);
1190 CPUPPCState *env = &cpu->env;
bb4ea393 1191 int ret;
d76d1650
AJ
1192
1193 switch (run->exit_reason) {
1194 case KVM_EXIT_DCR:
1195 if (run->dcr.is_write) {
da56ff91 1196 DPRINTF("handle dcr write\n");
d76d1650
AJ
1197 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1198 } else {
da56ff91 1199 DPRINTF("handle dcr read\n");
d76d1650
AJ
1200 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1201 }
1202 break;
1203 case KVM_EXIT_HLT:
da56ff91 1204 DPRINTF("handle halt\n");
259186a7 1205 ret = kvmppc_handle_halt(cpu);
d76d1650 1206 break;
c6304a4a 1207#if defined(TARGET_PPC64)
f61b4bed 1208 case KVM_EXIT_PAPR_HCALL:
da56ff91 1209 DPRINTF("handle PAPR hypercall\n");
20d695a9 1210 run->papr_hcall.ret = spapr_hypercall(cpu,
aa100fa4 1211 run->papr_hcall.nr,
f61b4bed 1212 run->papr_hcall.args);
78e8fde2 1213 ret = 0;
f61b4bed
AG
1214 break;
1215#endif
5b95b8b9 1216 case KVM_EXIT_EPR:
da56ff91 1217 DPRINTF("handle epr\n");
5b95b8b9
AG
1218 run->epr.epr = ldl_phys(env->mpic_iack);
1219 ret = 0;
1220 break;
31f2cb8f 1221 case KVM_EXIT_WATCHDOG:
da56ff91 1222 DPRINTF("handle watchdog expiry\n");
31f2cb8f
BB
1223 watchdog_perform_action();
1224 ret = 0;
1225 break;
1226
73aaec4a
JK
1227 default:
1228 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1229 ret = -1;
1230 break;
d76d1650
AJ
1231 }
1232
1233 return ret;
1234}
1235
31f2cb8f
BB
1236int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1237{
1238 CPUState *cs = CPU(cpu);
1239 uint32_t bits = tsr_bits;
1240 struct kvm_one_reg reg = {
1241 .id = KVM_REG_PPC_OR_TSR,
1242 .addr = (uintptr_t) &bits,
1243 };
1244
1245 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1246}
1247
1248int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1249{
1250
1251 CPUState *cs = CPU(cpu);
1252 uint32_t bits = tsr_bits;
1253 struct kvm_one_reg reg = {
1254 .id = KVM_REG_PPC_CLEAR_TSR,
1255 .addr = (uintptr_t) &bits,
1256 };
1257
1258 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1259}
1260
1261int kvmppc_set_tcr(PowerPCCPU *cpu)
1262{
1263 CPUState *cs = CPU(cpu);
1264 CPUPPCState *env = &cpu->env;
1265 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1266
1267 struct kvm_one_reg reg = {
1268 .id = KVM_REG_PPC_TCR,
1269 .addr = (uintptr_t) &tcr,
1270 };
1271
1272 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1273}
1274
1275int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1276{
1277 CPUState *cs = CPU(cpu);
1278 struct kvm_enable_cap encap = {};
1279 int ret;
1280
1281 if (!kvm_enabled()) {
1282 return -1;
1283 }
1284
1285 if (!cap_ppc_watchdog) {
1286 printf("warning: KVM does not support watchdog");
1287 return -1;
1288 }
1289
1290 encap.cap = KVM_CAP_PPC_BOOKE_WATCHDOG;
1291 ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &encap);
1292 if (ret < 0) {
1293 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1294 __func__, strerror(-ret));
1295 return ret;
1296 }
1297
1298 return ret;
1299}
1300
dc333cd6
AG
1301static int read_cpuinfo(const char *field, char *value, int len)
1302{
1303 FILE *f;
1304 int ret = -1;
1305 int field_len = strlen(field);
1306 char line[512];
1307
1308 f = fopen("/proc/cpuinfo", "r");
1309 if (!f) {
1310 return -1;
1311 }
1312
1313 do {
1314 if(!fgets(line, sizeof(line), f)) {
1315 break;
1316 }
1317 if (!strncmp(line, field, field_len)) {
ae215068 1318 pstrcpy(value, len, line);
dc333cd6
AG
1319 ret = 0;
1320 break;
1321 }
1322 } while(*line);
1323
1324 fclose(f);
1325
1326 return ret;
1327}
1328
1329uint32_t kvmppc_get_tbfreq(void)
1330{
1331 char line[512];
1332 char *ns;
1333 uint32_t retval = get_ticks_per_sec();
1334
1335 if (read_cpuinfo("timebase", line, sizeof(line))) {
1336 return retval;
1337 }
1338
1339 if (!(ns = strchr(line, ':'))) {
1340 return retval;
1341 }
1342
1343 ns++;
1344
1345 retval = atoi(ns);
1346 return retval;
1347}
4513d923 1348
eadaada1
AG
1349/* Try to find a device tree node for a CPU with clock-frequency property */
1350static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1351{
1352 struct dirent *dirp;
1353 DIR *dp;
1354
1355 if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
1356 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1357 return -1;
1358 }
1359
1360 buf[0] = '\0';
1361 while ((dirp = readdir(dp)) != NULL) {
1362 FILE *f;
1363 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1364 dirp->d_name);
1365 f = fopen(buf, "r");
1366 if (f) {
1367 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1368 fclose(f);
1369 break;
1370 }
1371 buf[0] = '\0';
1372 }
1373 closedir(dp);
1374 if (buf[0] == '\0') {
1375 printf("Unknown host!\n");
1376 return -1;
1377 }
1378
1379 return 0;
1380}
1381
9bc884b7
DG
1382/* Read a CPU node property from the host device tree that's a single
1383 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1384 * (can't find or open the property, or doesn't understand the
1385 * format) */
1386static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
eadaada1 1387{
9bc884b7
DG
1388 char buf[PATH_MAX];
1389 union {
1390 uint32_t v32;
1391 uint64_t v64;
1392 } u;
eadaada1
AG
1393 FILE *f;
1394 int len;
1395
1396 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
9bc884b7 1397 return -1;
eadaada1
AG
1398 }
1399
9bc884b7
DG
1400 strncat(buf, "/", sizeof(buf) - strlen(buf));
1401 strncat(buf, propname, sizeof(buf) - strlen(buf));
eadaada1
AG
1402
1403 f = fopen(buf, "rb");
1404 if (!f) {
1405 return -1;
1406 }
1407
9bc884b7 1408 len = fread(&u, 1, sizeof(u), f);
eadaada1
AG
1409 fclose(f);
1410 switch (len) {
9bc884b7
DG
1411 case 4:
1412 /* property is a 32-bit quantity */
1413 return be32_to_cpu(u.v32);
1414 case 8:
1415 return be64_to_cpu(u.v64);
eadaada1
AG
1416 }
1417
1418 return 0;
1419}
1420
9bc884b7
DG
1421uint64_t kvmppc_get_clockfreq(void)
1422{
1423 return kvmppc_read_int_cpu_dt("clock-frequency");
1424}
1425
6659394f
DG
1426uint32_t kvmppc_get_vmx(void)
1427{
1428 return kvmppc_read_int_cpu_dt("ibm,vmx");
1429}
1430
1431uint32_t kvmppc_get_dfp(void)
1432{
1433 return kvmppc_read_int_cpu_dt("ibm,dfp");
1434}
1435
1a61a9ae
SY
1436static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1437 {
1438 PowerPCCPU *cpu = ppc_env_get_cpu(env);
1439 CPUState *cs = CPU(cpu);
1440
1441 if (kvm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1442 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1443 return 0;
1444 }
1445
1446 return 1;
1447}
1448
1449int kvmppc_get_hasidle(CPUPPCState *env)
1450{
1451 struct kvm_ppc_pvinfo pvinfo;
1452
1453 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1454 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1455 return 1;
1456 }
1457
1458 return 0;
1459}
1460
1328c2bf 1461int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
45024f09
AG
1462{
1463 uint32_t *hc = (uint32_t*)buf;
45024f09
AG
1464 struct kvm_ppc_pvinfo pvinfo;
1465
1a61a9ae 1466 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
45024f09 1467 memcpy(buf, pvinfo.hcall, buf_len);
45024f09
AG
1468 return 0;
1469 }
45024f09
AG
1470
1471 /*
1472 * Fallback to always fail hypercalls:
1473 *
1474 * li r3, -1
1475 * nop
1476 * nop
1477 * nop
1478 */
1479
1480 hc[0] = 0x3860ffff;
1481 hc[1] = 0x60000000;
1482 hc[2] = 0x60000000;
1483 hc[3] = 0x60000000;
1484
1485 return 0;
1486}
1487
1bc22652 1488void kvmppc_set_papr(PowerPCCPU *cpu)
f61b4bed 1489{
1bc22652
AF
1490 CPUPPCState *env = &cpu->env;
1491 CPUState *cs = CPU(cpu);
94135e81 1492 struct kvm_enable_cap cap = {};
f61b4bed
AG
1493 int ret;
1494
f61b4bed 1495 cap.cap = KVM_CAP_PPC_PAPR;
1bc22652 1496 ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &cap);
f61b4bed
AG
1497
1498 if (ret) {
f1af19d7 1499 cpu_abort(env, "This KVM version does not support PAPR\n");
94135e81 1500 }
9b00ea49
DG
1501
1502 /* Update the capability flag so we sync the right information
1503 * with kvm */
1504 cap_papr = 1;
f61b4bed
AG
1505}
1506
5b95b8b9
AG
1507void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
1508{
1509 CPUPPCState *env = &cpu->env;
1510 CPUState *cs = CPU(cpu);
1511 struct kvm_enable_cap cap = {};
1512 int ret;
1513
1514 cap.cap = KVM_CAP_PPC_EPR;
1515 cap.args[0] = mpic_proxy;
1516 ret = kvm_vcpu_ioctl(cs, KVM_ENABLE_CAP, &cap);
1517
1518 if (ret && mpic_proxy) {
1519 cpu_abort(env, "This KVM version does not support EPR\n");
1520 }
1521}
1522
e97c3636
DG
1523int kvmppc_smt_threads(void)
1524{
1525 return cap_ppc_smt ? cap_ppc_smt : 1;
1526}
1527
7f763a5d 1528#ifdef TARGET_PPC64
354ac20a
DG
1529off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem)
1530{
1531 void *rma;
1532 off_t size;
1533 int fd;
1534 struct kvm_allocate_rma ret;
1535 MemoryRegion *rma_region;
1536
1537 /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
1538 * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
1539 * not necessary on this hardware
1540 * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
1541 *
1542 * FIXME: We should allow the user to force contiguous RMA
1543 * allocation in the cap_ppc_rma==1 case.
1544 */
1545 if (cap_ppc_rma < 2) {
1546 return 0;
1547 }
1548
1549 fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
1550 if (fd < 0) {
1551 fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
1552 strerror(errno));
1553 return -1;
1554 }
1555
1556 size = MIN(ret.rma_size, 256ul << 20);
1557
1558 rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
1559 if (rma == MAP_FAILED) {
1560 fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
1561 return -1;
1562 };
1563
1564 rma_region = g_new(MemoryRegion, 1);
2c9b15ca 1565 memory_region_init_ram_ptr(rma_region, NULL, name, size, rma);
6148b23d 1566 vmstate_register_ram_global(rma_region);
354ac20a
DG
1567 memory_region_add_subregion(sysmem, 0, rma_region);
1568
1569 return size;
1570}
1571
7f763a5d
DG
1572uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
1573{
f36951c1
DG
1574 struct kvm_ppc_smmu_info info;
1575 long rampagesize, best_page_shift;
1576 int i;
1577
7f763a5d
DG
1578 if (cap_ppc_rma >= 2) {
1579 return current_size;
1580 }
f36951c1
DG
1581
1582 /* Find the largest hardware supported page size that's less than
1583 * or equal to the (logical) backing page size of guest RAM */
182735ef 1584 kvm_get_smmu_info(POWERPC_CPU(first_cpu), &info);
f36951c1
DG
1585 rampagesize = getrampagesize();
1586 best_page_shift = 0;
1587
1588 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
1589 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
1590
1591 if (!sps->page_shift) {
1592 continue;
1593 }
1594
1595 if ((sps->page_shift > best_page_shift)
1596 && ((1UL << sps->page_shift) <= rampagesize)) {
1597 best_page_shift = sps->page_shift;
1598 }
1599 }
1600
7f763a5d 1601 return MIN(current_size,
f36951c1 1602 1ULL << (best_page_shift + hash_shift - 7));
7f763a5d
DG
1603}
1604#endif
1605
0f5cb298
DG
1606void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd)
1607{
1608 struct kvm_create_spapr_tce args = {
1609 .liobn = liobn,
1610 .window_size = window_size,
1611 };
1612 long len;
1613 int fd;
1614 void *table;
1615
b5aec396
DG
1616 /* Must set fd to -1 so we don't try to munmap when called for
1617 * destroying the table, which the upper layers -will- do
1618 */
1619 *pfd = -1;
0f5cb298
DG
1620 if (!cap_spapr_tce) {
1621 return NULL;
1622 }
1623
1624 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
1625 if (fd < 0) {
b5aec396
DG
1626 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
1627 liobn);
0f5cb298
DG
1628 return NULL;
1629 }
1630
a83000f5 1631 len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(uint64_t);
0f5cb298
DG
1632 /* FIXME: round this up to page size */
1633
74b41e56 1634 table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
0f5cb298 1635 if (table == MAP_FAILED) {
b5aec396
DG
1636 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
1637 liobn);
0f5cb298
DG
1638 close(fd);
1639 return NULL;
1640 }
1641
1642 *pfd = fd;
1643 return table;
1644}
1645
1646int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t window_size)
1647{
1648 long len;
1649
1650 if (fd < 0) {
1651 return -1;
1652 }
1653
a83000f5 1654 len = (window_size / SPAPR_TCE_PAGE_SIZE)*sizeof(uint64_t);
0f5cb298
DG
1655 if ((munmap(table, len) < 0) ||
1656 (close(fd) < 0)) {
b5aec396
DG
1657 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
1658 strerror(errno));
0f5cb298
DG
1659 /* Leak the table */
1660 }
1661
1662 return 0;
1663}
1664
7f763a5d
DG
1665int kvmppc_reset_htab(int shift_hint)
1666{
1667 uint32_t shift = shift_hint;
1668
ace9a2cb
DG
1669 if (!kvm_enabled()) {
1670 /* Full emulation, tell caller to allocate htab itself */
1671 return 0;
1672 }
1673 if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
7f763a5d
DG
1674 int ret;
1675 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
ace9a2cb
DG
1676 if (ret == -ENOTTY) {
1677 /* At least some versions of PR KVM advertise the
1678 * capability, but don't implement the ioctl(). Oops.
1679 * Return 0 so that we allocate the htab in qemu, as is
1680 * correct for PR. */
1681 return 0;
1682 } else if (ret < 0) {
7f763a5d
DG
1683 return ret;
1684 }
1685 return shift;
1686 }
1687
ace9a2cb
DG
1688 /* We have a kernel that predates the htab reset calls. For PR
1689 * KVM, we need to allocate the htab ourselves, for an HV KVM of
1690 * this era, it has allocated a 16MB fixed size hash table
1691 * already. Kernels of this era have the GET_PVINFO capability
1692 * only on PR, so we use this hack to determine the right
1693 * answer */
1694 if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
1695 /* PR - tell caller to allocate htab */
1696 return 0;
1697 } else {
1698 /* HV - assume 16MB kernel allocated htab */
1699 return 24;
1700 }
7f763a5d
DG
1701}
1702
a1e98583
DG
1703static inline uint32_t mfpvr(void)
1704{
1705 uint32_t pvr;
1706
1707 asm ("mfpvr %0"
1708 : "=r"(pvr));
1709 return pvr;
1710}
1711
a7342588
DG
1712static void alter_insns(uint64_t *word, uint64_t flags, bool on)
1713{
1714 if (on) {
1715 *word |= flags;
1716 } else {
1717 *word &= ~flags;
1718 }
1719}
1720
2985b86b 1721static void kvmppc_host_cpu_initfn(Object *obj)
a1e98583 1722{
2985b86b
AF
1723 assert(kvm_enabled());
1724}
1725
1726static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
1727{
1728 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
a7342588
DG
1729 uint32_t vmx = kvmppc_get_vmx();
1730 uint32_t dfp = kvmppc_get_dfp();
0cbad81f
DG
1731 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
1732 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
a1e98583 1733
cfe34f44 1734 /* Now fix up the class with information we can query from the host */
a7342588 1735
70bca53f
AG
1736 if (vmx != -1) {
1737 /* Only override when we know what the host supports */
cfe34f44
AF
1738 alter_insns(&pcc->insns_flags, PPC_ALTIVEC, vmx > 0);
1739 alter_insns(&pcc->insns_flags2, PPC2_VSX, vmx > 1);
70bca53f
AG
1740 }
1741 if (dfp != -1) {
1742 /* Only override when we know what the host supports */
cfe34f44 1743 alter_insns(&pcc->insns_flags2, PPC2_DFP, dfp);
70bca53f 1744 }
0cbad81f
DG
1745
1746 if (dcache_size != -1) {
1747 pcc->l1_dcache_size = dcache_size;
1748 }
1749
1750 if (icache_size != -1) {
1751 pcc->l1_icache_size = icache_size;
1752 }
a1e98583
DG
1753}
1754
55e5c285 1755int kvmppc_fixup_cpu(PowerPCCPU *cpu)
12b1143b 1756{
55e5c285 1757 CPUState *cs = CPU(cpu);
12b1143b
DG
1758 int smt;
1759
1760 /* Adjust cpu index for SMT */
1761 smt = kvmppc_smt_threads();
55e5c285
AF
1762 cs->cpu_index = (cs->cpu_index / smp_threads) * smt
1763 + (cs->cpu_index % smp_threads);
12b1143b
DG
1764
1765 return 0;
1766}
1767
3b961124
SY
1768bool kvmppc_has_cap_epr(void)
1769{
1770 return cap_epr;
1771}
1772
5ba4576b
AF
1773static int kvm_ppc_register_host_cpu_type(void)
1774{
1775 TypeInfo type_info = {
1776 .name = TYPE_HOST_POWERPC_CPU,
1777 .instance_init = kvmppc_host_cpu_initfn,
1778 .class_init = kvmppc_host_cpu_class_init,
1779 };
1780 uint32_t host_pvr = mfpvr();
1781 PowerPCCPUClass *pvr_pcc;
1782
1783 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
1784 if (pvr_pcc == NULL) {
1785 return -1;
1786 }
1787 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
1788 type_register(&type_info);
1789 return 0;
1790}
1791
12b1143b 1792
e68cb8b4
AK
1793int kvmppc_get_htab_fd(bool write)
1794{
1795 struct kvm_get_htab_fd s = {
1796 .flags = write ? KVM_GET_HTAB_WRITE : 0,
1797 .start_index = 0,
1798 };
1799
1800 if (!cap_htab_fd) {
1801 fprintf(stderr, "KVM version doesn't support saving the hash table\n");
1802 return -1;
1803 }
1804
1805 return kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
1806}
1807
1808int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
1809{
bc72ad67 1810 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
e68cb8b4
AK
1811 uint8_t buf[bufsize];
1812 ssize_t rc;
1813
1814 do {
1815 rc = read(fd, buf, bufsize);
1816 if (rc < 0) {
1817 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
1818 strerror(errno));
1819 return rc;
1820 } else if (rc) {
1821 /* Kernel already retuns data in BE format for the file */
1822 qemu_put_buffer(f, buf, rc);
1823 }
1824 } while ((rc != 0)
1825 && ((max_ns < 0)
bc72ad67 1826 || ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
e68cb8b4
AK
1827
1828 return (rc == 0) ? 1 : 0;
1829}
1830
1831int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
1832 uint16_t n_valid, uint16_t n_invalid)
1833{
1834 struct kvm_get_htab_header *buf;
1835 size_t chunksize = sizeof(*buf) + n_valid*HASH_PTE_SIZE_64;
1836 ssize_t rc;
1837
1838 buf = alloca(chunksize);
1839 /* This is KVM on ppc, so this is all big-endian */
1840 buf->index = index;
1841 buf->n_valid = n_valid;
1842 buf->n_invalid = n_invalid;
1843
1844 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64*n_valid);
1845
1846 rc = write(fd, buf, chunksize);
1847 if (rc < 0) {
1848 fprintf(stderr, "Error writing KVM hash table: %s\n",
1849 strerror(errno));
1850 return rc;
1851 }
1852 if (rc != chunksize) {
1853 /* We should never get a short write on a single chunk */
1854 fprintf(stderr, "Short write, restoring KVM hash table\n");
1855 return -1;
1856 }
1857 return 0;
1858}
1859
20d695a9 1860bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
4513d923
GN
1861{
1862 return true;
1863}
a1b87fe0 1864
20d695a9 1865int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
a1b87fe0
JK
1866{
1867 return 1;
1868}
1869
1870int kvm_arch_on_sigbus(int code, void *addr)
1871{
1872 return 1;
1873}
82169660
SW
1874
1875void kvm_arch_init_irq_routing(KVMState *s)
1876{
1877}