]> git.proxmox.com Git - qemu.git/blame - target-ppc/op_helper.c
fixed invalid type
[qemu.git] / target-ppc / op_helper.c
CommitLineData
9a64fbe4 1/*
3fc6c082 2 * PowerPC emulation helpers for qemu.
5fafdf24 3 *
76a66253 4 * Copyright (c) 2003-2007 Jocelyn Mayer
9a64fbe4
FB
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
9a64fbe4 20#include "exec.h"
603fccce 21#include "host-utils.h"
9a64fbe4 22
0411a972 23#include "helper_regs.h"
0487d6a8
JM
24#include "op_helper.h"
25
9a64fbe4 26#define MEMSUFFIX _raw
0487d6a8 27#include "op_helper.h"
9a64fbe4 28#include "op_helper_mem.h"
a541f297 29#if !defined(CONFIG_USER_ONLY)
9a64fbe4 30#define MEMSUFFIX _user
0487d6a8 31#include "op_helper.h"
9a64fbe4
FB
32#include "op_helper_mem.h"
33#define MEMSUFFIX _kernel
0487d6a8 34#include "op_helper.h"
9a64fbe4 35#include "op_helper_mem.h"
1e42b8f0
JM
36#if defined(TARGET_PPC64H)
37#define MEMSUFFIX _hypv
38#include "op_helper.h"
39#include "op_helper_mem.h"
40#endif
9a64fbe4
FB
41#endif
42
fdabc366
FB
43//#define DEBUG_OP
44//#define DEBUG_EXCEPTIONS
76a66253 45//#define DEBUG_SOFTWARE_TLB
fdabc366 46
9a64fbe4
FB
47/*****************************************************************************/
48/* Exceptions processing helpers */
9a64fbe4 49
9fddaa0c 50void do_raise_exception_err (uint32_t exception, int error_code)
9a64fbe4 51{
9fddaa0c
FB
52#if 0
53 printf("Raise exception %3x code : %d\n", exception, error_code);
54#endif
9fddaa0c
FB
55 env->exception_index = exception;
56 env->error_code = error_code;
76a66253
JM
57 cpu_loop_exit();
58}
9fddaa0c
FB
59
60void do_raise_exception (uint32_t exception)
61{
62 do_raise_exception_err(exception, 0);
9a64fbe4
FB
63}
64
a496775f
JM
65void cpu_dump_EA (target_ulong EA);
66void do_print_mem_EA (target_ulong EA)
67{
68 cpu_dump_EA(EA);
69}
70
76a66253
JM
71/*****************************************************************************/
72/* Registers load and stores */
73void do_load_cr (void)
74{
75 T0 = (env->crf[0] << 28) |
76 (env->crf[1] << 24) |
77 (env->crf[2] << 20) |
78 (env->crf[3] << 16) |
79 (env->crf[4] << 12) |
80 (env->crf[5] << 8) |
81 (env->crf[6] << 4) |
82 (env->crf[7] << 0);
83}
84
85void do_store_cr (uint32_t mask)
86{
87 int i, sh;
88
36081602 89 for (i = 0, sh = 7; i < 8; i++, sh--) {
76a66253
JM
90 if (mask & (1 << sh))
91 env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
92 }
93}
94
c80f84e3
JM
95#if defined(TARGET_PPC64)
96void do_store_pri (int prio)
97{
98 env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
99 env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
100}
101#endif
102
a496775f
JM
103target_ulong ppc_load_dump_spr (int sprn)
104{
6b80055d 105 if (loglevel != 0) {
a496775f
JM
106 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
107 sprn, sprn, env->spr[sprn]);
108 }
109
110 return env->spr[sprn];
111}
112
113void ppc_store_dump_spr (int sprn, target_ulong val)
114{
6b80055d 115 if (loglevel != 0) {
a496775f
JM
116 fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
117 sprn, sprn, env->spr[sprn], val);
118 }
119 env->spr[sprn] = val;
120}
121
9a64fbe4 122/*****************************************************************************/
fdabc366 123/* Fixed point operations helpers */
fdabc366
FB
124void do_adde (void)
125{
126 T2 = T0;
127 T0 += T1 + xer_ca;
d9bce9d9
JM
128 if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
129 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
fdabc366
FB
130 xer_ca = 0;
131 } else {
132 xer_ca = 1;
133 }
134}
135
d9bce9d9
JM
136#if defined(TARGET_PPC64)
137void do_adde_64 (void)
fdabc366
FB
138{
139 T2 = T0;
140 T0 += T1 + xer_ca;
d9bce9d9
JM
141 if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
142 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
fdabc366
FB
143 xer_ca = 0;
144 } else {
145 xer_ca = 1;
146 }
fdabc366 147}
d9bce9d9 148#endif
fdabc366
FB
149
150void do_addmeo (void)
151{
152 T1 = T0;
153 T0 += xer_ca + (-1);
c3e10c7b
JM
154 xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
155 xer_so |= xer_ov;
fdabc366
FB
156 if (likely(T1 != 0))
157 xer_ca = 1;
c3e10c7b
JM
158 else
159 xer_ca = 0;
fdabc366
FB
160}
161
d9bce9d9
JM
162#if defined(TARGET_PPC64)
163void do_addmeo_64 (void)
fdabc366
FB
164{
165 T1 = T0;
d9bce9d9 166 T0 += xer_ca + (-1);
c3e10c7b
JM
167 xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
168 xer_so |= xer_ov;
d9bce9d9 169 if (likely(T1 != 0))
fdabc366 170 xer_ca = 1;
c3e10c7b
JM
171 else
172 xer_ca = 0;
fdabc366 173}
d9bce9d9 174#endif
fdabc366
FB
175
176void do_divwo (void)
177{
d9bce9d9
JM
178 if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) ||
179 (int32_t)T1 == 0))) {
fdabc366 180 xer_ov = 0;
d9bce9d9 181 T0 = (int32_t)T0 / (int32_t)T1;
fdabc366 182 } else {
fdabc366 183 xer_ov = 1;
966439a6 184 xer_so = 1;
fdabc366
FB
185 T0 = (-1) * ((uint32_t)T0 >> 31);
186 }
187}
188
d9bce9d9
JM
189#if defined(TARGET_PPC64)
190void do_divdo (void)
191{
192 if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) ||
193 (int64_t)T1 == 0))) {
194 xer_ov = 0;
195 T0 = (int64_t)T0 / (int64_t)T1;
196 } else {
d9bce9d9 197 xer_ov = 1;
966439a6 198 xer_so = 1;
d9bce9d9
JM
199 T0 = (-1ULL) * ((uint64_t)T0 >> 63);
200 }
201}
202#endif
203
fdabc366
FB
204void do_divwuo (void)
205{
206 if (likely((uint32_t)T1 != 0)) {
207 xer_ov = 0;
208 T0 = (uint32_t)T0 / (uint32_t)T1;
209 } else {
fdabc366 210 xer_ov = 1;
966439a6 211 xer_so = 1;
fdabc366
FB
212 T0 = 0;
213 }
214}
215
d9bce9d9
JM
216#if defined(TARGET_PPC64)
217void do_divduo (void)
218{
219 if (likely((uint64_t)T1 != 0)) {
220 xer_ov = 0;
221 T0 = (uint64_t)T0 / (uint64_t)T1;
222 } else {
d9bce9d9 223 xer_ov = 1;
966439a6 224 xer_so = 1;
d9bce9d9
JM
225 T0 = 0;
226 }
227}
228#endif
229
fdabc366
FB
230void do_mullwo (void)
231{
d9bce9d9 232 int64_t res = (int64_t)T0 * (int64_t)T1;
fdabc366
FB
233
234 if (likely((int32_t)res == res)) {
235 xer_ov = 0;
236 } else {
237 xer_ov = 1;
238 xer_so = 1;
239 }
240 T0 = (int32_t)res;
241}
242
d9bce9d9
JM
243#if defined(TARGET_PPC64)
244void do_mulldo (void)
fdabc366 245{
d9bce9d9
JM
246 int64_t th;
247 uint64_t tl;
248
9d901a20 249 muls64(&tl, &th, T0, T1);
88ad920b
JM
250 /* If th != 0 && th != -1, then we had an overflow */
251 if (likely((th + 1) <= 1)) {
fdabc366 252 xer_ov = 0;
fdabc366
FB
253 } else {
254 xer_ov = 1;
255 xer_so = 1;
256 }
d9bce9d9 257 T0 = (int64_t)tl;
fdabc366 258}
d9bce9d9 259#endif
fdabc366 260
d9bce9d9 261void do_nego (void)
fdabc366 262{
d9bce9d9 263 if (likely((int32_t)T0 != INT32_MIN)) {
fdabc366 264 xer_ov = 0;
d9bce9d9 265 T0 = -(int32_t)T0;
fdabc366 266 } else {
fdabc366 267 xer_ov = 1;
d9bce9d9 268 xer_so = 1;
fdabc366 269 }
fdabc366
FB
270}
271
d9bce9d9
JM
272#if defined(TARGET_PPC64)
273void do_nego_64 (void)
fdabc366 274{
d9bce9d9 275 if (likely((int64_t)T0 != INT64_MIN)) {
fdabc366 276 xer_ov = 0;
d9bce9d9 277 T0 = -(int64_t)T0;
fdabc366 278 } else {
fdabc366 279 xer_ov = 1;
d9bce9d9 280 xer_so = 1;
fdabc366
FB
281 }
282}
d9bce9d9 283#endif
fdabc366
FB
284
285void do_subfe (void)
286{
287 T0 = T1 + ~T0 + xer_ca;
d9bce9d9
JM
288 if (likely((uint32_t)T0 >= (uint32_t)T1 &&
289 (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
fdabc366
FB
290 xer_ca = 0;
291 } else {
292 xer_ca = 1;
293 }
294}
295
d9bce9d9
JM
296#if defined(TARGET_PPC64)
297void do_subfe_64 (void)
fdabc366 298{
fdabc366 299 T0 = T1 + ~T0 + xer_ca;
d9bce9d9
JM
300 if (likely((uint64_t)T0 >= (uint64_t)T1 &&
301 (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
302 xer_ca = 0;
303 } else {
304 xer_ca = 1;
305 }
306}
307#endif
308
309void do_subfmeo (void)
310{
311 T1 = T0;
312 T0 = ~T0 + xer_ca - 1;
c3e10c7b
JM
313 xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
314 xer_so |= xer_ov;
d9bce9d9 315 if (likely((uint32_t)T1 != UINT32_MAX))
fdabc366 316 xer_ca = 1;
c3e10c7b
JM
317 else
318 xer_ca = 0;
fdabc366
FB
319}
320
d9bce9d9
JM
321#if defined(TARGET_PPC64)
322void do_subfmeo_64 (void)
fdabc366
FB
323{
324 T1 = T0;
325 T0 = ~T0 + xer_ca - 1;
c3e10c7b
JM
326 xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
327 xer_so |= xer_ov;
d9bce9d9 328 if (likely((uint64_t)T1 != UINT64_MAX))
fdabc366 329 xer_ca = 1;
c3e10c7b
JM
330 else
331 xer_ca = 0;
fdabc366 332}
d9bce9d9 333#endif
fdabc366
FB
334
335void do_subfzeo (void)
336{
337 T1 = T0;
338 T0 = ~T0 + xer_ca;
c3e10c7b
JM
339 xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) &
340 ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
341 xer_so |= xer_ov;
d9bce9d9 342 if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
fdabc366
FB
343 xer_ca = 0;
344 } else {
345 xer_ca = 1;
346 }
347}
348
d9bce9d9
JM
349#if defined(TARGET_PPC64)
350void do_subfzeo_64 (void)
351{
352 T1 = T0;
353 T0 = ~T0 + xer_ca;
c3e10c7b
JM
354 xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) &
355 ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
356 xer_so |= xer_ov;
d9bce9d9
JM
357 if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
358 xer_ca = 0;
359 } else {
360 xer_ca = 1;
361 }
362}
363#endif
364
603fccce
JM
365void do_cntlzw (void)
366{
367 T0 = clz32(T0);
368}
369
370#if defined(TARGET_PPC64)
371void do_cntlzd (void)
372{
373 T0 = clz64(T0);
374}
375#endif
376
9a64fbe4
FB
377/* shift right arithmetic helper */
378void do_sraw (void)
379{
380 int32_t ret;
381
fdabc366 382 if (likely(!(T1 & 0x20UL))) {
d9bce9d9 383 if (likely((uint32_t)T1 != 0)) {
fdabc366
FB
384 ret = (int32_t)T0 >> (T1 & 0x1fUL);
385 if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
76a66253 386 xer_ca = 0;
fdabc366 387 } else {
76a66253 388 xer_ca = 1;
fdabc366
FB
389 }
390 } else {
76a66253 391 ret = T0;
fdabc366
FB
392 xer_ca = 0;
393 }
394 } else {
395 ret = (-1) * ((uint32_t)T0 >> 31);
396 if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
397 xer_ca = 0;
76a66253 398 } else {
9a64fbe4 399 xer_ca = 1;
76a66253 400 }
fdabc366 401 }
4b3686fa 402 T0 = ret;
9a64fbe4
FB
403}
404
d9bce9d9
JM
405#if defined(TARGET_PPC64)
406void do_srad (void)
407{
408 int64_t ret;
409
410 if (likely(!(T1 & 0x40UL))) {
411 if (likely((uint64_t)T1 != 0)) {
412 ret = (int64_t)T0 >> (T1 & 0x3FUL);
413 if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
414 xer_ca = 0;
415 } else {
416 xer_ca = 1;
417 }
418 } else {
419 ret = T0;
420 xer_ca = 0;
421 }
422 } else {
423 ret = (-1) * ((uint64_t)T0 >> 63);
424 if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
425 xer_ca = 0;
426 } else {
427 xer_ca = 1;
428 }
429 }
430 T0 = ret;
431}
432#endif
433
d9bce9d9
JM
434void do_popcntb (void)
435{
436 uint32_t ret;
437 int i;
438
439 ret = 0;
440 for (i = 0; i < 32; i += 8)
603fccce 441 ret |= ctpop8((T0 >> i) & 0xFF) << i;
d9bce9d9
JM
442 T0 = ret;
443}
444
445#if defined(TARGET_PPC64)
446void do_popcntb_64 (void)
447{
448 uint64_t ret;
449 int i;
450
451 ret = 0;
452 for (i = 0; i < 64; i += 8)
603fccce 453 ret |= ctpop8((T0 >> i) & 0xFF) << i;
d9bce9d9
JM
454 T0 = ret;
455}
456#endif
457
fdabc366 458/*****************************************************************************/
9a64fbe4 459/* Floating point operations helpers */
a11b8151 460static always_inline int fpisneg (float64 f)
7c58044c
JM
461{
462 union {
463 float64 f;
464 uint64_t u;
465 } u;
466
467 u.f = f;
468
469 return u.u >> 63 != 0;
470}
471
a11b8151 472static always_inline int isden (float f)
7c58044c
JM
473{
474 union {
475 float64 f;
476 uint64_t u;
477 } u;
478
479 u.f = f;
480
481 return ((u.u >> 52) & 0x7FF) == 0;
482}
483
a11b8151 484static always_inline int iszero (float64 f)
7c58044c
JM
485{
486 union {
487 float64 f;
488 uint64_t u;
489 } u;
490
491 u.f = f;
492
493 return (u.u & ~0x8000000000000000ULL) == 0;
494}
495
a11b8151 496static always_inline int isinfinity (float64 f)
7c58044c
JM
497{
498 union {
499 float64 f;
500 uint64_t u;
501 } u;
502
503 u.f = f;
504
86c4a9f5 505 return ((u.u >> 52) & 0x7FF) == 0x7FF &&
7c58044c
JM
506 (u.u & 0x000FFFFFFFFFFFFFULL) == 0;
507}
508
509void do_compute_fprf (int set_fprf)
510{
511 int isneg;
512
513 isneg = fpisneg(FT0);
514 if (unlikely(float64_is_nan(FT0))) {
515 if (float64_is_signaling_nan(FT0)) {
516 /* Signaling NaN: flags are undefined */
517 T0 = 0x00;
518 } else {
519 /* Quiet NaN */
520 T0 = 0x11;
521 }
522 } else if (unlikely(isinfinity(FT0))) {
523 /* +/- infinity */
524 if (isneg)
525 T0 = 0x09;
526 else
527 T0 = 0x05;
528 } else {
529 if (iszero(FT0)) {
530 /* +/- zero */
531 if (isneg)
532 T0 = 0x12;
533 else
534 T0 = 0x02;
535 } else {
536 if (isden(FT0)) {
537 /* Denormalized numbers */
538 T0 = 0x10;
539 } else {
540 /* Normalized numbers */
541 T0 = 0x00;
542 }
543 if (isneg) {
544 T0 |= 0x08;
545 } else {
546 T0 |= 0x04;
547 }
548 }
549 }
550 if (set_fprf) {
551 /* We update FPSCR_FPRF */
552 env->fpscr &= ~(0x1F << FPSCR_FPRF);
553 env->fpscr |= T0 << FPSCR_FPRF;
554 }
555 /* We just need fpcc to update Rc1 */
556 T0 &= 0xF;
557}
558
559/* Floating-point invalid operations exception */
560static always_inline void fload_invalid_op_excp (int op)
561{
562 int ve;
563
564 ve = fpscr_ve;
565 if (op & POWERPC_EXCP_FP_VXSNAN) {
566 /* Operation on signaling NaN */
567 env->fpscr |= 1 << FPSCR_VXSNAN;
568 }
569 if (op & POWERPC_EXCP_FP_VXSOFT) {
570 /* Software-defined condition */
571 env->fpscr |= 1 << FPSCR_VXSOFT;
572 }
573 switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
574 case POWERPC_EXCP_FP_VXISI:
575 /* Magnitude subtraction of infinities */
576 env->fpscr |= 1 << FPSCR_VXISI;
577 goto update_arith;
578 case POWERPC_EXCP_FP_VXIDI:
579 /* Division of infinity by infinity */
580 env->fpscr |= 1 << FPSCR_VXIDI;
581 goto update_arith;
582 case POWERPC_EXCP_FP_VXZDZ:
583 /* Division of zero by zero */
584 env->fpscr |= 1 << FPSCR_VXZDZ;
585 goto update_arith;
586 case POWERPC_EXCP_FP_VXIMZ:
587 /* Multiplication of zero by infinity */
588 env->fpscr |= 1 << FPSCR_VXIMZ;
589 goto update_arith;
590 case POWERPC_EXCP_FP_VXVC:
591 /* Ordered comparison of NaN */
592 env->fpscr |= 1 << FPSCR_VXVC;
593 env->fpscr &= ~(0xF << FPSCR_FPCC);
594 env->fpscr |= 0x11 << FPSCR_FPCC;
595 /* We must update the target FPR before raising the exception */
596 if (ve != 0) {
597 env->exception_index = POWERPC_EXCP_PROGRAM;
598 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
599 /* Update the floating-point enabled exception summary */
600 env->fpscr |= 1 << FPSCR_FEX;
601 /* Exception is differed */
602 ve = 0;
603 }
604 break;
605 case POWERPC_EXCP_FP_VXSQRT:
606 /* Square root of a negative number */
607 env->fpscr |= 1 << FPSCR_VXSQRT;
608 update_arith:
609 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
610 if (ve == 0) {
611 /* Set the result to quiet NaN */
612 FT0 = (uint64_t)-1;
613 env->fpscr &= ~(0xF << FPSCR_FPCC);
614 env->fpscr |= 0x11 << FPSCR_FPCC;
615 }
616 break;
617 case POWERPC_EXCP_FP_VXCVI:
618 /* Invalid conversion */
619 env->fpscr |= 1 << FPSCR_VXCVI;
620 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
621 if (ve == 0) {
622 /* Set the result to quiet NaN */
623 FT0 = (uint64_t)-1;
624 env->fpscr &= ~(0xF << FPSCR_FPCC);
625 env->fpscr |= 0x11 << FPSCR_FPCC;
626 }
627 break;
628 }
629 /* Update the floating-point invalid operation summary */
630 env->fpscr |= 1 << FPSCR_VX;
631 /* Update the floating-point exception summary */
632 env->fpscr |= 1 << FPSCR_FX;
633 if (ve != 0) {
634 /* Update the floating-point enabled exception summary */
635 env->fpscr |= 1 << FPSCR_FEX;
636 if (msr_fe0 != 0 || msr_fe1 != 0)
637 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
638 }
639}
640
641static always_inline void float_zero_divide_excp (void)
642{
643 union {
644 float64 f;
645 uint64_t u;
646 } u0, u1;
7c58044c
JM
647
648 env->fpscr |= 1 << FPSCR_ZX;
649 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
650 /* Update the floating-point exception summary */
651 env->fpscr |= 1 << FPSCR_FX;
652 if (fpscr_ze != 0) {
653 /* Update the floating-point enabled exception summary */
654 env->fpscr |= 1 << FPSCR_FEX;
655 if (msr_fe0 != 0 || msr_fe1 != 0) {
656 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
657 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
658 }
659 } else {
660 /* Set the result to infinity */
661 u0.f = FT0;
662 u1.f = FT1;
663 u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL);
86c4a9f5 664 u0.u |= 0x7FFULL << 52;
7c58044c
JM
665 FT0 = u0.f;
666 }
667}
668
669static always_inline void float_overflow_excp (void)
670{
671 env->fpscr |= 1 << FPSCR_OX;
672 /* Update the floating-point exception summary */
673 env->fpscr |= 1 << FPSCR_FX;
674 if (fpscr_oe != 0) {
675 /* XXX: should adjust the result */
676 /* Update the floating-point enabled exception summary */
677 env->fpscr |= 1 << FPSCR_FEX;
678 /* We must update the target FPR before raising the exception */
679 env->exception_index = POWERPC_EXCP_PROGRAM;
680 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
681 } else {
682 env->fpscr |= 1 << FPSCR_XX;
683 env->fpscr |= 1 << FPSCR_FI;
684 }
685}
686
687static always_inline void float_underflow_excp (void)
688{
689 env->fpscr |= 1 << FPSCR_UX;
690 /* Update the floating-point exception summary */
691 env->fpscr |= 1 << FPSCR_FX;
692 if (fpscr_ue != 0) {
693 /* XXX: should adjust the result */
694 /* Update the floating-point enabled exception summary */
695 env->fpscr |= 1 << FPSCR_FEX;
696 /* We must update the target FPR before raising the exception */
697 env->exception_index = POWERPC_EXCP_PROGRAM;
698 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
699 }
700}
701
702static always_inline void float_inexact_excp (void)
703{
704 env->fpscr |= 1 << FPSCR_XX;
705 /* Update the floating-point exception summary */
706 env->fpscr |= 1 << FPSCR_FX;
707 if (fpscr_xe != 0) {
708 /* Update the floating-point enabled exception summary */
709 env->fpscr |= 1 << FPSCR_FEX;
710 /* We must update the target FPR before raising the exception */
711 env->exception_index = POWERPC_EXCP_PROGRAM;
712 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
713 }
714}
715
716static always_inline void fpscr_set_rounding_mode (void)
717{
718 int rnd_type;
719
720 /* Set rounding mode */
721 switch (fpscr_rn) {
722 case 0:
723 /* Best approximation (round to nearest) */
724 rnd_type = float_round_nearest_even;
725 break;
726 case 1:
727 /* Smaller magnitude (round toward zero) */
728 rnd_type = float_round_to_zero;
729 break;
730 case 2:
731 /* Round toward +infinite */
732 rnd_type = float_round_up;
733 break;
734 default:
735 case 3:
736 /* Round toward -infinite */
737 rnd_type = float_round_down;
738 break;
739 }
740 set_float_rounding_mode(rnd_type, &env->fp_status);
741}
742
743void do_fpscr_setbit (int bit)
744{
745 int prev;
746
747 prev = (env->fpscr >> bit) & 1;
748 env->fpscr |= 1 << bit;
749 if (prev == 0) {
750 switch (bit) {
751 case FPSCR_VX:
752 env->fpscr |= 1 << FPSCR_FX;
753 if (fpscr_ve)
754 goto raise_ve;
755 case FPSCR_OX:
756 env->fpscr |= 1 << FPSCR_FX;
757 if (fpscr_oe)
758 goto raise_oe;
759 break;
760 case FPSCR_UX:
761 env->fpscr |= 1 << FPSCR_FX;
762 if (fpscr_ue)
763 goto raise_ue;
764 break;
765 case FPSCR_ZX:
766 env->fpscr |= 1 << FPSCR_FX;
767 if (fpscr_ze)
768 goto raise_ze;
769 break;
770 case FPSCR_XX:
771 env->fpscr |= 1 << FPSCR_FX;
772 if (fpscr_xe)
773 goto raise_xe;
774 break;
775 case FPSCR_VXSNAN:
776 case FPSCR_VXISI:
777 case FPSCR_VXIDI:
778 case FPSCR_VXZDZ:
779 case FPSCR_VXIMZ:
780 case FPSCR_VXVC:
781 case FPSCR_VXSOFT:
782 case FPSCR_VXSQRT:
783 case FPSCR_VXCVI:
784 env->fpscr |= 1 << FPSCR_VX;
785 env->fpscr |= 1 << FPSCR_FX;
786 if (fpscr_ve != 0)
787 goto raise_ve;
788 break;
789 case FPSCR_VE:
790 if (fpscr_vx != 0) {
791 raise_ve:
792 env->error_code = POWERPC_EXCP_FP;
793 if (fpscr_vxsnan)
794 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
795 if (fpscr_vxisi)
796 env->error_code |= POWERPC_EXCP_FP_VXISI;
797 if (fpscr_vxidi)
798 env->error_code |= POWERPC_EXCP_FP_VXIDI;
799 if (fpscr_vxzdz)
800 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
801 if (fpscr_vximz)
802 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
803 if (fpscr_vxvc)
804 env->error_code |= POWERPC_EXCP_FP_VXVC;
805 if (fpscr_vxsoft)
806 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
807 if (fpscr_vxsqrt)
808 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
809 if (fpscr_vxcvi)
810 env->error_code |= POWERPC_EXCP_FP_VXCVI;
811 goto raise_excp;
812 }
813 break;
814 case FPSCR_OE:
815 if (fpscr_ox != 0) {
816 raise_oe:
817 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
818 goto raise_excp;
819 }
820 break;
821 case FPSCR_UE:
822 if (fpscr_ux != 0) {
823 raise_ue:
824 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
825 goto raise_excp;
826 }
827 break;
828 case FPSCR_ZE:
829 if (fpscr_zx != 0) {
830 raise_ze:
831 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
832 goto raise_excp;
833 }
834 break;
835 case FPSCR_XE:
836 if (fpscr_xx != 0) {
837 raise_xe:
838 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
839 goto raise_excp;
840 }
841 break;
842 case FPSCR_RN1:
843 case FPSCR_RN:
844 fpscr_set_rounding_mode();
845 break;
846 default:
847 break;
848 raise_excp:
849 /* Update the floating-point enabled exception summary */
850 env->fpscr |= 1 << FPSCR_FEX;
851 /* We have to update Rc1 before raising the exception */
852 env->exception_index = POWERPC_EXCP_PROGRAM;
853 break;
854 }
855 }
856}
857
858#if defined(WORDS_BIGENDIAN)
859#define WORD0 0
860#define WORD1 1
861#else
862#define WORD0 1
863#define WORD1 0
864#endif
865void do_store_fpscr (uint32_t mask)
866{
867 /*
868 * We use only the 32 LSB of the incoming fpr
869 */
870 union {
871 double d;
872 struct {
873 uint32_t u[2];
874 } s;
875 } u;
876 uint32_t prev, new;
877 int i;
878
879 u.d = FT0;
880 prev = env->fpscr;
881 new = u.s.u[WORD1];
882 new &= ~0x90000000;
883 new |= prev & 0x90000000;
884 for (i = 0; i < 7; i++) {
885 if (mask & (1 << i)) {
886 env->fpscr &= ~(0xF << (4 * i));
887 env->fpscr |= new & (0xF << (4 * i));
888 }
889 }
890 /* Update VX and FEX */
891 if (fpscr_ix != 0)
892 env->fpscr |= 1 << FPSCR_VX;
893 if ((fpscr_ex & fpscr_eex) != 0) {
894 env->fpscr |= 1 << FPSCR_FEX;
895 env->exception_index = POWERPC_EXCP_PROGRAM;
896 /* XXX: we should compute it properly */
897 env->error_code = POWERPC_EXCP_FP;
898 }
899 fpscr_set_rounding_mode();
900}
901#undef WORD0
902#undef WORD1
903
904#ifdef CONFIG_SOFTFLOAT
905void do_float_check_status (void)
906{
907 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
908 (env->error_code & POWERPC_EXCP_FP)) {
909 /* Differred floating-point exception after target FPR update */
910 if (msr_fe0 != 0 || msr_fe1 != 0)
911 do_raise_exception_err(env->exception_index, env->error_code);
912 } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
913 float_overflow_excp();
914 } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
915 float_underflow_excp();
916 } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
917 float_inexact_excp();
918 }
919}
920#endif
921
922#if USE_PRECISE_EMULATION
923void do_fadd (void)
924{
925 if (unlikely(float64_is_signaling_nan(FT0) ||
926 float64_is_signaling_nan(FT1))) {
927 /* sNaN addition */
928 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
929 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
930 fpisneg(FT0) == fpisneg(FT1))) {
931 FT0 = float64_add(FT0, FT1, &env->fp_status);
932 } else {
933 /* Magnitude subtraction of infinities */
934 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
935 }
936}
937
938void do_fsub (void)
939{
940 if (unlikely(float64_is_signaling_nan(FT0) ||
941 float64_is_signaling_nan(FT1))) {
942 /* sNaN subtraction */
943 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
944 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
945 fpisneg(FT0) != fpisneg(FT1))) {
946 FT0 = float64_sub(FT0, FT1, &env->fp_status);
947 } else {
948 /* Magnitude subtraction of infinities */
949 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
950 }
951}
952
953void do_fmul (void)
954{
955 if (unlikely(float64_is_signaling_nan(FT0) ||
956 float64_is_signaling_nan(FT1))) {
957 /* sNaN multiplication */
958 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
5bda2843
JM
959 } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
960 (iszero(FT0) && isinfinity(FT1)))) {
7c58044c
JM
961 /* Multiplication of zero by infinity */
962 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
963 } else {
964 FT0 = float64_mul(FT0, FT1, &env->fp_status);
965 }
966}
967
968void do_fdiv (void)
969{
970 if (unlikely(float64_is_signaling_nan(FT0) ||
971 float64_is_signaling_nan(FT1))) {
972 /* sNaN division */
973 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
974 } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
975 /* Division of infinity by infinity */
976 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
977 } else if (unlikely(iszero(FT1))) {
978 if (iszero(FT0)) {
979 /* Division of zero by zero */
980 fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
981 } else {
982 /* Division by zero */
983 float_zero_divide_excp();
984 }
985 } else {
986 FT0 = float64_div(FT0, FT1, &env->fp_status);
987 }
988}
989#endif /* USE_PRECISE_EMULATION */
990
9a64fbe4
FB
991void do_fctiw (void)
992{
993 union {
994 double d;
995 uint64_t i;
4ecc3190 996 } p;
9a64fbe4 997
7c58044c
JM
998 if (unlikely(float64_is_signaling_nan(FT0))) {
999 /* sNaN conversion */
1000 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1001 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1002 /* qNan / infinity conversion */
1003 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1004 } else {
1005 p.i = float64_to_int32(FT0, &env->fp_status);
e864cabd 1006#if USE_PRECISE_EMULATION
7c58044c
JM
1007 /* XXX: higher bits are not supposed to be significant.
1008 * to make tests easier, return the same as a real PowerPC 750
1009 */
1010 p.i |= 0xFFF80000ULL << 32;
e864cabd 1011#endif
7c58044c
JM
1012 FT0 = p.d;
1013 }
9a64fbe4
FB
1014}
1015
1016void do_fctiwz (void)
1017{
1018 union {
1019 double d;
1020 uint64_t i;
4ecc3190
FB
1021 } p;
1022
7c58044c
JM
1023 if (unlikely(float64_is_signaling_nan(FT0))) {
1024 /* sNaN conversion */
1025 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1026 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1027 /* qNan / infinity conversion */
1028 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1029 } else {
1030 p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
e864cabd 1031#if USE_PRECISE_EMULATION
7c58044c
JM
1032 /* XXX: higher bits are not supposed to be significant.
1033 * to make tests easier, return the same as a real PowerPC 750
1034 */
1035 p.i |= 0xFFF80000ULL << 32;
e864cabd 1036#endif
7c58044c
JM
1037 FT0 = p.d;
1038 }
9a64fbe4
FB
1039}
1040
426613db
JM
1041#if defined(TARGET_PPC64)
1042void do_fcfid (void)
1043{
1044 union {
1045 double d;
1046 uint64_t i;
1047 } p;
1048
1049 p.d = FT0;
1050 FT0 = int64_to_float64(p.i, &env->fp_status);
1051}
1052
1053void do_fctid (void)
1054{
1055 union {
1056 double d;
1057 uint64_t i;
1058 } p;
1059
7c58044c
JM
1060 if (unlikely(float64_is_signaling_nan(FT0))) {
1061 /* sNaN conversion */
1062 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1063 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1064 /* qNan / infinity conversion */
1065 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1066 } else {
1067 p.i = float64_to_int64(FT0, &env->fp_status);
1068 FT0 = p.d;
1069 }
426613db
JM
1070}
1071
1072void do_fctidz (void)
1073{
1074 union {
1075 double d;
1076 uint64_t i;
1077 } p;
1078
7c58044c
JM
1079 if (unlikely(float64_is_signaling_nan(FT0))) {
1080 /* sNaN conversion */
1081 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1082 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1083 /* qNan / infinity conversion */
1084 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1085 } else {
1086 p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
1087 FT0 = p.d;
1088 }
426613db
JM
1089}
1090
1091#endif
1092
b068d6a7 1093static always_inline void do_fri (int rounding_mode)
d7e4b87e 1094{
7c58044c
JM
1095 if (unlikely(float64_is_signaling_nan(FT0))) {
1096 /* sNaN round */
1097 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1098 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1099 /* qNan / infinity round */
1100 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1101 } else {
1102 set_float_rounding_mode(rounding_mode, &env->fp_status);
1103 FT0 = float64_round_to_int(FT0, &env->fp_status);
1104 /* Restore rounding mode from FPSCR */
1105 fpscr_set_rounding_mode();
1106 }
d7e4b87e
JM
1107}
1108
1109void do_frin (void)
1110{
1111 do_fri(float_round_nearest_even);
1112}
1113
1114void do_friz (void)
1115{
1116 do_fri(float_round_to_zero);
1117}
1118
1119void do_frip (void)
1120{
1121 do_fri(float_round_up);
1122}
1123
1124void do_frim (void)
1125{
1126 do_fri(float_round_down);
1127}
1128
e864cabd
JM
1129#if USE_PRECISE_EMULATION
1130void do_fmadd (void)
1131{
7c58044c
JM
1132 if (unlikely(float64_is_signaling_nan(FT0) ||
1133 float64_is_signaling_nan(FT1) ||
1134 float64_is_signaling_nan(FT2))) {
1135 /* sNaN operation */
1136 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1137 } else {
e864cabd 1138#ifdef FLOAT128
7c58044c
JM
1139 /* This is the way the PowerPC specification defines it */
1140 float128 ft0_128, ft1_128;
1141
1142 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1143 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1144 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1145 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1146 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1147 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1148#else
7c58044c
JM
1149 /* This is OK on x86 hosts */
1150 FT0 = (FT0 * FT1) + FT2;
e864cabd 1151#endif
7c58044c 1152 }
e864cabd
JM
1153}
1154
1155void do_fmsub (void)
1156{
7c58044c
JM
1157 if (unlikely(float64_is_signaling_nan(FT0) ||
1158 float64_is_signaling_nan(FT1) ||
1159 float64_is_signaling_nan(FT2))) {
1160 /* sNaN operation */
1161 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1162 } else {
e864cabd 1163#ifdef FLOAT128
7c58044c
JM
1164 /* This is the way the PowerPC specification defines it */
1165 float128 ft0_128, ft1_128;
1166
1167 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1168 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1169 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1170 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1171 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1172 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1173#else
7c58044c
JM
1174 /* This is OK on x86 hosts */
1175 FT0 = (FT0 * FT1) - FT2;
e864cabd 1176#endif
7c58044c 1177 }
e864cabd
JM
1178}
1179#endif /* USE_PRECISE_EMULATION */
1180
4b3686fa
FB
1181void do_fnmadd (void)
1182{
7c58044c
JM
1183 if (unlikely(float64_is_signaling_nan(FT0) ||
1184 float64_is_signaling_nan(FT1) ||
1185 float64_is_signaling_nan(FT2))) {
1186 /* sNaN operation */
1187 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1188 } else {
e864cabd
JM
1189#if USE_PRECISE_EMULATION
1190#ifdef FLOAT128
7c58044c
JM
1191 /* This is the way the PowerPC specification defines it */
1192 float128 ft0_128, ft1_128;
1193
1194 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1195 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1196 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1197 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1198 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1199 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1200#else
7c58044c
JM
1201 /* This is OK on x86 hosts */
1202 FT0 = (FT0 * FT1) + FT2;
e864cabd
JM
1203#endif
1204#else
7c58044c
JM
1205 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1206 FT0 = float64_add(FT0, FT2, &env->fp_status);
e864cabd 1207#endif
7c58044c
JM
1208 if (likely(!isnan(FT0)))
1209 FT0 = float64_chs(FT0);
1210 }
4b3686fa
FB
1211}
1212
1213void do_fnmsub (void)
1214{
7c58044c
JM
1215 if (unlikely(float64_is_signaling_nan(FT0) ||
1216 float64_is_signaling_nan(FT1) ||
1217 float64_is_signaling_nan(FT2))) {
1218 /* sNaN operation */
1219 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1220 } else {
e864cabd
JM
1221#if USE_PRECISE_EMULATION
1222#ifdef FLOAT128
7c58044c
JM
1223 /* This is the way the PowerPC specification defines it */
1224 float128 ft0_128, ft1_128;
1225
1226 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1227 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1228 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1229 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1230 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1231 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1232#else
7c58044c
JM
1233 /* This is OK on x86 hosts */
1234 FT0 = (FT0 * FT1) - FT2;
e864cabd
JM
1235#endif
1236#else
7c58044c
JM
1237 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1238 FT0 = float64_sub(FT0, FT2, &env->fp_status);
e864cabd 1239#endif
7c58044c
JM
1240 if (likely(!isnan(FT0)))
1241 FT0 = float64_chs(FT0);
1242 }
1ef59d0a
FB
1243}
1244
7c58044c
JM
1245#if USE_PRECISE_EMULATION
1246void do_frsp (void)
1247{
1248 if (unlikely(float64_is_signaling_nan(FT0))) {
1249 /* sNaN square root */
1250 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1251 } else {
1252 FT0 = float64_to_float32(FT0, &env->fp_status);
1253 }
1254}
1255#endif /* USE_PRECISE_EMULATION */
1256
9a64fbe4
FB
1257void do_fsqrt (void)
1258{
7c58044c
JM
1259 if (unlikely(float64_is_signaling_nan(FT0))) {
1260 /* sNaN square root */
1261 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1262 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1263 /* Square root of a negative nonzero number */
1264 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1265 } else {
1266 FT0 = float64_sqrt(FT0, &env->fp_status);
1267 }
9a64fbe4
FB
1268}
1269
d7e4b87e
JM
1270void do_fre (void)
1271{
1272 union {
1273 double d;
1274 uint64_t i;
1275 } p;
1276
7c58044c
JM
1277 if (unlikely(float64_is_signaling_nan(FT0))) {
1278 /* sNaN reciprocal */
1279 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1280 } else if (unlikely(iszero(FT0))) {
1281 /* Zero reciprocal */
1282 float_zero_divide_excp();
1283 } else if (likely(isnormal(FT0))) {
d7e4b87e
JM
1284 FT0 = float64_div(1.0, FT0, &env->fp_status);
1285 } else {
1286 p.d = FT0;
1287 if (p.i == 0x8000000000000000ULL) {
1288 p.i = 0xFFF0000000000000ULL;
1289 } else if (p.i == 0x0000000000000000ULL) {
1290 p.i = 0x7FF0000000000000ULL;
1291 } else if (isnan(FT0)) {
1292 p.i = 0x7FF8000000000000ULL;
7c58044c 1293 } else if (fpisneg(FT0)) {
d7e4b87e
JM
1294 p.i = 0x8000000000000000ULL;
1295 } else {
1296 p.i = 0x0000000000000000ULL;
1297 }
1298 FT0 = p.d;
1299 }
1300}
1301
9a64fbe4
FB
1302void do_fres (void)
1303{
4ecc3190
FB
1304 union {
1305 double d;
1306 uint64_t i;
1307 } p;
1308
7c58044c
JM
1309 if (unlikely(float64_is_signaling_nan(FT0))) {
1310 /* sNaN reciprocal */
1311 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1312 } else if (unlikely(iszero(FT0))) {
1313 /* Zero reciprocal */
1314 float_zero_divide_excp();
1315 } else if (likely(isnormal(FT0))) {
e864cabd
JM
1316#if USE_PRECISE_EMULATION
1317 FT0 = float64_div(1.0, FT0, &env->fp_status);
1318 FT0 = float64_to_float32(FT0, &env->fp_status);
1319#else
76a66253 1320 FT0 = float32_div(1.0, FT0, &env->fp_status);
e864cabd 1321#endif
4ecc3190
FB
1322 } else {
1323 p.d = FT0;
1324 if (p.i == 0x8000000000000000ULL) {
1325 p.i = 0xFFF0000000000000ULL;
1326 } else if (p.i == 0x0000000000000000ULL) {
1327 p.i = 0x7FF0000000000000ULL;
1328 } else if (isnan(FT0)) {
1329 p.i = 0x7FF8000000000000ULL;
7c58044c 1330 } else if (fpisneg(FT0)) {
4ecc3190
FB
1331 p.i = 0x8000000000000000ULL;
1332 } else {
1333 p.i = 0x0000000000000000ULL;
1334 }
1335 FT0 = p.d;
1336 }
9a64fbe4
FB
1337}
1338
4ecc3190 1339void do_frsqrte (void)
9a64fbe4 1340{
4ecc3190
FB
1341 union {
1342 double d;
1343 uint64_t i;
1344 } p;
1345
7c58044c
JM
1346 if (unlikely(float64_is_signaling_nan(FT0))) {
1347 /* sNaN reciprocal square root */
1348 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1349 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1350 /* Reciprocal square root of a negative nonzero number */
1351 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1352 } else if (likely(isnormal(FT0))) {
fdabc366
FB
1353 FT0 = float64_sqrt(FT0, &env->fp_status);
1354 FT0 = float32_div(1.0, FT0, &env->fp_status);
4ecc3190
FB
1355 } else {
1356 p.d = FT0;
1357 if (p.i == 0x8000000000000000ULL) {
1358 p.i = 0xFFF0000000000000ULL;
1359 } else if (p.i == 0x0000000000000000ULL) {
1360 p.i = 0x7FF0000000000000ULL;
1361 } else if (isnan(FT0)) {
7c58044c
JM
1362 p.i |= 0x000FFFFFFFFFFFFFULL;
1363 } else if (fpisneg(FT0)) {
4ecc3190
FB
1364 p.i = 0x7FF8000000000000ULL;
1365 } else {
1366 p.i = 0x0000000000000000ULL;
1367 }
1368 FT0 = p.d;
1369 }
9a64fbe4
FB
1370}
1371
1372void do_fsel (void)
1373{
7c58044c 1374 if (!fpisneg(FT0) || iszero(FT0))
9a64fbe4 1375 FT0 = FT1;
4ecc3190
FB
1376 else
1377 FT0 = FT2;
9a64fbe4
FB
1378}
1379
1380void do_fcmpu (void)
1381{
7c58044c
JM
1382 if (unlikely(float64_is_signaling_nan(FT0) ||
1383 float64_is_signaling_nan(FT1))) {
1384 /* sNaN comparison */
1385 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1386 } else {
fdabc366
FB
1387 if (float64_lt(FT0, FT1, &env->fp_status)) {
1388 T0 = 0x08UL;
1389 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1390 T0 = 0x04UL;
1391 } else {
1392 T0 = 0x02UL;
1393 }
9a64fbe4 1394 }
7c58044c
JM
1395 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1396 env->fpscr |= T0 << FPSCR_FPRF;
9a64fbe4
FB
1397}
1398
1399void do_fcmpo (void)
1400{
7c58044c
JM
1401 if (unlikely(float64_is_nan(FT0) ||
1402 float64_is_nan(FT1))) {
1403 if (float64_is_signaling_nan(FT0) ||
1404 float64_is_signaling_nan(FT1)) {
1405 /* sNaN comparison */
1406 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1407 POWERPC_EXCP_FP_VXVC);
1408 } else {
1409 /* qNaN comparison */
1410 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1411 }
1412 } else {
fdabc366
FB
1413 if (float64_lt(FT0, FT1, &env->fp_status)) {
1414 T0 = 0x08UL;
1415 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1416 T0 = 0x04UL;
1417 } else {
1418 T0 = 0x02UL;
1419 }
9a64fbe4 1420 }
7c58044c
JM
1421 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1422 env->fpscr |= T0 << FPSCR_FPRF;
9a64fbe4
FB
1423}
1424
76a66253 1425#if !defined (CONFIG_USER_ONLY)
6b80055d 1426void cpu_dump_rfi (target_ulong RA, target_ulong msr);
0411a972
JM
1427
1428void do_store_msr (void)
1429{
1430 T0 = hreg_store_msr(env, T0);
1431 if (T0 != 0) {
1432 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1433 do_raise_exception(T0);
1434 }
1435}
1436
1437static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
1438 target_ulong msrm, int keep_msrh)
9a64fbe4 1439{
426613db 1440#if defined(TARGET_PPC64)
0411a972
JM
1441 if (msr & (1ULL << MSR_SF)) {
1442 nip = (uint64_t)nip;
1443 msr &= (uint64_t)msrm;
a42bd6cc 1444 } else {
0411a972
JM
1445 nip = (uint32_t)nip;
1446 msr = (uint32_t)(msr & msrm);
1447 if (keep_msrh)
1448 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
a42bd6cc 1449 }
426613db 1450#else
0411a972
JM
1451 nip = (uint32_t)nip;
1452 msr &= (uint32_t)msrm;
426613db 1453#endif
0411a972
JM
1454 /* XXX: beware: this is false if VLE is supported */
1455 env->nip = nip & ~((target_ulong)0x00000003);
1456 hreg_store_msr(env, msr);
fdabc366 1457#if defined (DEBUG_OP)
0411a972 1458 cpu_dump_rfi(env->nip, env->msr);
fdabc366 1459#endif
0411a972
JM
1460 /* No need to raise an exception here,
1461 * as rfi is always the last insn of a TB
1462 */
fdabc366 1463 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
9a64fbe4 1464}
d9bce9d9 1465
0411a972
JM
1466void do_rfi (void)
1467{
1468 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1469 ~((target_ulong)0xFFFF0000), 1);
1470}
1471
d9bce9d9 1472#if defined(TARGET_PPC64)
426613db
JM
1473void do_rfid (void)
1474{
0411a972
JM
1475 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1476 ~((target_ulong)0xFFFF0000), 0);
d9bce9d9
JM
1477}
1478#endif
be147d08
JM
1479#if defined(TARGET_PPC64H)
1480void do_hrfid (void)
1481{
0411a972
JM
1482 __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1483 ~((target_ulong)0xFFFF0000), 0);
be147d08
JM
1484}
1485#endif
76a66253 1486#endif
9a64fbe4 1487
76a66253 1488void do_tw (int flags)
9a64fbe4 1489{
d9bce9d9
JM
1490 if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
1491 ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
1492 ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
1493 ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
a42bd6cc 1494 ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
e1833e1f 1495 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
a42bd6cc 1496 }
9a64fbe4
FB
1497}
1498
d9bce9d9
JM
1499#if defined(TARGET_PPC64)
1500void do_td (int flags)
1501{
1502 if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
1503 ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
1504 ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
1505 ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
1506 ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
e1833e1f 1507 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
d9bce9d9
JM
1508}
1509#endif
1510
fdabc366 1511/*****************************************************************************/
76a66253
JM
1512/* PowerPC 601 specific instructions (POWER bridge) */
1513void do_POWER_abso (void)
9a64fbe4 1514{
9c7e37e7 1515 if ((int32_t)T0 == INT32_MIN) {
76a66253
JM
1516 T0 = INT32_MAX;
1517 xer_ov = 1;
9c7e37e7 1518 } else if ((int32_t)T0 < 0) {
76a66253
JM
1519 T0 = -T0;
1520 xer_ov = 0;
9c7e37e7
JM
1521 } else {
1522 xer_ov = 0;
76a66253 1523 }
9c7e37e7 1524 xer_so |= xer_ov;
9a64fbe4
FB
1525}
1526
76a66253 1527void do_POWER_clcs (void)
9a64fbe4 1528{
76a66253
JM
1529 switch (T0) {
1530 case 0x0CUL:
1531 /* Instruction cache line size */
d63001d1 1532 T0 = env->icache_line_size;
76a66253
JM
1533 break;
1534 case 0x0DUL:
1535 /* Data cache line size */
d63001d1 1536 T0 = env->dcache_line_size;
76a66253
JM
1537 break;
1538 case 0x0EUL:
1539 /* Minimum cache line size */
d63001d1
JM
1540 T0 = env->icache_line_size < env->dcache_line_size ?
1541 env->icache_line_size : env->dcache_line_size;
76a66253
JM
1542 break;
1543 case 0x0FUL:
1544 /* Maximum cache line size */
d63001d1
JM
1545 T0 = env->icache_line_size > env->dcache_line_size ?
1546 env->icache_line_size : env->dcache_line_size;
76a66253
JM
1547 break;
1548 default:
1549 /* Undefined */
1550 break;
1551 }
1552}
1553
1554void do_POWER_div (void)
1555{
1556 uint64_t tmp;
1557
d9bce9d9 1558 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
76a66253
JM
1559 T0 = (long)((-1) * (T0 >> 31));
1560 env->spr[SPR_MQ] = 0;
1561 } else {
1562 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1563 env->spr[SPR_MQ] = tmp % T1;
d9bce9d9 1564 T0 = tmp / (int32_t)T1;
76a66253
JM
1565 }
1566}
1567
1568void do_POWER_divo (void)
1569{
1570 int64_t tmp;
1571
d9bce9d9 1572 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
76a66253
JM
1573 T0 = (long)((-1) * (T0 >> 31));
1574 env->spr[SPR_MQ] = 0;
1575 xer_ov = 1;
1576 xer_so = 1;
1577 } else {
1578 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1579 env->spr[SPR_MQ] = tmp % T1;
d9bce9d9 1580 tmp /= (int32_t)T1;
76a66253
JM
1581 if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1582 xer_ov = 1;
1583 xer_so = 1;
1584 } else {
1585 xer_ov = 0;
1586 }
1587 T0 = tmp;
1588 }
1589}
1590
1591void do_POWER_divs (void)
1592{
d9bce9d9 1593 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
76a66253
JM
1594 T0 = (long)((-1) * (T0 >> 31));
1595 env->spr[SPR_MQ] = 0;
1596 } else {
1597 env->spr[SPR_MQ] = T0 % T1;
d9bce9d9 1598 T0 = (int32_t)T0 / (int32_t)T1;
76a66253
JM
1599 }
1600}
1601
1602void do_POWER_divso (void)
1603{
d9bce9d9 1604 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
76a66253
JM
1605 T0 = (long)((-1) * (T0 >> 31));
1606 env->spr[SPR_MQ] = 0;
1607 xer_ov = 1;
1608 xer_so = 1;
1609 } else {
d9bce9d9
JM
1610 T0 = (int32_t)T0 / (int32_t)T1;
1611 env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
76a66253
JM
1612 xer_ov = 0;
1613 }
1614}
1615
1616void do_POWER_dozo (void)
1617{
d9bce9d9 1618 if ((int32_t)T1 > (int32_t)T0) {
76a66253
JM
1619 T2 = T0;
1620 T0 = T1 - T0;
d9bce9d9
JM
1621 if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1622 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
76a66253 1623 xer_ov = 1;
966439a6 1624 xer_so = 1;
76a66253
JM
1625 } else {
1626 xer_ov = 0;
1627 }
1628 } else {
1629 T0 = 0;
1630 xer_ov = 0;
1631 }
1632}
1633
1634void do_POWER_maskg (void)
1635{
1636 uint32_t ret;
1637
d9bce9d9 1638 if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
76a66253
JM
1639 ret = -1;
1640 } else {
d9bce9d9
JM
1641 ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^
1642 (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1);
1643 if ((uint32_t)T0 > (uint32_t)T1)
76a66253
JM
1644 ret = ~ret;
1645 }
1646 T0 = ret;
1647}
1648
1649void do_POWER_mulo (void)
1650{
1651 uint64_t tmp;
1652
1653 tmp = (uint64_t)T0 * (uint64_t)T1;
1654 env->spr[SPR_MQ] = tmp >> 32;
1655 T0 = tmp;
1656 if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1657 xer_ov = 1;
1658 xer_so = 1;
1659 } else {
1660 xer_ov = 0;
1661 }
1662}
1663
1664#if !defined (CONFIG_USER_ONLY)
1665void do_POWER_rac (void)
1666{
76a66253 1667 mmu_ctx_t ctx;
faadf50e 1668 int nb_BATs;
76a66253
JM
1669
1670 /* We don't have to generate many instances of this instruction,
1671 * as rac is supervisor only.
1672 */
faadf50e
JM
1673 /* XXX: FIX THIS: Pretend we have no BAT */
1674 nb_BATs = env->nb_BATs;
1675 env->nb_BATs = 0;
1676 if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
76a66253 1677 T0 = ctx.raddr;
faadf50e 1678 env->nb_BATs = nb_BATs;
76a66253
JM
1679}
1680
1681void do_POWER_rfsvc (void)
1682{
0411a972 1683 __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
76a66253
JM
1684}
1685
056401ea
JM
1686void do_store_hid0_601 (void)
1687{
1688 uint32_t hid0;
1689
1690 hid0 = env->spr[SPR_HID0];
1691 if ((T0 ^ hid0) & 0x00000008) {
1692 /* Change current endianness */
1693 env->hflags &= ~(1 << MSR_LE);
1694 env->hflags_nmsr &= ~(1 << MSR_LE);
1695 env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
1696 env->hflags |= env->hflags_nmsr;
1697 if (loglevel != 0) {
1698 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
1699 __func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
1700 }
1701 }
1702 env->spr[SPR_HID0] = T0;
76a66253
JM
1703}
1704#endif
1705
1706/*****************************************************************************/
1707/* 602 specific instructions */
1708/* mfrom is the most crazy instruction ever seen, imho ! */
1709/* Real implementation uses a ROM table. Do the same */
1710#define USE_MFROM_ROM_TABLE
1711void do_op_602_mfrom (void)
1712{
1713 if (likely(T0 < 602)) {
d9bce9d9 1714#if defined(USE_MFROM_ROM_TABLE)
76a66253
JM
1715#include "mfrom_table.c"
1716 T0 = mfrom_ROM_table[T0];
fdabc366 1717#else
76a66253
JM
1718 double d;
1719 /* Extremly decomposed:
1720 * -T0 / 256
1721 * T0 = 256 * log10(10 + 1.0) + 0.5
1722 */
1723 d = T0;
1724 d = float64_div(d, 256, &env->fp_status);
1725 d = float64_chs(d);
1726 d = exp10(d); // XXX: use float emulation function
1727 d = float64_add(d, 1.0, &env->fp_status);
1728 d = log10(d); // XXX: use float emulation function
1729 d = float64_mul(d, 256, &env->fp_status);
1730 d = float64_add(d, 0.5, &env->fp_status);
1731 T0 = float64_round_to_int(d, &env->fp_status);
fdabc366 1732#endif
76a66253
JM
1733 } else {
1734 T0 = 0;
1735 }
1736}
1737
1738/*****************************************************************************/
1739/* Embedded PowerPC specific helpers */
76a66253
JM
1740void do_405_check_sat (void)
1741{
d9bce9d9
JM
1742 if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1743 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
76a66253
JM
1744 /* Saturate result */
1745 if (T2 >> 31) {
1746 T0 = INT32_MIN;
1747 } else {
1748 T0 = INT32_MAX;
1749 }
1750 }
1751}
1752
a750fc0b
JM
1753/* XXX: to be improved to check access rights when in user-mode */
1754void do_load_dcr (void)
1755{
1756 target_ulong val;
1757
1758 if (unlikely(env->dcr_env == NULL)) {
1759 if (loglevel != 0) {
1760 fprintf(logfile, "No DCR environment\n");
1761 }
e1833e1f
JM
1762 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1763 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
a750fc0b
JM
1764 } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1765 if (loglevel != 0) {
1766 fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1767 }
e1833e1f
JM
1768 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1769 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
a750fc0b
JM
1770 } else {
1771 T0 = val;
1772 }
1773}
1774
1775void do_store_dcr (void)
1776{
1777 if (unlikely(env->dcr_env == NULL)) {
1778 if (loglevel != 0) {
1779 fprintf(logfile, "No DCR environment\n");
1780 }
e1833e1f
JM
1781 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1782 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
a750fc0b
JM
1783 } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1784 if (loglevel != 0) {
1785 fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1786 }
e1833e1f
JM
1787 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1788 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
a750fc0b
JM
1789 }
1790}
1791
76a66253 1792#if !defined(CONFIG_USER_ONLY)
a42bd6cc 1793void do_40x_rfci (void)
76a66253 1794{
0411a972
JM
1795 __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1796 ~((target_ulong)0xFFFF0000), 0);
a42bd6cc
JM
1797}
1798
1799void do_rfci (void)
1800{
0411a972
JM
1801 __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1802 ~((target_ulong)0x3FFF0000), 0);
a42bd6cc
JM
1803}
1804
1805void do_rfdi (void)
1806{
0411a972
JM
1807 __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1808 ~((target_ulong)0x3FFF0000), 0);
a42bd6cc
JM
1809}
1810
1811void do_rfmci (void)
1812{
0411a972
JM
1813 __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1814 ~((target_ulong)0x3FFF0000), 0);
76a66253
JM
1815}
1816
76a66253
JM
1817void do_load_403_pb (int num)
1818{
1819 T0 = env->pb[num];
1820}
1821
1822void do_store_403_pb (int num)
1823{
1824 if (likely(env->pb[num] != T0)) {
1825 env->pb[num] = T0;
1826 /* Should be optimized */
1827 tlb_flush(env, 1);
1828 }
1829}
1830#endif
1831
1832/* 440 specific */
1833void do_440_dlmzb (void)
1834{
1835 target_ulong mask;
1836 int i;
1837
1838 i = 1;
1839 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1840 if ((T0 & mask) == 0)
1841 goto done;
1842 i++;
1843 }
1844 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1845 if ((T1 & mask) == 0)
1846 break;
1847 i++;
1848 }
1849 done:
1850 T0 = i;
fdabc366
FB
1851}
1852
35cdaad6 1853#if defined(TARGET_PPCEMB)
0487d6a8
JM
1854/* SPE extension helpers */
1855/* Use a table to make this quicker */
1856static uint8_t hbrev[16] = {
1857 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1858 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1859};
1860
b068d6a7 1861static always_inline uint8_t byte_reverse (uint8_t val)
0487d6a8
JM
1862{
1863 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1864}
1865
b068d6a7 1866static always_inline uint32_t word_reverse (uint32_t val)
0487d6a8
JM
1867{
1868 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1869 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1870}
1871
1872#define MASKBITS 16 // Random value - to be fixed
1873void do_brinc (void)
1874{
1875 uint32_t a, b, d, mask;
1876
1877 mask = (uint32_t)(-1UL) >> MASKBITS;
1878 b = T1_64 & mask;
1879 a = T0_64 & mask;
1880 d = word_reverse(1 + word_reverse(a | ~mask));
1881 T0_64 = (T0_64 & ~mask) | (d & mask);
1882}
1883
1884#define DO_SPE_OP2(name) \
1885void do_ev##name (void) \
1886{ \
1887 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
1888 (uint64_t)_do_e##name(T0_64, T1_64); \
1889}
1890
1891#define DO_SPE_OP1(name) \
1892void do_ev##name (void) \
1893{ \
1894 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
1895 (uint64_t)_do_e##name(T0_64); \
1896}
1897
1898/* Fixed-point vector arithmetic */
b068d6a7 1899static always_inline uint32_t _do_eabs (uint32_t val)
0487d6a8 1900{
9c7e37e7
JM
1901 if ((val & 0x80000000) && val != 0x80000000)
1902 val -= val;
0487d6a8
JM
1903
1904 return val;
1905}
1906
b068d6a7 1907static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1908{
1909 return op1 + op2;
1910}
1911
b068d6a7 1912static always_inline int _do_ecntlsw (uint32_t val)
0487d6a8
JM
1913{
1914 if (val & 0x80000000)
603fccce 1915 return clz32(~val);
0487d6a8 1916 else
603fccce 1917 return clz32(val);
0487d6a8
JM
1918}
1919
b068d6a7 1920static always_inline int _do_ecntlzw (uint32_t val)
0487d6a8 1921{
603fccce 1922 return clz32(val);
0487d6a8
JM
1923}
1924
b068d6a7 1925static always_inline uint32_t _do_eneg (uint32_t val)
0487d6a8
JM
1926{
1927 if (val != 0x80000000)
9c7e37e7 1928 val -= val;
0487d6a8
JM
1929
1930 return val;
1931}
1932
b068d6a7 1933static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1934{
1935 return rotl32(op1, op2);
1936}
1937
b068d6a7 1938static always_inline uint32_t _do_erndw (uint32_t val)
0487d6a8
JM
1939{
1940 return (val + 0x000080000000) & 0xFFFF0000;
1941}
1942
b068d6a7 1943static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1944{
1945 /* No error here: 6 bits are used */
1946 return op1 << (op2 & 0x3F);
1947}
1948
b068d6a7 1949static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
0487d6a8
JM
1950{
1951 /* No error here: 6 bits are used */
1952 return op1 >> (op2 & 0x3F);
1953}
1954
b068d6a7 1955static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
0487d6a8
JM
1956{
1957 /* No error here: 6 bits are used */
1958 return op1 >> (op2 & 0x3F);
1959}
1960
b068d6a7 1961static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1962{
1963 return op2 - op1;
1964}
1965
1966/* evabs */
1967DO_SPE_OP1(abs);
1968/* evaddw */
1969DO_SPE_OP2(addw);
1970/* evcntlsw */
1971DO_SPE_OP1(cntlsw);
1972/* evcntlzw */
1973DO_SPE_OP1(cntlzw);
1974/* evneg */
1975DO_SPE_OP1(neg);
1976/* evrlw */
1977DO_SPE_OP2(rlw);
1978/* evrnd */
1979DO_SPE_OP1(rndw);
1980/* evslw */
1981DO_SPE_OP2(slw);
1982/* evsrws */
1983DO_SPE_OP2(srws);
1984/* evsrwu */
1985DO_SPE_OP2(srwu);
1986/* evsubfw */
1987DO_SPE_OP2(subfw);
1988
1989/* evsel is a little bit more complicated... */
b068d6a7 1990static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
0487d6a8
JM
1991{
1992 if (n)
1993 return op1;
1994 else
1995 return op2;
1996}
1997
1998void do_evsel (void)
1999{
2000 T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
2001 (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
2002}
2003
2004/* Fixed-point vector comparisons */
2005#define DO_SPE_CMP(name) \
2006void do_ev##name (void) \
2007{ \
2008 T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
2009 T1_64 >> 32) << 32, \
2010 _do_e##name(T0_64, T1_64)); \
2011}
2012
b068d6a7 2013static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
0487d6a8
JM
2014{
2015 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2016}
b068d6a7 2017static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
0487d6a8
JM
2018{
2019 return op1 == op2 ? 1 : 0;
2020}
2021
b068d6a7 2022static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
0487d6a8
JM
2023{
2024 return op1 > op2 ? 1 : 0;
2025}
2026
b068d6a7 2027static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
0487d6a8
JM
2028{
2029 return op1 > op2 ? 1 : 0;
2030}
2031
b068d6a7 2032static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
0487d6a8
JM
2033{
2034 return op1 < op2 ? 1 : 0;
2035}
2036
b068d6a7 2037static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
0487d6a8
JM
2038{
2039 return op1 < op2 ? 1 : 0;
2040}
2041
2042/* evcmpeq */
2043DO_SPE_CMP(cmpeq);
2044/* evcmpgts */
2045DO_SPE_CMP(cmpgts);
2046/* evcmpgtu */
2047DO_SPE_CMP(cmpgtu);
2048/* evcmplts */
2049DO_SPE_CMP(cmplts);
2050/* evcmpltu */
2051DO_SPE_CMP(cmpltu);
2052
2053/* Single precision floating-point conversions from/to integer */
b068d6a7 2054static always_inline uint32_t _do_efscfsi (int32_t val)
0487d6a8
JM
2055{
2056 union {
2057 uint32_t u;
2058 float32 f;
2059 } u;
2060
2061 u.f = int32_to_float32(val, &env->spe_status);
2062
2063 return u.u;
2064}
2065
b068d6a7 2066static always_inline uint32_t _do_efscfui (uint32_t val)
0487d6a8
JM
2067{
2068 union {
2069 uint32_t u;
2070 float32 f;
2071 } u;
2072
2073 u.f = uint32_to_float32(val, &env->spe_status);
2074
2075 return u.u;
2076}
2077
b068d6a7 2078static always_inline int32_t _do_efsctsi (uint32_t val)
0487d6a8
JM
2079{
2080 union {
2081 int32_t u;
2082 float32 f;
2083 } u;
2084
2085 u.u = val;
2086 /* NaN are not treated the same way IEEE 754 does */
2087 if (unlikely(isnan(u.f)))
2088 return 0;
2089
2090 return float32_to_int32(u.f, &env->spe_status);
2091}
2092
b068d6a7 2093static always_inline uint32_t _do_efsctui (uint32_t val)
0487d6a8
JM
2094{
2095 union {
2096 int32_t u;
2097 float32 f;
2098 } u;
2099
2100 u.u = val;
2101 /* NaN are not treated the same way IEEE 754 does */
2102 if (unlikely(isnan(u.f)))
2103 return 0;
2104
2105 return float32_to_uint32(u.f, &env->spe_status);
2106}
2107
b068d6a7 2108static always_inline int32_t _do_efsctsiz (uint32_t val)
0487d6a8
JM
2109{
2110 union {
2111 int32_t u;
2112 float32 f;
2113 } u;
2114
2115 u.u = val;
2116 /* NaN are not treated the same way IEEE 754 does */
2117 if (unlikely(isnan(u.f)))
2118 return 0;
2119
2120 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2121}
2122
b068d6a7 2123static always_inline uint32_t _do_efsctuiz (uint32_t val)
0487d6a8
JM
2124{
2125 union {
2126 int32_t u;
2127 float32 f;
2128 } u;
2129
2130 u.u = val;
2131 /* NaN are not treated the same way IEEE 754 does */
2132 if (unlikely(isnan(u.f)))
2133 return 0;
2134
2135 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2136}
2137
2138void do_efscfsi (void)
2139{
2140 T0_64 = _do_efscfsi(T0_64);
2141}
2142
2143void do_efscfui (void)
2144{
2145 T0_64 = _do_efscfui(T0_64);
2146}
2147
2148void do_efsctsi (void)
2149{
2150 T0_64 = _do_efsctsi(T0_64);
2151}
2152
2153void do_efsctui (void)
2154{
2155 T0_64 = _do_efsctui(T0_64);
2156}
2157
2158void do_efsctsiz (void)
2159{
2160 T0_64 = _do_efsctsiz(T0_64);
2161}
2162
2163void do_efsctuiz (void)
2164{
2165 T0_64 = _do_efsctuiz(T0_64);
2166}
2167
2168/* Single precision floating-point conversion to/from fractional */
b068d6a7 2169static always_inline uint32_t _do_efscfsf (uint32_t val)
0487d6a8
JM
2170{
2171 union {
2172 uint32_t u;
2173 float32 f;
2174 } u;
2175 float32 tmp;
2176
2177 u.f = int32_to_float32(val, &env->spe_status);
2178 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2179 u.f = float32_div(u.f, tmp, &env->spe_status);
2180
2181 return u.u;
2182}
2183
b068d6a7 2184static always_inline uint32_t _do_efscfuf (uint32_t val)
0487d6a8
JM
2185{
2186 union {
2187 uint32_t u;
2188 float32 f;
2189 } u;
2190 float32 tmp;
2191
2192 u.f = uint32_to_float32(val, &env->spe_status);
2193 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2194 u.f = float32_div(u.f, tmp, &env->spe_status);
2195
2196 return u.u;
2197}
2198
b068d6a7 2199static always_inline int32_t _do_efsctsf (uint32_t val)
0487d6a8
JM
2200{
2201 union {
2202 int32_t u;
2203 float32 f;
2204 } u;
2205 float32 tmp;
2206
2207 u.u = val;
2208 /* NaN are not treated the same way IEEE 754 does */
2209 if (unlikely(isnan(u.f)))
2210 return 0;
2211 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2212 u.f = float32_mul(u.f, tmp, &env->spe_status);
2213
2214 return float32_to_int32(u.f, &env->spe_status);
2215}
2216
b068d6a7 2217static always_inline uint32_t _do_efsctuf (uint32_t val)
0487d6a8
JM
2218{
2219 union {
2220 int32_t u;
2221 float32 f;
2222 } u;
2223 float32 tmp;
2224
2225 u.u = val;
2226 /* NaN are not treated the same way IEEE 754 does */
2227 if (unlikely(isnan(u.f)))
2228 return 0;
2229 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2230 u.f = float32_mul(u.f, tmp, &env->spe_status);
2231
2232 return float32_to_uint32(u.f, &env->spe_status);
2233}
2234
b068d6a7 2235static always_inline int32_t _do_efsctsfz (uint32_t val)
0487d6a8
JM
2236{
2237 union {
2238 int32_t u;
2239 float32 f;
2240 } u;
2241 float32 tmp;
2242
2243 u.u = val;
2244 /* NaN are not treated the same way IEEE 754 does */
2245 if (unlikely(isnan(u.f)))
2246 return 0;
2247 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2248 u.f = float32_mul(u.f, tmp, &env->spe_status);
2249
2250 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2251}
2252
b068d6a7 2253static always_inline uint32_t _do_efsctufz (uint32_t val)
0487d6a8
JM
2254{
2255 union {
2256 int32_t u;
2257 float32 f;
2258 } u;
2259 float32 tmp;
2260
2261 u.u = val;
2262 /* NaN are not treated the same way IEEE 754 does */
2263 if (unlikely(isnan(u.f)))
2264 return 0;
2265 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2266 u.f = float32_mul(u.f, tmp, &env->spe_status);
2267
2268 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2269}
2270
2271void do_efscfsf (void)
2272{
2273 T0_64 = _do_efscfsf(T0_64);
2274}
2275
2276void do_efscfuf (void)
2277{
2278 T0_64 = _do_efscfuf(T0_64);
2279}
2280
2281void do_efsctsf (void)
2282{
2283 T0_64 = _do_efsctsf(T0_64);
2284}
2285
2286void do_efsctuf (void)
2287{
2288 T0_64 = _do_efsctuf(T0_64);
2289}
2290
2291void do_efsctsfz (void)
2292{
2293 T0_64 = _do_efsctsfz(T0_64);
2294}
2295
2296void do_efsctufz (void)
2297{
2298 T0_64 = _do_efsctufz(T0_64);
2299}
2300
2301/* Double precision floating point helpers */
b068d6a7 2302static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
0487d6a8
JM
2303{
2304 /* XXX: TODO: test special values (NaN, infinites, ...) */
2305 return _do_efdtstlt(op1, op2);
2306}
2307
b068d6a7 2308static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
0487d6a8
JM
2309{
2310 /* XXX: TODO: test special values (NaN, infinites, ...) */
2311 return _do_efdtstgt(op1, op2);
2312}
2313
b068d6a7 2314static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
0487d6a8
JM
2315{
2316 /* XXX: TODO: test special values (NaN, infinites, ...) */
2317 return _do_efdtsteq(op1, op2);
2318}
2319
2320void do_efdcmplt (void)
2321{
2322 T0 = _do_efdcmplt(T0_64, T1_64);
2323}
2324
2325void do_efdcmpgt (void)
2326{
2327 T0 = _do_efdcmpgt(T0_64, T1_64);
2328}
2329
2330void do_efdcmpeq (void)
2331{
2332 T0 = _do_efdcmpeq(T0_64, T1_64);
2333}
2334
2335/* Double precision floating-point conversion to/from integer */
b068d6a7 2336static always_inline uint64_t _do_efdcfsi (int64_t val)
0487d6a8
JM
2337{
2338 union {
2339 uint64_t u;
2340 float64 f;
2341 } u;
2342
2343 u.f = int64_to_float64(val, &env->spe_status);
2344
2345 return u.u;
2346}
2347
b068d6a7 2348static always_inline uint64_t _do_efdcfui (uint64_t val)
0487d6a8
JM
2349{
2350 union {
2351 uint64_t u;
2352 float64 f;
2353 } u;
2354
2355 u.f = uint64_to_float64(val, &env->spe_status);
2356
2357 return u.u;
2358}
2359
b068d6a7 2360static always_inline int64_t _do_efdctsi (uint64_t val)
0487d6a8
JM
2361{
2362 union {
2363 int64_t u;
2364 float64 f;
2365 } u;
2366
2367 u.u = val;
2368 /* NaN are not treated the same way IEEE 754 does */
2369 if (unlikely(isnan(u.f)))
2370 return 0;
2371
2372 return float64_to_int64(u.f, &env->spe_status);
2373}
2374
b068d6a7 2375static always_inline uint64_t _do_efdctui (uint64_t val)
0487d6a8
JM
2376{
2377 union {
2378 int64_t u;
2379 float64 f;
2380 } u;
2381
2382 u.u = val;
2383 /* NaN are not treated the same way IEEE 754 does */
2384 if (unlikely(isnan(u.f)))
2385 return 0;
2386
2387 return float64_to_uint64(u.f, &env->spe_status);
2388}
2389
b068d6a7 2390static always_inline int64_t _do_efdctsiz (uint64_t val)
0487d6a8
JM
2391{
2392 union {
2393 int64_t u;
2394 float64 f;
2395 } u;
2396
2397 u.u = val;
2398 /* NaN are not treated the same way IEEE 754 does */
2399 if (unlikely(isnan(u.f)))
2400 return 0;
2401
2402 return float64_to_int64_round_to_zero(u.f, &env->spe_status);
2403}
2404
b068d6a7 2405static always_inline uint64_t _do_efdctuiz (uint64_t val)
0487d6a8
JM
2406{
2407 union {
2408 int64_t u;
2409 float64 f;
2410 } u;
2411
2412 u.u = val;
2413 /* NaN are not treated the same way IEEE 754 does */
2414 if (unlikely(isnan(u.f)))
2415 return 0;
2416
2417 return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
2418}
2419
2420void do_efdcfsi (void)
2421{
2422 T0_64 = _do_efdcfsi(T0_64);
2423}
2424
2425void do_efdcfui (void)
2426{
2427 T0_64 = _do_efdcfui(T0_64);
2428}
2429
2430void do_efdctsi (void)
2431{
2432 T0_64 = _do_efdctsi(T0_64);
2433}
2434
2435void do_efdctui (void)
2436{
2437 T0_64 = _do_efdctui(T0_64);
2438}
2439
2440void do_efdctsiz (void)
2441{
2442 T0_64 = _do_efdctsiz(T0_64);
2443}
2444
2445void do_efdctuiz (void)
2446{
2447 T0_64 = _do_efdctuiz(T0_64);
2448}
2449
2450/* Double precision floating-point conversion to/from fractional */
b068d6a7 2451static always_inline uint64_t _do_efdcfsf (int64_t val)
0487d6a8
JM
2452{
2453 union {
2454 uint64_t u;
2455 float64 f;
2456 } u;
2457 float64 tmp;
2458
2459 u.f = int32_to_float64(val, &env->spe_status);
2460 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2461 u.f = float64_div(u.f, tmp, &env->spe_status);
2462
2463 return u.u;
2464}
2465
b068d6a7 2466static always_inline uint64_t _do_efdcfuf (uint64_t val)
0487d6a8
JM
2467{
2468 union {
2469 uint64_t u;
2470 float64 f;
2471 } u;
2472 float64 tmp;
2473
2474 u.f = uint32_to_float64(val, &env->spe_status);
2475 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2476 u.f = float64_div(u.f, tmp, &env->spe_status);
2477
2478 return u.u;
2479}
2480
b068d6a7 2481static always_inline int64_t _do_efdctsf (uint64_t val)
0487d6a8
JM
2482{
2483 union {
2484 int64_t u;
2485 float64 f;
2486 } u;
2487 float64 tmp;
2488
2489 u.u = val;
2490 /* NaN are not treated the same way IEEE 754 does */
2491 if (unlikely(isnan(u.f)))
2492 return 0;
2493 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2494 u.f = float64_mul(u.f, tmp, &env->spe_status);
2495
2496 return float64_to_int32(u.f, &env->spe_status);
2497}
2498
b068d6a7 2499static always_inline uint64_t _do_efdctuf (uint64_t val)
0487d6a8
JM
2500{
2501 union {
2502 int64_t u;
2503 float64 f;
2504 } u;
2505 float64 tmp;
2506
2507 u.u = val;
2508 /* NaN are not treated the same way IEEE 754 does */
2509 if (unlikely(isnan(u.f)))
2510 return 0;
2511 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2512 u.f = float64_mul(u.f, tmp, &env->spe_status);
2513
2514 return float64_to_uint32(u.f, &env->spe_status);
2515}
2516
b068d6a7 2517static always_inline int64_t _do_efdctsfz (uint64_t val)
0487d6a8
JM
2518{
2519 union {
2520 int64_t u;
2521 float64 f;
2522 } u;
2523 float64 tmp;
2524
2525 u.u = val;
2526 /* NaN are not treated the same way IEEE 754 does */
2527 if (unlikely(isnan(u.f)))
2528 return 0;
2529 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2530 u.f = float64_mul(u.f, tmp, &env->spe_status);
2531
2532 return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2533}
2534
b068d6a7 2535static always_inline uint64_t _do_efdctufz (uint64_t val)
0487d6a8
JM
2536{
2537 union {
2538 int64_t u;
2539 float64 f;
2540 } u;
2541 float64 tmp;
2542
2543 u.u = val;
2544 /* NaN are not treated the same way IEEE 754 does */
2545 if (unlikely(isnan(u.f)))
2546 return 0;
2547 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2548 u.f = float64_mul(u.f, tmp, &env->spe_status);
2549
2550 return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2551}
2552
2553void do_efdcfsf (void)
2554{
2555 T0_64 = _do_efdcfsf(T0_64);
2556}
2557
2558void do_efdcfuf (void)
2559{
2560 T0_64 = _do_efdcfuf(T0_64);
2561}
2562
2563void do_efdctsf (void)
2564{
2565 T0_64 = _do_efdctsf(T0_64);
2566}
2567
2568void do_efdctuf (void)
2569{
2570 T0_64 = _do_efdctuf(T0_64);
2571}
2572
2573void do_efdctsfz (void)
2574{
2575 T0_64 = _do_efdctsfz(T0_64);
2576}
2577
2578void do_efdctufz (void)
2579{
2580 T0_64 = _do_efdctufz(T0_64);
2581}
2582
2583/* Floating point conversion between single and double precision */
b068d6a7 2584static always_inline uint32_t _do_efscfd (uint64_t val)
0487d6a8
JM
2585{
2586 union {
2587 uint64_t u;
2588 float64 f;
2589 } u1;
2590 union {
2591 uint32_t u;
2592 float32 f;
2593 } u2;
2594
2595 u1.u = val;
2596 u2.f = float64_to_float32(u1.f, &env->spe_status);
2597
2598 return u2.u;
2599}
2600
b068d6a7 2601static always_inline uint64_t _do_efdcfs (uint32_t val)
0487d6a8
JM
2602{
2603 union {
2604 uint64_t u;
2605 float64 f;
2606 } u2;
2607 union {
2608 uint32_t u;
2609 float32 f;
2610 } u1;
2611
2612 u1.u = val;
2613 u2.f = float32_to_float64(u1.f, &env->spe_status);
2614
2615 return u2.u;
2616}
2617
2618void do_efscfd (void)
2619{
2620 T0_64 = _do_efscfd(T0_64);
2621}
2622
2623void do_efdcfs (void)
2624{
2625 T0_64 = _do_efdcfs(T0_64);
2626}
2627
2628/* Single precision fixed-point vector arithmetic */
2629/* evfsabs */
2630DO_SPE_OP1(fsabs);
2631/* evfsnabs */
2632DO_SPE_OP1(fsnabs);
2633/* evfsneg */
2634DO_SPE_OP1(fsneg);
2635/* evfsadd */
2636DO_SPE_OP2(fsadd);
2637/* evfssub */
2638DO_SPE_OP2(fssub);
2639/* evfsmul */
2640DO_SPE_OP2(fsmul);
2641/* evfsdiv */
2642DO_SPE_OP2(fsdiv);
2643
2644/* Single-precision floating-point comparisons */
b068d6a7 2645static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
0487d6a8
JM
2646{
2647 /* XXX: TODO: test special values (NaN, infinites, ...) */
2648 return _do_efststlt(op1, op2);
2649}
2650
b068d6a7 2651static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
0487d6a8
JM
2652{
2653 /* XXX: TODO: test special values (NaN, infinites, ...) */
2654 return _do_efststgt(op1, op2);
2655}
2656
b068d6a7 2657static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
0487d6a8
JM
2658{
2659 /* XXX: TODO: test special values (NaN, infinites, ...) */
2660 return _do_efststeq(op1, op2);
2661}
2662
2663void do_efscmplt (void)
2664{
2665 T0 = _do_efscmplt(T0_64, T1_64);
2666}
2667
2668void do_efscmpgt (void)
2669{
2670 T0 = _do_efscmpgt(T0_64, T1_64);
2671}
2672
2673void do_efscmpeq (void)
2674{
2675 T0 = _do_efscmpeq(T0_64, T1_64);
2676}
2677
2678/* Single-precision floating-point vector comparisons */
2679/* evfscmplt */
2680DO_SPE_CMP(fscmplt);
2681/* evfscmpgt */
2682DO_SPE_CMP(fscmpgt);
2683/* evfscmpeq */
2684DO_SPE_CMP(fscmpeq);
2685/* evfststlt */
2686DO_SPE_CMP(fststlt);
2687/* evfststgt */
2688DO_SPE_CMP(fststgt);
2689/* evfststeq */
2690DO_SPE_CMP(fststeq);
2691
2692/* Single-precision floating-point vector conversions */
2693/* evfscfsi */
2694DO_SPE_OP1(fscfsi);
2695/* evfscfui */
2696DO_SPE_OP1(fscfui);
2697/* evfscfuf */
2698DO_SPE_OP1(fscfuf);
2699/* evfscfsf */
2700DO_SPE_OP1(fscfsf);
2701/* evfsctsi */
2702DO_SPE_OP1(fsctsi);
2703/* evfsctui */
2704DO_SPE_OP1(fsctui);
2705/* evfsctsiz */
2706DO_SPE_OP1(fsctsiz);
2707/* evfsctuiz */
2708DO_SPE_OP1(fsctuiz);
2709/* evfsctsf */
2710DO_SPE_OP1(fsctsf);
2711/* evfsctuf */
2712DO_SPE_OP1(fsctuf);
35cdaad6 2713#endif /* defined(TARGET_PPCEMB) */
0487d6a8 2714
fdabc366
FB
2715/*****************************************************************************/
2716/* Softmmu support */
2717#if !defined (CONFIG_USER_ONLY)
2718
2719#define MMUSUFFIX _mmu
273af660
TS
2720#ifdef __s390__
2721# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
2722#else
2723# define GETPC() (__builtin_return_address(0))
2724#endif
fdabc366
FB
2725
2726#define SHIFT 0
2727#include "softmmu_template.h"
2728
2729#define SHIFT 1
2730#include "softmmu_template.h"
2731
2732#define SHIFT 2
2733#include "softmmu_template.h"
2734
2735#define SHIFT 3
2736#include "softmmu_template.h"
2737
2738/* try to fill the TLB and return an exception if error. If retaddr is
2739 NULL, it means that the function was called in C code (i.e. not
2740 from generated code or from helper.c) */
2741/* XXX: fix it to restore all registers */
6ebbf390 2742void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
fdabc366
FB
2743{
2744 TranslationBlock *tb;
2745 CPUState *saved_env;
44f8625d 2746 unsigned long pc;
fdabc366
FB
2747 int ret;
2748
2749 /* XXX: hack to restore env in all cases, even if not called from
2750 generated code */
2751 saved_env = env;
2752 env = cpu_single_env;
6ebbf390 2753 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
76a66253 2754 if (unlikely(ret != 0)) {
fdabc366
FB
2755 if (likely(retaddr)) {
2756 /* now we have a real cpu fault */
44f8625d 2757 pc = (unsigned long)retaddr;
fdabc366
FB
2758 tb = tb_find_pc(pc);
2759 if (likely(tb)) {
2760 /* the PC is inside the translated code. It means that we have
2761 a virtual CPU fault */
2762 cpu_restore_state(tb, env, pc, NULL);
76a66253 2763 }
fdabc366
FB
2764 }
2765 do_raise_exception_err(env->exception_index, env->error_code);
2766 }
2767 env = saved_env;
9a64fbe4
FB
2768}
2769
76a66253
JM
2770/* Software driven TLBs management */
2771/* PowerPC 602/603 software TLB load instructions helpers */
2772void do_load_6xx_tlb (int is_code)
2773{
2774 target_ulong RPN, CMP, EPN;
2775 int way;
d9bce9d9 2776
76a66253
JM
2777 RPN = env->spr[SPR_RPA];
2778 if (is_code) {
2779 CMP = env->spr[SPR_ICMP];
2780 EPN = env->spr[SPR_IMISS];
2781 } else {
2782 CMP = env->spr[SPR_DCMP];
2783 EPN = env->spr[SPR_DMISS];
2784 }
2785 way = (env->spr[SPR_SRR1] >> 17) & 1;
2786#if defined (DEBUG_SOFTWARE_TLB)
2787 if (loglevel != 0) {
2788 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2789 __func__, (unsigned long)T0, (unsigned long)EPN,
2790 (unsigned long)CMP, (unsigned long)RPN, way);
2791 }
2792#endif
2793 /* Store this TLB */
d9bce9d9
JM
2794 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2795 way, is_code, CMP, RPN);
76a66253
JM
2796}
2797
7dbe11ac
JM
2798void do_load_74xx_tlb (int is_code)
2799{
2800 target_ulong RPN, CMP, EPN;
2801 int way;
2802
2803 RPN = env->spr[SPR_PTELO];
2804 CMP = env->spr[SPR_PTEHI];
2805 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2806 way = env->spr[SPR_TLBMISS] & 0x3;
2807#if defined (DEBUG_SOFTWARE_TLB)
2808 if (loglevel != 0) {
2809 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2810 __func__, (unsigned long)T0, (unsigned long)EPN,
2811 (unsigned long)CMP, (unsigned long)RPN, way);
2812 }
2813#endif
2814 /* Store this TLB */
2815 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2816 way, is_code, CMP, RPN);
2817}
2818
a11b8151 2819static always_inline target_ulong booke_tlb_to_page_size (int size)
a8dea12f
JM
2820{
2821 return 1024 << (2 * size);
2822}
2823
a11b8151 2824static always_inline int booke_page_size_to_tlb (target_ulong page_size)
a8dea12f
JM
2825{
2826 int size;
2827
2828 switch (page_size) {
2829 case 0x00000400UL:
2830 size = 0x0;
2831 break;
2832 case 0x00001000UL:
2833 size = 0x1;
2834 break;
2835 case 0x00004000UL:
2836 size = 0x2;
2837 break;
2838 case 0x00010000UL:
2839 size = 0x3;
2840 break;
2841 case 0x00040000UL:
2842 size = 0x4;
2843 break;
2844 case 0x00100000UL:
2845 size = 0x5;
2846 break;
2847 case 0x00400000UL:
2848 size = 0x6;
2849 break;
2850 case 0x01000000UL:
2851 size = 0x7;
2852 break;
2853 case 0x04000000UL:
2854 size = 0x8;
2855 break;
2856 case 0x10000000UL:
2857 size = 0x9;
2858 break;
2859 case 0x40000000UL:
2860 size = 0xA;
2861 break;
2862#if defined (TARGET_PPC64)
2863 case 0x000100000000ULL:
2864 size = 0xB;
2865 break;
2866 case 0x000400000000ULL:
2867 size = 0xC;
2868 break;
2869 case 0x001000000000ULL:
2870 size = 0xD;
2871 break;
2872 case 0x004000000000ULL:
2873 size = 0xE;
2874 break;
2875 case 0x010000000000ULL:
2876 size = 0xF;
2877 break;
2878#endif
2879 default:
2880 size = -1;
2881 break;
2882 }
2883
2884 return size;
2885}
2886
76a66253 2887/* Helpers for 4xx TLB management */
76a66253
JM
2888void do_4xx_tlbre_lo (void)
2889{
a8dea12f
JM
2890 ppcemb_tlb_t *tlb;
2891 int size;
76a66253
JM
2892
2893 T0 &= 0x3F;
a8dea12f
JM
2894 tlb = &env->tlb[T0].tlbe;
2895 T0 = tlb->EPN;
2896 if (tlb->prot & PAGE_VALID)
2897 T0 |= 0x400;
2898 size = booke_page_size_to_tlb(tlb->size);
2899 if (size < 0 || size > 0x7)
2900 size = 1;
2901 T0 |= size << 7;
2902 env->spr[SPR_40x_PID] = tlb->PID;
76a66253
JM
2903}
2904
2905void do_4xx_tlbre_hi (void)
2906{
a8dea12f 2907 ppcemb_tlb_t *tlb;
76a66253
JM
2908
2909 T0 &= 0x3F;
a8dea12f
JM
2910 tlb = &env->tlb[T0].tlbe;
2911 T0 = tlb->RPN;
2912 if (tlb->prot & PAGE_EXEC)
2913 T0 |= 0x200;
2914 if (tlb->prot & PAGE_WRITE)
2915 T0 |= 0x100;
76a66253
JM
2916}
2917
c55e9aef 2918void do_4xx_tlbwe_hi (void)
76a66253 2919{
a8dea12f 2920 ppcemb_tlb_t *tlb;
76a66253
JM
2921 target_ulong page, end;
2922
c55e9aef 2923#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2924 if (loglevel != 0) {
c55e9aef
JM
2925 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2926 }
2927#endif
76a66253 2928 T0 &= 0x3F;
a8dea12f 2929 tlb = &env->tlb[T0].tlbe;
76a66253
JM
2930 /* Invalidate previous TLB (if it's valid) */
2931 if (tlb->prot & PAGE_VALID) {
2932 end = tlb->EPN + tlb->size;
c55e9aef 2933#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2934 if (loglevel != 0) {
c55e9aef
JM
2935 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2936 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2937 }
2938#endif
76a66253
JM
2939 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2940 tlb_flush_page(env, page);
2941 }
a8dea12f 2942 tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
c294fc58
JM
2943 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2944 * If this ever occurs, one should use the ppcemb target instead
2945 * of the ppc or ppc64 one
2946 */
2947 if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
71c8b8fd
JM
2948 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2949 "are not supported (%d)\n",
c294fc58
JM
2950 tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2951 }
a750fc0b 2952 tlb->EPN = T1 & ~(tlb->size - 1);
c55e9aef 2953 if (T1 & 0x40)
76a66253
JM
2954 tlb->prot |= PAGE_VALID;
2955 else
2956 tlb->prot &= ~PAGE_VALID;
c294fc58
JM
2957 if (T1 & 0x20) {
2958 /* XXX: TO BE FIXED */
2959 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2960 }
c55e9aef 2961 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
a8dea12f 2962 tlb->attr = T1 & 0xFF;
c55e9aef 2963#if defined (DEBUG_SOFTWARE_TLB)
c294fc58
JM
2964 if (loglevel != 0) {
2965 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
c55e9aef 2966 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
5fafdf24 2967 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
c55e9aef
JM
2968 tlb->prot & PAGE_READ ? 'r' : '-',
2969 tlb->prot & PAGE_WRITE ? 'w' : '-',
2970 tlb->prot & PAGE_EXEC ? 'x' : '-',
2971 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2972 }
2973#endif
76a66253
JM
2974 /* Invalidate new TLB (if valid) */
2975 if (tlb->prot & PAGE_VALID) {
2976 end = tlb->EPN + tlb->size;
c55e9aef 2977#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2978 if (loglevel != 0) {
c55e9aef
JM
2979 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2980 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2981 }
2982#endif
76a66253
JM
2983 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2984 tlb_flush_page(env, page);
2985 }
76a66253
JM
2986}
2987
c55e9aef 2988void do_4xx_tlbwe_lo (void)
76a66253 2989{
a8dea12f 2990 ppcemb_tlb_t *tlb;
76a66253 2991
c55e9aef 2992#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2993 if (loglevel != 0) {
c55e9aef
JM
2994 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2995 }
2996#endif
76a66253 2997 T0 &= 0x3F;
a8dea12f 2998 tlb = &env->tlb[T0].tlbe;
76a66253
JM
2999 tlb->RPN = T1 & 0xFFFFFC00;
3000 tlb->prot = PAGE_READ;
3001 if (T1 & 0x200)
3002 tlb->prot |= PAGE_EXEC;
3003 if (T1 & 0x100)
3004 tlb->prot |= PAGE_WRITE;
c55e9aef 3005#if defined (DEBUG_SOFTWARE_TLB)
6b80055d
JM
3006 if (loglevel != 0) {
3007 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
c55e9aef 3008 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
5fafdf24 3009 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
c55e9aef
JM
3010 tlb->prot & PAGE_READ ? 'r' : '-',
3011 tlb->prot & PAGE_WRITE ? 'w' : '-',
3012 tlb->prot & PAGE_EXEC ? 'x' : '-',
3013 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3014 }
3015#endif
76a66253 3016}
5eb7995e 3017
a4bb6c3e
JM
3018/* PowerPC 440 TLB management */
3019void do_440_tlbwe (int word)
5eb7995e
JM
3020{
3021 ppcemb_tlb_t *tlb;
a4bb6c3e 3022 target_ulong EPN, RPN, size;
5eb7995e
JM
3023 int do_flush_tlbs;
3024
3025#if defined (DEBUG_SOFTWARE_TLB)
3026 if (loglevel != 0) {
a4bb6c3e
JM
3027 fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n",
3028 __func__, word, T0, T1);
5eb7995e
JM
3029 }
3030#endif
3031 do_flush_tlbs = 0;
3032 T0 &= 0x3F;
3033 tlb = &env->tlb[T0].tlbe;
a4bb6c3e
JM
3034 switch (word) {
3035 default:
3036 /* Just here to please gcc */
3037 case 0:
3038 EPN = T1 & 0xFFFFFC00;
3039 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
5eb7995e 3040 do_flush_tlbs = 1;
a4bb6c3e
JM
3041 tlb->EPN = EPN;
3042 size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
3043 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3044 do_flush_tlbs = 1;
3045 tlb->size = size;
3046 tlb->attr &= ~0x1;
3047 tlb->attr |= (T1 >> 8) & 1;
3048 if (T1 & 0x200) {
3049 tlb->prot |= PAGE_VALID;
3050 } else {
3051 if (tlb->prot & PAGE_VALID) {
3052 tlb->prot &= ~PAGE_VALID;
3053 do_flush_tlbs = 1;
3054 }
5eb7995e 3055 }
a4bb6c3e
JM
3056 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3057 if (do_flush_tlbs)
3058 tlb_flush(env, 1);
3059 break;
3060 case 1:
3061 RPN = T1 & 0xFFFFFC0F;
3062 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3063 tlb_flush(env, 1);
3064 tlb->RPN = RPN;
3065 break;
3066 case 2:
3067 tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
3068 tlb->prot = tlb->prot & PAGE_VALID;
3069 if (T1 & 0x1)
3070 tlb->prot |= PAGE_READ << 4;
3071 if (T1 & 0x2)
3072 tlb->prot |= PAGE_WRITE << 4;
3073 if (T1 & 0x4)
3074 tlb->prot |= PAGE_EXEC << 4;
3075 if (T1 & 0x8)
3076 tlb->prot |= PAGE_READ;
3077 if (T1 & 0x10)
3078 tlb->prot |= PAGE_WRITE;
3079 if (T1 & 0x20)
3080 tlb->prot |= PAGE_EXEC;
3081 break;
5eb7995e 3082 }
5eb7995e
JM
3083}
3084
a4bb6c3e 3085void do_440_tlbre (int word)
5eb7995e
JM
3086{
3087 ppcemb_tlb_t *tlb;
3088 int size;
3089
3090 T0 &= 0x3F;
3091 tlb = &env->tlb[T0].tlbe;
a4bb6c3e
JM
3092 switch (word) {
3093 default:
3094 /* Just here to please gcc */
3095 case 0:
3096 T0 = tlb->EPN;
3097 size = booke_page_size_to_tlb(tlb->size);
3098 if (size < 0 || size > 0xF)
3099 size = 1;
3100 T0 |= size << 4;
3101 if (tlb->attr & 0x1)
3102 T0 |= 0x100;
3103 if (tlb->prot & PAGE_VALID)
3104 T0 |= 0x200;
3105 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3106 env->spr[SPR_440_MMUCR] |= tlb->PID;
3107 break;
3108 case 1:
3109 T0 = tlb->RPN;
3110 break;
3111 case 2:
3112 T0 = tlb->attr & ~0x1;
3113 if (tlb->prot & (PAGE_READ << 4))
3114 T0 |= 0x1;
3115 if (tlb->prot & (PAGE_WRITE << 4))
3116 T0 |= 0x2;
3117 if (tlb->prot & (PAGE_EXEC << 4))
3118 T0 |= 0x4;
3119 if (tlb->prot & PAGE_READ)
3120 T0 |= 0x8;
3121 if (tlb->prot & PAGE_WRITE)
3122 T0 |= 0x10;
3123 if (tlb->prot & PAGE_EXEC)
3124 T0 |= 0x20;
3125 break;
3126 }
5eb7995e 3127}
76a66253 3128#endif /* !CONFIG_USER_ONLY */