]> git.proxmox.com Git - qemu.git/blame - target-ppc/op_helper.c
Always make PowerPC hypervisor mode memory accesses and instructions
[qemu.git] / target-ppc / op_helper.c
CommitLineData
9a64fbe4 1/*
3fc6c082 2 * PowerPC emulation helpers for qemu.
5fafdf24 3 *
76a66253 4 * Copyright (c) 2003-2007 Jocelyn Mayer
9a64fbe4
FB
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
9a64fbe4 20#include "exec.h"
603fccce 21#include "host-utils.h"
9a64fbe4 22
0411a972 23#include "helper_regs.h"
0487d6a8
JM
24#include "op_helper.h"
25
9a64fbe4 26#define MEMSUFFIX _raw
0487d6a8 27#include "op_helper.h"
9a64fbe4 28#include "op_helper_mem.h"
a541f297 29#if !defined(CONFIG_USER_ONLY)
9a64fbe4 30#define MEMSUFFIX _user
0487d6a8 31#include "op_helper.h"
9a64fbe4
FB
32#include "op_helper_mem.h"
33#define MEMSUFFIX _kernel
0487d6a8 34#include "op_helper.h"
9a64fbe4 35#include "op_helper_mem.h"
1e42b8f0
JM
36#define MEMSUFFIX _hypv
37#include "op_helper.h"
38#include "op_helper_mem.h"
39#endif
9a64fbe4 40
fdabc366
FB
41//#define DEBUG_OP
42//#define DEBUG_EXCEPTIONS
76a66253 43//#define DEBUG_SOFTWARE_TLB
fdabc366 44
9a64fbe4
FB
45/*****************************************************************************/
46/* Exceptions processing helpers */
9a64fbe4 47
9fddaa0c 48void do_raise_exception_err (uint32_t exception, int error_code)
9a64fbe4 49{
9fddaa0c
FB
50#if 0
51 printf("Raise exception %3x code : %d\n", exception, error_code);
52#endif
9fddaa0c
FB
53 env->exception_index = exception;
54 env->error_code = error_code;
76a66253
JM
55 cpu_loop_exit();
56}
9fddaa0c
FB
57
58void do_raise_exception (uint32_t exception)
59{
60 do_raise_exception_err(exception, 0);
9a64fbe4
FB
61}
62
a496775f
JM
63void cpu_dump_EA (target_ulong EA);
64void do_print_mem_EA (target_ulong EA)
65{
66 cpu_dump_EA(EA);
67}
68
76a66253
JM
69/*****************************************************************************/
70/* Registers load and stores */
71void do_load_cr (void)
72{
73 T0 = (env->crf[0] << 28) |
74 (env->crf[1] << 24) |
75 (env->crf[2] << 20) |
76 (env->crf[3] << 16) |
77 (env->crf[4] << 12) |
78 (env->crf[5] << 8) |
79 (env->crf[6] << 4) |
80 (env->crf[7] << 0);
81}
82
83void do_store_cr (uint32_t mask)
84{
85 int i, sh;
86
36081602 87 for (i = 0, sh = 7; i < 8; i++, sh--) {
76a66253
JM
88 if (mask & (1 << sh))
89 env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
90 }
91}
92
c80f84e3
JM
93#if defined(TARGET_PPC64)
94void do_store_pri (int prio)
95{
96 env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
97 env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
98}
99#endif
100
a496775f
JM
101target_ulong ppc_load_dump_spr (int sprn)
102{
6b80055d 103 if (loglevel != 0) {
a496775f
JM
104 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
105 sprn, sprn, env->spr[sprn]);
106 }
107
108 return env->spr[sprn];
109}
110
111void ppc_store_dump_spr (int sprn, target_ulong val)
112{
6b80055d 113 if (loglevel != 0) {
a496775f
JM
114 fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
115 sprn, sprn, env->spr[sprn], val);
116 }
117 env->spr[sprn] = val;
118}
119
9a64fbe4 120/*****************************************************************************/
fdabc366 121/* Fixed point operations helpers */
fdabc366
FB
122void do_adde (void)
123{
124 T2 = T0;
125 T0 += T1 + xer_ca;
d9bce9d9
JM
126 if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
127 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
fdabc366
FB
128 xer_ca = 0;
129 } else {
130 xer_ca = 1;
131 }
132}
133
d9bce9d9
JM
134#if defined(TARGET_PPC64)
135void do_adde_64 (void)
fdabc366
FB
136{
137 T2 = T0;
138 T0 += T1 + xer_ca;
d9bce9d9
JM
139 if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
140 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
fdabc366
FB
141 xer_ca = 0;
142 } else {
143 xer_ca = 1;
144 }
fdabc366 145}
d9bce9d9 146#endif
fdabc366
FB
147
148void do_addmeo (void)
149{
150 T1 = T0;
151 T0 += xer_ca + (-1);
c3e10c7b
JM
152 xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
153 xer_so |= xer_ov;
fdabc366
FB
154 if (likely(T1 != 0))
155 xer_ca = 1;
c3e10c7b
JM
156 else
157 xer_ca = 0;
fdabc366
FB
158}
159
d9bce9d9
JM
160#if defined(TARGET_PPC64)
161void do_addmeo_64 (void)
fdabc366
FB
162{
163 T1 = T0;
d9bce9d9 164 T0 += xer_ca + (-1);
c3e10c7b
JM
165 xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
166 xer_so |= xer_ov;
d9bce9d9 167 if (likely(T1 != 0))
fdabc366 168 xer_ca = 1;
c3e10c7b
JM
169 else
170 xer_ca = 0;
fdabc366 171}
d9bce9d9 172#endif
fdabc366
FB
173
174void do_divwo (void)
175{
6f2d8978 176 if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
d9bce9d9 177 (int32_t)T1 == 0))) {
fdabc366 178 xer_ov = 0;
d9bce9d9 179 T0 = (int32_t)T0 / (int32_t)T1;
fdabc366 180 } else {
fdabc366 181 xer_ov = 1;
6f2d8978 182 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
fdabc366 183 }
6f2d8978 184 xer_so |= xer_ov;
fdabc366
FB
185}
186
d9bce9d9
JM
187#if defined(TARGET_PPC64)
188void do_divdo (void)
189{
6f2d8978 190 if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
d9bce9d9
JM
191 (int64_t)T1 == 0))) {
192 xer_ov = 0;
193 T0 = (int64_t)T0 / (int64_t)T1;
194 } else {
d9bce9d9 195 xer_ov = 1;
6f2d8978 196 T0 = UINT64_MAX * ((uint64_t)T0 >> 63);
d9bce9d9 197 }
6f2d8978 198 xer_so |= xer_ov;
d9bce9d9
JM
199}
200#endif
201
fdabc366
FB
202void do_divwuo (void)
203{
204 if (likely((uint32_t)T1 != 0)) {
205 xer_ov = 0;
206 T0 = (uint32_t)T0 / (uint32_t)T1;
207 } else {
fdabc366 208 xer_ov = 1;
966439a6 209 xer_so = 1;
fdabc366
FB
210 T0 = 0;
211 }
212}
213
d9bce9d9
JM
214#if defined(TARGET_PPC64)
215void do_divduo (void)
216{
217 if (likely((uint64_t)T1 != 0)) {
218 xer_ov = 0;
219 T0 = (uint64_t)T0 / (uint64_t)T1;
220 } else {
d9bce9d9 221 xer_ov = 1;
966439a6 222 xer_so = 1;
d9bce9d9
JM
223 T0 = 0;
224 }
225}
226#endif
227
fdabc366
FB
228void do_mullwo (void)
229{
d9bce9d9 230 int64_t res = (int64_t)T0 * (int64_t)T1;
fdabc366
FB
231
232 if (likely((int32_t)res == res)) {
233 xer_ov = 0;
234 } else {
235 xer_ov = 1;
236 xer_so = 1;
237 }
238 T0 = (int32_t)res;
239}
240
d9bce9d9
JM
241#if defined(TARGET_PPC64)
242void do_mulldo (void)
fdabc366 243{
d9bce9d9
JM
244 int64_t th;
245 uint64_t tl;
246
9d901a20 247 muls64(&tl, &th, T0, T1);
6f2d8978 248 T0 = (int64_t)tl;
88ad920b 249 /* If th != 0 && th != -1, then we had an overflow */
6f2d8978 250 if (likely((uint64_t)(th + 1) <= 1)) {
fdabc366 251 xer_ov = 0;
fdabc366
FB
252 } else {
253 xer_ov = 1;
fdabc366 254 }
6f2d8978 255 xer_so |= xer_ov;
fdabc366 256}
d9bce9d9 257#endif
fdabc366 258
d9bce9d9 259void do_nego (void)
fdabc366 260{
d9bce9d9 261 if (likely((int32_t)T0 != INT32_MIN)) {
fdabc366 262 xer_ov = 0;
d9bce9d9 263 T0 = -(int32_t)T0;
fdabc366 264 } else {
fdabc366 265 xer_ov = 1;
d9bce9d9 266 xer_so = 1;
fdabc366 267 }
fdabc366
FB
268}
269
d9bce9d9
JM
270#if defined(TARGET_PPC64)
271void do_nego_64 (void)
fdabc366 272{
d9bce9d9 273 if (likely((int64_t)T0 != INT64_MIN)) {
fdabc366 274 xer_ov = 0;
d9bce9d9 275 T0 = -(int64_t)T0;
fdabc366 276 } else {
fdabc366 277 xer_ov = 1;
d9bce9d9 278 xer_so = 1;
fdabc366
FB
279 }
280}
d9bce9d9 281#endif
fdabc366
FB
282
283void do_subfe (void)
284{
285 T0 = T1 + ~T0 + xer_ca;
d9bce9d9
JM
286 if (likely((uint32_t)T0 >= (uint32_t)T1 &&
287 (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
fdabc366
FB
288 xer_ca = 0;
289 } else {
290 xer_ca = 1;
291 }
292}
293
d9bce9d9
JM
294#if defined(TARGET_PPC64)
295void do_subfe_64 (void)
fdabc366 296{
fdabc366 297 T0 = T1 + ~T0 + xer_ca;
d9bce9d9
JM
298 if (likely((uint64_t)T0 >= (uint64_t)T1 &&
299 (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
300 xer_ca = 0;
301 } else {
302 xer_ca = 1;
303 }
304}
305#endif
306
307void do_subfmeo (void)
308{
309 T1 = T0;
310 T0 = ~T0 + xer_ca - 1;
c3e10c7b
JM
311 xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
312 xer_so |= xer_ov;
d9bce9d9 313 if (likely((uint32_t)T1 != UINT32_MAX))
fdabc366 314 xer_ca = 1;
c3e10c7b
JM
315 else
316 xer_ca = 0;
fdabc366
FB
317}
318
d9bce9d9
JM
319#if defined(TARGET_PPC64)
320void do_subfmeo_64 (void)
fdabc366
FB
321{
322 T1 = T0;
323 T0 = ~T0 + xer_ca - 1;
c3e10c7b
JM
324 xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
325 xer_so |= xer_ov;
d9bce9d9 326 if (likely((uint64_t)T1 != UINT64_MAX))
fdabc366 327 xer_ca = 1;
c3e10c7b
JM
328 else
329 xer_ca = 0;
fdabc366 330}
d9bce9d9 331#endif
fdabc366
FB
332
333void do_subfzeo (void)
334{
335 T1 = T0;
336 T0 = ~T0 + xer_ca;
c3e10c7b
JM
337 xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) &
338 ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
339 xer_so |= xer_ov;
d9bce9d9 340 if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
fdabc366
FB
341 xer_ca = 0;
342 } else {
343 xer_ca = 1;
344 }
345}
346
d9bce9d9
JM
347#if defined(TARGET_PPC64)
348void do_subfzeo_64 (void)
349{
350 T1 = T0;
351 T0 = ~T0 + xer_ca;
c3e10c7b
JM
352 xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) &
353 ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
354 xer_so |= xer_ov;
d9bce9d9
JM
355 if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
356 xer_ca = 0;
357 } else {
358 xer_ca = 1;
359 }
360}
361#endif
362
603fccce
JM
363void do_cntlzw (void)
364{
365 T0 = clz32(T0);
366}
367
368#if defined(TARGET_PPC64)
369void do_cntlzd (void)
370{
371 T0 = clz64(T0);
372}
373#endif
374
9a64fbe4
FB
375/* shift right arithmetic helper */
376void do_sraw (void)
377{
378 int32_t ret;
379
fdabc366 380 if (likely(!(T1 & 0x20UL))) {
d9bce9d9 381 if (likely((uint32_t)T1 != 0)) {
fdabc366
FB
382 ret = (int32_t)T0 >> (T1 & 0x1fUL);
383 if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
76a66253 384 xer_ca = 0;
fdabc366 385 } else {
76a66253 386 xer_ca = 1;
fdabc366
FB
387 }
388 } else {
76a66253 389 ret = T0;
fdabc366
FB
390 xer_ca = 0;
391 }
392 } else {
6f2d8978 393 ret = UINT32_MAX * ((uint32_t)T0 >> 31);
fdabc366
FB
394 if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
395 xer_ca = 0;
76a66253 396 } else {
9a64fbe4 397 xer_ca = 1;
76a66253 398 }
fdabc366 399 }
4b3686fa 400 T0 = ret;
9a64fbe4
FB
401}
402
d9bce9d9
JM
403#if defined(TARGET_PPC64)
404void do_srad (void)
405{
406 int64_t ret;
407
408 if (likely(!(T1 & 0x40UL))) {
409 if (likely((uint64_t)T1 != 0)) {
410 ret = (int64_t)T0 >> (T1 & 0x3FUL);
411 if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
412 xer_ca = 0;
413 } else {
414 xer_ca = 1;
415 }
416 } else {
417 ret = T0;
418 xer_ca = 0;
419 }
420 } else {
6f2d8978 421 ret = UINT64_MAX * ((uint64_t)T0 >> 63);
d9bce9d9
JM
422 if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
423 xer_ca = 0;
424 } else {
425 xer_ca = 1;
426 }
427 }
428 T0 = ret;
429}
430#endif
431
d9bce9d9
JM
432void do_popcntb (void)
433{
434 uint32_t ret;
435 int i;
436
437 ret = 0;
438 for (i = 0; i < 32; i += 8)
603fccce 439 ret |= ctpop8((T0 >> i) & 0xFF) << i;
d9bce9d9
JM
440 T0 = ret;
441}
442
443#if defined(TARGET_PPC64)
444void do_popcntb_64 (void)
445{
446 uint64_t ret;
447 int i;
448
449 ret = 0;
450 for (i = 0; i < 64; i += 8)
603fccce 451 ret |= ctpop8((T0 >> i) & 0xFF) << i;
d9bce9d9
JM
452 T0 = ret;
453}
454#endif
455
fdabc366 456/*****************************************************************************/
9a64fbe4 457/* Floating point operations helpers */
a11b8151 458static always_inline int fpisneg (float64 f)
7c58044c
JM
459{
460 union {
461 float64 f;
462 uint64_t u;
463 } u;
464
465 u.f = f;
466
467 return u.u >> 63 != 0;
468}
469
a11b8151 470static always_inline int isden (float f)
7c58044c
JM
471{
472 union {
473 float64 f;
474 uint64_t u;
475 } u;
476
477 u.f = f;
478
479 return ((u.u >> 52) & 0x7FF) == 0;
480}
481
a11b8151 482static always_inline int iszero (float64 f)
7c58044c
JM
483{
484 union {
485 float64 f;
486 uint64_t u;
487 } u;
488
489 u.f = f;
490
491 return (u.u & ~0x8000000000000000ULL) == 0;
492}
493
a11b8151 494static always_inline int isinfinity (float64 f)
7c58044c
JM
495{
496 union {
497 float64 f;
498 uint64_t u;
499 } u;
500
501 u.f = f;
502
86c4a9f5 503 return ((u.u >> 52) & 0x7FF) == 0x7FF &&
7c58044c
JM
504 (u.u & 0x000FFFFFFFFFFFFFULL) == 0;
505}
506
507void do_compute_fprf (int set_fprf)
508{
509 int isneg;
510
511 isneg = fpisneg(FT0);
512 if (unlikely(float64_is_nan(FT0))) {
513 if (float64_is_signaling_nan(FT0)) {
514 /* Signaling NaN: flags are undefined */
515 T0 = 0x00;
516 } else {
517 /* Quiet NaN */
518 T0 = 0x11;
519 }
520 } else if (unlikely(isinfinity(FT0))) {
521 /* +/- infinity */
522 if (isneg)
523 T0 = 0x09;
524 else
525 T0 = 0x05;
526 } else {
527 if (iszero(FT0)) {
528 /* +/- zero */
529 if (isneg)
530 T0 = 0x12;
531 else
532 T0 = 0x02;
533 } else {
534 if (isden(FT0)) {
535 /* Denormalized numbers */
536 T0 = 0x10;
537 } else {
538 /* Normalized numbers */
539 T0 = 0x00;
540 }
541 if (isneg) {
542 T0 |= 0x08;
543 } else {
544 T0 |= 0x04;
545 }
546 }
547 }
548 if (set_fprf) {
549 /* We update FPSCR_FPRF */
550 env->fpscr &= ~(0x1F << FPSCR_FPRF);
551 env->fpscr |= T0 << FPSCR_FPRF;
552 }
553 /* We just need fpcc to update Rc1 */
554 T0 &= 0xF;
555}
556
557/* Floating-point invalid operations exception */
558static always_inline void fload_invalid_op_excp (int op)
559{
560 int ve;
561
562 ve = fpscr_ve;
563 if (op & POWERPC_EXCP_FP_VXSNAN) {
564 /* Operation on signaling NaN */
565 env->fpscr |= 1 << FPSCR_VXSNAN;
566 }
567 if (op & POWERPC_EXCP_FP_VXSOFT) {
568 /* Software-defined condition */
569 env->fpscr |= 1 << FPSCR_VXSOFT;
570 }
571 switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
572 case POWERPC_EXCP_FP_VXISI:
573 /* Magnitude subtraction of infinities */
574 env->fpscr |= 1 << FPSCR_VXISI;
575 goto update_arith;
576 case POWERPC_EXCP_FP_VXIDI:
577 /* Division of infinity by infinity */
578 env->fpscr |= 1 << FPSCR_VXIDI;
579 goto update_arith;
580 case POWERPC_EXCP_FP_VXZDZ:
581 /* Division of zero by zero */
582 env->fpscr |= 1 << FPSCR_VXZDZ;
583 goto update_arith;
584 case POWERPC_EXCP_FP_VXIMZ:
585 /* Multiplication of zero by infinity */
586 env->fpscr |= 1 << FPSCR_VXIMZ;
587 goto update_arith;
588 case POWERPC_EXCP_FP_VXVC:
589 /* Ordered comparison of NaN */
590 env->fpscr |= 1 << FPSCR_VXVC;
591 env->fpscr &= ~(0xF << FPSCR_FPCC);
592 env->fpscr |= 0x11 << FPSCR_FPCC;
593 /* We must update the target FPR before raising the exception */
594 if (ve != 0) {
595 env->exception_index = POWERPC_EXCP_PROGRAM;
596 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
597 /* Update the floating-point enabled exception summary */
598 env->fpscr |= 1 << FPSCR_FEX;
599 /* Exception is differed */
600 ve = 0;
601 }
602 break;
603 case POWERPC_EXCP_FP_VXSQRT:
604 /* Square root of a negative number */
605 env->fpscr |= 1 << FPSCR_VXSQRT;
606 update_arith:
607 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
608 if (ve == 0) {
609 /* Set the result to quiet NaN */
6f2d8978 610 FT0 = UINT64_MAX;
7c58044c
JM
611 env->fpscr &= ~(0xF << FPSCR_FPCC);
612 env->fpscr |= 0x11 << FPSCR_FPCC;
613 }
614 break;
615 case POWERPC_EXCP_FP_VXCVI:
616 /* Invalid conversion */
617 env->fpscr |= 1 << FPSCR_VXCVI;
618 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
619 if (ve == 0) {
620 /* Set the result to quiet NaN */
6f2d8978 621 FT0 = UINT64_MAX;
7c58044c
JM
622 env->fpscr &= ~(0xF << FPSCR_FPCC);
623 env->fpscr |= 0x11 << FPSCR_FPCC;
624 }
625 break;
626 }
627 /* Update the floating-point invalid operation summary */
628 env->fpscr |= 1 << FPSCR_VX;
629 /* Update the floating-point exception summary */
630 env->fpscr |= 1 << FPSCR_FX;
631 if (ve != 0) {
632 /* Update the floating-point enabled exception summary */
633 env->fpscr |= 1 << FPSCR_FEX;
634 if (msr_fe0 != 0 || msr_fe1 != 0)
635 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
636 }
637}
638
639static always_inline void float_zero_divide_excp (void)
640{
641 union {
642 float64 f;
643 uint64_t u;
644 } u0, u1;
7c58044c
JM
645
646 env->fpscr |= 1 << FPSCR_ZX;
647 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
648 /* Update the floating-point exception summary */
649 env->fpscr |= 1 << FPSCR_FX;
650 if (fpscr_ze != 0) {
651 /* Update the floating-point enabled exception summary */
652 env->fpscr |= 1 << FPSCR_FEX;
653 if (msr_fe0 != 0 || msr_fe1 != 0) {
654 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
655 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
656 }
657 } else {
658 /* Set the result to infinity */
659 u0.f = FT0;
660 u1.f = FT1;
661 u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL);
86c4a9f5 662 u0.u |= 0x7FFULL << 52;
7c58044c
JM
663 FT0 = u0.f;
664 }
665}
666
667static always_inline void float_overflow_excp (void)
668{
669 env->fpscr |= 1 << FPSCR_OX;
670 /* Update the floating-point exception summary */
671 env->fpscr |= 1 << FPSCR_FX;
672 if (fpscr_oe != 0) {
673 /* XXX: should adjust the result */
674 /* Update the floating-point enabled exception summary */
675 env->fpscr |= 1 << FPSCR_FEX;
676 /* We must update the target FPR before raising the exception */
677 env->exception_index = POWERPC_EXCP_PROGRAM;
678 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
679 } else {
680 env->fpscr |= 1 << FPSCR_XX;
681 env->fpscr |= 1 << FPSCR_FI;
682 }
683}
684
685static always_inline void float_underflow_excp (void)
686{
687 env->fpscr |= 1 << FPSCR_UX;
688 /* Update the floating-point exception summary */
689 env->fpscr |= 1 << FPSCR_FX;
690 if (fpscr_ue != 0) {
691 /* XXX: should adjust the result */
692 /* Update the floating-point enabled exception summary */
693 env->fpscr |= 1 << FPSCR_FEX;
694 /* We must update the target FPR before raising the exception */
695 env->exception_index = POWERPC_EXCP_PROGRAM;
696 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
697 }
698}
699
700static always_inline void float_inexact_excp (void)
701{
702 env->fpscr |= 1 << FPSCR_XX;
703 /* Update the floating-point exception summary */
704 env->fpscr |= 1 << FPSCR_FX;
705 if (fpscr_xe != 0) {
706 /* Update the floating-point enabled exception summary */
707 env->fpscr |= 1 << FPSCR_FEX;
708 /* We must update the target FPR before raising the exception */
709 env->exception_index = POWERPC_EXCP_PROGRAM;
710 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
711 }
712}
713
714static always_inline void fpscr_set_rounding_mode (void)
715{
716 int rnd_type;
717
718 /* Set rounding mode */
719 switch (fpscr_rn) {
720 case 0:
721 /* Best approximation (round to nearest) */
722 rnd_type = float_round_nearest_even;
723 break;
724 case 1:
725 /* Smaller magnitude (round toward zero) */
726 rnd_type = float_round_to_zero;
727 break;
728 case 2:
729 /* Round toward +infinite */
730 rnd_type = float_round_up;
731 break;
732 default:
733 case 3:
734 /* Round toward -infinite */
735 rnd_type = float_round_down;
736 break;
737 }
738 set_float_rounding_mode(rnd_type, &env->fp_status);
739}
740
741void do_fpscr_setbit (int bit)
742{
743 int prev;
744
745 prev = (env->fpscr >> bit) & 1;
746 env->fpscr |= 1 << bit;
747 if (prev == 0) {
748 switch (bit) {
749 case FPSCR_VX:
750 env->fpscr |= 1 << FPSCR_FX;
751 if (fpscr_ve)
752 goto raise_ve;
753 case FPSCR_OX:
754 env->fpscr |= 1 << FPSCR_FX;
755 if (fpscr_oe)
756 goto raise_oe;
757 break;
758 case FPSCR_UX:
759 env->fpscr |= 1 << FPSCR_FX;
760 if (fpscr_ue)
761 goto raise_ue;
762 break;
763 case FPSCR_ZX:
764 env->fpscr |= 1 << FPSCR_FX;
765 if (fpscr_ze)
766 goto raise_ze;
767 break;
768 case FPSCR_XX:
769 env->fpscr |= 1 << FPSCR_FX;
770 if (fpscr_xe)
771 goto raise_xe;
772 break;
773 case FPSCR_VXSNAN:
774 case FPSCR_VXISI:
775 case FPSCR_VXIDI:
776 case FPSCR_VXZDZ:
777 case FPSCR_VXIMZ:
778 case FPSCR_VXVC:
779 case FPSCR_VXSOFT:
780 case FPSCR_VXSQRT:
781 case FPSCR_VXCVI:
782 env->fpscr |= 1 << FPSCR_VX;
783 env->fpscr |= 1 << FPSCR_FX;
784 if (fpscr_ve != 0)
785 goto raise_ve;
786 break;
787 case FPSCR_VE:
788 if (fpscr_vx != 0) {
789 raise_ve:
790 env->error_code = POWERPC_EXCP_FP;
791 if (fpscr_vxsnan)
792 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
793 if (fpscr_vxisi)
794 env->error_code |= POWERPC_EXCP_FP_VXISI;
795 if (fpscr_vxidi)
796 env->error_code |= POWERPC_EXCP_FP_VXIDI;
797 if (fpscr_vxzdz)
798 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
799 if (fpscr_vximz)
800 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
801 if (fpscr_vxvc)
802 env->error_code |= POWERPC_EXCP_FP_VXVC;
803 if (fpscr_vxsoft)
804 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
805 if (fpscr_vxsqrt)
806 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
807 if (fpscr_vxcvi)
808 env->error_code |= POWERPC_EXCP_FP_VXCVI;
809 goto raise_excp;
810 }
811 break;
812 case FPSCR_OE:
813 if (fpscr_ox != 0) {
814 raise_oe:
815 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
816 goto raise_excp;
817 }
818 break;
819 case FPSCR_UE:
820 if (fpscr_ux != 0) {
821 raise_ue:
822 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
823 goto raise_excp;
824 }
825 break;
826 case FPSCR_ZE:
827 if (fpscr_zx != 0) {
828 raise_ze:
829 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
830 goto raise_excp;
831 }
832 break;
833 case FPSCR_XE:
834 if (fpscr_xx != 0) {
835 raise_xe:
836 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
837 goto raise_excp;
838 }
839 break;
840 case FPSCR_RN1:
841 case FPSCR_RN:
842 fpscr_set_rounding_mode();
843 break;
844 default:
845 break;
846 raise_excp:
847 /* Update the floating-point enabled exception summary */
848 env->fpscr |= 1 << FPSCR_FEX;
849 /* We have to update Rc1 before raising the exception */
850 env->exception_index = POWERPC_EXCP_PROGRAM;
851 break;
852 }
853 }
854}
855
856#if defined(WORDS_BIGENDIAN)
857#define WORD0 0
858#define WORD1 1
859#else
860#define WORD0 1
861#define WORD1 0
862#endif
863void do_store_fpscr (uint32_t mask)
864{
865 /*
866 * We use only the 32 LSB of the incoming fpr
867 */
868 union {
869 double d;
870 struct {
871 uint32_t u[2];
872 } s;
873 } u;
874 uint32_t prev, new;
875 int i;
876
877 u.d = FT0;
878 prev = env->fpscr;
879 new = u.s.u[WORD1];
880 new &= ~0x90000000;
881 new |= prev & 0x90000000;
882 for (i = 0; i < 7; i++) {
883 if (mask & (1 << i)) {
884 env->fpscr &= ~(0xF << (4 * i));
885 env->fpscr |= new & (0xF << (4 * i));
886 }
887 }
888 /* Update VX and FEX */
889 if (fpscr_ix != 0)
890 env->fpscr |= 1 << FPSCR_VX;
891 if ((fpscr_ex & fpscr_eex) != 0) {
892 env->fpscr |= 1 << FPSCR_FEX;
893 env->exception_index = POWERPC_EXCP_PROGRAM;
894 /* XXX: we should compute it properly */
895 env->error_code = POWERPC_EXCP_FP;
896 }
897 fpscr_set_rounding_mode();
898}
899#undef WORD0
900#undef WORD1
901
902#ifdef CONFIG_SOFTFLOAT
903void do_float_check_status (void)
904{
905 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
906 (env->error_code & POWERPC_EXCP_FP)) {
907 /* Differred floating-point exception after target FPR update */
908 if (msr_fe0 != 0 || msr_fe1 != 0)
909 do_raise_exception_err(env->exception_index, env->error_code);
910 } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
911 float_overflow_excp();
912 } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
913 float_underflow_excp();
914 } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
915 float_inexact_excp();
916 }
917}
918#endif
919
920#if USE_PRECISE_EMULATION
921void do_fadd (void)
922{
923 if (unlikely(float64_is_signaling_nan(FT0) ||
924 float64_is_signaling_nan(FT1))) {
925 /* sNaN addition */
926 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
927 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
928 fpisneg(FT0) == fpisneg(FT1))) {
929 FT0 = float64_add(FT0, FT1, &env->fp_status);
930 } else {
931 /* Magnitude subtraction of infinities */
932 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
933 }
934}
935
936void do_fsub (void)
937{
938 if (unlikely(float64_is_signaling_nan(FT0) ||
939 float64_is_signaling_nan(FT1))) {
940 /* sNaN subtraction */
941 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
942 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
943 fpisneg(FT0) != fpisneg(FT1))) {
944 FT0 = float64_sub(FT0, FT1, &env->fp_status);
945 } else {
946 /* Magnitude subtraction of infinities */
947 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
948 }
949}
950
951void do_fmul (void)
952{
953 if (unlikely(float64_is_signaling_nan(FT0) ||
954 float64_is_signaling_nan(FT1))) {
955 /* sNaN multiplication */
956 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
5bda2843
JM
957 } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
958 (iszero(FT0) && isinfinity(FT1)))) {
7c58044c
JM
959 /* Multiplication of zero by infinity */
960 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
961 } else {
962 FT0 = float64_mul(FT0, FT1, &env->fp_status);
963 }
964}
965
966void do_fdiv (void)
967{
968 if (unlikely(float64_is_signaling_nan(FT0) ||
969 float64_is_signaling_nan(FT1))) {
970 /* sNaN division */
971 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
972 } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
973 /* Division of infinity by infinity */
974 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
975 } else if (unlikely(iszero(FT1))) {
976 if (iszero(FT0)) {
977 /* Division of zero by zero */
978 fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
979 } else {
980 /* Division by zero */
981 float_zero_divide_excp();
982 }
983 } else {
984 FT0 = float64_div(FT0, FT1, &env->fp_status);
985 }
986}
987#endif /* USE_PRECISE_EMULATION */
988
9a64fbe4
FB
989void do_fctiw (void)
990{
991 union {
992 double d;
993 uint64_t i;
4ecc3190 994 } p;
9a64fbe4 995
7c58044c
JM
996 if (unlikely(float64_is_signaling_nan(FT0))) {
997 /* sNaN conversion */
998 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
999 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1000 /* qNan / infinity conversion */
1001 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1002 } else {
1003 p.i = float64_to_int32(FT0, &env->fp_status);
e864cabd 1004#if USE_PRECISE_EMULATION
7c58044c
JM
1005 /* XXX: higher bits are not supposed to be significant.
1006 * to make tests easier, return the same as a real PowerPC 750
1007 */
1008 p.i |= 0xFFF80000ULL << 32;
e864cabd 1009#endif
7c58044c
JM
1010 FT0 = p.d;
1011 }
9a64fbe4
FB
1012}
1013
1014void do_fctiwz (void)
1015{
1016 union {
1017 double d;
1018 uint64_t i;
4ecc3190
FB
1019 } p;
1020
7c58044c
JM
1021 if (unlikely(float64_is_signaling_nan(FT0))) {
1022 /* sNaN conversion */
1023 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1024 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1025 /* qNan / infinity conversion */
1026 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1027 } else {
1028 p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
e864cabd 1029#if USE_PRECISE_EMULATION
7c58044c
JM
1030 /* XXX: higher bits are not supposed to be significant.
1031 * to make tests easier, return the same as a real PowerPC 750
1032 */
1033 p.i |= 0xFFF80000ULL << 32;
e864cabd 1034#endif
7c58044c
JM
1035 FT0 = p.d;
1036 }
9a64fbe4
FB
1037}
1038
426613db
JM
1039#if defined(TARGET_PPC64)
1040void do_fcfid (void)
1041{
1042 union {
1043 double d;
1044 uint64_t i;
1045 } p;
1046
1047 p.d = FT0;
1048 FT0 = int64_to_float64(p.i, &env->fp_status);
1049}
1050
1051void do_fctid (void)
1052{
1053 union {
1054 double d;
1055 uint64_t i;
1056 } p;
1057
7c58044c
JM
1058 if (unlikely(float64_is_signaling_nan(FT0))) {
1059 /* sNaN conversion */
1060 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1061 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1062 /* qNan / infinity conversion */
1063 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1064 } else {
1065 p.i = float64_to_int64(FT0, &env->fp_status);
1066 FT0 = p.d;
1067 }
426613db
JM
1068}
1069
1070void do_fctidz (void)
1071{
1072 union {
1073 double d;
1074 uint64_t i;
1075 } p;
1076
7c58044c
JM
1077 if (unlikely(float64_is_signaling_nan(FT0))) {
1078 /* sNaN conversion */
1079 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1080 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1081 /* qNan / infinity conversion */
1082 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1083 } else {
1084 p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
1085 FT0 = p.d;
1086 }
426613db
JM
1087}
1088
1089#endif
1090
b068d6a7 1091static always_inline void do_fri (int rounding_mode)
d7e4b87e 1092{
7c58044c
JM
1093 if (unlikely(float64_is_signaling_nan(FT0))) {
1094 /* sNaN round */
1095 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1096 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1097 /* qNan / infinity round */
1098 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1099 } else {
1100 set_float_rounding_mode(rounding_mode, &env->fp_status);
1101 FT0 = float64_round_to_int(FT0, &env->fp_status);
1102 /* Restore rounding mode from FPSCR */
1103 fpscr_set_rounding_mode();
1104 }
d7e4b87e
JM
1105}
1106
1107void do_frin (void)
1108{
1109 do_fri(float_round_nearest_even);
1110}
1111
1112void do_friz (void)
1113{
1114 do_fri(float_round_to_zero);
1115}
1116
1117void do_frip (void)
1118{
1119 do_fri(float_round_up);
1120}
1121
1122void do_frim (void)
1123{
1124 do_fri(float_round_down);
1125}
1126
e864cabd
JM
1127#if USE_PRECISE_EMULATION
1128void do_fmadd (void)
1129{
7c58044c
JM
1130 if (unlikely(float64_is_signaling_nan(FT0) ||
1131 float64_is_signaling_nan(FT1) ||
1132 float64_is_signaling_nan(FT2))) {
1133 /* sNaN operation */
1134 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1135 } else {
e864cabd 1136#ifdef FLOAT128
7c58044c
JM
1137 /* This is the way the PowerPC specification defines it */
1138 float128 ft0_128, ft1_128;
1139
1140 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1141 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1142 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1143 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1144 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1145 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1146#else
7c58044c
JM
1147 /* This is OK on x86 hosts */
1148 FT0 = (FT0 * FT1) + FT2;
e864cabd 1149#endif
7c58044c 1150 }
e864cabd
JM
1151}
1152
1153void do_fmsub (void)
1154{
7c58044c
JM
1155 if (unlikely(float64_is_signaling_nan(FT0) ||
1156 float64_is_signaling_nan(FT1) ||
1157 float64_is_signaling_nan(FT2))) {
1158 /* sNaN operation */
1159 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1160 } else {
e864cabd 1161#ifdef FLOAT128
7c58044c
JM
1162 /* This is the way the PowerPC specification defines it */
1163 float128 ft0_128, ft1_128;
1164
1165 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1166 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1167 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1168 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1169 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1170 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1171#else
7c58044c
JM
1172 /* This is OK on x86 hosts */
1173 FT0 = (FT0 * FT1) - FT2;
e864cabd 1174#endif
7c58044c 1175 }
e864cabd
JM
1176}
1177#endif /* USE_PRECISE_EMULATION */
1178
4b3686fa
FB
1179void do_fnmadd (void)
1180{
7c58044c
JM
1181 if (unlikely(float64_is_signaling_nan(FT0) ||
1182 float64_is_signaling_nan(FT1) ||
1183 float64_is_signaling_nan(FT2))) {
1184 /* sNaN operation */
1185 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1186 } else {
e864cabd
JM
1187#if USE_PRECISE_EMULATION
1188#ifdef FLOAT128
7c58044c
JM
1189 /* This is the way the PowerPC specification defines it */
1190 float128 ft0_128, ft1_128;
1191
1192 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1193 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1194 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1195 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1196 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1197 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1198#else
7c58044c
JM
1199 /* This is OK on x86 hosts */
1200 FT0 = (FT0 * FT1) + FT2;
e864cabd
JM
1201#endif
1202#else
7c58044c
JM
1203 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1204 FT0 = float64_add(FT0, FT2, &env->fp_status);
e864cabd 1205#endif
7c58044c
JM
1206 if (likely(!isnan(FT0)))
1207 FT0 = float64_chs(FT0);
1208 }
4b3686fa
FB
1209}
1210
1211void do_fnmsub (void)
1212{
7c58044c
JM
1213 if (unlikely(float64_is_signaling_nan(FT0) ||
1214 float64_is_signaling_nan(FT1) ||
1215 float64_is_signaling_nan(FT2))) {
1216 /* sNaN operation */
1217 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1218 } else {
e864cabd
JM
1219#if USE_PRECISE_EMULATION
1220#ifdef FLOAT128
7c58044c
JM
1221 /* This is the way the PowerPC specification defines it */
1222 float128 ft0_128, ft1_128;
1223
1224 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1225 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1226 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1227 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1228 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1229 FT0 = float128_to_float64(ft0_128, &env->fp_status);
e864cabd 1230#else
7c58044c
JM
1231 /* This is OK on x86 hosts */
1232 FT0 = (FT0 * FT1) - FT2;
e864cabd
JM
1233#endif
1234#else
7c58044c
JM
1235 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1236 FT0 = float64_sub(FT0, FT2, &env->fp_status);
e864cabd 1237#endif
7c58044c
JM
1238 if (likely(!isnan(FT0)))
1239 FT0 = float64_chs(FT0);
1240 }
1ef59d0a
FB
1241}
1242
7c58044c
JM
1243#if USE_PRECISE_EMULATION
1244void do_frsp (void)
1245{
1246 if (unlikely(float64_is_signaling_nan(FT0))) {
1247 /* sNaN square root */
1248 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1249 } else {
1250 FT0 = float64_to_float32(FT0, &env->fp_status);
1251 }
1252}
1253#endif /* USE_PRECISE_EMULATION */
1254
9a64fbe4
FB
1255void do_fsqrt (void)
1256{
7c58044c
JM
1257 if (unlikely(float64_is_signaling_nan(FT0))) {
1258 /* sNaN square root */
1259 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1260 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1261 /* Square root of a negative nonzero number */
1262 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1263 } else {
1264 FT0 = float64_sqrt(FT0, &env->fp_status);
1265 }
9a64fbe4
FB
1266}
1267
d7e4b87e
JM
1268void do_fre (void)
1269{
1270 union {
1271 double d;
1272 uint64_t i;
1273 } p;
1274
7c58044c
JM
1275 if (unlikely(float64_is_signaling_nan(FT0))) {
1276 /* sNaN reciprocal */
1277 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1278 } else if (unlikely(iszero(FT0))) {
1279 /* Zero reciprocal */
1280 float_zero_divide_excp();
1281 } else if (likely(isnormal(FT0))) {
d7e4b87e
JM
1282 FT0 = float64_div(1.0, FT0, &env->fp_status);
1283 } else {
1284 p.d = FT0;
1285 if (p.i == 0x8000000000000000ULL) {
1286 p.i = 0xFFF0000000000000ULL;
1287 } else if (p.i == 0x0000000000000000ULL) {
1288 p.i = 0x7FF0000000000000ULL;
1289 } else if (isnan(FT0)) {
1290 p.i = 0x7FF8000000000000ULL;
7c58044c 1291 } else if (fpisneg(FT0)) {
d7e4b87e
JM
1292 p.i = 0x8000000000000000ULL;
1293 } else {
1294 p.i = 0x0000000000000000ULL;
1295 }
1296 FT0 = p.d;
1297 }
1298}
1299
9a64fbe4
FB
1300void do_fres (void)
1301{
4ecc3190
FB
1302 union {
1303 double d;
1304 uint64_t i;
1305 } p;
1306
7c58044c
JM
1307 if (unlikely(float64_is_signaling_nan(FT0))) {
1308 /* sNaN reciprocal */
1309 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1310 } else if (unlikely(iszero(FT0))) {
1311 /* Zero reciprocal */
1312 float_zero_divide_excp();
1313 } else if (likely(isnormal(FT0))) {
e864cabd
JM
1314#if USE_PRECISE_EMULATION
1315 FT0 = float64_div(1.0, FT0, &env->fp_status);
1316 FT0 = float64_to_float32(FT0, &env->fp_status);
1317#else
76a66253 1318 FT0 = float32_div(1.0, FT0, &env->fp_status);
e864cabd 1319#endif
4ecc3190
FB
1320 } else {
1321 p.d = FT0;
1322 if (p.i == 0x8000000000000000ULL) {
1323 p.i = 0xFFF0000000000000ULL;
1324 } else if (p.i == 0x0000000000000000ULL) {
1325 p.i = 0x7FF0000000000000ULL;
1326 } else if (isnan(FT0)) {
1327 p.i = 0x7FF8000000000000ULL;
7c58044c 1328 } else if (fpisneg(FT0)) {
4ecc3190
FB
1329 p.i = 0x8000000000000000ULL;
1330 } else {
1331 p.i = 0x0000000000000000ULL;
1332 }
1333 FT0 = p.d;
1334 }
9a64fbe4
FB
1335}
1336
4ecc3190 1337void do_frsqrte (void)
9a64fbe4 1338{
4ecc3190
FB
1339 union {
1340 double d;
1341 uint64_t i;
1342 } p;
1343
7c58044c
JM
1344 if (unlikely(float64_is_signaling_nan(FT0))) {
1345 /* sNaN reciprocal square root */
1346 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1347 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1348 /* Reciprocal square root of a negative nonzero number */
1349 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1350 } else if (likely(isnormal(FT0))) {
fdabc366
FB
1351 FT0 = float64_sqrt(FT0, &env->fp_status);
1352 FT0 = float32_div(1.0, FT0, &env->fp_status);
4ecc3190
FB
1353 } else {
1354 p.d = FT0;
1355 if (p.i == 0x8000000000000000ULL) {
1356 p.i = 0xFFF0000000000000ULL;
1357 } else if (p.i == 0x0000000000000000ULL) {
1358 p.i = 0x7FF0000000000000ULL;
1359 } else if (isnan(FT0)) {
7c58044c
JM
1360 p.i |= 0x000FFFFFFFFFFFFFULL;
1361 } else if (fpisneg(FT0)) {
4ecc3190
FB
1362 p.i = 0x7FF8000000000000ULL;
1363 } else {
1364 p.i = 0x0000000000000000ULL;
1365 }
1366 FT0 = p.d;
1367 }
9a64fbe4
FB
1368}
1369
1370void do_fsel (void)
1371{
7c58044c 1372 if (!fpisneg(FT0) || iszero(FT0))
9a64fbe4 1373 FT0 = FT1;
4ecc3190
FB
1374 else
1375 FT0 = FT2;
9a64fbe4
FB
1376}
1377
1378void do_fcmpu (void)
1379{
7c58044c
JM
1380 if (unlikely(float64_is_signaling_nan(FT0) ||
1381 float64_is_signaling_nan(FT1))) {
1382 /* sNaN comparison */
1383 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1384 } else {
fdabc366
FB
1385 if (float64_lt(FT0, FT1, &env->fp_status)) {
1386 T0 = 0x08UL;
1387 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1388 T0 = 0x04UL;
1389 } else {
1390 T0 = 0x02UL;
1391 }
9a64fbe4 1392 }
7c58044c
JM
1393 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1394 env->fpscr |= T0 << FPSCR_FPRF;
9a64fbe4
FB
1395}
1396
1397void do_fcmpo (void)
1398{
7c58044c
JM
1399 if (unlikely(float64_is_nan(FT0) ||
1400 float64_is_nan(FT1))) {
1401 if (float64_is_signaling_nan(FT0) ||
1402 float64_is_signaling_nan(FT1)) {
1403 /* sNaN comparison */
1404 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1405 POWERPC_EXCP_FP_VXVC);
1406 } else {
1407 /* qNaN comparison */
1408 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1409 }
1410 } else {
fdabc366
FB
1411 if (float64_lt(FT0, FT1, &env->fp_status)) {
1412 T0 = 0x08UL;
1413 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1414 T0 = 0x04UL;
1415 } else {
1416 T0 = 0x02UL;
1417 }
9a64fbe4 1418 }
7c58044c
JM
1419 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1420 env->fpscr |= T0 << FPSCR_FPRF;
9a64fbe4
FB
1421}
1422
76a66253 1423#if !defined (CONFIG_USER_ONLY)
6b80055d 1424void cpu_dump_rfi (target_ulong RA, target_ulong msr);
0411a972
JM
1425
1426void do_store_msr (void)
1427{
1428 T0 = hreg_store_msr(env, T0);
1429 if (T0 != 0) {
1430 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1431 do_raise_exception(T0);
1432 }
1433}
1434
1435static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
1436 target_ulong msrm, int keep_msrh)
9a64fbe4 1437{
426613db 1438#if defined(TARGET_PPC64)
0411a972
JM
1439 if (msr & (1ULL << MSR_SF)) {
1440 nip = (uint64_t)nip;
1441 msr &= (uint64_t)msrm;
a42bd6cc 1442 } else {
0411a972
JM
1443 nip = (uint32_t)nip;
1444 msr = (uint32_t)(msr & msrm);
1445 if (keep_msrh)
1446 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
a42bd6cc 1447 }
426613db 1448#else
0411a972
JM
1449 nip = (uint32_t)nip;
1450 msr &= (uint32_t)msrm;
426613db 1451#endif
0411a972
JM
1452 /* XXX: beware: this is false if VLE is supported */
1453 env->nip = nip & ~((target_ulong)0x00000003);
1454 hreg_store_msr(env, msr);
fdabc366 1455#if defined (DEBUG_OP)
0411a972 1456 cpu_dump_rfi(env->nip, env->msr);
fdabc366 1457#endif
0411a972
JM
1458 /* No need to raise an exception here,
1459 * as rfi is always the last insn of a TB
1460 */
fdabc366 1461 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
9a64fbe4 1462}
d9bce9d9 1463
0411a972
JM
1464void do_rfi (void)
1465{
1466 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1467 ~((target_ulong)0xFFFF0000), 1);
1468}
1469
d9bce9d9 1470#if defined(TARGET_PPC64)
426613db
JM
1471void do_rfid (void)
1472{
0411a972
JM
1473 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1474 ~((target_ulong)0xFFFF0000), 0);
d9bce9d9 1475}
7863667f 1476
be147d08
JM
1477void do_hrfid (void)
1478{
0411a972
JM
1479 __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1480 ~((target_ulong)0xFFFF0000), 0);
be147d08
JM
1481}
1482#endif
76a66253 1483#endif
9a64fbe4 1484
76a66253 1485void do_tw (int flags)
9a64fbe4 1486{
d9bce9d9
JM
1487 if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
1488 ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
1489 ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
1490 ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
a42bd6cc 1491 ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
e1833e1f 1492 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
a42bd6cc 1493 }
9a64fbe4
FB
1494}
1495
d9bce9d9
JM
1496#if defined(TARGET_PPC64)
1497void do_td (int flags)
1498{
1499 if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
1500 ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
1501 ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
1502 ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
1503 ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
e1833e1f 1504 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
d9bce9d9
JM
1505}
1506#endif
1507
fdabc366 1508/*****************************************************************************/
76a66253
JM
1509/* PowerPC 601 specific instructions (POWER bridge) */
1510void do_POWER_abso (void)
9a64fbe4 1511{
9c7e37e7 1512 if ((int32_t)T0 == INT32_MIN) {
76a66253
JM
1513 T0 = INT32_MAX;
1514 xer_ov = 1;
9c7e37e7 1515 } else if ((int32_t)T0 < 0) {
76a66253
JM
1516 T0 = -T0;
1517 xer_ov = 0;
9c7e37e7
JM
1518 } else {
1519 xer_ov = 0;
76a66253 1520 }
9c7e37e7 1521 xer_so |= xer_ov;
9a64fbe4
FB
1522}
1523
76a66253 1524void do_POWER_clcs (void)
9a64fbe4 1525{
76a66253
JM
1526 switch (T0) {
1527 case 0x0CUL:
1528 /* Instruction cache line size */
d63001d1 1529 T0 = env->icache_line_size;
76a66253
JM
1530 break;
1531 case 0x0DUL:
1532 /* Data cache line size */
d63001d1 1533 T0 = env->dcache_line_size;
76a66253
JM
1534 break;
1535 case 0x0EUL:
1536 /* Minimum cache line size */
d63001d1
JM
1537 T0 = env->icache_line_size < env->dcache_line_size ?
1538 env->icache_line_size : env->dcache_line_size;
76a66253
JM
1539 break;
1540 case 0x0FUL:
1541 /* Maximum cache line size */
d63001d1
JM
1542 T0 = env->icache_line_size > env->dcache_line_size ?
1543 env->icache_line_size : env->dcache_line_size;
76a66253
JM
1544 break;
1545 default:
1546 /* Undefined */
1547 break;
1548 }
1549}
1550
1551void do_POWER_div (void)
1552{
1553 uint64_t tmp;
1554
6f2d8978
JM
1555 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1556 (int32_t)T1 == 0) {
1557 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1558 env->spr[SPR_MQ] = 0;
1559 } else {
1560 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1561 env->spr[SPR_MQ] = tmp % T1;
d9bce9d9 1562 T0 = tmp / (int32_t)T1;
76a66253
JM
1563 }
1564}
1565
1566void do_POWER_divo (void)
1567{
1568 int64_t tmp;
1569
6f2d8978
JM
1570 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1571 (int32_t)T1 == 0) {
1572 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1573 env->spr[SPR_MQ] = 0;
1574 xer_ov = 1;
76a66253
JM
1575 } else {
1576 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1577 env->spr[SPR_MQ] = tmp % T1;
d9bce9d9 1578 tmp /= (int32_t)T1;
76a66253
JM
1579 if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1580 xer_ov = 1;
76a66253
JM
1581 } else {
1582 xer_ov = 0;
1583 }
1584 T0 = tmp;
1585 }
6f2d8978 1586 xer_so |= xer_ov;
76a66253
JM
1587}
1588
1589void do_POWER_divs (void)
1590{
6f2d8978
JM
1591 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1592 (int32_t)T1 == 0) {
1593 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1594 env->spr[SPR_MQ] = 0;
1595 } else {
1596 env->spr[SPR_MQ] = T0 % T1;
d9bce9d9 1597 T0 = (int32_t)T0 / (int32_t)T1;
76a66253
JM
1598 }
1599}
1600
1601void do_POWER_divso (void)
1602{
6f2d8978
JM
1603 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1604 (int32_t)T1 == 0) {
1605 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
76a66253
JM
1606 env->spr[SPR_MQ] = 0;
1607 xer_ov = 1;
76a66253 1608 } else {
d9bce9d9
JM
1609 T0 = (int32_t)T0 / (int32_t)T1;
1610 env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
76a66253
JM
1611 xer_ov = 0;
1612 }
6f2d8978 1613 xer_so |= xer_ov;
76a66253
JM
1614}
1615
1616void do_POWER_dozo (void)
1617{
d9bce9d9 1618 if ((int32_t)T1 > (int32_t)T0) {
76a66253
JM
1619 T2 = T0;
1620 T0 = T1 - T0;
d9bce9d9
JM
1621 if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1622 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
76a66253 1623 xer_ov = 1;
966439a6 1624 xer_so = 1;
76a66253
JM
1625 } else {
1626 xer_ov = 0;
1627 }
1628 } else {
1629 T0 = 0;
1630 xer_ov = 0;
1631 }
1632}
1633
1634void do_POWER_maskg (void)
1635{
1636 uint32_t ret;
1637
d9bce9d9 1638 if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
6f2d8978 1639 ret = UINT32_MAX;
76a66253 1640 } else {
6f2d8978
JM
1641 ret = (UINT32_MAX >> ((uint32_t)T0)) ^
1642 ((UINT32_MAX >> ((uint32_t)T1)) >> 1);
d9bce9d9 1643 if ((uint32_t)T0 > (uint32_t)T1)
76a66253
JM
1644 ret = ~ret;
1645 }
1646 T0 = ret;
1647}
1648
1649void do_POWER_mulo (void)
1650{
1651 uint64_t tmp;
1652
1653 tmp = (uint64_t)T0 * (uint64_t)T1;
1654 env->spr[SPR_MQ] = tmp >> 32;
1655 T0 = tmp;
1656 if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1657 xer_ov = 1;
1658 xer_so = 1;
1659 } else {
1660 xer_ov = 0;
1661 }
1662}
1663
1664#if !defined (CONFIG_USER_ONLY)
1665void do_POWER_rac (void)
1666{
76a66253 1667 mmu_ctx_t ctx;
faadf50e 1668 int nb_BATs;
76a66253
JM
1669
1670 /* We don't have to generate many instances of this instruction,
1671 * as rac is supervisor only.
1672 */
faadf50e
JM
1673 /* XXX: FIX THIS: Pretend we have no BAT */
1674 nb_BATs = env->nb_BATs;
1675 env->nb_BATs = 0;
1676 if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
76a66253 1677 T0 = ctx.raddr;
faadf50e 1678 env->nb_BATs = nb_BATs;
76a66253
JM
1679}
1680
1681void do_POWER_rfsvc (void)
1682{
0411a972 1683 __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
76a66253
JM
1684}
1685
056401ea
JM
1686void do_store_hid0_601 (void)
1687{
1688 uint32_t hid0;
1689
1690 hid0 = env->spr[SPR_HID0];
1691 if ((T0 ^ hid0) & 0x00000008) {
1692 /* Change current endianness */
1693 env->hflags &= ~(1 << MSR_LE);
1694 env->hflags_nmsr &= ~(1 << MSR_LE);
1695 env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
1696 env->hflags |= env->hflags_nmsr;
1697 if (loglevel != 0) {
1698 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
1699 __func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
1700 }
1701 }
1702 env->spr[SPR_HID0] = T0;
76a66253
JM
1703}
1704#endif
1705
1706/*****************************************************************************/
1707/* 602 specific instructions */
1708/* mfrom is the most crazy instruction ever seen, imho ! */
1709/* Real implementation uses a ROM table. Do the same */
1710#define USE_MFROM_ROM_TABLE
1711void do_op_602_mfrom (void)
1712{
1713 if (likely(T0 < 602)) {
d9bce9d9 1714#if defined(USE_MFROM_ROM_TABLE)
76a66253
JM
1715#include "mfrom_table.c"
1716 T0 = mfrom_ROM_table[T0];
fdabc366 1717#else
76a66253
JM
1718 double d;
1719 /* Extremly decomposed:
1720 * -T0 / 256
1721 * T0 = 256 * log10(10 + 1.0) + 0.5
1722 */
1723 d = T0;
1724 d = float64_div(d, 256, &env->fp_status);
1725 d = float64_chs(d);
1726 d = exp10(d); // XXX: use float emulation function
1727 d = float64_add(d, 1.0, &env->fp_status);
1728 d = log10(d); // XXX: use float emulation function
1729 d = float64_mul(d, 256, &env->fp_status);
1730 d = float64_add(d, 0.5, &env->fp_status);
1731 T0 = float64_round_to_int(d, &env->fp_status);
fdabc366 1732#endif
76a66253
JM
1733 } else {
1734 T0 = 0;
1735 }
1736}
1737
1738/*****************************************************************************/
1739/* Embedded PowerPC specific helpers */
76a66253
JM
1740void do_405_check_sat (void)
1741{
d9bce9d9
JM
1742 if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1743 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
76a66253
JM
1744 /* Saturate result */
1745 if (T2 >> 31) {
1746 T0 = INT32_MIN;
1747 } else {
1748 T0 = INT32_MAX;
1749 }
1750 }
1751}
1752
a750fc0b
JM
1753/* XXX: to be improved to check access rights when in user-mode */
1754void do_load_dcr (void)
1755{
1756 target_ulong val;
1757
1758 if (unlikely(env->dcr_env == NULL)) {
1759 if (loglevel != 0) {
1760 fprintf(logfile, "No DCR environment\n");
1761 }
e1833e1f
JM
1762 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1763 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
a750fc0b
JM
1764 } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1765 if (loglevel != 0) {
1766 fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1767 }
e1833e1f
JM
1768 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1769 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
a750fc0b
JM
1770 } else {
1771 T0 = val;
1772 }
1773}
1774
1775void do_store_dcr (void)
1776{
1777 if (unlikely(env->dcr_env == NULL)) {
1778 if (loglevel != 0) {
1779 fprintf(logfile, "No DCR environment\n");
1780 }
e1833e1f
JM
1781 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1782 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
a750fc0b
JM
1783 } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1784 if (loglevel != 0) {
1785 fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1786 }
e1833e1f
JM
1787 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1788 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
a750fc0b
JM
1789 }
1790}
1791
76a66253 1792#if !defined(CONFIG_USER_ONLY)
a42bd6cc 1793void do_40x_rfci (void)
76a66253 1794{
0411a972
JM
1795 __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1796 ~((target_ulong)0xFFFF0000), 0);
a42bd6cc
JM
1797}
1798
1799void do_rfci (void)
1800{
0411a972
JM
1801 __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1802 ~((target_ulong)0x3FFF0000), 0);
a42bd6cc
JM
1803}
1804
1805void do_rfdi (void)
1806{
0411a972
JM
1807 __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1808 ~((target_ulong)0x3FFF0000), 0);
a42bd6cc
JM
1809}
1810
1811void do_rfmci (void)
1812{
0411a972
JM
1813 __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1814 ~((target_ulong)0x3FFF0000), 0);
76a66253
JM
1815}
1816
76a66253
JM
1817void do_load_403_pb (int num)
1818{
1819 T0 = env->pb[num];
1820}
1821
1822void do_store_403_pb (int num)
1823{
1824 if (likely(env->pb[num] != T0)) {
1825 env->pb[num] = T0;
1826 /* Should be optimized */
1827 tlb_flush(env, 1);
1828 }
1829}
1830#endif
1831
1832/* 440 specific */
1833void do_440_dlmzb (void)
1834{
1835 target_ulong mask;
1836 int i;
1837
1838 i = 1;
1839 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1840 if ((T0 & mask) == 0)
1841 goto done;
1842 i++;
1843 }
1844 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1845 if ((T1 & mask) == 0)
1846 break;
1847 i++;
1848 }
1849 done:
1850 T0 = i;
fdabc366
FB
1851}
1852
0487d6a8
JM
1853/* SPE extension helpers */
1854/* Use a table to make this quicker */
1855static uint8_t hbrev[16] = {
1856 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1857 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1858};
1859
b068d6a7 1860static always_inline uint8_t byte_reverse (uint8_t val)
0487d6a8
JM
1861{
1862 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1863}
1864
b068d6a7 1865static always_inline uint32_t word_reverse (uint32_t val)
0487d6a8
JM
1866{
1867 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1868 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1869}
1870
3cd7d1dd 1871#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
0487d6a8
JM
1872void do_brinc (void)
1873{
1874 uint32_t a, b, d, mask;
1875
3cd7d1dd
JM
1876 mask = UINT32_MAX >> (32 - MASKBITS);
1877 a = T0 & mask;
1878 b = T1 & mask;
1879 d = word_reverse(1 + word_reverse(a | ~b));
1880 T0 = (T0 & ~mask) | (d & b);
0487d6a8
JM
1881}
1882
1883#define DO_SPE_OP2(name) \
1884void do_ev##name (void) \
1885{ \
1886 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
1887 (uint64_t)_do_e##name(T0_64, T1_64); \
1888}
1889
1890#define DO_SPE_OP1(name) \
1891void do_ev##name (void) \
1892{ \
1893 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
1894 (uint64_t)_do_e##name(T0_64); \
1895}
1896
1897/* Fixed-point vector arithmetic */
b068d6a7 1898static always_inline uint32_t _do_eabs (uint32_t val)
0487d6a8 1899{
9c7e37e7
JM
1900 if ((val & 0x80000000) && val != 0x80000000)
1901 val -= val;
0487d6a8
JM
1902
1903 return val;
1904}
1905
b068d6a7 1906static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1907{
1908 return op1 + op2;
1909}
1910
b068d6a7 1911static always_inline int _do_ecntlsw (uint32_t val)
0487d6a8
JM
1912{
1913 if (val & 0x80000000)
603fccce 1914 return clz32(~val);
0487d6a8 1915 else
603fccce 1916 return clz32(val);
0487d6a8
JM
1917}
1918
b068d6a7 1919static always_inline int _do_ecntlzw (uint32_t val)
0487d6a8 1920{
603fccce 1921 return clz32(val);
0487d6a8
JM
1922}
1923
b068d6a7 1924static always_inline uint32_t _do_eneg (uint32_t val)
0487d6a8
JM
1925{
1926 if (val != 0x80000000)
9c7e37e7 1927 val -= val;
0487d6a8
JM
1928
1929 return val;
1930}
1931
b068d6a7 1932static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1933{
1934 return rotl32(op1, op2);
1935}
1936
b068d6a7 1937static always_inline uint32_t _do_erndw (uint32_t val)
0487d6a8
JM
1938{
1939 return (val + 0x000080000000) & 0xFFFF0000;
1940}
1941
b068d6a7 1942static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1943{
1944 /* No error here: 6 bits are used */
1945 return op1 << (op2 & 0x3F);
1946}
1947
b068d6a7 1948static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
0487d6a8
JM
1949{
1950 /* No error here: 6 bits are used */
1951 return op1 >> (op2 & 0x3F);
1952}
1953
b068d6a7 1954static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
0487d6a8
JM
1955{
1956 /* No error here: 6 bits are used */
1957 return op1 >> (op2 & 0x3F);
1958}
1959
b068d6a7 1960static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
0487d6a8
JM
1961{
1962 return op2 - op1;
1963}
1964
1965/* evabs */
1966DO_SPE_OP1(abs);
1967/* evaddw */
1968DO_SPE_OP2(addw);
1969/* evcntlsw */
1970DO_SPE_OP1(cntlsw);
1971/* evcntlzw */
1972DO_SPE_OP1(cntlzw);
1973/* evneg */
1974DO_SPE_OP1(neg);
1975/* evrlw */
1976DO_SPE_OP2(rlw);
1977/* evrnd */
1978DO_SPE_OP1(rndw);
1979/* evslw */
1980DO_SPE_OP2(slw);
1981/* evsrws */
1982DO_SPE_OP2(srws);
1983/* evsrwu */
1984DO_SPE_OP2(srwu);
1985/* evsubfw */
1986DO_SPE_OP2(subfw);
1987
1988/* evsel is a little bit more complicated... */
b068d6a7 1989static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
0487d6a8
JM
1990{
1991 if (n)
1992 return op1;
1993 else
1994 return op2;
1995}
1996
1997void do_evsel (void)
1998{
1999 T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
2000 (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
2001}
2002
2003/* Fixed-point vector comparisons */
2004#define DO_SPE_CMP(name) \
2005void do_ev##name (void) \
2006{ \
2007 T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
2008 T1_64 >> 32) << 32, \
2009 _do_e##name(T0_64, T1_64)); \
2010}
2011
b068d6a7 2012static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
0487d6a8
JM
2013{
2014 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2015}
b068d6a7 2016static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
0487d6a8
JM
2017{
2018 return op1 == op2 ? 1 : 0;
2019}
2020
b068d6a7 2021static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
0487d6a8
JM
2022{
2023 return op1 > op2 ? 1 : 0;
2024}
2025
b068d6a7 2026static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
0487d6a8
JM
2027{
2028 return op1 > op2 ? 1 : 0;
2029}
2030
b068d6a7 2031static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
0487d6a8
JM
2032{
2033 return op1 < op2 ? 1 : 0;
2034}
2035
b068d6a7 2036static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
0487d6a8
JM
2037{
2038 return op1 < op2 ? 1 : 0;
2039}
2040
2041/* evcmpeq */
2042DO_SPE_CMP(cmpeq);
2043/* evcmpgts */
2044DO_SPE_CMP(cmpgts);
2045/* evcmpgtu */
2046DO_SPE_CMP(cmpgtu);
2047/* evcmplts */
2048DO_SPE_CMP(cmplts);
2049/* evcmpltu */
2050DO_SPE_CMP(cmpltu);
2051
2052/* Single precision floating-point conversions from/to integer */
b068d6a7 2053static always_inline uint32_t _do_efscfsi (int32_t val)
0487d6a8
JM
2054{
2055 union {
2056 uint32_t u;
2057 float32 f;
2058 } u;
2059
2060 u.f = int32_to_float32(val, &env->spe_status);
2061
2062 return u.u;
2063}
2064
b068d6a7 2065static always_inline uint32_t _do_efscfui (uint32_t val)
0487d6a8
JM
2066{
2067 union {
2068 uint32_t u;
2069 float32 f;
2070 } u;
2071
2072 u.f = uint32_to_float32(val, &env->spe_status);
2073
2074 return u.u;
2075}
2076
b068d6a7 2077static always_inline int32_t _do_efsctsi (uint32_t val)
0487d6a8
JM
2078{
2079 union {
2080 int32_t u;
2081 float32 f;
2082 } u;
2083
2084 u.u = val;
2085 /* NaN are not treated the same way IEEE 754 does */
2086 if (unlikely(isnan(u.f)))
2087 return 0;
2088
2089 return float32_to_int32(u.f, &env->spe_status);
2090}
2091
b068d6a7 2092static always_inline uint32_t _do_efsctui (uint32_t val)
0487d6a8
JM
2093{
2094 union {
2095 int32_t u;
2096 float32 f;
2097 } u;
2098
2099 u.u = val;
2100 /* NaN are not treated the same way IEEE 754 does */
2101 if (unlikely(isnan(u.f)))
2102 return 0;
2103
2104 return float32_to_uint32(u.f, &env->spe_status);
2105}
2106
b068d6a7 2107static always_inline int32_t _do_efsctsiz (uint32_t val)
0487d6a8
JM
2108{
2109 union {
2110 int32_t u;
2111 float32 f;
2112 } u;
2113
2114 u.u = val;
2115 /* NaN are not treated the same way IEEE 754 does */
2116 if (unlikely(isnan(u.f)))
2117 return 0;
2118
2119 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2120}
2121
b068d6a7 2122static always_inline uint32_t _do_efsctuiz (uint32_t val)
0487d6a8
JM
2123{
2124 union {
2125 int32_t u;
2126 float32 f;
2127 } u;
2128
2129 u.u = val;
2130 /* NaN are not treated the same way IEEE 754 does */
2131 if (unlikely(isnan(u.f)))
2132 return 0;
2133
2134 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2135}
2136
2137void do_efscfsi (void)
2138{
2139 T0_64 = _do_efscfsi(T0_64);
2140}
2141
2142void do_efscfui (void)
2143{
2144 T0_64 = _do_efscfui(T0_64);
2145}
2146
2147void do_efsctsi (void)
2148{
2149 T0_64 = _do_efsctsi(T0_64);
2150}
2151
2152void do_efsctui (void)
2153{
2154 T0_64 = _do_efsctui(T0_64);
2155}
2156
2157void do_efsctsiz (void)
2158{
2159 T0_64 = _do_efsctsiz(T0_64);
2160}
2161
2162void do_efsctuiz (void)
2163{
2164 T0_64 = _do_efsctuiz(T0_64);
2165}
2166
2167/* Single precision floating-point conversion to/from fractional */
b068d6a7 2168static always_inline uint32_t _do_efscfsf (uint32_t val)
0487d6a8
JM
2169{
2170 union {
2171 uint32_t u;
2172 float32 f;
2173 } u;
2174 float32 tmp;
2175
2176 u.f = int32_to_float32(val, &env->spe_status);
2177 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2178 u.f = float32_div(u.f, tmp, &env->spe_status);
2179
2180 return u.u;
2181}
2182
b068d6a7 2183static always_inline uint32_t _do_efscfuf (uint32_t val)
0487d6a8
JM
2184{
2185 union {
2186 uint32_t u;
2187 float32 f;
2188 } u;
2189 float32 tmp;
2190
2191 u.f = uint32_to_float32(val, &env->spe_status);
2192 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2193 u.f = float32_div(u.f, tmp, &env->spe_status);
2194
2195 return u.u;
2196}
2197
b068d6a7 2198static always_inline int32_t _do_efsctsf (uint32_t val)
0487d6a8
JM
2199{
2200 union {
2201 int32_t u;
2202 float32 f;
2203 } u;
2204 float32 tmp;
2205
2206 u.u = val;
2207 /* NaN are not treated the same way IEEE 754 does */
2208 if (unlikely(isnan(u.f)))
2209 return 0;
2210 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2211 u.f = float32_mul(u.f, tmp, &env->spe_status);
2212
2213 return float32_to_int32(u.f, &env->spe_status);
2214}
2215
b068d6a7 2216static always_inline uint32_t _do_efsctuf (uint32_t val)
0487d6a8
JM
2217{
2218 union {
2219 int32_t u;
2220 float32 f;
2221 } u;
2222 float32 tmp;
2223
2224 u.u = val;
2225 /* NaN are not treated the same way IEEE 754 does */
2226 if (unlikely(isnan(u.f)))
2227 return 0;
2228 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2229 u.f = float32_mul(u.f, tmp, &env->spe_status);
2230
2231 return float32_to_uint32(u.f, &env->spe_status);
2232}
2233
b068d6a7 2234static always_inline int32_t _do_efsctsfz (uint32_t val)
0487d6a8
JM
2235{
2236 union {
2237 int32_t u;
2238 float32 f;
2239 } u;
2240 float32 tmp;
2241
2242 u.u = val;
2243 /* NaN are not treated the same way IEEE 754 does */
2244 if (unlikely(isnan(u.f)))
2245 return 0;
2246 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2247 u.f = float32_mul(u.f, tmp, &env->spe_status);
2248
2249 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2250}
2251
b068d6a7 2252static always_inline uint32_t _do_efsctufz (uint32_t val)
0487d6a8
JM
2253{
2254 union {
2255 int32_t u;
2256 float32 f;
2257 } u;
2258 float32 tmp;
2259
2260 u.u = val;
2261 /* NaN are not treated the same way IEEE 754 does */
2262 if (unlikely(isnan(u.f)))
2263 return 0;
2264 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2265 u.f = float32_mul(u.f, tmp, &env->spe_status);
2266
2267 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2268}
2269
2270void do_efscfsf (void)
2271{
2272 T0_64 = _do_efscfsf(T0_64);
2273}
2274
2275void do_efscfuf (void)
2276{
2277 T0_64 = _do_efscfuf(T0_64);
2278}
2279
2280void do_efsctsf (void)
2281{
2282 T0_64 = _do_efsctsf(T0_64);
2283}
2284
2285void do_efsctuf (void)
2286{
2287 T0_64 = _do_efsctuf(T0_64);
2288}
2289
2290void do_efsctsfz (void)
2291{
2292 T0_64 = _do_efsctsfz(T0_64);
2293}
2294
2295void do_efsctufz (void)
2296{
2297 T0_64 = _do_efsctufz(T0_64);
2298}
2299
2300/* Double precision floating point helpers */
b068d6a7 2301static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
0487d6a8
JM
2302{
2303 /* XXX: TODO: test special values (NaN, infinites, ...) */
2304 return _do_efdtstlt(op1, op2);
2305}
2306
b068d6a7 2307static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
0487d6a8
JM
2308{
2309 /* XXX: TODO: test special values (NaN, infinites, ...) */
2310 return _do_efdtstgt(op1, op2);
2311}
2312
b068d6a7 2313static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
0487d6a8
JM
2314{
2315 /* XXX: TODO: test special values (NaN, infinites, ...) */
2316 return _do_efdtsteq(op1, op2);
2317}
2318
2319void do_efdcmplt (void)
2320{
2321 T0 = _do_efdcmplt(T0_64, T1_64);
2322}
2323
2324void do_efdcmpgt (void)
2325{
2326 T0 = _do_efdcmpgt(T0_64, T1_64);
2327}
2328
2329void do_efdcmpeq (void)
2330{
2331 T0 = _do_efdcmpeq(T0_64, T1_64);
2332}
2333
2334/* Double precision floating-point conversion to/from integer */
b068d6a7 2335static always_inline uint64_t _do_efdcfsi (int64_t val)
0487d6a8
JM
2336{
2337 union {
2338 uint64_t u;
2339 float64 f;
2340 } u;
2341
2342 u.f = int64_to_float64(val, &env->spe_status);
2343
2344 return u.u;
2345}
2346
b068d6a7 2347static always_inline uint64_t _do_efdcfui (uint64_t val)
0487d6a8
JM
2348{
2349 union {
2350 uint64_t u;
2351 float64 f;
2352 } u;
2353
2354 u.f = uint64_to_float64(val, &env->spe_status);
2355
2356 return u.u;
2357}
2358
b068d6a7 2359static always_inline int64_t _do_efdctsi (uint64_t val)
0487d6a8
JM
2360{
2361 union {
2362 int64_t u;
2363 float64 f;
2364 } u;
2365
2366 u.u = val;
2367 /* NaN are not treated the same way IEEE 754 does */
2368 if (unlikely(isnan(u.f)))
2369 return 0;
2370
2371 return float64_to_int64(u.f, &env->spe_status);
2372}
2373
b068d6a7 2374static always_inline uint64_t _do_efdctui (uint64_t val)
0487d6a8
JM
2375{
2376 union {
2377 int64_t u;
2378 float64 f;
2379 } u;
2380
2381 u.u = val;
2382 /* NaN are not treated the same way IEEE 754 does */
2383 if (unlikely(isnan(u.f)))
2384 return 0;
2385
2386 return float64_to_uint64(u.f, &env->spe_status);
2387}
2388
b068d6a7 2389static always_inline int64_t _do_efdctsiz (uint64_t val)
0487d6a8
JM
2390{
2391 union {
2392 int64_t u;
2393 float64 f;
2394 } u;
2395
2396 u.u = val;
2397 /* NaN are not treated the same way IEEE 754 does */
2398 if (unlikely(isnan(u.f)))
2399 return 0;
2400
2401 return float64_to_int64_round_to_zero(u.f, &env->spe_status);
2402}
2403
b068d6a7 2404static always_inline uint64_t _do_efdctuiz (uint64_t val)
0487d6a8
JM
2405{
2406 union {
2407 int64_t u;
2408 float64 f;
2409 } u;
2410
2411 u.u = val;
2412 /* NaN are not treated the same way IEEE 754 does */
2413 if (unlikely(isnan(u.f)))
2414 return 0;
2415
2416 return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
2417}
2418
2419void do_efdcfsi (void)
2420{
2421 T0_64 = _do_efdcfsi(T0_64);
2422}
2423
2424void do_efdcfui (void)
2425{
2426 T0_64 = _do_efdcfui(T0_64);
2427}
2428
2429void do_efdctsi (void)
2430{
2431 T0_64 = _do_efdctsi(T0_64);
2432}
2433
2434void do_efdctui (void)
2435{
2436 T0_64 = _do_efdctui(T0_64);
2437}
2438
2439void do_efdctsiz (void)
2440{
2441 T0_64 = _do_efdctsiz(T0_64);
2442}
2443
2444void do_efdctuiz (void)
2445{
2446 T0_64 = _do_efdctuiz(T0_64);
2447}
2448
2449/* Double precision floating-point conversion to/from fractional */
b068d6a7 2450static always_inline uint64_t _do_efdcfsf (int64_t val)
0487d6a8
JM
2451{
2452 union {
2453 uint64_t u;
2454 float64 f;
2455 } u;
2456 float64 tmp;
2457
2458 u.f = int32_to_float64(val, &env->spe_status);
2459 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2460 u.f = float64_div(u.f, tmp, &env->spe_status);
2461
2462 return u.u;
2463}
2464
b068d6a7 2465static always_inline uint64_t _do_efdcfuf (uint64_t val)
0487d6a8
JM
2466{
2467 union {
2468 uint64_t u;
2469 float64 f;
2470 } u;
2471 float64 tmp;
2472
2473 u.f = uint32_to_float64(val, &env->spe_status);
2474 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2475 u.f = float64_div(u.f, tmp, &env->spe_status);
2476
2477 return u.u;
2478}
2479
b068d6a7 2480static always_inline int64_t _do_efdctsf (uint64_t val)
0487d6a8
JM
2481{
2482 union {
2483 int64_t u;
2484 float64 f;
2485 } u;
2486 float64 tmp;
2487
2488 u.u = val;
2489 /* NaN are not treated the same way IEEE 754 does */
2490 if (unlikely(isnan(u.f)))
2491 return 0;
2492 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2493 u.f = float64_mul(u.f, tmp, &env->spe_status);
2494
2495 return float64_to_int32(u.f, &env->spe_status);
2496}
2497
b068d6a7 2498static always_inline uint64_t _do_efdctuf (uint64_t val)
0487d6a8
JM
2499{
2500 union {
2501 int64_t u;
2502 float64 f;
2503 } u;
2504 float64 tmp;
2505
2506 u.u = val;
2507 /* NaN are not treated the same way IEEE 754 does */
2508 if (unlikely(isnan(u.f)))
2509 return 0;
2510 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2511 u.f = float64_mul(u.f, tmp, &env->spe_status);
2512
2513 return float64_to_uint32(u.f, &env->spe_status);
2514}
2515
b068d6a7 2516static always_inline int64_t _do_efdctsfz (uint64_t val)
0487d6a8
JM
2517{
2518 union {
2519 int64_t u;
2520 float64 f;
2521 } u;
2522 float64 tmp;
2523
2524 u.u = val;
2525 /* NaN are not treated the same way IEEE 754 does */
2526 if (unlikely(isnan(u.f)))
2527 return 0;
2528 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2529 u.f = float64_mul(u.f, tmp, &env->spe_status);
2530
2531 return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2532}
2533
b068d6a7 2534static always_inline uint64_t _do_efdctufz (uint64_t val)
0487d6a8
JM
2535{
2536 union {
2537 int64_t u;
2538 float64 f;
2539 } u;
2540 float64 tmp;
2541
2542 u.u = val;
2543 /* NaN are not treated the same way IEEE 754 does */
2544 if (unlikely(isnan(u.f)))
2545 return 0;
2546 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2547 u.f = float64_mul(u.f, tmp, &env->spe_status);
2548
2549 return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2550}
2551
2552void do_efdcfsf (void)
2553{
2554 T0_64 = _do_efdcfsf(T0_64);
2555}
2556
2557void do_efdcfuf (void)
2558{
2559 T0_64 = _do_efdcfuf(T0_64);
2560}
2561
2562void do_efdctsf (void)
2563{
2564 T0_64 = _do_efdctsf(T0_64);
2565}
2566
2567void do_efdctuf (void)
2568{
2569 T0_64 = _do_efdctuf(T0_64);
2570}
2571
2572void do_efdctsfz (void)
2573{
2574 T0_64 = _do_efdctsfz(T0_64);
2575}
2576
2577void do_efdctufz (void)
2578{
2579 T0_64 = _do_efdctufz(T0_64);
2580}
2581
2582/* Floating point conversion between single and double precision */
b068d6a7 2583static always_inline uint32_t _do_efscfd (uint64_t val)
0487d6a8
JM
2584{
2585 union {
2586 uint64_t u;
2587 float64 f;
2588 } u1;
2589 union {
2590 uint32_t u;
2591 float32 f;
2592 } u2;
2593
2594 u1.u = val;
2595 u2.f = float64_to_float32(u1.f, &env->spe_status);
2596
2597 return u2.u;
2598}
2599
b068d6a7 2600static always_inline uint64_t _do_efdcfs (uint32_t val)
0487d6a8
JM
2601{
2602 union {
2603 uint64_t u;
2604 float64 f;
2605 } u2;
2606 union {
2607 uint32_t u;
2608 float32 f;
2609 } u1;
2610
2611 u1.u = val;
2612 u2.f = float32_to_float64(u1.f, &env->spe_status);
2613
2614 return u2.u;
2615}
2616
2617void do_efscfd (void)
2618{
2619 T0_64 = _do_efscfd(T0_64);
2620}
2621
2622void do_efdcfs (void)
2623{
2624 T0_64 = _do_efdcfs(T0_64);
2625}
2626
2627/* Single precision fixed-point vector arithmetic */
2628/* evfsabs */
2629DO_SPE_OP1(fsabs);
2630/* evfsnabs */
2631DO_SPE_OP1(fsnabs);
2632/* evfsneg */
2633DO_SPE_OP1(fsneg);
2634/* evfsadd */
2635DO_SPE_OP2(fsadd);
2636/* evfssub */
2637DO_SPE_OP2(fssub);
2638/* evfsmul */
2639DO_SPE_OP2(fsmul);
2640/* evfsdiv */
2641DO_SPE_OP2(fsdiv);
2642
2643/* Single-precision floating-point comparisons */
b068d6a7 2644static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
0487d6a8
JM
2645{
2646 /* XXX: TODO: test special values (NaN, infinites, ...) */
2647 return _do_efststlt(op1, op2);
2648}
2649
b068d6a7 2650static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
0487d6a8
JM
2651{
2652 /* XXX: TODO: test special values (NaN, infinites, ...) */
2653 return _do_efststgt(op1, op2);
2654}
2655
b068d6a7 2656static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
0487d6a8
JM
2657{
2658 /* XXX: TODO: test special values (NaN, infinites, ...) */
2659 return _do_efststeq(op1, op2);
2660}
2661
2662void do_efscmplt (void)
2663{
2664 T0 = _do_efscmplt(T0_64, T1_64);
2665}
2666
2667void do_efscmpgt (void)
2668{
2669 T0 = _do_efscmpgt(T0_64, T1_64);
2670}
2671
2672void do_efscmpeq (void)
2673{
2674 T0 = _do_efscmpeq(T0_64, T1_64);
2675}
2676
2677/* Single-precision floating-point vector comparisons */
2678/* evfscmplt */
2679DO_SPE_CMP(fscmplt);
2680/* evfscmpgt */
2681DO_SPE_CMP(fscmpgt);
2682/* evfscmpeq */
2683DO_SPE_CMP(fscmpeq);
2684/* evfststlt */
2685DO_SPE_CMP(fststlt);
2686/* evfststgt */
2687DO_SPE_CMP(fststgt);
2688/* evfststeq */
2689DO_SPE_CMP(fststeq);
2690
2691/* Single-precision floating-point vector conversions */
2692/* evfscfsi */
2693DO_SPE_OP1(fscfsi);
2694/* evfscfui */
2695DO_SPE_OP1(fscfui);
2696/* evfscfuf */
2697DO_SPE_OP1(fscfuf);
2698/* evfscfsf */
2699DO_SPE_OP1(fscfsf);
2700/* evfsctsi */
2701DO_SPE_OP1(fsctsi);
2702/* evfsctui */
2703DO_SPE_OP1(fsctui);
2704/* evfsctsiz */
2705DO_SPE_OP1(fsctsiz);
2706/* evfsctuiz */
2707DO_SPE_OP1(fsctuiz);
2708/* evfsctsf */
2709DO_SPE_OP1(fsctsf);
2710/* evfsctuf */
2711DO_SPE_OP1(fsctuf);
0487d6a8 2712
fdabc366
FB
2713/*****************************************************************************/
2714/* Softmmu support */
2715#if !defined (CONFIG_USER_ONLY)
2716
2717#define MMUSUFFIX _mmu
273af660
TS
2718#ifdef __s390__
2719# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
2720#else
2721# define GETPC() (__builtin_return_address(0))
2722#endif
fdabc366
FB
2723
2724#define SHIFT 0
2725#include "softmmu_template.h"
2726
2727#define SHIFT 1
2728#include "softmmu_template.h"
2729
2730#define SHIFT 2
2731#include "softmmu_template.h"
2732
2733#define SHIFT 3
2734#include "softmmu_template.h"
2735
2736/* try to fill the TLB and return an exception if error. If retaddr is
2737 NULL, it means that the function was called in C code (i.e. not
2738 from generated code or from helper.c) */
2739/* XXX: fix it to restore all registers */
6ebbf390 2740void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
fdabc366
FB
2741{
2742 TranslationBlock *tb;
2743 CPUState *saved_env;
44f8625d 2744 unsigned long pc;
fdabc366
FB
2745 int ret;
2746
2747 /* XXX: hack to restore env in all cases, even if not called from
2748 generated code */
2749 saved_env = env;
2750 env = cpu_single_env;
6ebbf390 2751 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
76a66253 2752 if (unlikely(ret != 0)) {
fdabc366
FB
2753 if (likely(retaddr)) {
2754 /* now we have a real cpu fault */
44f8625d 2755 pc = (unsigned long)retaddr;
fdabc366
FB
2756 tb = tb_find_pc(pc);
2757 if (likely(tb)) {
2758 /* the PC is inside the translated code. It means that we have
2759 a virtual CPU fault */
2760 cpu_restore_state(tb, env, pc, NULL);
76a66253 2761 }
fdabc366
FB
2762 }
2763 do_raise_exception_err(env->exception_index, env->error_code);
2764 }
2765 env = saved_env;
9a64fbe4
FB
2766}
2767
76a66253
JM
2768/* Software driven TLBs management */
2769/* PowerPC 602/603 software TLB load instructions helpers */
2770void do_load_6xx_tlb (int is_code)
2771{
2772 target_ulong RPN, CMP, EPN;
2773 int way;
d9bce9d9 2774
76a66253
JM
2775 RPN = env->spr[SPR_RPA];
2776 if (is_code) {
2777 CMP = env->spr[SPR_ICMP];
2778 EPN = env->spr[SPR_IMISS];
2779 } else {
2780 CMP = env->spr[SPR_DCMP];
2781 EPN = env->spr[SPR_DMISS];
2782 }
2783 way = (env->spr[SPR_SRR1] >> 17) & 1;
2784#if defined (DEBUG_SOFTWARE_TLB)
2785 if (loglevel != 0) {
2786 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2787 __func__, (unsigned long)T0, (unsigned long)EPN,
2788 (unsigned long)CMP, (unsigned long)RPN, way);
2789 }
2790#endif
2791 /* Store this TLB */
d9bce9d9
JM
2792 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2793 way, is_code, CMP, RPN);
76a66253
JM
2794}
2795
7dbe11ac
JM
2796void do_load_74xx_tlb (int is_code)
2797{
2798 target_ulong RPN, CMP, EPN;
2799 int way;
2800
2801 RPN = env->spr[SPR_PTELO];
2802 CMP = env->spr[SPR_PTEHI];
2803 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2804 way = env->spr[SPR_TLBMISS] & 0x3;
2805#if defined (DEBUG_SOFTWARE_TLB)
2806 if (loglevel != 0) {
2807 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2808 __func__, (unsigned long)T0, (unsigned long)EPN,
2809 (unsigned long)CMP, (unsigned long)RPN, way);
2810 }
2811#endif
2812 /* Store this TLB */
2813 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2814 way, is_code, CMP, RPN);
2815}
2816
a11b8151 2817static always_inline target_ulong booke_tlb_to_page_size (int size)
a8dea12f
JM
2818{
2819 return 1024 << (2 * size);
2820}
2821
a11b8151 2822static always_inline int booke_page_size_to_tlb (target_ulong page_size)
a8dea12f
JM
2823{
2824 int size;
2825
2826 switch (page_size) {
2827 case 0x00000400UL:
2828 size = 0x0;
2829 break;
2830 case 0x00001000UL:
2831 size = 0x1;
2832 break;
2833 case 0x00004000UL:
2834 size = 0x2;
2835 break;
2836 case 0x00010000UL:
2837 size = 0x3;
2838 break;
2839 case 0x00040000UL:
2840 size = 0x4;
2841 break;
2842 case 0x00100000UL:
2843 size = 0x5;
2844 break;
2845 case 0x00400000UL:
2846 size = 0x6;
2847 break;
2848 case 0x01000000UL:
2849 size = 0x7;
2850 break;
2851 case 0x04000000UL:
2852 size = 0x8;
2853 break;
2854 case 0x10000000UL:
2855 size = 0x9;
2856 break;
2857 case 0x40000000UL:
2858 size = 0xA;
2859 break;
2860#if defined (TARGET_PPC64)
2861 case 0x000100000000ULL:
2862 size = 0xB;
2863 break;
2864 case 0x000400000000ULL:
2865 size = 0xC;
2866 break;
2867 case 0x001000000000ULL:
2868 size = 0xD;
2869 break;
2870 case 0x004000000000ULL:
2871 size = 0xE;
2872 break;
2873 case 0x010000000000ULL:
2874 size = 0xF;
2875 break;
2876#endif
2877 default:
2878 size = -1;
2879 break;
2880 }
2881
2882 return size;
2883}
2884
76a66253 2885/* Helpers for 4xx TLB management */
76a66253
JM
2886void do_4xx_tlbre_lo (void)
2887{
a8dea12f
JM
2888 ppcemb_tlb_t *tlb;
2889 int size;
76a66253
JM
2890
2891 T0 &= 0x3F;
a8dea12f
JM
2892 tlb = &env->tlb[T0].tlbe;
2893 T0 = tlb->EPN;
2894 if (tlb->prot & PAGE_VALID)
2895 T0 |= 0x400;
2896 size = booke_page_size_to_tlb(tlb->size);
2897 if (size < 0 || size > 0x7)
2898 size = 1;
2899 T0 |= size << 7;
2900 env->spr[SPR_40x_PID] = tlb->PID;
76a66253
JM
2901}
2902
2903void do_4xx_tlbre_hi (void)
2904{
a8dea12f 2905 ppcemb_tlb_t *tlb;
76a66253
JM
2906
2907 T0 &= 0x3F;
a8dea12f
JM
2908 tlb = &env->tlb[T0].tlbe;
2909 T0 = tlb->RPN;
2910 if (tlb->prot & PAGE_EXEC)
2911 T0 |= 0x200;
2912 if (tlb->prot & PAGE_WRITE)
2913 T0 |= 0x100;
76a66253
JM
2914}
2915
c55e9aef 2916void do_4xx_tlbwe_hi (void)
76a66253 2917{
a8dea12f 2918 ppcemb_tlb_t *tlb;
76a66253
JM
2919 target_ulong page, end;
2920
c55e9aef 2921#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2922 if (loglevel != 0) {
c55e9aef
JM
2923 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2924 }
2925#endif
76a66253 2926 T0 &= 0x3F;
a8dea12f 2927 tlb = &env->tlb[T0].tlbe;
76a66253
JM
2928 /* Invalidate previous TLB (if it's valid) */
2929 if (tlb->prot & PAGE_VALID) {
2930 end = tlb->EPN + tlb->size;
c55e9aef 2931#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2932 if (loglevel != 0) {
c55e9aef
JM
2933 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2934 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2935 }
2936#endif
76a66253
JM
2937 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2938 tlb_flush_page(env, page);
2939 }
a8dea12f 2940 tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
c294fc58
JM
2941 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2942 * If this ever occurs, one should use the ppcemb target instead
2943 * of the ppc or ppc64 one
2944 */
2945 if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
71c8b8fd
JM
2946 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2947 "are not supported (%d)\n",
c294fc58
JM
2948 tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2949 }
a750fc0b 2950 tlb->EPN = T1 & ~(tlb->size - 1);
c55e9aef 2951 if (T1 & 0x40)
76a66253
JM
2952 tlb->prot |= PAGE_VALID;
2953 else
2954 tlb->prot &= ~PAGE_VALID;
c294fc58
JM
2955 if (T1 & 0x20) {
2956 /* XXX: TO BE FIXED */
2957 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2958 }
c55e9aef 2959 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
a8dea12f 2960 tlb->attr = T1 & 0xFF;
c55e9aef 2961#if defined (DEBUG_SOFTWARE_TLB)
c294fc58
JM
2962 if (loglevel != 0) {
2963 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
c55e9aef 2964 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
5fafdf24 2965 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
c55e9aef
JM
2966 tlb->prot & PAGE_READ ? 'r' : '-',
2967 tlb->prot & PAGE_WRITE ? 'w' : '-',
2968 tlb->prot & PAGE_EXEC ? 'x' : '-',
2969 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2970 }
2971#endif
76a66253
JM
2972 /* Invalidate new TLB (if valid) */
2973 if (tlb->prot & PAGE_VALID) {
2974 end = tlb->EPN + tlb->size;
c55e9aef 2975#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2976 if (loglevel != 0) {
c55e9aef
JM
2977 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2978 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2979 }
2980#endif
76a66253
JM
2981 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2982 tlb_flush_page(env, page);
2983 }
76a66253
JM
2984}
2985
c55e9aef 2986void do_4xx_tlbwe_lo (void)
76a66253 2987{
a8dea12f 2988 ppcemb_tlb_t *tlb;
76a66253 2989
c55e9aef 2990#if defined (DEBUG_SOFTWARE_TLB)
6b80055d 2991 if (loglevel != 0) {
c55e9aef
JM
2992 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2993 }
2994#endif
76a66253 2995 T0 &= 0x3F;
a8dea12f 2996 tlb = &env->tlb[T0].tlbe;
76a66253
JM
2997 tlb->RPN = T1 & 0xFFFFFC00;
2998 tlb->prot = PAGE_READ;
2999 if (T1 & 0x200)
3000 tlb->prot |= PAGE_EXEC;
3001 if (T1 & 0x100)
3002 tlb->prot |= PAGE_WRITE;
c55e9aef 3003#if defined (DEBUG_SOFTWARE_TLB)
6b80055d
JM
3004 if (loglevel != 0) {
3005 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
c55e9aef 3006 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
5fafdf24 3007 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
c55e9aef
JM
3008 tlb->prot & PAGE_READ ? 'r' : '-',
3009 tlb->prot & PAGE_WRITE ? 'w' : '-',
3010 tlb->prot & PAGE_EXEC ? 'x' : '-',
3011 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3012 }
3013#endif
76a66253 3014}
5eb7995e 3015
a4bb6c3e
JM
3016/* PowerPC 440 TLB management */
3017void do_440_tlbwe (int word)
5eb7995e
JM
3018{
3019 ppcemb_tlb_t *tlb;
a4bb6c3e 3020 target_ulong EPN, RPN, size;
5eb7995e
JM
3021 int do_flush_tlbs;
3022
3023#if defined (DEBUG_SOFTWARE_TLB)
3024 if (loglevel != 0) {
a4bb6c3e
JM
3025 fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n",
3026 __func__, word, T0, T1);
5eb7995e
JM
3027 }
3028#endif
3029 do_flush_tlbs = 0;
3030 T0 &= 0x3F;
3031 tlb = &env->tlb[T0].tlbe;
a4bb6c3e
JM
3032 switch (word) {
3033 default:
3034 /* Just here to please gcc */
3035 case 0:
3036 EPN = T1 & 0xFFFFFC00;
3037 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
5eb7995e 3038 do_flush_tlbs = 1;
a4bb6c3e
JM
3039 tlb->EPN = EPN;
3040 size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
3041 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3042 do_flush_tlbs = 1;
3043 tlb->size = size;
3044 tlb->attr &= ~0x1;
3045 tlb->attr |= (T1 >> 8) & 1;
3046 if (T1 & 0x200) {
3047 tlb->prot |= PAGE_VALID;
3048 } else {
3049 if (tlb->prot & PAGE_VALID) {
3050 tlb->prot &= ~PAGE_VALID;
3051 do_flush_tlbs = 1;
3052 }
5eb7995e 3053 }
a4bb6c3e
JM
3054 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3055 if (do_flush_tlbs)
3056 tlb_flush(env, 1);
3057 break;
3058 case 1:
3059 RPN = T1 & 0xFFFFFC0F;
3060 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3061 tlb_flush(env, 1);
3062 tlb->RPN = RPN;
3063 break;
3064 case 2:
3065 tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
3066 tlb->prot = tlb->prot & PAGE_VALID;
3067 if (T1 & 0x1)
3068 tlb->prot |= PAGE_READ << 4;
3069 if (T1 & 0x2)
3070 tlb->prot |= PAGE_WRITE << 4;
3071 if (T1 & 0x4)
3072 tlb->prot |= PAGE_EXEC << 4;
3073 if (T1 & 0x8)
3074 tlb->prot |= PAGE_READ;
3075 if (T1 & 0x10)
3076 tlb->prot |= PAGE_WRITE;
3077 if (T1 & 0x20)
3078 tlb->prot |= PAGE_EXEC;
3079 break;
5eb7995e 3080 }
5eb7995e
JM
3081}
3082
a4bb6c3e 3083void do_440_tlbre (int word)
5eb7995e
JM
3084{
3085 ppcemb_tlb_t *tlb;
3086 int size;
3087
3088 T0 &= 0x3F;
3089 tlb = &env->tlb[T0].tlbe;
a4bb6c3e
JM
3090 switch (word) {
3091 default:
3092 /* Just here to please gcc */
3093 case 0:
3094 T0 = tlb->EPN;
3095 size = booke_page_size_to_tlb(tlb->size);
3096 if (size < 0 || size > 0xF)
3097 size = 1;
3098 T0 |= size << 4;
3099 if (tlb->attr & 0x1)
3100 T0 |= 0x100;
3101 if (tlb->prot & PAGE_VALID)
3102 T0 |= 0x200;
3103 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3104 env->spr[SPR_440_MMUCR] |= tlb->PID;
3105 break;
3106 case 1:
3107 T0 = tlb->RPN;
3108 break;
3109 case 2:
3110 T0 = tlb->attr & ~0x1;
3111 if (tlb->prot & (PAGE_READ << 4))
3112 T0 |= 0x1;
3113 if (tlb->prot & (PAGE_WRITE << 4))
3114 T0 |= 0x2;
3115 if (tlb->prot & (PAGE_EXEC << 4))
3116 T0 |= 0x4;
3117 if (tlb->prot & PAGE_READ)
3118 T0 |= 0x8;
3119 if (tlb->prot & PAGE_WRITE)
3120 T0 |= 0x10;
3121 if (tlb->prot & PAGE_EXEC)
3122 T0 |= 0x20;
3123 break;
3124 }
5eb7995e 3125}
76a66253 3126#endif /* !CONFIG_USER_ONLY */