]> git.proxmox.com Git - qemu.git/blame - target-sparc/mmu_helper.c
Sparc: split MMU helpers
[qemu.git] / target-sparc / mmu_helper.c
CommitLineData
163fa5ca
BS
1/*
2 * Sparc MMU helpers
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "cpu.h"
21
22//#define DEBUG_MMU
23
24#ifdef DEBUG_MMU
25#define DPRINTF_MMU(fmt, ...) \
26 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
27#else
28#define DPRINTF_MMU(fmt, ...) do {} while (0)
29#endif
30
31/* Sparc MMU emulation */
32
33#if defined(CONFIG_USER_ONLY)
34
35int cpu_sparc_handle_mmu_fault(CPUState *env1, target_ulong address, int rw,
36 int mmu_idx)
37{
38 if (rw & 2) {
39 env1->exception_index = TT_TFAULT;
40 } else {
41 env1->exception_index = TT_DFAULT;
42 }
43 return 1;
44}
45
46#else
47
48#ifndef TARGET_SPARC64
49/*
50 * Sparc V8 Reference MMU (SRMMU)
51 */
52static const int access_table[8][8] = {
53 { 0, 0, 0, 0, 8, 0, 12, 12 },
54 { 0, 0, 0, 0, 8, 0, 0, 0 },
55 { 8, 8, 0, 0, 0, 8, 12, 12 },
56 { 8, 8, 0, 0, 0, 8, 0, 0 },
57 { 8, 0, 8, 0, 8, 8, 12, 12 },
58 { 8, 0, 8, 0, 8, 0, 8, 0 },
59 { 8, 8, 8, 0, 8, 8, 12, 12 },
60 { 8, 8, 8, 0, 8, 8, 8, 0 }
61};
62
63static const int perm_table[2][8] = {
64 {
65 PAGE_READ,
66 PAGE_READ | PAGE_WRITE,
67 PAGE_READ | PAGE_EXEC,
68 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
69 PAGE_EXEC,
70 PAGE_READ | PAGE_WRITE,
71 PAGE_READ | PAGE_EXEC,
72 PAGE_READ | PAGE_WRITE | PAGE_EXEC
73 },
74 {
75 PAGE_READ,
76 PAGE_READ | PAGE_WRITE,
77 PAGE_READ | PAGE_EXEC,
78 PAGE_READ | PAGE_WRITE | PAGE_EXEC,
79 PAGE_EXEC,
80 PAGE_READ,
81 0,
82 0,
83 }
84};
85
86static int get_physical_address(CPUState *env, target_phys_addr_t *physical,
87 int *prot, int *access_index,
88 target_ulong address, int rw, int mmu_idx,
89 target_ulong *page_size)
90{
91 int access_perms = 0;
92 target_phys_addr_t pde_ptr;
93 uint32_t pde;
94 int error_code = 0, is_dirty, is_user;
95 unsigned long page_offset;
96
97 is_user = mmu_idx == MMU_USER_IDX;
98
99 if ((env->mmuregs[0] & MMU_E) == 0) { /* MMU disabled */
100 *page_size = TARGET_PAGE_SIZE;
101 /* Boot mode: instruction fetches are taken from PROM */
102 if (rw == 2 && (env->mmuregs[0] & env->def->mmu_bm)) {
103 *physical = env->prom_addr | (address & 0x7ffffULL);
104 *prot = PAGE_READ | PAGE_EXEC;
105 return 0;
106 }
107 *physical = address;
108 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
109 return 0;
110 }
111
112 *access_index = ((rw & 1) << 2) | (rw & 2) | (is_user ? 0 : 1);
113 *physical = 0xffffffffffff0000ULL;
114
115 /* SPARC reference MMU table walk: Context table->L1->L2->PTE */
116 /* Context base + context number */
117 pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
118 pde = ldl_phys(pde_ptr);
119
120 /* Ctx pde */
121 switch (pde & PTE_ENTRYTYPE_MASK) {
122 default:
123 case 0: /* Invalid */
124 return 1 << 2;
125 case 2: /* L0 PTE, maybe should not happen? */
126 case 3: /* Reserved */
127 return 4 << 2;
128 case 1: /* L0 PDE */
129 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
130 pde = ldl_phys(pde_ptr);
131
132 switch (pde & PTE_ENTRYTYPE_MASK) {
133 default:
134 case 0: /* Invalid */
135 return (1 << 8) | (1 << 2);
136 case 3: /* Reserved */
137 return (1 << 8) | (4 << 2);
138 case 1: /* L1 PDE */
139 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
140 pde = ldl_phys(pde_ptr);
141
142 switch (pde & PTE_ENTRYTYPE_MASK) {
143 default:
144 case 0: /* Invalid */
145 return (2 << 8) | (1 << 2);
146 case 3: /* Reserved */
147 return (2 << 8) | (4 << 2);
148 case 1: /* L2 PDE */
149 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
150 pde = ldl_phys(pde_ptr);
151
152 switch (pde & PTE_ENTRYTYPE_MASK) {
153 default:
154 case 0: /* Invalid */
155 return (3 << 8) | (1 << 2);
156 case 1: /* PDE, should not happen */
157 case 3: /* Reserved */
158 return (3 << 8) | (4 << 2);
159 case 2: /* L3 PTE */
160 page_offset = (address & TARGET_PAGE_MASK) &
161 (TARGET_PAGE_SIZE - 1);
162 }
163 *page_size = TARGET_PAGE_SIZE;
164 break;
165 case 2: /* L2 PTE */
166 page_offset = address & 0x3ffff;
167 *page_size = 0x40000;
168 }
169 break;
170 case 2: /* L1 PTE */
171 page_offset = address & 0xffffff;
172 *page_size = 0x1000000;
173 }
174 }
175
176 /* check access */
177 access_perms = (pde & PTE_ACCESS_MASK) >> PTE_ACCESS_SHIFT;
178 error_code = access_table[*access_index][access_perms];
179 if (error_code && !((env->mmuregs[0] & MMU_NF) && is_user)) {
180 return error_code;
181 }
182
183 /* update page modified and dirty bits */
184 is_dirty = (rw & 1) && !(pde & PG_MODIFIED_MASK);
185 if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
186 pde |= PG_ACCESSED_MASK;
187 if (is_dirty) {
188 pde |= PG_MODIFIED_MASK;
189 }
190 stl_phys_notdirty(pde_ptr, pde);
191 }
192
193 /* the page can be put in the TLB */
194 *prot = perm_table[is_user][access_perms];
195 if (!(pde & PG_MODIFIED_MASK)) {
196 /* only set write access if already dirty... otherwise wait
197 for dirty access */
198 *prot &= ~PAGE_WRITE;
199 }
200
201 /* Even if large ptes, we map only one 4KB page in the cache to
202 avoid filling it too fast */
203 *physical = ((target_phys_addr_t)(pde & PTE_ADDR_MASK) << 4) + page_offset;
204 return error_code;
205}
206
207/* Perform address translation */
208int cpu_sparc_handle_mmu_fault(CPUState *env, target_ulong address, int rw,
209 int mmu_idx)
210{
211 target_phys_addr_t paddr;
212 target_ulong vaddr;
213 target_ulong page_size;
214 int error_code = 0, prot, access_index;
215
216 error_code = get_physical_address(env, &paddr, &prot, &access_index,
217 address, rw, mmu_idx, &page_size);
218 if (error_code == 0) {
219 vaddr = address & TARGET_PAGE_MASK;
220 paddr &= TARGET_PAGE_MASK;
221#ifdef DEBUG_MMU
222 printf("Translate at " TARGET_FMT_lx " -> " TARGET_FMT_plx ", vaddr "
223 TARGET_FMT_lx "\n", address, paddr, vaddr);
224#endif
225 tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size);
226 return 0;
227 }
228
229 if (env->mmuregs[3]) { /* Fault status register */
230 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
231 }
232 env->mmuregs[3] |= (access_index << 5) | error_code | 2;
233 env->mmuregs[4] = address; /* Fault address register */
234
235 if ((env->mmuregs[0] & MMU_NF) || env->psret == 0) {
236 /* No fault mode: if a mapping is available, just override
237 permissions. If no mapping is available, redirect accesses to
238 neverland. Fake/overridden mappings will be flushed when
239 switching to normal mode. */
240 vaddr = address & TARGET_PAGE_MASK;
241 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
242 tlb_set_page(env, vaddr, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
243 return 0;
244 } else {
245 if (rw & 2) {
246 env->exception_index = TT_TFAULT;
247 } else {
248 env->exception_index = TT_DFAULT;
249 }
250 return 1;
251 }
252}
253
254target_ulong mmu_probe(CPUState *env, target_ulong address, int mmulev)
255{
256 target_phys_addr_t pde_ptr;
257 uint32_t pde;
258
259 /* Context base + context number */
260 pde_ptr = (target_phys_addr_t)(env->mmuregs[1] << 4) +
261 (env->mmuregs[2] << 2);
262 pde = ldl_phys(pde_ptr);
263
264 switch (pde & PTE_ENTRYTYPE_MASK) {
265 default:
266 case 0: /* Invalid */
267 case 2: /* PTE, maybe should not happen? */
268 case 3: /* Reserved */
269 return 0;
270 case 1: /* L1 PDE */
271 if (mmulev == 3) {
272 return pde;
273 }
274 pde_ptr = ((address >> 22) & ~3) + ((pde & ~3) << 4);
275 pde = ldl_phys(pde_ptr);
276
277 switch (pde & PTE_ENTRYTYPE_MASK) {
278 default:
279 case 0: /* Invalid */
280 case 3: /* Reserved */
281 return 0;
282 case 2: /* L1 PTE */
283 return pde;
284 case 1: /* L2 PDE */
285 if (mmulev == 2) {
286 return pde;
287 }
288 pde_ptr = ((address & 0xfc0000) >> 16) + ((pde & ~3) << 4);
289 pde = ldl_phys(pde_ptr);
290
291 switch (pde & PTE_ENTRYTYPE_MASK) {
292 default:
293 case 0: /* Invalid */
294 case 3: /* Reserved */
295 return 0;
296 case 2: /* L2 PTE */
297 return pde;
298 case 1: /* L3 PDE */
299 if (mmulev == 1) {
300 return pde;
301 }
302 pde_ptr = ((address & 0x3f000) >> 10) + ((pde & ~3) << 4);
303 pde = ldl_phys(pde_ptr);
304
305 switch (pde & PTE_ENTRYTYPE_MASK) {
306 default:
307 case 0: /* Invalid */
308 case 1: /* PDE, should not happen */
309 case 3: /* Reserved */
310 return 0;
311 case 2: /* L3 PTE */
312 return pde;
313 }
314 }
315 }
316 }
317 return 0;
318}
319
320void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUState *env)
321{
322 target_ulong va, va1, va2;
323 unsigned int n, m, o;
324 target_phys_addr_t pde_ptr, pa;
325 uint32_t pde;
326
327 pde_ptr = (env->mmuregs[1] << 4) + (env->mmuregs[2] << 2);
328 pde = ldl_phys(pde_ptr);
329 (*cpu_fprintf)(f, "Root ptr: " TARGET_FMT_plx ", ctx: %d\n",
330 (target_phys_addr_t)env->mmuregs[1] << 4, env->mmuregs[2]);
331 for (n = 0, va = 0; n < 256; n++, va += 16 * 1024 * 1024) {
332 pde = mmu_probe(env, va, 2);
333 if (pde) {
334 pa = cpu_get_phys_page_debug(env, va);
335 (*cpu_fprintf)(f, "VA: " TARGET_FMT_lx ", PA: " TARGET_FMT_plx
336 " PDE: " TARGET_FMT_lx "\n", va, pa, pde);
337 for (m = 0, va1 = va; m < 64; m++, va1 += 256 * 1024) {
338 pde = mmu_probe(env, va1, 1);
339 if (pde) {
340 pa = cpu_get_phys_page_debug(env, va1);
341 (*cpu_fprintf)(f, " VA: " TARGET_FMT_lx ", PA: "
342 TARGET_FMT_plx " PDE: " TARGET_FMT_lx "\n",
343 va1, pa, pde);
344 for (o = 0, va2 = va1; o < 64; o++, va2 += 4 * 1024) {
345 pde = mmu_probe(env, va2, 0);
346 if (pde) {
347 pa = cpu_get_phys_page_debug(env, va2);
348 (*cpu_fprintf)(f, " VA: " TARGET_FMT_lx ", PA: "
349 TARGET_FMT_plx " PTE: "
350 TARGET_FMT_lx "\n",
351 va2, pa, pde);
352 }
353 }
354 }
355 }
356 }
357 }
358}
359
360/* Gdb expects all registers windows to be flushed in ram. This function handles
361 * reads (and only reads) in stack frames as if windows were flushed. We assume
362 * that the sparc ABI is followed.
363 */
364int target_memory_rw_debug(CPUState *env, target_ulong addr,
365 uint8_t *buf, int len, int is_write)
366{
367 int i;
368 int len1;
369 int cwp = env->cwp;
370
371 if (!is_write) {
372 for (i = 0; i < env->nwindows; i++) {
373 int off;
374 target_ulong fp = env->regbase[cwp * 16 + 22];
375
376 /* Assume fp == 0 means end of frame. */
377 if (fp == 0) {
378 break;
379 }
380
381 cwp = cpu_cwp_inc(env, cwp + 1);
382
383 /* Invalid window ? */
384 if (env->wim & (1 << cwp)) {
385 break;
386 }
387
388 /* According to the ABI, the stack is growing downward. */
389 if (addr + len < fp) {
390 break;
391 }
392
393 /* Not in this frame. */
394 if (addr > fp + 64) {
395 continue;
396 }
397
398 /* Handle access before this window. */
399 if (addr < fp) {
400 len1 = fp - addr;
401 if (cpu_memory_rw_debug(env, addr, buf, len1, is_write) != 0) {
402 return -1;
403 }
404 addr += len1;
405 len -= len1;
406 buf += len1;
407 }
408
409 /* Access byte per byte to registers. Not very efficient but speed
410 * is not critical.
411 */
412 off = addr - fp;
413 len1 = 64 - off;
414
415 if (len1 > len) {
416 len1 = len;
417 }
418
419 for (; len1; len1--) {
420 int reg = cwp * 16 + 8 + (off >> 2);
421 union {
422 uint32_t v;
423 uint8_t c[4];
424 } u;
425 u.v = cpu_to_be32(env->regbase[reg]);
426 *buf++ = u.c[off & 3];
427 addr++;
428 len--;
429 off++;
430 }
431
432 if (len == 0) {
433 return 0;
434 }
435 }
436 }
437 return cpu_memory_rw_debug(env, addr, buf, len, is_write);
438}
439
440#else /* !TARGET_SPARC64 */
441
442/* 41 bit physical address space */
443static inline target_phys_addr_t ultrasparc_truncate_physical(uint64_t x)
444{
445 return x & 0x1ffffffffffULL;
446}
447
448/*
449 * UltraSparc IIi I/DMMUs
450 */
451
452/* Returns true if TTE tag is valid and matches virtual address value
453 in context requires virtual address mask value calculated from TTE
454 entry size */
455static inline int ultrasparc_tag_match(SparcTLBEntry *tlb,
456 uint64_t address, uint64_t context,
457 target_phys_addr_t *physical)
458{
459 uint64_t mask;
460
461 switch (TTE_PGSIZE(tlb->tte)) {
462 default:
463 case 0x0: /* 8k */
464 mask = 0xffffffffffffe000ULL;
465 break;
466 case 0x1: /* 64k */
467 mask = 0xffffffffffff0000ULL;
468 break;
469 case 0x2: /* 512k */
470 mask = 0xfffffffffff80000ULL;
471 break;
472 case 0x3: /* 4M */
473 mask = 0xffffffffffc00000ULL;
474 break;
475 }
476
477 /* valid, context match, virtual address match? */
478 if (TTE_IS_VALID(tlb->tte) &&
479 (TTE_IS_GLOBAL(tlb->tte) || tlb_compare_context(tlb, context))
480 && compare_masked(address, tlb->tag, mask)) {
481 /* decode physical address */
482 *physical = ((tlb->tte & mask) | (address & ~mask)) & 0x1ffffffe000ULL;
483 return 1;
484 }
485
486 return 0;
487}
488
489static int get_physical_address_data(CPUState *env,
490 target_phys_addr_t *physical, int *prot,
491 target_ulong address, int rw, int mmu_idx)
492{
493 unsigned int i;
494 uint64_t context;
495 uint64_t sfsr = 0;
496
497 int is_user = (mmu_idx == MMU_USER_IDX ||
498 mmu_idx == MMU_USER_SECONDARY_IDX);
499
500 if ((env->lsu & DMMU_E) == 0) { /* DMMU disabled */
501 *physical = ultrasparc_truncate_physical(address);
502 *prot = PAGE_READ | PAGE_WRITE;
503 return 0;
504 }
505
506 switch (mmu_idx) {
507 case MMU_USER_IDX:
508 case MMU_KERNEL_IDX:
509 context = env->dmmu.mmu_primary_context & 0x1fff;
510 sfsr |= SFSR_CT_PRIMARY;
511 break;
512 case MMU_USER_SECONDARY_IDX:
513 case MMU_KERNEL_SECONDARY_IDX:
514 context = env->dmmu.mmu_secondary_context & 0x1fff;
515 sfsr |= SFSR_CT_SECONDARY;
516 break;
517 case MMU_NUCLEUS_IDX:
518 sfsr |= SFSR_CT_NUCLEUS;
519 /* FALLTHRU */
520 default:
521 context = 0;
522 break;
523 }
524
525 if (rw == 1) {
526 sfsr |= SFSR_WRITE_BIT;
527 } else if (rw == 4) {
528 sfsr |= SFSR_NF_BIT;
529 }
530
531 for (i = 0; i < 64; i++) {
532 /* ctx match, vaddr match, valid? */
533 if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) {
534 int do_fault = 0;
535
536 /* access ok? */
537 /* multiple bits in SFSR.FT may be set on TT_DFAULT */
538 if (TTE_IS_PRIV(env->dtlb[i].tte) && is_user) {
539 do_fault = 1;
540 sfsr |= SFSR_FT_PRIV_BIT; /* privilege violation */
541
542 DPRINTF_MMU("DFAULT at %" PRIx64 " context %" PRIx64
543 " mmu_idx=%d tl=%d\n",
544 address, context, mmu_idx, env->tl);
545 }
546 if (rw == 4) {
547 if (TTE_IS_SIDEEFFECT(env->dtlb[i].tte)) {
548 do_fault = 1;
549 sfsr |= SFSR_FT_NF_E_BIT;
550 }
551 } else {
552 if (TTE_IS_NFO(env->dtlb[i].tte)) {
553 do_fault = 1;
554 sfsr |= SFSR_FT_NFO_BIT;
555 }
556 }
557
558 if (do_fault) {
559 /* faults above are reported with TT_DFAULT. */
560 env->exception_index = TT_DFAULT;
561 } else if (!TTE_IS_W_OK(env->dtlb[i].tte) && (rw == 1)) {
562 do_fault = 1;
563 env->exception_index = TT_DPROT;
564
565 DPRINTF_MMU("DPROT at %" PRIx64 " context %" PRIx64
566 " mmu_idx=%d tl=%d\n",
567 address, context, mmu_idx, env->tl);
568 }
569
570 if (!do_fault) {
571 *prot = PAGE_READ;
572 if (TTE_IS_W_OK(env->dtlb[i].tte)) {
573 *prot |= PAGE_WRITE;
574 }
575
576 TTE_SET_USED(env->dtlb[i].tte);
577
578 return 0;
579 }
580
581 if (env->dmmu.sfsr & SFSR_VALID_BIT) { /* Fault status register */
582 sfsr |= SFSR_OW_BIT; /* overflow (not read before
583 another fault) */
584 }
585
586 if (env->pstate & PS_PRIV) {
587 sfsr |= SFSR_PR_BIT;
588 }
589
590 /* FIXME: ASI field in SFSR must be set */
591 env->dmmu.sfsr = sfsr | SFSR_VALID_BIT;
592
593 env->dmmu.sfar = address; /* Fault address register */
594
595 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
596
597 return 1;
598 }
599 }
600
601 DPRINTF_MMU("DMISS at %" PRIx64 " context %" PRIx64 "\n",
602 address, context);
603
604 /*
605 * On MMU misses:
606 * - UltraSPARC IIi: SFSR and SFAR unmodified
607 * - JPS1: SFAR updated and some fields of SFSR updated
608 */
609 env->dmmu.tag_access = (address & ~0x1fffULL) | context;
610 env->exception_index = TT_DMISS;
611 return 1;
612}
613
614static int get_physical_address_code(CPUState *env,
615 target_phys_addr_t *physical, int *prot,
616 target_ulong address, int mmu_idx)
617{
618 unsigned int i;
619 uint64_t context;
620
621 int is_user = (mmu_idx == MMU_USER_IDX ||
622 mmu_idx == MMU_USER_SECONDARY_IDX);
623
624 if ((env->lsu & IMMU_E) == 0 || (env->pstate & PS_RED) != 0) {
625 /* IMMU disabled */
626 *physical = ultrasparc_truncate_physical(address);
627 *prot = PAGE_EXEC;
628 return 0;
629 }
630
631 if (env->tl == 0) {
632 /* PRIMARY context */
633 context = env->dmmu.mmu_primary_context & 0x1fff;
634 } else {
635 /* NUCLEUS context */
636 context = 0;
637 }
638
639 for (i = 0; i < 64; i++) {
640 /* ctx match, vaddr match, valid? */
641 if (ultrasparc_tag_match(&env->itlb[i],
642 address, context, physical)) {
643 /* access ok? */
644 if (TTE_IS_PRIV(env->itlb[i].tte) && is_user) {
645 /* Fault status register */
646 if (env->immu.sfsr & SFSR_VALID_BIT) {
647 env->immu.sfsr = SFSR_OW_BIT; /* overflow (not read before
648 another fault) */
649 } else {
650 env->immu.sfsr = 0;
651 }
652 if (env->pstate & PS_PRIV) {
653 env->immu.sfsr |= SFSR_PR_BIT;
654 }
655 if (env->tl > 0) {
656 env->immu.sfsr |= SFSR_CT_NUCLEUS;
657 }
658
659 /* FIXME: ASI field in SFSR must be set */
660 env->immu.sfsr |= SFSR_FT_PRIV_BIT | SFSR_VALID_BIT;
661 env->exception_index = TT_TFAULT;
662
663 env->immu.tag_access = (address & ~0x1fffULL) | context;
664
665 DPRINTF_MMU("TFAULT at %" PRIx64 " context %" PRIx64 "\n",
666 address, context);
667
668 return 1;
669 }
670 *prot = PAGE_EXEC;
671 TTE_SET_USED(env->itlb[i].tte);
672 return 0;
673 }
674 }
675
676 DPRINTF_MMU("TMISS at %" PRIx64 " context %" PRIx64 "\n",
677 address, context);
678
679 /* Context is stored in DMMU (dmmuregs[1]) also for IMMU */
680 env->immu.tag_access = (address & ~0x1fffULL) | context;
681 env->exception_index = TT_TMISS;
682 return 1;
683}
684
685static int get_physical_address(CPUState *env, target_phys_addr_t *physical,
686 int *prot, int *access_index,
687 target_ulong address, int rw, int mmu_idx,
688 target_ulong *page_size)
689{
690 /* ??? We treat everything as a small page, then explicitly flush
691 everything when an entry is evicted. */
692 *page_size = TARGET_PAGE_SIZE;
693
694#if defined(DEBUG_MMU)
695 /* safety net to catch wrong softmmu index use from dynamic code */
696 if (env->tl > 0 && mmu_idx != MMU_NUCLEUS_IDX) {
697 DPRINTF_MMU("get_physical_address %s tl=%d mmu_idx=%d"
698 " primary context=%" PRIx64
699 " secondary context=%" PRIx64
700 " address=%" PRIx64
701 "\n",
702 (rw == 2 ? "CODE" : "DATA"),
703 env->tl, mmu_idx,
704 env->dmmu.mmu_primary_context,
705 env->dmmu.mmu_secondary_context,
706 address);
707 }
708#endif
709
710 if (rw == 2) {
711 return get_physical_address_code(env, physical, prot, address,
712 mmu_idx);
713 } else {
714 return get_physical_address_data(env, physical, prot, address, rw,
715 mmu_idx);
716 }
717}
718
719/* Perform address translation */
720int cpu_sparc_handle_mmu_fault(CPUState *env, target_ulong address, int rw,
721 int mmu_idx)
722{
723 target_ulong virt_addr, vaddr;
724 target_phys_addr_t paddr;
725 target_ulong page_size;
726 int error_code = 0, prot, access_index;
727
728 error_code = get_physical_address(env, &paddr, &prot, &access_index,
729 address, rw, mmu_idx, &page_size);
730 if (error_code == 0) {
731 virt_addr = address & TARGET_PAGE_MASK;
732 vaddr = virt_addr + ((address & TARGET_PAGE_MASK) &
733 (TARGET_PAGE_SIZE - 1));
734
735 DPRINTF_MMU("Translate at %" PRIx64 " -> %" PRIx64 ","
736 " vaddr %" PRIx64
737 " mmu_idx=%d"
738 " tl=%d"
739 " primary context=%" PRIx64
740 " secondary context=%" PRIx64
741 "\n",
742 address, paddr, vaddr, mmu_idx, env->tl,
743 env->dmmu.mmu_primary_context,
744 env->dmmu.mmu_secondary_context);
745
746 tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size);
747 return 0;
748 }
749 /* XXX */
750 return 1;
751}
752
753void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUState *env)
754{
755 unsigned int i;
756 const char *mask;
757
758 (*cpu_fprintf)(f, "MMU contexts: Primary: %" PRId64 ", Secondary: %"
759 PRId64 "\n",
760 env->dmmu.mmu_primary_context,
761 env->dmmu.mmu_secondary_context);
762 if ((env->lsu & DMMU_E) == 0) {
763 (*cpu_fprintf)(f, "DMMU disabled\n");
764 } else {
765 (*cpu_fprintf)(f, "DMMU dump\n");
766 for (i = 0; i < 64; i++) {
767 switch (TTE_PGSIZE(env->dtlb[i].tte)) {
768 default:
769 case 0x0:
770 mask = " 8k";
771 break;
772 case 0x1:
773 mask = " 64k";
774 break;
775 case 0x2:
776 mask = "512k";
777 break;
778 case 0x3:
779 mask = " 4M";
780 break;
781 }
782 if (TTE_IS_VALID(env->dtlb[i].tte)) {
783 (*cpu_fprintf)(f, "[%02u] VA: %" PRIx64 ", PA: %llx"
784 ", %s, %s, %s, %s, ctx %" PRId64 " %s\n",
785 i,
786 env->dtlb[i].tag & (uint64_t)~0x1fffULL,
787 TTE_PA(env->dtlb[i].tte),
788 mask,
789 TTE_IS_PRIV(env->dtlb[i].tte) ? "priv" : "user",
790 TTE_IS_W_OK(env->dtlb[i].tte) ? "RW" : "RO",
791 TTE_IS_LOCKED(env->dtlb[i].tte) ?
792 "locked" : "unlocked",
793 env->dtlb[i].tag & (uint64_t)0x1fffULL,
794 TTE_IS_GLOBAL(env->dtlb[i].tte) ?
795 "global" : "local");
796 }
797 }
798 }
799 if ((env->lsu & IMMU_E) == 0) {
800 (*cpu_fprintf)(f, "IMMU disabled\n");
801 } else {
802 (*cpu_fprintf)(f, "IMMU dump\n");
803 for (i = 0; i < 64; i++) {
804 switch (TTE_PGSIZE(env->itlb[i].tte)) {
805 default:
806 case 0x0:
807 mask = " 8k";
808 break;
809 case 0x1:
810 mask = " 64k";
811 break;
812 case 0x2:
813 mask = "512k";
814 break;
815 case 0x3:
816 mask = " 4M";
817 break;
818 }
819 if (TTE_IS_VALID(env->itlb[i].tte)) {
820 (*cpu_fprintf)(f, "[%02u] VA: %" PRIx64 ", PA: %llx"
821 ", %s, %s, %s, ctx %" PRId64 " %s\n",
822 i,
823 env->itlb[i].tag & (uint64_t)~0x1fffULL,
824 TTE_PA(env->itlb[i].tte),
825 mask,
826 TTE_IS_PRIV(env->itlb[i].tte) ? "priv" : "user",
827 TTE_IS_LOCKED(env->itlb[i].tte) ?
828 "locked" : "unlocked",
829 env->itlb[i].tag & (uint64_t)0x1fffULL,
830 TTE_IS_GLOBAL(env->itlb[i].tte) ?
831 "global" : "local");
832 }
833 }
834 }
835}
836
837#endif /* TARGET_SPARC64 */
838
839static int cpu_sparc_get_phys_page(CPUState *env, target_phys_addr_t *phys,
840 target_ulong addr, int rw, int mmu_idx)
841{
842 target_ulong page_size;
843 int prot, access_index;
844
845 return get_physical_address(env, phys, &prot, &access_index, addr, rw,
846 mmu_idx, &page_size);
847}
848
849#if defined(TARGET_SPARC64)
850target_phys_addr_t cpu_get_phys_page_nofault(CPUState *env, target_ulong addr,
851 int mmu_idx)
852{
853 target_phys_addr_t phys_addr;
854
855 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 4, mmu_idx) != 0) {
856 return -1;
857 }
858 return phys_addr;
859}
860#endif
861
862target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
863{
864 target_phys_addr_t phys_addr;
865 int mmu_idx = cpu_mmu_index(env);
866
867 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 2, mmu_idx) != 0) {
868 if (cpu_sparc_get_phys_page(env, &phys_addr, addr, 0, mmu_idx) != 0) {
869 return -1;
870 }
871 }
872 if (cpu_get_physical_page_desc(phys_addr) == IO_MEM_UNASSIGNED) {
873 return -1;
874 }
875 return phys_addr;
876}
877#endif