]> git.proxmox.com Git - qemu.git/blame - target-sparc/op_helper.c
inline cpu_halted into sole caller
[qemu.git] / target-sparc / op_helper.c
CommitLineData
e8af50a3 1#include "exec.h"
eed152bb 2#include "host-utils.h"
1a2fb1c0 3#include "helper.h"
b04d9890 4#include "sysemu.h"
e8af50a3 5
e80cfcfc 6//#define DEBUG_MMU
952a328f 7//#define DEBUG_MXCC
94554550 8//#define DEBUG_UNALIGNED
6c36d3fa 9//#define DEBUG_UNASSIGNED
8543e2cf 10//#define DEBUG_ASI
d81fd722 11//#define DEBUG_PCALL
7e8695ed 12//#define DEBUG_PSTATE
b04d9890 13//#define DEBUG_CACHE_CONTROL
e80cfcfc 14
952a328f 15#ifdef DEBUG_MMU
001faf32
BS
16#define DPRINTF_MMU(fmt, ...) \
17 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
952a328f 18#else
001faf32 19#define DPRINTF_MMU(fmt, ...) do {} while (0)
952a328f
BS
20#endif
21
22#ifdef DEBUG_MXCC
001faf32
BS
23#define DPRINTF_MXCC(fmt, ...) \
24 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
952a328f 25#else
001faf32 26#define DPRINTF_MXCC(fmt, ...) do {} while (0)
952a328f
BS
27#endif
28
8543e2cf 29#ifdef DEBUG_ASI
001faf32
BS
30#define DPRINTF_ASI(fmt, ...) \
31 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
8543e2cf
BS
32#endif
33
7e8695ed
IK
34#ifdef DEBUG_PSTATE
35#define DPRINTF_PSTATE(fmt, ...) \
36 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
37#else
38#define DPRINTF_PSTATE(fmt, ...) do {} while (0)
39#endif
40
b04d9890
FC
41#ifdef DEBUG_CACHE_CONTROL
42#define DPRINTF_CACHE_CONTROL(fmt, ...) \
43 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
44#else
45#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
46#endif
47
2cade6a3
BS
48#ifdef TARGET_SPARC64
49#ifndef TARGET_ABI32
50#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
c2bc0e38 51#else
2cade6a3
BS
52#define AM_CHECK(env1) (1)
53#endif
c2bc0e38
BS
54#endif
55
21ffd181
BS
56#define DT0 (env->dt0)
57#define DT1 (env->dt1)
58#define QT0 (env->qt0)
59#define QT1 (env->qt1)
60
b04d9890
FC
61/* Leon3 cache control */
62
63/* Cache control: emulate the behavior of cache control registers but without
64 any effect on the emulated */
65
66#define CACHE_STATE_MASK 0x3
67#define CACHE_DISABLED 0x0
68#define CACHE_FROZEN 0x1
69#define CACHE_ENABLED 0x3
70
71/* Cache Control register fields */
72
73#define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */
74#define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */
75#define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */
76#define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */
77#define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */
78#define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */
79#define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */
80#define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */
81
3c7b48b7
PB
82#if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
83static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
84 int is_asi, int size);
85#endif
86
9c22a623 87#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
697a77e6
IK
88// Calculates TSB pointer value for fault page size 8k or 64k
89static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
90 uint64_t tag_access_register,
91 int page_size)
92{
93 uint64_t tsb_base = tsb_register & ~0x1fffULL;
6e8e7d4c
IK
94 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95 int tsb_size = tsb_register & 0xf;
697a77e6
IK
96
97 // discard lower 13 bits which hold tag access context
98 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
99
100 // now reorder bits
101 uint64_t tsb_base_mask = ~0x1fffULL;
102 uint64_t va = tag_access_va;
103
104 // move va bits to correct position
105 if (page_size == 8*1024) {
106 va >>= 9;
107 } else if (page_size == 64*1024) {
108 va >>= 12;
109 }
110
111 if (tsb_size) {
112 tsb_base_mask <<= tsb_size;
113 }
114
115 // calculate tsb_base mask and adjust va if split is in use
116 if (tsb_split) {
117 if (page_size == 8*1024) {
118 va &= ~(1ULL << (13 + tsb_size));
119 } else if (page_size == 64*1024) {
120 va |= (1ULL << (13 + tsb_size));
121 }
122 tsb_base_mask <<= 1;
123 }
124
125 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
126}
127
128// Calculates tag target register value by reordering bits
129// in tag access register
130static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
131{
132 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
133}
134
f707726e
IK
135static void replace_tlb_entry(SparcTLBEntry *tlb,
136 uint64_t tlb_tag, uint64_t tlb_tte,
137 CPUState *env1)
6e8e7d4c
IK
138{
139 target_ulong mask, size, va, offset;
140
141 // flush page range if translation is valid
f707726e 142 if (TTE_IS_VALID(tlb->tte)) {
6e8e7d4c
IK
143
144 mask = 0xffffffffffffe000ULL;
145 mask <<= 3 * ((tlb->tte >> 61) & 3);
146 size = ~mask + 1;
147
148 va = tlb->tag & mask;
149
150 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
151 tlb_flush_page(env1, va + offset);
152 }
153 }
154
155 tlb->tag = tlb_tag;
156 tlb->tte = tlb_tte;
157}
158
159static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
f707726e 160 const char* strmmu, CPUState *env1)
6e8e7d4c
IK
161{
162 unsigned int i;
163 target_ulong mask;
299b520c
IK
164 uint64_t context;
165
166 int is_demap_context = (demap_addr >> 6) & 1;
167
168 // demap context
169 switch ((demap_addr >> 4) & 3) {
170 case 0: // primary
171 context = env1->dmmu.mmu_primary_context;
172 break;
173 case 1: // secondary
174 context = env1->dmmu.mmu_secondary_context;
175 break;
176 case 2: // nucleus
177 context = 0;
178 break;
179 case 3: // reserved
180 default:
181 return;
182 }
6e8e7d4c
IK
183
184 for (i = 0; i < 64; i++) {
f707726e 185 if (TTE_IS_VALID(tlb[i].tte)) {
6e8e7d4c 186
299b520c
IK
187 if (is_demap_context) {
188 // will remove non-global entries matching context value
189 if (TTE_IS_GLOBAL(tlb[i].tte) ||
190 !tlb_compare_context(&tlb[i], context)) {
191 continue;
192 }
193 } else {
194 // demap page
195 // will remove any entry matching VA
196 mask = 0xffffffffffffe000ULL;
197 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
198
199 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
200 continue;
201 }
202
203 // entry should be global or matching context value
204 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
205 !tlb_compare_context(&tlb[i], context)) {
206 continue;
207 }
208 }
6e8e7d4c 209
299b520c 210 replace_tlb_entry(&tlb[i], 0, 0, env1);
6e8e7d4c 211#ifdef DEBUG_MMU
299b520c 212 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
d41160a3 213 dump_mmu(stdout, fprintf, env1);
6e8e7d4c 214#endif
6e8e7d4c
IK
215 }
216 }
6e8e7d4c
IK
217}
218
f707726e
IK
219static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
220 uint64_t tlb_tag, uint64_t tlb_tte,
221 const char* strmmu, CPUState *env1)
222{
223 unsigned int i, replace_used;
224
225 // Try replacing invalid entry
226 for (i = 0; i < 64; i++) {
227 if (!TTE_IS_VALID(tlb[i].tte)) {
228 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
229#ifdef DEBUG_MMU
230 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
d41160a3 231 dump_mmu(stdout, fprintf, env1);
f707726e
IK
232#endif
233 return;
234 }
235 }
236
237 // All entries are valid, try replacing unlocked entry
238
239 for (replace_used = 0; replace_used < 2; ++replace_used) {
240
241 // Used entries are not replaced on first pass
242
243 for (i = 0; i < 64; i++) {
244 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
245
246 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
247#ifdef DEBUG_MMU
248 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
249 strmmu, (replace_used?"used":"unused"), i);
d41160a3 250 dump_mmu(stdout, fprintf, env1);
f707726e
IK
251#endif
252 return;
253 }
254 }
255
256 // Now reset used bit and search for unused entries again
257
258 for (i = 0; i < 64; i++) {
259 TTE_SET_UNUSED(tlb[i].tte);
260 }
261 }
262
263#ifdef DEBUG_MMU
264 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
265#endif
266 // error state?
267}
268
697a77e6
IK
269#endif
270
41db525e 271static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
2cade6a3
BS
272{
273#ifdef TARGET_SPARC64
274 if (AM_CHECK(env1))
41db525e 275 addr &= 0xffffffffULL;
2cade6a3 276#endif
41db525e 277 return addr;
2cade6a3
BS
278}
279
1295001c
IK
280/* returns true if access using this ASI is to have address translated by MMU
281 otherwise access is to raw physical address */
282static inline int is_translating_asi(int asi)
283{
284#ifdef TARGET_SPARC64
285 /* Ultrasparc IIi translating asi
286 - note this list is defined by cpu implementation
287 */
288 switch (asi) {
289 case 0x04 ... 0x11:
290 case 0x18 ... 0x19:
291 case 0x24 ... 0x2C:
292 case 0x70 ... 0x73:
293 case 0x78 ... 0x79:
294 case 0x80 ... 0xFF:
295 return 1;
296
297 default:
298 return 0;
299 }
300#else
301 /* TODO: check sparc32 bits */
302 return 0;
303#endif
304}
305
306static inline target_ulong asi_address_mask(CPUState *env1,
307 int asi, target_ulong addr)
308{
309 if (is_translating_asi(asi)) {
310 return address_mask(env, addr);
311 } else {
312 return addr;
313 }
314}
315
f4a5a5ba 316static void raise_exception(int tt)
9d893301
FB
317{
318 env->exception_index = tt;
319 cpu_loop_exit();
3b46e624 320}
9d893301 321
a7812ae4
PB
322void HELPER(raise_exception)(int tt)
323{
324 raise_exception(tt);
325}
326
b04d9890
FC
327void helper_shutdown(void)
328{
329#if !defined(CONFIG_USER_ONLY)
330 qemu_system_shutdown_request();
331#endif
332}
333
2b29924f
BS
334void helper_check_align(target_ulong addr, uint32_t align)
335{
c2bc0e38
BS
336 if (addr & align) {
337#ifdef DEBUG_UNALIGNED
338 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
339 "\n", addr, env->pc);
340#endif
2b29924f 341 raise_exception(TT_UNALIGNED);
c2bc0e38 342 }
2b29924f
BS
343}
344
44e7757c
BS
345#define F_HELPER(name, p) void helper_f##name##p(void)
346
44e7757c 347#define F_BINOP(name) \
714547bb 348 float32 helper_f ## name ## s (float32 src1, float32 src2) \
44e7757c 349 { \
714547bb 350 return float32_ ## name (src1, src2, &env->fp_status); \
44e7757c
BS
351 } \
352 F_HELPER(name, d) \
353 { \
354 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
4e14008f
BS
355 } \
356 F_HELPER(name, q) \
357 { \
358 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
44e7757c 359 }
44e7757c
BS
360
361F_BINOP(add);
362F_BINOP(sub);
363F_BINOP(mul);
364F_BINOP(div);
365#undef F_BINOP
366
d84763bc 367void helper_fsmuld(float32 src1, float32 src2)
1a2fb1c0 368{
d84763bc
BS
369 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
370 float32_to_float64(src2, &env->fp_status),
44e7757c
BS
371 &env->fp_status);
372}
1a2fb1c0 373
4e14008f
BS
374void helper_fdmulq(void)
375{
376 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
377 float64_to_float128(DT1, &env->fp_status),
378 &env->fp_status);
379}
4e14008f 380
714547bb 381float32 helper_fnegs(float32 src)
44e7757c 382{
714547bb 383 return float32_chs(src);
417454b0
BS
384}
385
44e7757c
BS
386#ifdef TARGET_SPARC64
387F_HELPER(neg, d)
7e8c2b6c 388{
44e7757c 389 DT0 = float64_chs(DT1);
7e8c2b6c 390}
4e14008f 391
4e14008f
BS
392F_HELPER(neg, q)
393{
394 QT0 = float128_chs(QT1);
395}
396#endif
44e7757c
BS
397
398/* Integer to float conversion. */
714547bb 399float32 helper_fitos(int32_t src)
a0c4cb4a 400{
714547bb 401 return int32_to_float32(src, &env->fp_status);
a0c4cb4a
FB
402}
403
d84763bc 404void helper_fitod(int32_t src)
a0c4cb4a 405{
d84763bc 406 DT0 = int32_to_float64(src, &env->fp_status);
a0c4cb4a 407}
9c2b428e 408
c5d04e99 409void helper_fitoq(int32_t src)
4e14008f 410{
c5d04e99 411 QT0 = int32_to_float128(src, &env->fp_status);
4e14008f 412}
4e14008f 413
1e64e78d 414#ifdef TARGET_SPARC64
d84763bc 415float32 helper_fxtos(void)
1e64e78d 416{
d84763bc 417 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
1e64e78d
BS
418}
419
44e7757c 420F_HELPER(xto, d)
1e64e78d 421{
1e64e78d 422 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
1e64e78d 423}
64a88d5d 424
4e14008f
BS
425F_HELPER(xto, q)
426{
427 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
428}
429#endif
44e7757c
BS
430#undef F_HELPER
431
432/* floating point conversion */
d84763bc 433float32 helper_fdtos(void)
44e7757c 434{
d84763bc 435 return float64_to_float32(DT1, &env->fp_status);
44e7757c
BS
436}
437
d84763bc 438void helper_fstod(float32 src)
44e7757c 439{
d84763bc 440 DT0 = float32_to_float64(src, &env->fp_status);
44e7757c 441}
9c2b428e 442
c5d04e99 443float32 helper_fqtos(void)
4e14008f 444{
c5d04e99 445 return float128_to_float32(QT1, &env->fp_status);
4e14008f
BS
446}
447
c5d04e99 448void helper_fstoq(float32 src)
4e14008f 449{
c5d04e99 450 QT0 = float32_to_float128(src, &env->fp_status);
4e14008f
BS
451}
452
453void helper_fqtod(void)
454{
455 DT0 = float128_to_float64(QT1, &env->fp_status);
456}
457
458void helper_fdtoq(void)
459{
460 QT0 = float64_to_float128(DT1, &env->fp_status);
461}
4e14008f 462
44e7757c 463/* Float to integer conversion. */
714547bb 464int32_t helper_fstoi(float32 src)
44e7757c 465{
714547bb 466 return float32_to_int32_round_to_zero(src, &env->fp_status);
44e7757c
BS
467}
468
d84763bc 469int32_t helper_fdtoi(void)
44e7757c 470{
d84763bc 471 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
44e7757c
BS
472}
473
c5d04e99 474int32_t helper_fqtoi(void)
4e14008f 475{
c5d04e99 476 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
4e14008f 477}
4e14008f 478
44e7757c 479#ifdef TARGET_SPARC64
d84763bc 480void helper_fstox(float32 src)
44e7757c 481{
d84763bc 482 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
44e7757c
BS
483}
484
485void helper_fdtox(void)
486{
487 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
488}
489
4e14008f
BS
490void helper_fqtox(void)
491{
492 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
493}
4e14008f 494
44e7757c
BS
495void helper_faligndata(void)
496{
497 uint64_t tmp;
498
499 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
06057e6f
BS
500 /* on many architectures a shift of 64 does nothing */
501 if ((env->gsr & 7) != 0) {
502 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
503 }
44e7757c
BS
504 *((uint64_t *)&DT0) = tmp;
505}
506
e2542fe2 507#ifdef HOST_WORDS_BIGENDIAN
44e7757c
BS
508#define VIS_B64(n) b[7 - (n)]
509#define VIS_W64(n) w[3 - (n)]
510#define VIS_SW64(n) sw[3 - (n)]
511#define VIS_L64(n) l[1 - (n)]
512#define VIS_B32(n) b[3 - (n)]
513#define VIS_W32(n) w[1 - (n)]
514#else
515#define VIS_B64(n) b[n]
516#define VIS_W64(n) w[n]
517#define VIS_SW64(n) sw[n]
518#define VIS_L64(n) l[n]
519#define VIS_B32(n) b[n]
520#define VIS_W32(n) w[n]
521#endif
522
523typedef union {
524 uint8_t b[8];
525 uint16_t w[4];
526 int16_t sw[4];
527 uint32_t l[2];
528 float64 d;
529} vis64;
530
531typedef union {
532 uint8_t b[4];
533 uint16_t w[2];
534 uint32_t l;
535 float32 f;
536} vis32;
537
538void helper_fpmerge(void)
539{
540 vis64 s, d;
541
542 s.d = DT0;
543 d.d = DT1;
544
545 // Reverse calculation order to handle overlap
546 d.VIS_B64(7) = s.VIS_B64(3);
547 d.VIS_B64(6) = d.VIS_B64(3);
548 d.VIS_B64(5) = s.VIS_B64(2);
549 d.VIS_B64(4) = d.VIS_B64(2);
550 d.VIS_B64(3) = s.VIS_B64(1);
551 d.VIS_B64(2) = d.VIS_B64(1);
552 d.VIS_B64(1) = s.VIS_B64(0);
553 //d.VIS_B64(0) = d.VIS_B64(0);
554
555 DT0 = d.d;
556}
557
558void helper_fmul8x16(void)
559{
560 vis64 s, d;
561 uint32_t tmp;
562
563 s.d = DT0;
564 d.d = DT1;
565
566#define PMUL(r) \
567 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
568 if ((tmp & 0xff) > 0x7f) \
569 tmp += 0x100; \
570 d.VIS_W64(r) = tmp >> 8;
571
572 PMUL(0);
573 PMUL(1);
574 PMUL(2);
575 PMUL(3);
576#undef PMUL
577
578 DT0 = d.d;
579}
580
581void helper_fmul8x16al(void)
582{
583 vis64 s, d;
584 uint32_t tmp;
585
586 s.d = DT0;
587 d.d = DT1;
588
589#define PMUL(r) \
590 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
591 if ((tmp & 0xff) > 0x7f) \
592 tmp += 0x100; \
593 d.VIS_W64(r) = tmp >> 8;
594
595 PMUL(0);
596 PMUL(1);
597 PMUL(2);
598 PMUL(3);
599#undef PMUL
600
601 DT0 = d.d;
602}
603
604void helper_fmul8x16au(void)
605{
606 vis64 s, d;
607 uint32_t tmp;
608
609 s.d = DT0;
610 d.d = DT1;
611
612#define PMUL(r) \
613 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
614 if ((tmp & 0xff) > 0x7f) \
615 tmp += 0x100; \
616 d.VIS_W64(r) = tmp >> 8;
617
618 PMUL(0);
619 PMUL(1);
620 PMUL(2);
621 PMUL(3);
622#undef PMUL
623
624 DT0 = d.d;
625}
626
627void helper_fmul8sux16(void)
628{
629 vis64 s, d;
630 uint32_t tmp;
631
632 s.d = DT0;
633 d.d = DT1;
634
635#define PMUL(r) \
636 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
637 if ((tmp & 0xff) > 0x7f) \
638 tmp += 0x100; \
639 d.VIS_W64(r) = tmp >> 8;
640
641 PMUL(0);
642 PMUL(1);
643 PMUL(2);
644 PMUL(3);
645#undef PMUL
646
647 DT0 = d.d;
648}
649
650void helper_fmul8ulx16(void)
651{
652 vis64 s, d;
653 uint32_t tmp;
654
655 s.d = DT0;
656 d.d = DT1;
657
658#define PMUL(r) \
659 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
660 if ((tmp & 0xff) > 0x7f) \
661 tmp += 0x100; \
662 d.VIS_W64(r) = tmp >> 8;
663
664 PMUL(0);
665 PMUL(1);
666 PMUL(2);
667 PMUL(3);
668#undef PMUL
669
670 DT0 = d.d;
671}
672
673void helper_fmuld8sux16(void)
674{
675 vis64 s, d;
676 uint32_t tmp;
677
678 s.d = DT0;
679 d.d = DT1;
680
681#define PMUL(r) \
682 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
683 if ((tmp & 0xff) > 0x7f) \
684 tmp += 0x100; \
685 d.VIS_L64(r) = tmp;
686
687 // Reverse calculation order to handle overlap
688 PMUL(1);
689 PMUL(0);
690#undef PMUL
691
692 DT0 = d.d;
693}
694
695void helper_fmuld8ulx16(void)
696{
697 vis64 s, d;
698 uint32_t tmp;
699
700 s.d = DT0;
701 d.d = DT1;
702
703#define PMUL(r) \
704 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
705 if ((tmp & 0xff) > 0x7f) \
706 tmp += 0x100; \
707 d.VIS_L64(r) = tmp;
708
709 // Reverse calculation order to handle overlap
710 PMUL(1);
711 PMUL(0);
712#undef PMUL
713
714 DT0 = d.d;
715}
716
717void helper_fexpand(void)
718{
719 vis32 s;
720 vis64 d;
721
722 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
723 d.d = DT1;
c55bda30
BS
724 d.VIS_W64(0) = s.VIS_B32(0) << 4;
725 d.VIS_W64(1) = s.VIS_B32(1) << 4;
726 d.VIS_W64(2) = s.VIS_B32(2) << 4;
727 d.VIS_W64(3) = s.VIS_B32(3) << 4;
44e7757c
BS
728
729 DT0 = d.d;
730}
731
732#define VIS_HELPER(name, F) \
733 void name##16(void) \
734 { \
735 vis64 s, d; \
736 \
737 s.d = DT0; \
738 d.d = DT1; \
739 \
740 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
741 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
742 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
743 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
744 \
745 DT0 = d.d; \
746 } \
747 \
1d01299d 748 uint32_t name##16s(uint32_t src1, uint32_t src2) \
44e7757c
BS
749 { \
750 vis32 s, d; \
751 \
1d01299d
BS
752 s.l = src1; \
753 d.l = src2; \
44e7757c
BS
754 \
755 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
756 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
757 \
1d01299d 758 return d.l; \
44e7757c
BS
759 } \
760 \
761 void name##32(void) \
762 { \
763 vis64 s, d; \
764 \
765 s.d = DT0; \
766 d.d = DT1; \
767 \
768 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
769 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
770 \
771 DT0 = d.d; \
772 } \
773 \
1d01299d 774 uint32_t name##32s(uint32_t src1, uint32_t src2) \
44e7757c
BS
775 { \
776 vis32 s, d; \
777 \
1d01299d
BS
778 s.l = src1; \
779 d.l = src2; \
44e7757c
BS
780 \
781 d.l = F(d.l, s.l); \
782 \
1d01299d 783 return d.l; \
44e7757c
BS
784 }
785
786#define FADD(a, b) ((a) + (b))
787#define FSUB(a, b) ((a) - (b))
788VIS_HELPER(helper_fpadd, FADD)
789VIS_HELPER(helper_fpsub, FSUB)
790
791#define VIS_CMPHELPER(name, F) \
792 void name##16(void) \
793 { \
794 vis64 s, d; \
795 \
796 s.d = DT0; \
797 d.d = DT1; \
798 \
799 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
800 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
801 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
802 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
803 \
804 DT0 = d.d; \
805 } \
806 \
807 void name##32(void) \
808 { \
809 vis64 s, d; \
810 \
811 s.d = DT0; \
812 d.d = DT1; \
813 \
814 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
815 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
816 \
817 DT0 = d.d; \
818 }
819
820#define FCMPGT(a, b) ((a) > (b))
821#define FCMPEQ(a, b) ((a) == (b))
822#define FCMPLE(a, b) ((a) <= (b))
823#define FCMPNE(a, b) ((a) != (b))
824
825VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
826VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
827VIS_CMPHELPER(helper_fcmple, FCMPLE)
828VIS_CMPHELPER(helper_fcmpne, FCMPNE)
829#endif
830
831void helper_check_ieee_exceptions(void)
832{
833 target_ulong status;
834
835 status = get_float_exception_flags(&env->fp_status);
836 if (status) {
837 /* Copy IEEE 754 flags into FSR */
838 if (status & float_flag_invalid)
839 env->fsr |= FSR_NVC;
840 if (status & float_flag_overflow)
841 env->fsr |= FSR_OFC;
842 if (status & float_flag_underflow)
843 env->fsr |= FSR_UFC;
844 if (status & float_flag_divbyzero)
845 env->fsr |= FSR_DZC;
846 if (status & float_flag_inexact)
847 env->fsr |= FSR_NXC;
848
849 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
850 /* Unmasked exception, generate a trap */
851 env->fsr |= FSR_FTT_IEEE_EXCP;
852 raise_exception(TT_FP_EXCP);
853 } else {
854 /* Accumulate exceptions */
855 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
856 }
857 }
858}
859
860void helper_clear_float_exceptions(void)
861{
862 set_float_exception_flags(0, &env->fp_status);
863}
864
714547bb 865float32 helper_fabss(float32 src)
e8af50a3 866{
714547bb 867 return float32_abs(src);
e8af50a3
FB
868}
869
3475187d 870#ifdef TARGET_SPARC64
7e8c2b6c 871void helper_fabsd(void)
3475187d
FB
872{
873 DT0 = float64_abs(DT1);
874}
4e14008f 875
4e14008f
BS
876void helper_fabsq(void)
877{
878 QT0 = float128_abs(QT1);
879}
880#endif
3475187d 881
714547bb 882float32 helper_fsqrts(float32 src)
e8af50a3 883{
714547bb 884 return float32_sqrt(src, &env->fp_status);
e8af50a3
FB
885}
886
7e8c2b6c 887void helper_fsqrtd(void)
e8af50a3 888{
7a0e1f41 889 DT0 = float64_sqrt(DT1, &env->fp_status);
e8af50a3
FB
890}
891
4e14008f
BS
892void helper_fsqrtq(void)
893{
894 QT0 = float128_sqrt(QT1, &env->fp_status);
895}
4e14008f 896
1b5f56b1 897#define GEN_FCMP(name, size, reg1, reg2, FS, E) \
7e8c2b6c 898 void glue(helper_, name) (void) \
65ce8c2f 899 { \
1b5f56b1
BS
900 env->fsr &= FSR_FTT_NMASK; \
901 if (E && (glue(size, _is_any_nan)(reg1) || \
902 glue(size, _is_any_nan)(reg2)) && \
903 (env->fsr & FSR_NVM)) { \
904 env->fsr |= FSR_NVC; \
905 env->fsr |= FSR_FTT_IEEE_EXCP; \
906 raise_exception(TT_FP_EXCP); \
907 } \
65ce8c2f
FB
908 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
909 case float_relation_unordered: \
1b5f56b1 910 if ((env->fsr & FSR_NVM)) { \
417454b0
BS
911 env->fsr |= FSR_NVC; \
912 env->fsr |= FSR_FTT_IEEE_EXCP; \
65ce8c2f
FB
913 raise_exception(TT_FP_EXCP); \
914 } else { \
1b5f56b1
BS
915 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
916 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
65ce8c2f
FB
917 env->fsr |= FSR_NVA; \
918 } \
919 break; \
920 case float_relation_less: \
1b5f56b1
BS
921 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
922 env->fsr |= FSR_FCC0 << FS; \
65ce8c2f
FB
923 break; \
924 case float_relation_greater: \
1b5f56b1
BS
925 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
926 env->fsr |= FSR_FCC1 << FS; \
65ce8c2f
FB
927 break; \
928 default: \
1b5f56b1 929 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
65ce8c2f
FB
930 break; \
931 } \
e8af50a3 932 }
1b5f56b1 933#define GEN_FCMPS(name, size, FS, E) \
714547bb
BS
934 void glue(helper_, name)(float32 src1, float32 src2) \
935 { \
1b5f56b1
BS
936 env->fsr &= FSR_FTT_NMASK; \
937 if (E && (glue(size, _is_any_nan)(src1) || \
938 glue(size, _is_any_nan)(src2)) && \
939 (env->fsr & FSR_NVM)) { \
940 env->fsr |= FSR_NVC; \
941 env->fsr |= FSR_FTT_IEEE_EXCP; \
942 raise_exception(TT_FP_EXCP); \
943 } \
714547bb
BS
944 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
945 case float_relation_unordered: \
1b5f56b1 946 if ((env->fsr & FSR_NVM)) { \
714547bb
BS
947 env->fsr |= FSR_NVC; \
948 env->fsr |= FSR_FTT_IEEE_EXCP; \
949 raise_exception(TT_FP_EXCP); \
950 } else { \
1b5f56b1
BS
951 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
952 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
714547bb
BS
953 env->fsr |= FSR_NVA; \
954 } \
955 break; \
956 case float_relation_less: \
1b5f56b1
BS
957 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
958 env->fsr |= FSR_FCC0 << FS; \
714547bb
BS
959 break; \
960 case float_relation_greater: \
1b5f56b1
BS
961 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
962 env->fsr |= FSR_FCC1 << FS; \
714547bb
BS
963 break; \
964 default: \
1b5f56b1 965 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
714547bb
BS
966 break; \
967 } \
714547bb 968 }
e8af50a3 969
714547bb 970GEN_FCMPS(fcmps, float32, 0, 0);
417454b0
BS
971GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
972
714547bb 973GEN_FCMPS(fcmpes, float32, 0, 1);
417454b0 974GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
3475187d 975
4e14008f
BS
976GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
977GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
4e14008f 978
8393617c
BS
979static uint32_t compute_all_flags(void)
980{
981 return env->psr & PSR_ICC;
982}
983
984static uint32_t compute_C_flags(void)
985{
986 return env->psr & PSR_CARRY;
987}
988
5a4bb580 989static inline uint32_t get_NZ_icc(int32_t dst)
bdf9f35d
BS
990{
991 uint32_t ret = 0;
992
5a4bb580
RH
993 if (dst == 0) {
994 ret = PSR_ZERO;
995 } else if (dst < 0) {
996 ret = PSR_NEG;
997 }
bdf9f35d
BS
998 return ret;
999}
1000
8393617c
BS
1001#ifdef TARGET_SPARC64
1002static uint32_t compute_all_flags_xcc(void)
1003{
1004 return env->xcc & PSR_ICC;
1005}
1006
1007static uint32_t compute_C_flags_xcc(void)
1008{
1009 return env->xcc & PSR_CARRY;
1010}
1011
5a4bb580 1012static inline uint32_t get_NZ_xcc(target_long dst)
bdf9f35d
BS
1013{
1014 uint32_t ret = 0;
1015
5a4bb580
RH
1016 if (!dst) {
1017 ret = PSR_ZERO;
1018 } else if (dst < 0) {
1019 ret = PSR_NEG;
1020 }
bdf9f35d
BS
1021 return ret;
1022}
1023#endif
1024
6c78ea32
BS
1025static inline uint32_t get_V_div_icc(target_ulong src2)
1026{
1027 uint32_t ret = 0;
1028
5a4bb580
RH
1029 if (src2 != 0) {
1030 ret = PSR_OVF;
1031 }
6c78ea32
BS
1032 return ret;
1033}
1034
1035static uint32_t compute_all_div(void)
1036{
1037 uint32_t ret;
1038
1039 ret = get_NZ_icc(CC_DST);
1040 ret |= get_V_div_icc(CC_SRC2);
1041 return ret;
1042}
1043
1044static uint32_t compute_C_div(void)
1045{
1046 return 0;
1047}
1048
5a4bb580 1049static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
bdf9f35d
BS
1050{
1051 uint32_t ret = 0;
1052
5a4bb580
RH
1053 if (dst < src1) {
1054 ret = PSR_CARRY;
1055 }
bdf9f35d
BS
1056 return ret;
1057}
1058
5a4bb580
RH
1059static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
1060 uint32_t src2)
bdf9f35d
BS
1061{
1062 uint32_t ret = 0;
1063
5a4bb580
RH
1064 if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
1065 ret = PSR_CARRY;
1066 }
1067 return ret;
1068}
1069
1070static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
1071 uint32_t src2)
1072{
1073 uint32_t ret = 0;
1074
1075 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
1076 ret = PSR_OVF;
1077 }
bdf9f35d
BS
1078 return ret;
1079}
1080
bdf9f35d
BS
1081#ifdef TARGET_SPARC64
1082static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
1083{
1084 uint32_t ret = 0;
1085
5a4bb580
RH
1086 if (dst < src1) {
1087 ret = PSR_CARRY;
1088 }
1089 return ret;
1090}
1091
1092static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
1093 target_ulong src2)
1094{
1095 uint32_t ret = 0;
1096
1097 if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
1098 ret = PSR_CARRY;
1099 }
bdf9f35d
BS
1100 return ret;
1101}
1102
1103static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
1104 target_ulong src2)
1105{
1106 uint32_t ret = 0;
1107
5a4bb580
RH
1108 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
1109 ret = PSR_OVF;
1110 }
bdf9f35d
BS
1111 return ret;
1112}
1113
1114static uint32_t compute_all_add_xcc(void)
1115{
1116 uint32_t ret;
1117
1118 ret = get_NZ_xcc(CC_DST);
1119 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1120 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1121 return ret;
1122}
1123
1124static uint32_t compute_C_add_xcc(void)
1125{
1126 return get_C_add_xcc(CC_DST, CC_SRC);
1127}
8393617c
BS
1128#endif
1129
3e6ba503 1130static uint32_t compute_all_add(void)
789c91ef
BS
1131{
1132 uint32_t ret;
1133
1134 ret = get_NZ_icc(CC_DST);
5a4bb580 1135 ret |= get_C_add_icc(CC_DST, CC_SRC);
789c91ef
BS
1136 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1137 return ret;
1138}
1139
3e6ba503 1140static uint32_t compute_C_add(void)
789c91ef 1141{
5a4bb580 1142 return get_C_add_icc(CC_DST, CC_SRC);
789c91ef
BS
1143}
1144
1145#ifdef TARGET_SPARC64
1146static uint32_t compute_all_addx_xcc(void)
1147{
1148 uint32_t ret;
1149
1150 ret = get_NZ_xcc(CC_DST);
5a4bb580 1151 ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
789c91ef
BS
1152 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1153 return ret;
1154}
1155
1156static uint32_t compute_C_addx_xcc(void)
1157{
1158 uint32_t ret;
1159
5a4bb580 1160 ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
789c91ef
BS
1161 return ret;
1162}
1163#endif
1164
5a4bb580
RH
1165static uint32_t compute_all_addx(void)
1166{
1167 uint32_t ret;
1168
1169 ret = get_NZ_icc(CC_DST);
1170 ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1171 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1172 return ret;
1173}
1174
1175static uint32_t compute_C_addx(void)
1176{
1177 uint32_t ret;
1178
1179 ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1180 return ret;
1181}
1182
3b2d1e92
BS
1183static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1184{
1185 uint32_t ret = 0;
1186
5a4bb580
RH
1187 if ((src1 | src2) & 0x3) {
1188 ret = PSR_OVF;
1189 }
3b2d1e92
BS
1190 return ret;
1191}
1192
1193static uint32_t compute_all_tadd(void)
1194{
1195 uint32_t ret;
1196
1197 ret = get_NZ_icc(CC_DST);
5a4bb580 1198 ret |= get_C_add_icc(CC_DST, CC_SRC);
3b2d1e92
BS
1199 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1200 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1201 return ret;
1202}
1203
3b2d1e92
BS
1204static uint32_t compute_all_taddtv(void)
1205{
1206 uint32_t ret;
1207
1208 ret = get_NZ_icc(CC_DST);
5a4bb580 1209 ret |= get_C_add_icc(CC_DST, CC_SRC);
3b2d1e92
BS
1210 return ret;
1211}
1212
5a4bb580 1213static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
3b2d1e92 1214{
5a4bb580
RH
1215 uint32_t ret = 0;
1216
1217 if (src1 < src2) {
1218 ret = PSR_CARRY;
1219 }
1220 return ret;
3b2d1e92
BS
1221}
1222
5a4bb580
RH
1223static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
1224 uint32_t src2)
d4b0d468
BS
1225{
1226 uint32_t ret = 0;
1227
5a4bb580
RH
1228 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
1229 ret = PSR_CARRY;
1230 }
d4b0d468
BS
1231 return ret;
1232}
1233
5a4bb580
RH
1234static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
1235 uint32_t src2)
d4b0d468
BS
1236{
1237 uint32_t ret = 0;
1238
5a4bb580
RH
1239 if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
1240 ret = PSR_OVF;
1241 }
d4b0d468
BS
1242 return ret;
1243}
1244
d4b0d468
BS
1245
1246#ifdef TARGET_SPARC64
1247static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1248{
1249 uint32_t ret = 0;
1250
5a4bb580
RH
1251 if (src1 < src2) {
1252 ret = PSR_CARRY;
1253 }
1254 return ret;
1255}
1256
1257static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
1258 target_ulong src2)
1259{
1260 uint32_t ret = 0;
1261
1262 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
1263 ret = PSR_CARRY;
1264 }
d4b0d468
BS
1265 return ret;
1266}
1267
1268static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1269 target_ulong src2)
1270{
1271 uint32_t ret = 0;
1272
5a4bb580
RH
1273 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
1274 ret = PSR_OVF;
1275 }
d4b0d468
BS
1276 return ret;
1277}
1278
1279static uint32_t compute_all_sub_xcc(void)
1280{
1281 uint32_t ret;
1282
1283 ret = get_NZ_xcc(CC_DST);
1284 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1285 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1286 return ret;
1287}
1288
1289static uint32_t compute_C_sub_xcc(void)
1290{
1291 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1292}
1293#endif
1294
3e6ba503 1295static uint32_t compute_all_sub(void)
2ca1d92b
BS
1296{
1297 uint32_t ret;
1298
1299 ret = get_NZ_icc(CC_DST);
5a4bb580 1300 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
2ca1d92b
BS
1301 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1302 return ret;
1303}
1304
3e6ba503 1305static uint32_t compute_C_sub(void)
2ca1d92b 1306{
5a4bb580 1307 return get_C_sub_icc(CC_SRC, CC_SRC2);
2ca1d92b
BS
1308}
1309
1310#ifdef TARGET_SPARC64
1311static uint32_t compute_all_subx_xcc(void)
1312{
1313 uint32_t ret;
1314
1315 ret = get_NZ_xcc(CC_DST);
5a4bb580 1316 ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
2ca1d92b
BS
1317 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1318 return ret;
1319}
1320
1321static uint32_t compute_C_subx_xcc(void)
1322{
1323 uint32_t ret;
1324
5a4bb580 1325 ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
2ca1d92b
BS
1326 return ret;
1327}
1328#endif
1329
5a4bb580 1330static uint32_t compute_all_subx(void)
3b2d1e92
BS
1331{
1332 uint32_t ret;
1333
1334 ret = get_NZ_icc(CC_DST);
5a4bb580 1335 ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
3b2d1e92 1336 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
3b2d1e92
BS
1337 return ret;
1338}
1339
5a4bb580 1340static uint32_t compute_C_subx(void)
3b2d1e92 1341{
5a4bb580
RH
1342 uint32_t ret;
1343
1344 ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1345 return ret;
3b2d1e92
BS
1346}
1347
5a4bb580 1348static uint32_t compute_all_tsub(void)
3b2d1e92
BS
1349{
1350 uint32_t ret;
1351
1352 ret = get_NZ_icc(CC_DST);
5a4bb580
RH
1353 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1354 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1355 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
3b2d1e92
BS
1356 return ret;
1357}
1358
5a4bb580 1359static uint32_t compute_all_tsubtv(void)
3b2d1e92 1360{
5a4bb580
RH
1361 uint32_t ret;
1362
1363 ret = get_NZ_icc(CC_DST);
1364 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1365 return ret;
3b2d1e92
BS
1366}
1367
38482a77
BS
1368static uint32_t compute_all_logic(void)
1369{
1370 return get_NZ_icc(CC_DST);
1371}
1372
1373static uint32_t compute_C_logic(void)
1374{
1375 return 0;
1376}
1377
1378#ifdef TARGET_SPARC64
1379static uint32_t compute_all_logic_xcc(void)
1380{
1381 return get_NZ_xcc(CC_DST);
1382}
1383#endif
1384
8393617c
BS
1385typedef struct CCTable {
1386 uint32_t (*compute_all)(void); /* return all the flags */
1387 uint32_t (*compute_c)(void); /* return the C flag */
1388} CCTable;
1389
1390static const CCTable icc_table[CC_OP_NB] = {
1391 /* CC_OP_DYNAMIC should never happen */
1392 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
6c78ea32 1393 [CC_OP_DIV] = { compute_all_div, compute_C_div },
bdf9f35d 1394 [CC_OP_ADD] = { compute_all_add, compute_C_add },
5a4bb580
RH
1395 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1396 [CC_OP_TADD] = { compute_all_tadd, compute_C_add },
1397 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
d4b0d468 1398 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
5a4bb580
RH
1399 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1400 [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
1401 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
38482a77 1402 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
8393617c
BS
1403};
1404
1405#ifdef TARGET_SPARC64
1406static const CCTable xcc_table[CC_OP_NB] = {
1407 /* CC_OP_DYNAMIC should never happen */
1408 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
6c78ea32 1409 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
bdf9f35d 1410 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
789c91ef 1411 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
3b2d1e92
BS
1412 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1413 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
d4b0d468 1414 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
2ca1d92b 1415 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
3b2d1e92
BS
1416 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1417 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
38482a77 1418 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
8393617c
BS
1419};
1420#endif
1421
1422void helper_compute_psr(void)
1423{
1424 uint32_t new_psr;
1425
1426 new_psr = icc_table[CC_OP].compute_all();
1427 env->psr = new_psr;
1428#ifdef TARGET_SPARC64
1429 new_psr = xcc_table[CC_OP].compute_all();
1430 env->xcc = new_psr;
1431#endif
1432 CC_OP = CC_OP_FLAGS;
1433}
1434
70c48285 1435uint32_t helper_compute_C_icc(void)
8393617c
BS
1436{
1437 uint32_t ret;
1438
1439 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1440 return ret;
1441}
1442
5a834bb4
BS
1443static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1444{
1445 dst[0] = src[0];
1446 dst[1] = src[1];
1447 dst[2] = src[2];
1448 dst[3] = src[3];
1449 dst[4] = src[4];
1450 dst[5] = src[5];
1451 dst[6] = src[6];
1452 dst[7] = src[7];
1453}
1454
1455static void set_cwp(int new_cwp)
1456{
1457 /* put the modified wrap registers at their proper location */
1458 if (env->cwp == env->nwindows - 1) {
1459 memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1460 }
1461 env->cwp = new_cwp;
1462
1463 /* put the wrap registers at their temporary location */
1464 if (new_cwp == env->nwindows - 1) {
1465 memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1466 }
1467 env->regwptr = env->regbase + (new_cwp * 16);
1468}
1469
1470void cpu_set_cwp(CPUState *env1, int new_cwp)
1471{
1472 CPUState *saved_env;
1473
1474 saved_env = env;
1475 env = env1;
1476 set_cwp(new_cwp);
1477 env = saved_env;
1478}
1479
1480static target_ulong get_psr(void)
1481{
1482 helper_compute_psr();
1483
1484#if !defined (TARGET_SPARC64)
1485 return env->version | (env->psr & PSR_ICC) |
1486 (env->psref? PSR_EF : 0) |
1487 (env->psrpil << 8) |
1488 (env->psrs? PSR_S : 0) |
1489 (env->psrps? PSR_PS : 0) |
1490 (env->psret? PSR_ET : 0) | env->cwp;
1491#else
2aae2b8e 1492 return env->psr & PSR_ICC;
5a834bb4
BS
1493#endif
1494}
1495
1496target_ulong cpu_get_psr(CPUState *env1)
1497{
1498 CPUState *saved_env;
1499 target_ulong ret;
1500
1501 saved_env = env;
1502 env = env1;
1503 ret = get_psr();
1504 env = saved_env;
1505 return ret;
1506}
1507
1508static void put_psr(target_ulong val)
1509{
1510 env->psr = val & PSR_ICC;
2aae2b8e 1511#if !defined (TARGET_SPARC64)
5a834bb4
BS
1512 env->psref = (val & PSR_EF)? 1 : 0;
1513 env->psrpil = (val & PSR_PIL) >> 8;
2aae2b8e 1514#endif
5a834bb4
BS
1515#if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1516 cpu_check_irqs(env);
1517#endif
2aae2b8e 1518#if !defined (TARGET_SPARC64)
5a834bb4
BS
1519 env->psrs = (val & PSR_S)? 1 : 0;
1520 env->psrps = (val & PSR_PS)? 1 : 0;
5a834bb4 1521 env->psret = (val & PSR_ET)? 1 : 0;
5a834bb4 1522 set_cwp(val & PSR_CWP);
2aae2b8e 1523#endif
5a834bb4
BS
1524 env->cc_op = CC_OP_FLAGS;
1525}
1526
1527void cpu_put_psr(CPUState *env1, target_ulong val)
1528{
1529 CPUState *saved_env;
1530
1531 saved_env = env;
1532 env = env1;
1533 put_psr(val);
1534 env = saved_env;
1535}
1536
1537static int cwp_inc(int cwp)
1538{
1539 if (unlikely(cwp >= env->nwindows)) {
1540 cwp -= env->nwindows;
1541 }
1542 return cwp;
1543}
1544
1545int cpu_cwp_inc(CPUState *env1, int cwp)
1546{
1547 CPUState *saved_env;
1548 target_ulong ret;
1549
1550 saved_env = env;
1551 env = env1;
1552 ret = cwp_inc(cwp);
1553 env = saved_env;
1554 return ret;
1555}
1556
1557static int cwp_dec(int cwp)
1558{
1559 if (unlikely(cwp < 0)) {
1560 cwp += env->nwindows;
1561 }
1562 return cwp;
1563}
1564
1565int cpu_cwp_dec(CPUState *env1, int cwp)
1566{
1567 CPUState *saved_env;
1568 target_ulong ret;
1569
1570 saved_env = env;
1571 env = env1;
1572 ret = cwp_dec(cwp);
1573 env = saved_env;
1574 return ret;
1575}
1576
3475187d 1577#ifdef TARGET_SPARC64
714547bb 1578GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
417454b0 1579GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
64a88d5d 1580GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
417454b0 1581
714547bb 1582GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
417454b0 1583GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
64a88d5d 1584GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
417454b0 1585
714547bb 1586GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
417454b0 1587GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
64a88d5d 1588GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
417454b0 1589
714547bb 1590GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
417454b0 1591GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
64a88d5d 1592GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
3475187d 1593
714547bb 1594GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
417454b0 1595GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
64a88d5d 1596GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
3475187d 1597
714547bb 1598GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
417454b0 1599GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
4e14008f
BS
1600GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1601#endif
714547bb 1602#undef GEN_FCMPS
3475187d 1603
77f193da
BS
1604#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1605 defined(DEBUG_MXCC)
952a328f
BS
1606static void dump_mxcc(CPUState *env)
1607{
0bf9e31a
BS
1608 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1609 "\n",
77f193da
BS
1610 env->mxccdata[0], env->mxccdata[1],
1611 env->mxccdata[2], env->mxccdata[3]);
0bf9e31a
BS
1612 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1613 "\n"
1614 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1615 "\n",
77f193da
BS
1616 env->mxccregs[0], env->mxccregs[1],
1617 env->mxccregs[2], env->mxccregs[3],
1618 env->mxccregs[4], env->mxccregs[5],
1619 env->mxccregs[6], env->mxccregs[7]);
952a328f
BS
1620}
1621#endif
1622
1a2fb1c0
BS
1623#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1624 && defined(DEBUG_ASI)
1625static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1626 uint64_t r1)
8543e2cf
BS
1627{
1628 switch (size)
1629 {
1630 case 1:
1a2fb1c0
BS
1631 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1632 addr, asi, r1 & 0xff);
8543e2cf
BS
1633 break;
1634 case 2:
1a2fb1c0
BS
1635 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1636 addr, asi, r1 & 0xffff);
8543e2cf
BS
1637 break;
1638 case 4:
1a2fb1c0
BS
1639 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1640 addr, asi, r1 & 0xffffffff);
8543e2cf
BS
1641 break;
1642 case 8:
1a2fb1c0
BS
1643 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1644 addr, asi, r1);
8543e2cf
BS
1645 break;
1646 }
1647}
1648#endif
1649
1a2fb1c0
BS
1650#ifndef TARGET_SPARC64
1651#ifndef CONFIG_USER_ONLY
b04d9890
FC
1652
1653
1654/* Leon3 cache control */
1655
60f356e8 1656static void leon3_cache_control_int(void)
b04d9890
FC
1657{
1658 uint32_t state = 0;
1659
1660 if (env->cache_control & CACHE_CTRL_IF) {
1661 /* Instruction cache state */
1662 state = env->cache_control & CACHE_STATE_MASK;
1663 if (state == CACHE_ENABLED) {
1664 state = CACHE_FROZEN;
1665 DPRINTF_CACHE_CONTROL("Instruction cache: freeze\n");
1666 }
1667
1668 env->cache_control &= ~CACHE_STATE_MASK;
1669 env->cache_control |= state;
1670 }
1671
1672 if (env->cache_control & CACHE_CTRL_DF) {
1673 /* Data cache state */
1674 state = (env->cache_control >> 2) & CACHE_STATE_MASK;
1675 if (state == CACHE_ENABLED) {
1676 state = CACHE_FROZEN;
1677 DPRINTF_CACHE_CONTROL("Data cache: freeze\n");
1678 }
1679
1680 env->cache_control &= ~(CACHE_STATE_MASK << 2);
1681 env->cache_control |= (state << 2);
1682 }
1683}
1684
1685static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size)
1686{
1687 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
1688 addr, val, size);
1689
1690 if (size != 4) {
1691 DPRINTF_CACHE_CONTROL("32bits only\n");
1692 return;
1693 }
1694
1695 switch (addr) {
1696 case 0x00: /* Cache control */
1697
1698 /* These values must always be read as zeros */
1699 val &= ~CACHE_CTRL_FD;
1700 val &= ~CACHE_CTRL_FI;
1701 val &= ~CACHE_CTRL_IB;
1702 val &= ~CACHE_CTRL_IP;
1703 val &= ~CACHE_CTRL_DP;
1704
1705 env->cache_control = val;
1706 break;
1707 case 0x04: /* Instruction cache configuration */
1708 case 0x08: /* Data cache configuration */
1709 /* Read Only */
1710 break;
1711 default:
1712 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
1713 break;
1714 };
1715}
1716
1717static uint64_t leon3_cache_control_ld(target_ulong addr, int size)
1718{
1719 uint64_t ret = 0;
1720
1721 if (size != 4) {
1722 DPRINTF_CACHE_CONTROL("32bits only\n");
1723 return 0;
1724 }
1725
1726 switch (addr) {
1727 case 0x00: /* Cache control */
1728 ret = env->cache_control;
1729 break;
1730
1731 /* Configuration registers are read and only always keep those
1732 predefined values */
1733
1734 case 0x04: /* Instruction cache configuration */
1735 ret = 0x10220000;
1736 break;
1737 case 0x08: /* Data cache configuration */
1738 ret = 0x18220000;
1739 break;
1740 default:
1741 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
1742 break;
1743 };
60f356e8 1744 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
b04d9890
FC
1745 addr, ret, size);
1746 return ret;
1747}
1748
60f356e8
FC
1749void leon3_irq_manager(void *irq_manager, int intno)
1750{
1751 leon3_irq_ack(irq_manager, intno);
1752 leon3_cache_control_int();
1753}
1754
1a2fb1c0 1755uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
e8af50a3 1756{
1a2fb1c0 1757 uint64_t ret = 0;
8543e2cf 1758#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1a2fb1c0 1759 uint32_t last_addr = addr;
952a328f 1760#endif
e80cfcfc 1761
c2bc0e38 1762 helper_check_align(addr, size - 1);
e80cfcfc 1763 switch (asi) {
b04d9890 1764 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
1a2fb1c0 1765 switch (addr) {
b04d9890
FC
1766 case 0x00: /* Leon3 Cache Control */
1767 case 0x08: /* Leon3 Instruction Cache config */
1768 case 0x0C: /* Leon3 Date Cache config */
60f356e8
FC
1769 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
1770 ret = leon3_cache_control_ld(addr, size);
1771 }
b04d9890 1772 break;
952a328f 1773 case 0x01c00a00: /* MXCC control register */
1a2fb1c0
BS
1774 if (size == 8)
1775 ret = env->mxccregs[3];
1776 else
77f193da
BS
1777 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1778 size);
952a328f
BS
1779 break;
1780 case 0x01c00a04: /* MXCC control register */
1781 if (size == 4)
1782 ret = env->mxccregs[3];
1783 else
77f193da
BS
1784 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1785 size);
952a328f 1786 break;
295db113
BS
1787 case 0x01c00c00: /* Module reset register */
1788 if (size == 8) {
1a2fb1c0 1789 ret = env->mxccregs[5];
295db113
BS
1790 // should we do something here?
1791 } else
77f193da
BS
1792 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1793 size);
295db113 1794 break;
952a328f 1795 case 0x01c00f00: /* MBus port address register */
1a2fb1c0
BS
1796 if (size == 8)
1797 ret = env->mxccregs[7];
1798 else
77f193da
BS
1799 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1800 size);
952a328f
BS
1801 break;
1802 default:
77f193da
BS
1803 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1804 size);
952a328f
BS
1805 break;
1806 }
77f193da 1807 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
9827e450 1808 "addr = %08x -> ret = %" PRIx64 ","
1a2fb1c0 1809 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
952a328f
BS
1810#ifdef DEBUG_MXCC
1811 dump_mxcc(env);
1812#endif
6c36d3fa 1813 break;
e8af50a3 1814 case 3: /* MMU probe */
0f8a249a
BS
1815 {
1816 int mmulev;
1817
1a2fb1c0 1818 mmulev = (addr >> 8) & 15;
0f8a249a
BS
1819 if (mmulev > 4)
1820 ret = 0;
1a2fb1c0
BS
1821 else
1822 ret = mmu_probe(env, addr, mmulev);
1823 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1824 addr, mmulev, ret);
0f8a249a
BS
1825 }
1826 break;
e8af50a3 1827 case 4: /* read MMU regs */
0f8a249a 1828 {
1a2fb1c0 1829 int reg = (addr >> 8) & 0x1f;
3b46e624 1830
0f8a249a
BS
1831 ret = env->mmuregs[reg];
1832 if (reg == 3) /* Fault status cleared on read */
3dd9a152
BS
1833 env->mmuregs[3] = 0;
1834 else if (reg == 0x13) /* Fault status read */
1835 ret = env->mmuregs[3];
1836 else if (reg == 0x14) /* Fault address read */
1837 ret = env->mmuregs[4];
1a2fb1c0 1838 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
0f8a249a
BS
1839 }
1840 break;
045380be
BS
1841 case 5: // Turbosparc ITLB Diagnostic
1842 case 6: // Turbosparc DTLB Diagnostic
1843 case 7: // Turbosparc IOTLB Diagnostic
1844 break;
6c36d3fa
BS
1845 case 9: /* Supervisor code access */
1846 switch(size) {
1847 case 1:
1a2fb1c0 1848 ret = ldub_code(addr);
6c36d3fa
BS
1849 break;
1850 case 2:
a4e7dd52 1851 ret = lduw_code(addr);
6c36d3fa
BS
1852 break;
1853 default:
1854 case 4:
a4e7dd52 1855 ret = ldl_code(addr);
6c36d3fa
BS
1856 break;
1857 case 8:
a4e7dd52 1858 ret = ldq_code(addr);
6c36d3fa
BS
1859 break;
1860 }
1861 break;
81ad8ba2
BS
1862 case 0xa: /* User data access */
1863 switch(size) {
1864 case 1:
1a2fb1c0 1865 ret = ldub_user(addr);
81ad8ba2
BS
1866 break;
1867 case 2:
a4e7dd52 1868 ret = lduw_user(addr);
81ad8ba2
BS
1869 break;
1870 default:
1871 case 4:
a4e7dd52 1872 ret = ldl_user(addr);
81ad8ba2
BS
1873 break;
1874 case 8:
a4e7dd52 1875 ret = ldq_user(addr);
81ad8ba2
BS
1876 break;
1877 }
1878 break;
1879 case 0xb: /* Supervisor data access */
1880 switch(size) {
1881 case 1:
1a2fb1c0 1882 ret = ldub_kernel(addr);
81ad8ba2
BS
1883 break;
1884 case 2:
a4e7dd52 1885 ret = lduw_kernel(addr);
81ad8ba2
BS
1886 break;
1887 default:
1888 case 4:
a4e7dd52 1889 ret = ldl_kernel(addr);
81ad8ba2
BS
1890 break;
1891 case 8:
a4e7dd52 1892 ret = ldq_kernel(addr);
81ad8ba2
BS
1893 break;
1894 }
1895 break;
6c36d3fa
BS
1896 case 0xc: /* I-cache tag */
1897 case 0xd: /* I-cache data */
1898 case 0xe: /* D-cache tag */
1899 case 0xf: /* D-cache data */
1900 break;
1901 case 0x20: /* MMU passthrough */
02aab46a
FB
1902 switch(size) {
1903 case 1:
1a2fb1c0 1904 ret = ldub_phys(addr);
02aab46a
FB
1905 break;
1906 case 2:
a4e7dd52 1907 ret = lduw_phys(addr);
02aab46a
FB
1908 break;
1909 default:
1910 case 4:
a4e7dd52 1911 ret = ldl_phys(addr);
02aab46a 1912 break;
9e61bde5 1913 case 8:
a4e7dd52 1914 ret = ldq_phys(addr);
0f8a249a 1915 break;
02aab46a 1916 }
0f8a249a 1917 break;
7d85892b 1918 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
5dcb6b91
BS
1919 switch(size) {
1920 case 1:
c227f099
AL
1921 ret = ldub_phys((target_phys_addr_t)addr
1922 | ((target_phys_addr_t)(asi & 0xf) << 32));
5dcb6b91
BS
1923 break;
1924 case 2:
c227f099
AL
1925 ret = lduw_phys((target_phys_addr_t)addr
1926 | ((target_phys_addr_t)(asi & 0xf) << 32));
5dcb6b91
BS
1927 break;
1928 default:
1929 case 4:
c227f099
AL
1930 ret = ldl_phys((target_phys_addr_t)addr
1931 | ((target_phys_addr_t)(asi & 0xf) << 32));
5dcb6b91
BS
1932 break;
1933 case 8:
c227f099
AL
1934 ret = ldq_phys((target_phys_addr_t)addr
1935 | ((target_phys_addr_t)(asi & 0xf) << 32));
0f8a249a 1936 break;
5dcb6b91 1937 }
0f8a249a 1938 break;
045380be
BS
1939 case 0x30: // Turbosparc secondary cache diagnostic
1940 case 0x31: // Turbosparc RAM snoop
1941 case 0x32: // Turbosparc page table descriptor diagnostic
666c87aa 1942 case 0x39: /* data cache diagnostic register */
da7ed379 1943 case 0x4c: /* SuperSPARC MMU Breakpoint Action register */
666c87aa
BS
1944 ret = 0;
1945 break;
4017190e
BS
1946 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1947 {
1948 int reg = (addr >> 8) & 3;
1949
1950 switch(reg) {
1951 case 0: /* Breakpoint Value (Addr) */
1952 ret = env->mmubpregs[reg];
1953 break;
1954 case 1: /* Breakpoint Mask */
1955 ret = env->mmubpregs[reg];
1956 break;
1957 case 2: /* Breakpoint Control */
1958 ret = env->mmubpregs[reg];
1959 break;
1960 case 3: /* Breakpoint Status */
1961 ret = env->mmubpregs[reg];
1962 env->mmubpregs[reg] = 0ULL;
1963 break;
1964 }
0bf9e31a
BS
1965 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1966 ret);
4017190e
BS
1967 }
1968 break;
045380be 1969 case 8: /* User code access, XXX */
e8af50a3 1970 default:
e18231a3 1971 do_unassigned_access(addr, 0, 0, asi, size);
0f8a249a
BS
1972 ret = 0;
1973 break;
e8af50a3 1974 }
81ad8ba2
BS
1975 if (sign) {
1976 switch(size) {
1977 case 1:
1a2fb1c0 1978 ret = (int8_t) ret;
e32664fb 1979 break;
81ad8ba2 1980 case 2:
1a2fb1c0
BS
1981 ret = (int16_t) ret;
1982 break;
1983 case 4:
1984 ret = (int32_t) ret;
e32664fb 1985 break;
81ad8ba2 1986 default:
81ad8ba2
BS
1987 break;
1988 }
1989 }
8543e2cf 1990#ifdef DEBUG_ASI
1a2fb1c0 1991 dump_asi("read ", last_addr, asi, size, ret);
8543e2cf 1992#endif
1a2fb1c0 1993 return ret;
e8af50a3
FB
1994}
1995
1a2fb1c0 1996void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
e8af50a3 1997{
c2bc0e38 1998 helper_check_align(addr, size - 1);
e8af50a3 1999 switch(asi) {
b04d9890 2000 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
1a2fb1c0 2001 switch (addr) {
b04d9890
FC
2002 case 0x00: /* Leon3 Cache Control */
2003 case 0x08: /* Leon3 Instruction Cache config */
2004 case 0x0C: /* Leon3 Date Cache config */
60f356e8
FC
2005 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
2006 leon3_cache_control_st(addr, val, size);
2007 }
b04d9890
FC
2008 break;
2009
952a328f
BS
2010 case 0x01c00000: /* MXCC stream data register 0 */
2011 if (size == 8)
1a2fb1c0 2012 env->mxccdata[0] = val;
952a328f 2013 else
77f193da
BS
2014 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2015 size);
952a328f
BS
2016 break;
2017 case 0x01c00008: /* MXCC stream data register 1 */
2018 if (size == 8)
1a2fb1c0 2019 env->mxccdata[1] = val;
952a328f 2020 else
77f193da
BS
2021 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2022 size);
952a328f
BS
2023 break;
2024 case 0x01c00010: /* MXCC stream data register 2 */
2025 if (size == 8)
1a2fb1c0 2026 env->mxccdata[2] = val;
952a328f 2027 else
77f193da
BS
2028 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2029 size);
952a328f
BS
2030 break;
2031 case 0x01c00018: /* MXCC stream data register 3 */
2032 if (size == 8)
1a2fb1c0 2033 env->mxccdata[3] = val;
952a328f 2034 else
77f193da
BS
2035 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2036 size);
952a328f
BS
2037 break;
2038 case 0x01c00100: /* MXCC stream source */
2039 if (size == 8)
1a2fb1c0 2040 env->mxccregs[0] = val;
952a328f 2041 else
77f193da
BS
2042 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2043 size);
2044 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2045 0);
2046 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2047 8);
2048 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2049 16);
2050 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2051 24);
952a328f
BS
2052 break;
2053 case 0x01c00200: /* MXCC stream destination */
2054 if (size == 8)
1a2fb1c0 2055 env->mxccregs[1] = val;
952a328f 2056 else
77f193da
BS
2057 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2058 size);
2059 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
2060 env->mxccdata[0]);
2061 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
2062 env->mxccdata[1]);
2063 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
2064 env->mxccdata[2]);
2065 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
2066 env->mxccdata[3]);
952a328f
BS
2067 break;
2068 case 0x01c00a00: /* MXCC control register */
2069 if (size == 8)
1a2fb1c0 2070 env->mxccregs[3] = val;
952a328f 2071 else
77f193da
BS
2072 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2073 size);
952a328f
BS
2074 break;
2075 case 0x01c00a04: /* MXCC control register */
2076 if (size == 4)
9f4576f0 2077 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
77f193da 2078 | val;
952a328f 2079 else
77f193da
BS
2080 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2081 size);
952a328f
BS
2082 break;
2083 case 0x01c00e00: /* MXCC error register */
bbf7d96b 2084 // writing a 1 bit clears the error
952a328f 2085 if (size == 8)
1a2fb1c0 2086 env->mxccregs[6] &= ~val;
952a328f 2087 else
77f193da
BS
2088 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2089 size);
952a328f
BS
2090 break;
2091 case 0x01c00f00: /* MBus port address register */
2092 if (size == 8)
1a2fb1c0 2093 env->mxccregs[7] = val;
952a328f 2094 else
77f193da
BS
2095 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2096 size);
952a328f
BS
2097 break;
2098 default:
77f193da
BS
2099 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
2100 size);
952a328f
BS
2101 break;
2102 }
9827e450
BS
2103 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
2104 asi, size, addr, val);
952a328f
BS
2105#ifdef DEBUG_MXCC
2106 dump_mxcc(env);
2107#endif
6c36d3fa 2108 break;
e8af50a3 2109 case 3: /* MMU flush */
0f8a249a
BS
2110 {
2111 int mmulev;
e80cfcfc 2112
1a2fb1c0 2113 mmulev = (addr >> 8) & 15;
952a328f 2114 DPRINTF_MMU("mmu flush level %d\n", mmulev);
0f8a249a
BS
2115 switch (mmulev) {
2116 case 0: // flush page
1a2fb1c0 2117 tlb_flush_page(env, addr & 0xfffff000);
0f8a249a
BS
2118 break;
2119 case 1: // flush segment (256k)
2120 case 2: // flush region (16M)
2121 case 3: // flush context (4G)
2122 case 4: // flush entire
2123 tlb_flush(env, 1);
2124 break;
2125 default:
2126 break;
2127 }
55754d9e 2128#ifdef DEBUG_MMU
d41160a3 2129 dump_mmu(stdout, fprintf, env);
55754d9e 2130#endif
0f8a249a 2131 }
8543e2cf 2132 break;
e8af50a3 2133 case 4: /* write MMU regs */
0f8a249a 2134 {
1a2fb1c0 2135 int reg = (addr >> 8) & 0x1f;
0f8a249a 2136 uint32_t oldreg;
3b46e624 2137
0f8a249a 2138 oldreg = env->mmuregs[reg];
55754d9e 2139 switch(reg) {
3deaeab7 2140 case 0: // Control Register
3dd9a152 2141 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1a2fb1c0 2142 (val & 0x00ffffff);
0f8a249a
BS
2143 // Mappings generated during no-fault mode or MMU
2144 // disabled mode are invalid in normal mode
5578ceab
BS
2145 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
2146 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
55754d9e
FB
2147 tlb_flush(env, 1);
2148 break;
3deaeab7 2149 case 1: // Context Table Pointer Register
5578ceab 2150 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
3deaeab7
BS
2151 break;
2152 case 2: // Context Register
5578ceab 2153 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
55754d9e
FB
2154 if (oldreg != env->mmuregs[reg]) {
2155 /* we flush when the MMU context changes because
2156 QEMU has no MMU context support */
2157 tlb_flush(env, 1);
2158 }
2159 break;
3deaeab7
BS
2160 case 3: // Synchronous Fault Status Register with Clear
2161 case 4: // Synchronous Fault Address Register
2162 break;
2163 case 0x10: // TLB Replacement Control Register
5578ceab 2164 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
55754d9e 2165 break;
3deaeab7 2166 case 0x13: // Synchronous Fault Status Register with Read and Clear
5578ceab 2167 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
3dd9a152 2168 break;
3deaeab7 2169 case 0x14: // Synchronous Fault Address Register
1a2fb1c0 2170 env->mmuregs[4] = val;
3dd9a152 2171 break;
55754d9e 2172 default:
1a2fb1c0 2173 env->mmuregs[reg] = val;
55754d9e
FB
2174 break;
2175 }
55754d9e 2176 if (oldreg != env->mmuregs[reg]) {
77f193da
BS
2177 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
2178 reg, oldreg, env->mmuregs[reg]);
55754d9e 2179 }
952a328f 2180#ifdef DEBUG_MMU
d41160a3 2181 dump_mmu(stdout, fprintf, env);
55754d9e 2182#endif
0f8a249a 2183 }
8543e2cf 2184 break;
045380be
BS
2185 case 5: // Turbosparc ITLB Diagnostic
2186 case 6: // Turbosparc DTLB Diagnostic
2187 case 7: // Turbosparc IOTLB Diagnostic
2188 break;
81ad8ba2
BS
2189 case 0xa: /* User data access */
2190 switch(size) {
2191 case 1:
1a2fb1c0 2192 stb_user(addr, val);
81ad8ba2
BS
2193 break;
2194 case 2:
a4e7dd52 2195 stw_user(addr, val);
81ad8ba2
BS
2196 break;
2197 default:
2198 case 4:
a4e7dd52 2199 stl_user(addr, val);
81ad8ba2
BS
2200 break;
2201 case 8:
a4e7dd52 2202 stq_user(addr, val);
81ad8ba2
BS
2203 break;
2204 }
2205 break;
2206 case 0xb: /* Supervisor data access */
2207 switch(size) {
2208 case 1:
1a2fb1c0 2209 stb_kernel(addr, val);
81ad8ba2
BS
2210 break;
2211 case 2:
a4e7dd52 2212 stw_kernel(addr, val);
81ad8ba2
BS
2213 break;
2214 default:
2215 case 4:
a4e7dd52 2216 stl_kernel(addr, val);
81ad8ba2
BS
2217 break;
2218 case 8:
a4e7dd52 2219 stq_kernel(addr, val);
81ad8ba2
BS
2220 break;
2221 }
2222 break;
6c36d3fa
BS
2223 case 0xc: /* I-cache tag */
2224 case 0xd: /* I-cache data */
2225 case 0xe: /* D-cache tag */
2226 case 0xf: /* D-cache data */
2227 case 0x10: /* I/D-cache flush page */
2228 case 0x11: /* I/D-cache flush segment */
2229 case 0x12: /* I/D-cache flush region */
2230 case 0x13: /* I/D-cache flush context */
2231 case 0x14: /* I/D-cache flush user */
2232 break;
e80cfcfc 2233 case 0x17: /* Block copy, sta access */
0f8a249a 2234 {
1a2fb1c0
BS
2235 // val = src
2236 // addr = dst
0f8a249a 2237 // copy 32 bytes
6c36d3fa 2238 unsigned int i;
1a2fb1c0 2239 uint32_t src = val & ~3, dst = addr & ~3, temp;
3b46e624 2240
6c36d3fa
BS
2241 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
2242 temp = ldl_kernel(src);
2243 stl_kernel(dst, temp);
2244 }
0f8a249a 2245 }
8543e2cf 2246 break;
e80cfcfc 2247 case 0x1f: /* Block fill, stda access */
0f8a249a 2248 {
1a2fb1c0
BS
2249 // addr = dst
2250 // fill 32 bytes with val
6c36d3fa 2251 unsigned int i;
1a2fb1c0 2252 uint32_t dst = addr & 7;
6c36d3fa
BS
2253
2254 for (i = 0; i < 32; i += 8, dst += 8)
2255 stq_kernel(dst, val);
0f8a249a 2256 }
8543e2cf 2257 break;
6c36d3fa 2258 case 0x20: /* MMU passthrough */
0f8a249a 2259 {
02aab46a
FB
2260 switch(size) {
2261 case 1:
1a2fb1c0 2262 stb_phys(addr, val);
02aab46a
FB
2263 break;
2264 case 2:
a4e7dd52 2265 stw_phys(addr, val);
02aab46a
FB
2266 break;
2267 case 4:
2268 default:
a4e7dd52 2269 stl_phys(addr, val);
02aab46a 2270 break;
9e61bde5 2271 case 8:
a4e7dd52 2272 stq_phys(addr, val);
9e61bde5 2273 break;
02aab46a 2274 }
0f8a249a 2275 }
8543e2cf 2276 break;
045380be 2277 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
0f8a249a 2278 {
5dcb6b91
BS
2279 switch(size) {
2280 case 1:
c227f099
AL
2281 stb_phys((target_phys_addr_t)addr
2282 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
2283 break;
2284 case 2:
c227f099
AL
2285 stw_phys((target_phys_addr_t)addr
2286 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
2287 break;
2288 case 4:
2289 default:
c227f099
AL
2290 stl_phys((target_phys_addr_t)addr
2291 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
2292 break;
2293 case 8:
c227f099
AL
2294 stq_phys((target_phys_addr_t)addr
2295 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
2296 break;
2297 }
0f8a249a 2298 }
8543e2cf 2299 break;
045380be
BS
2300 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2301 case 0x31: // store buffer data, Ross RT620 I-cache flush or
2302 // Turbosparc snoop RAM
77f193da
BS
2303 case 0x32: // store buffer control or Turbosparc page table
2304 // descriptor diagnostic
6c36d3fa
BS
2305 case 0x36: /* I-cache flash clear */
2306 case 0x37: /* D-cache flash clear */
666c87aa 2307 case 0x4c: /* breakpoint action */
6c36d3fa 2308 break;
4017190e
BS
2309 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2310 {
2311 int reg = (addr >> 8) & 3;
2312
2313 switch(reg) {
2314 case 0: /* Breakpoint Value (Addr) */
2315 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2316 break;
2317 case 1: /* Breakpoint Mask */
2318 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2319 break;
2320 case 2: /* Breakpoint Control */
2321 env->mmubpregs[reg] = (val & 0x7fULL);
2322 break;
2323 case 3: /* Breakpoint Status */
2324 env->mmubpregs[reg] = (val & 0xfULL);
2325 break;
2326 }
0bf9e31a 2327 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
4017190e
BS
2328 env->mmuregs[reg]);
2329 }
2330 break;
045380be 2331 case 8: /* User code access, XXX */
6c36d3fa 2332 case 9: /* Supervisor code access, XXX */
e8af50a3 2333 default:
e18231a3 2334 do_unassigned_access(addr, 1, 0, asi, size);
8543e2cf 2335 break;
e8af50a3 2336 }
8543e2cf 2337#ifdef DEBUG_ASI
1a2fb1c0 2338 dump_asi("write", addr, asi, size, val);
8543e2cf 2339#endif
e8af50a3
FB
2340}
2341
81ad8ba2
BS
2342#endif /* CONFIG_USER_ONLY */
2343#else /* TARGET_SPARC64 */
2344
2345#ifdef CONFIG_USER_ONLY
1a2fb1c0 2346uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
81ad8ba2
BS
2347{
2348 uint64_t ret = 0;
1a2fb1c0
BS
2349#if defined(DEBUG_ASI)
2350 target_ulong last_addr = addr;
2351#endif
81ad8ba2
BS
2352
2353 if (asi < 0x80)
2354 raise_exception(TT_PRIV_ACT);
2355
c2bc0e38 2356 helper_check_align(addr, size - 1);
1295001c 2357 addr = asi_address_mask(env, asi, addr);
c2bc0e38 2358
81ad8ba2 2359 switch (asi) {
81ad8ba2 2360 case 0x82: // Primary no-fault
81ad8ba2 2361 case 0x8a: // Primary no-fault LE
e83ce550
BS
2362 if (page_check_range(addr, size, PAGE_READ) == -1) {
2363#ifdef DEBUG_ASI
2364 dump_asi("read ", last_addr, asi, size, ret);
2365#endif
2366 return 0;
2367 }
2368 // Fall through
2369 case 0x80: // Primary
2370 case 0x88: // Primary LE
81ad8ba2
BS
2371 {
2372 switch(size) {
2373 case 1:
1a2fb1c0 2374 ret = ldub_raw(addr);
81ad8ba2
BS
2375 break;
2376 case 2:
a4e7dd52 2377 ret = lduw_raw(addr);
81ad8ba2
BS
2378 break;
2379 case 4:
a4e7dd52 2380 ret = ldl_raw(addr);
81ad8ba2
BS
2381 break;
2382 default:
2383 case 8:
a4e7dd52 2384 ret = ldq_raw(addr);
81ad8ba2
BS
2385 break;
2386 }
2387 }
2388 break;
81ad8ba2 2389 case 0x83: // Secondary no-fault
81ad8ba2 2390 case 0x8b: // Secondary no-fault LE
e83ce550
BS
2391 if (page_check_range(addr, size, PAGE_READ) == -1) {
2392#ifdef DEBUG_ASI
2393 dump_asi("read ", last_addr, asi, size, ret);
2394#endif
2395 return 0;
2396 }
2397 // Fall through
2398 case 0x81: // Secondary
2399 case 0x89: // Secondary LE
81ad8ba2
BS
2400 // XXX
2401 break;
2402 default:
2403 break;
2404 }
2405
2406 /* Convert from little endian */
2407 switch (asi) {
2408 case 0x88: // Primary LE
2409 case 0x89: // Secondary LE
2410 case 0x8a: // Primary no-fault LE
2411 case 0x8b: // Secondary no-fault LE
2412 switch(size) {
2413 case 2:
2414 ret = bswap16(ret);
e32664fb 2415 break;
81ad8ba2
BS
2416 case 4:
2417 ret = bswap32(ret);
e32664fb 2418 break;
81ad8ba2
BS
2419 case 8:
2420 ret = bswap64(ret);
e32664fb 2421 break;
81ad8ba2
BS
2422 default:
2423 break;
2424 }
2425 default:
2426 break;
2427 }
2428
2429 /* Convert to signed number */
2430 if (sign) {
2431 switch(size) {
2432 case 1:
2433 ret = (int8_t) ret;
e32664fb 2434 break;
81ad8ba2
BS
2435 case 2:
2436 ret = (int16_t) ret;
e32664fb 2437 break;
81ad8ba2
BS
2438 case 4:
2439 ret = (int32_t) ret;
e32664fb 2440 break;
81ad8ba2
BS
2441 default:
2442 break;
2443 }
2444 }
1a2fb1c0
BS
2445#ifdef DEBUG_ASI
2446 dump_asi("read ", last_addr, asi, size, ret);
2447#endif
2448 return ret;
81ad8ba2
BS
2449}
2450
1a2fb1c0 2451void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
81ad8ba2 2452{
1a2fb1c0
BS
2453#ifdef DEBUG_ASI
2454 dump_asi("write", addr, asi, size, val);
2455#endif
81ad8ba2
BS
2456 if (asi < 0x80)
2457 raise_exception(TT_PRIV_ACT);
2458
c2bc0e38 2459 helper_check_align(addr, size - 1);
1295001c 2460 addr = asi_address_mask(env, asi, addr);
c2bc0e38 2461
81ad8ba2
BS
2462 /* Convert to little endian */
2463 switch (asi) {
2464 case 0x88: // Primary LE
2465 case 0x89: // Secondary LE
2466 switch(size) {
2467 case 2:
5b0f0bec 2468 val = bswap16(val);
e32664fb 2469 break;
81ad8ba2 2470 case 4:
5b0f0bec 2471 val = bswap32(val);
e32664fb 2472 break;
81ad8ba2 2473 case 8:
5b0f0bec 2474 val = bswap64(val);
e32664fb 2475 break;
81ad8ba2
BS
2476 default:
2477 break;
2478 }
2479 default:
2480 break;
2481 }
2482
2483 switch(asi) {
2484 case 0x80: // Primary
2485 case 0x88: // Primary LE
2486 {
2487 switch(size) {
2488 case 1:
1a2fb1c0 2489 stb_raw(addr, val);
81ad8ba2
BS
2490 break;
2491 case 2:
a4e7dd52 2492 stw_raw(addr, val);
81ad8ba2
BS
2493 break;
2494 case 4:
a4e7dd52 2495 stl_raw(addr, val);
81ad8ba2
BS
2496 break;
2497 case 8:
2498 default:
a4e7dd52 2499 stq_raw(addr, val);
81ad8ba2
BS
2500 break;
2501 }
2502 }
2503 break;
2504 case 0x81: // Secondary
2505 case 0x89: // Secondary LE
2506 // XXX
2507 return;
2508
2509 case 0x82: // Primary no-fault, RO
2510 case 0x83: // Secondary no-fault, RO
2511 case 0x8a: // Primary no-fault LE, RO
2512 case 0x8b: // Secondary no-fault LE, RO
2513 default:
e18231a3 2514 do_unassigned_access(addr, 1, 0, 1, size);
81ad8ba2
BS
2515 return;
2516 }
2517}
2518
2519#else /* CONFIG_USER_ONLY */
3475187d 2520
1a2fb1c0 2521uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
3475187d 2522{
83469015 2523 uint64_t ret = 0;
1a2fb1c0
BS
2524#if defined(DEBUG_ASI)
2525 target_ulong last_addr = addr;
2526#endif
3475187d 2527
01b5d4e5
IK
2528 asi &= 0xff;
2529
6f27aba6 2530 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2aae2b8e 2531 || (cpu_has_hypervisor(env)
5578ceab 2532 && asi >= 0x30 && asi < 0x80
fb79ceb9 2533 && !(env->hpstate & HS_PRIV)))
0f8a249a 2534 raise_exception(TT_PRIV_ACT);
3475187d 2535
c2bc0e38 2536 helper_check_align(addr, size - 1);
1295001c
IK
2537 addr = asi_address_mask(env, asi, addr);
2538
3475187d 2539 switch (asi) {
e83ce550
BS
2540 case 0x82: // Primary no-fault
2541 case 0x8a: // Primary no-fault LE
2065061e
IK
2542 case 0x83: // Secondary no-fault
2543 case 0x8b: // Secondary no-fault LE
2544 {
2545 /* secondary space access has lowest asi bit equal to 1 */
2546 int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX
2547 : MMU_KERNEL_SECONDARY_IDX;
2548
2549 if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) {
e83ce550 2550#ifdef DEBUG_ASI
2065061e 2551 dump_asi("read ", last_addr, asi, size, ret);
e83ce550 2552#endif
2065061e
IK
2553 return 0;
2554 }
e83ce550
BS
2555 }
2556 // Fall through
81ad8ba2 2557 case 0x10: // As if user primary
2065061e 2558 case 0x11: // As if user secondary
81ad8ba2 2559 case 0x18: // As if user primary LE
2065061e 2560 case 0x19: // As if user secondary LE
81ad8ba2 2561 case 0x80: // Primary
2065061e 2562 case 0x81: // Secondary
81ad8ba2 2563 case 0x88: // Primary LE
2065061e 2564 case 0x89: // Secondary LE
c99657d3
BS
2565 case 0xe2: // UA2007 Primary block init
2566 case 0xe3: // UA2007 Secondary block init
81ad8ba2 2567 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2aae2b8e 2568 if (cpu_hypervisor_mode(env)) {
6f27aba6
BS
2569 switch(size) {
2570 case 1:
1a2fb1c0 2571 ret = ldub_hypv(addr);
6f27aba6
BS
2572 break;
2573 case 2:
a4e7dd52 2574 ret = lduw_hypv(addr);
6f27aba6
BS
2575 break;
2576 case 4:
a4e7dd52 2577 ret = ldl_hypv(addr);
6f27aba6
BS
2578 break;
2579 default:
2580 case 8:
a4e7dd52 2581 ret = ldq_hypv(addr);
6f27aba6
BS
2582 break;
2583 }
2584 } else {
2065061e
IK
2585 /* secondary space access has lowest asi bit equal to 1 */
2586 if (asi & 1) {
2587 switch(size) {
2588 case 1:
2589 ret = ldub_kernel_secondary(addr);
2590 break;
2591 case 2:
2592 ret = lduw_kernel_secondary(addr);
2593 break;
2594 case 4:
2595 ret = ldl_kernel_secondary(addr);
2596 break;
2597 default:
2598 case 8:
2599 ret = ldq_kernel_secondary(addr);
2600 break;
2601 }
2602 } else {
2603 switch(size) {
2604 case 1:
2605 ret = ldub_kernel(addr);
2606 break;
2607 case 2:
2608 ret = lduw_kernel(addr);
2609 break;
2610 case 4:
2611 ret = ldl_kernel(addr);
2612 break;
2613 default:
2614 case 8:
2615 ret = ldq_kernel(addr);
2616 break;
2617 }
2618 }
2619 }
2620 } else {
2621 /* secondary space access has lowest asi bit equal to 1 */
2622 if (asi & 1) {
6f27aba6
BS
2623 switch(size) {
2624 case 1:
2065061e 2625 ret = ldub_user_secondary(addr);
6f27aba6
BS
2626 break;
2627 case 2:
2065061e 2628 ret = lduw_user_secondary(addr);
6f27aba6
BS
2629 break;
2630 case 4:
2065061e 2631 ret = ldl_user_secondary(addr);
6f27aba6
BS
2632 break;
2633 default:
2634 case 8:
2065061e
IK
2635 ret = ldq_user_secondary(addr);
2636 break;
2637 }
2638 } else {
2639 switch(size) {
2640 case 1:
2641 ret = ldub_user(addr);
2642 break;
2643 case 2:
2644 ret = lduw_user(addr);
2645 break;
2646 case 4:
2647 ret = ldl_user(addr);
2648 break;
2649 default:
2650 case 8:
2651 ret = ldq_user(addr);
6f27aba6
BS
2652 break;
2653 }
81ad8ba2
BS
2654 }
2655 }
2656 break;
3475187d
FB
2657 case 0x14: // Bypass
2658 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
2659 case 0x1c: // Bypass LE
2660 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 2661 {
02aab46a
FB
2662 switch(size) {
2663 case 1:
1a2fb1c0 2664 ret = ldub_phys(addr);
02aab46a
FB
2665 break;
2666 case 2:
a4e7dd52 2667 ret = lduw_phys(addr);
02aab46a
FB
2668 break;
2669 case 4:
a4e7dd52 2670 ret = ldl_phys(addr);
02aab46a
FB
2671 break;
2672 default:
2673 case 8:
a4e7dd52 2674 ret = ldq_phys(addr);
02aab46a
FB
2675 break;
2676 }
0f8a249a
BS
2677 break;
2678 }
db166940
BS
2679 case 0x24: // Nucleus quad LDD 128 bit atomic
2680 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2681 // Only ldda allowed
2682 raise_exception(TT_ILL_INSN);
2683 return 0;
83469015
FB
2684 case 0x04: // Nucleus
2685 case 0x0c: // Nucleus Little Endian (LE)
2065061e
IK
2686 {
2687 switch(size) {
2688 case 1:
2689 ret = ldub_nucleus(addr);
2690 break;
2691 case 2:
2692 ret = lduw_nucleus(addr);
2693 break;
2694 case 4:
2695 ret = ldl_nucleus(addr);
2696 break;
2697 default:
2698 case 8:
2699 ret = ldq_nucleus(addr);
2700 break;
2701 }
2702 break;
2703 }
83469015 2704 case 0x4a: // UPA config
0f8a249a
BS
2705 // XXX
2706 break;
3475187d 2707 case 0x45: // LSU
0f8a249a
BS
2708 ret = env->lsu;
2709 break;
3475187d 2710 case 0x50: // I-MMU regs
0f8a249a 2711 {
1a2fb1c0 2712 int reg = (addr >> 3) & 0xf;
3475187d 2713
697a77e6
IK
2714 if (reg == 0) {
2715 // I-TSB Tag Target register
6e8e7d4c 2716 ret = ultrasparc_tag_target(env->immu.tag_access);
697a77e6
IK
2717 } else {
2718 ret = env->immuregs[reg];
2719 }
2720
0f8a249a
BS
2721 break;
2722 }
3475187d 2723 case 0x51: // I-MMU 8k TSB pointer
697a77e6
IK
2724 {
2725 // env->immuregs[5] holds I-MMU TSB register value
2726 // env->immuregs[6] holds I-MMU Tag Access register value
6e8e7d4c 2727 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
697a77e6
IK
2728 8*1024);
2729 break;
2730 }
3475187d 2731 case 0x52: // I-MMU 64k TSB pointer
697a77e6
IK
2732 {
2733 // env->immuregs[5] holds I-MMU TSB register value
2734 // env->immuregs[6] holds I-MMU Tag Access register value
6e8e7d4c 2735 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
697a77e6
IK
2736 64*1024);
2737 break;
2738 }
a5a52cf2
BS
2739 case 0x55: // I-MMU data access
2740 {
2741 int reg = (addr >> 3) & 0x3f;
2742
6e8e7d4c 2743 ret = env->itlb[reg].tte;
a5a52cf2
BS
2744 break;
2745 }
83469015 2746 case 0x56: // I-MMU tag read
0f8a249a 2747 {
43e9e742 2748 int reg = (addr >> 3) & 0x3f;
0f8a249a 2749
6e8e7d4c 2750 ret = env->itlb[reg].tag;
0f8a249a
BS
2751 break;
2752 }
3475187d 2753 case 0x58: // D-MMU regs
0f8a249a 2754 {
1a2fb1c0 2755 int reg = (addr >> 3) & 0xf;
3475187d 2756
697a77e6
IK
2757 if (reg == 0) {
2758 // D-TSB Tag Target register
6e8e7d4c 2759 ret = ultrasparc_tag_target(env->dmmu.tag_access);
697a77e6
IK
2760 } else {
2761 ret = env->dmmuregs[reg];
2762 }
2763 break;
2764 }
2765 case 0x59: // D-MMU 8k TSB pointer
2766 {
2767 // env->dmmuregs[5] holds D-MMU TSB register value
2768 // env->dmmuregs[6] holds D-MMU Tag Access register value
6e8e7d4c 2769 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
697a77e6
IK
2770 8*1024);
2771 break;
2772 }
2773 case 0x5a: // D-MMU 64k TSB pointer
2774 {
2775 // env->dmmuregs[5] holds D-MMU TSB register value
2776 // env->dmmuregs[6] holds D-MMU Tag Access register value
6e8e7d4c 2777 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
697a77e6 2778 64*1024);
0f8a249a
BS
2779 break;
2780 }
a5a52cf2
BS
2781 case 0x5d: // D-MMU data access
2782 {
2783 int reg = (addr >> 3) & 0x3f;
2784
6e8e7d4c 2785 ret = env->dtlb[reg].tte;
a5a52cf2
BS
2786 break;
2787 }
83469015 2788 case 0x5e: // D-MMU tag read
0f8a249a 2789 {
43e9e742 2790 int reg = (addr >> 3) & 0x3f;
0f8a249a 2791
6e8e7d4c 2792 ret = env->dtlb[reg].tag;
0f8a249a
BS
2793 break;
2794 }
f7350b47
BS
2795 case 0x46: // D-cache data
2796 case 0x47: // D-cache tag access
a5a52cf2
BS
2797 case 0x4b: // E-cache error enable
2798 case 0x4c: // E-cache asynchronous fault status
2799 case 0x4d: // E-cache asynchronous fault address
f7350b47
BS
2800 case 0x4e: // E-cache tag data
2801 case 0x66: // I-cache instruction access
2802 case 0x67: // I-cache tag access
2803 case 0x6e: // I-cache predecode
2804 case 0x6f: // I-cache LRU etc.
2805 case 0x76: // E-cache tag
2806 case 0x7e: // E-cache tag
2807 break;
3475187d 2808 case 0x5b: // D-MMU data pointer
83469015
FB
2809 case 0x48: // Interrupt dispatch, RO
2810 case 0x49: // Interrupt data receive
2811 case 0x7f: // Incoming interrupt vector, RO
0f8a249a
BS
2812 // XXX
2813 break;
3475187d
FB
2814 case 0x54: // I-MMU data in, WO
2815 case 0x57: // I-MMU demap, WO
2816 case 0x5c: // D-MMU data in, WO
2817 case 0x5f: // D-MMU demap, WO
83469015 2818 case 0x77: // Interrupt vector, WO
3475187d 2819 default:
e18231a3 2820 do_unassigned_access(addr, 0, 0, 1, size);
0f8a249a
BS
2821 ret = 0;
2822 break;
3475187d 2823 }
81ad8ba2
BS
2824
2825 /* Convert from little endian */
2826 switch (asi) {
2827 case 0x0c: // Nucleus Little Endian (LE)
2828 case 0x18: // As if user primary LE
2829 case 0x19: // As if user secondary LE
2830 case 0x1c: // Bypass LE
2831 case 0x1d: // Bypass, non-cacheable LE
2832 case 0x88: // Primary LE
2833 case 0x89: // Secondary LE
2834 case 0x8a: // Primary no-fault LE
2835 case 0x8b: // Secondary no-fault LE
2836 switch(size) {
2837 case 2:
2838 ret = bswap16(ret);
e32664fb 2839 break;
81ad8ba2
BS
2840 case 4:
2841 ret = bswap32(ret);
e32664fb 2842 break;
81ad8ba2
BS
2843 case 8:
2844 ret = bswap64(ret);
e32664fb 2845 break;
81ad8ba2
BS
2846 default:
2847 break;
2848 }
2849 default:
2850 break;
2851 }
2852
2853 /* Convert to signed number */
2854 if (sign) {
2855 switch(size) {
2856 case 1:
2857 ret = (int8_t) ret;
e32664fb 2858 break;
81ad8ba2
BS
2859 case 2:
2860 ret = (int16_t) ret;
e32664fb 2861 break;
81ad8ba2
BS
2862 case 4:
2863 ret = (int32_t) ret;
e32664fb 2864 break;
81ad8ba2
BS
2865 default:
2866 break;
2867 }
2868 }
1a2fb1c0
BS
2869#ifdef DEBUG_ASI
2870 dump_asi("read ", last_addr, asi, size, ret);
2871#endif
2872 return ret;
3475187d
FB
2873}
2874
1a2fb1c0 2875void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
3475187d 2876{
1a2fb1c0
BS
2877#ifdef DEBUG_ASI
2878 dump_asi("write", addr, asi, size, val);
2879#endif
01b5d4e5
IK
2880
2881 asi &= 0xff;
2882
6f27aba6 2883 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2aae2b8e 2884 || (cpu_has_hypervisor(env)
5578ceab 2885 && asi >= 0x30 && asi < 0x80
fb79ceb9 2886 && !(env->hpstate & HS_PRIV)))
0f8a249a 2887 raise_exception(TT_PRIV_ACT);
3475187d 2888
c2bc0e38 2889 helper_check_align(addr, size - 1);
1295001c
IK
2890 addr = asi_address_mask(env, asi, addr);
2891
81ad8ba2
BS
2892 /* Convert to little endian */
2893 switch (asi) {
2894 case 0x0c: // Nucleus Little Endian (LE)
2895 case 0x18: // As if user primary LE
2896 case 0x19: // As if user secondary LE
2897 case 0x1c: // Bypass LE
2898 case 0x1d: // Bypass, non-cacheable LE
81ad8ba2
BS
2899 case 0x88: // Primary LE
2900 case 0x89: // Secondary LE
2901 switch(size) {
2902 case 2:
5b0f0bec 2903 val = bswap16(val);
e32664fb 2904 break;
81ad8ba2 2905 case 4:
5b0f0bec 2906 val = bswap32(val);
e32664fb 2907 break;
81ad8ba2 2908 case 8:
5b0f0bec 2909 val = bswap64(val);
e32664fb 2910 break;
81ad8ba2
BS
2911 default:
2912 break;
2913 }
2914 default:
2915 break;
2916 }
2917
3475187d 2918 switch(asi) {
81ad8ba2 2919 case 0x10: // As if user primary
2065061e 2920 case 0x11: // As if user secondary
81ad8ba2 2921 case 0x18: // As if user primary LE
2065061e 2922 case 0x19: // As if user secondary LE
81ad8ba2 2923 case 0x80: // Primary
2065061e 2924 case 0x81: // Secondary
81ad8ba2 2925 case 0x88: // Primary LE
2065061e 2926 case 0x89: // Secondary LE
c99657d3
BS
2927 case 0xe2: // UA2007 Primary block init
2928 case 0xe3: // UA2007 Secondary block init
81ad8ba2 2929 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2aae2b8e 2930 if (cpu_hypervisor_mode(env)) {
6f27aba6
BS
2931 switch(size) {
2932 case 1:
1a2fb1c0 2933 stb_hypv(addr, val);
6f27aba6
BS
2934 break;
2935 case 2:
a4e7dd52 2936 stw_hypv(addr, val);
6f27aba6
BS
2937 break;
2938 case 4:
a4e7dd52 2939 stl_hypv(addr, val);
6f27aba6
BS
2940 break;
2941 case 8:
2942 default:
a4e7dd52 2943 stq_hypv(addr, val);
6f27aba6
BS
2944 break;
2945 }
2946 } else {
2065061e
IK
2947 /* secondary space access has lowest asi bit equal to 1 */
2948 if (asi & 1) {
2949 switch(size) {
2950 case 1:
2951 stb_kernel_secondary(addr, val);
2952 break;
2953 case 2:
2954 stw_kernel_secondary(addr, val);
2955 break;
2956 case 4:
2957 stl_kernel_secondary(addr, val);
2958 break;
2959 case 8:
2960 default:
2961 stq_kernel_secondary(addr, val);
2962 break;
2963 }
2964 } else {
2965 switch(size) {
2966 case 1:
2967 stb_kernel(addr, val);
2968 break;
2969 case 2:
2970 stw_kernel(addr, val);
2971 break;
2972 case 4:
2973 stl_kernel(addr, val);
2974 break;
2975 case 8:
2976 default:
2977 stq_kernel(addr, val);
2978 break;
2979 }
2980 }
2981 }
2982 } else {
2983 /* secondary space access has lowest asi bit equal to 1 */
2984 if (asi & 1) {
6f27aba6
BS
2985 switch(size) {
2986 case 1:
2065061e 2987 stb_user_secondary(addr, val);
6f27aba6
BS
2988 break;
2989 case 2:
2065061e 2990 stw_user_secondary(addr, val);
6f27aba6
BS
2991 break;
2992 case 4:
2065061e 2993 stl_user_secondary(addr, val);
6f27aba6
BS
2994 break;
2995 case 8:
2996 default:
2065061e
IK
2997 stq_user_secondary(addr, val);
2998 break;
2999 }
3000 } else {
3001 switch(size) {
3002 case 1:
3003 stb_user(addr, val);
3004 break;
3005 case 2:
3006 stw_user(addr, val);
3007 break;
3008 case 4:
3009 stl_user(addr, val);
3010 break;
3011 case 8:
3012 default:
3013 stq_user(addr, val);
6f27aba6
BS
3014 break;
3015 }
81ad8ba2
BS
3016 }
3017 }
3018 break;
3475187d
FB
3019 case 0x14: // Bypass
3020 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
3021 case 0x1c: // Bypass LE
3022 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 3023 {
02aab46a
FB
3024 switch(size) {
3025 case 1:
1a2fb1c0 3026 stb_phys(addr, val);
02aab46a
FB
3027 break;
3028 case 2:
a4e7dd52 3029 stw_phys(addr, val);
02aab46a
FB
3030 break;
3031 case 4:
a4e7dd52 3032 stl_phys(addr, val);
02aab46a
FB
3033 break;
3034 case 8:
3035 default:
a4e7dd52 3036 stq_phys(addr, val);
02aab46a
FB
3037 break;
3038 }
0f8a249a
BS
3039 }
3040 return;
db166940
BS
3041 case 0x24: // Nucleus quad LDD 128 bit atomic
3042 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3043 // Only ldda allowed
3044 raise_exception(TT_ILL_INSN);
3045 return;
83469015
FB
3046 case 0x04: // Nucleus
3047 case 0x0c: // Nucleus Little Endian (LE)
2065061e
IK
3048 {
3049 switch(size) {
3050 case 1:
3051 stb_nucleus(addr, val);
3052 break;
3053 case 2:
3054 stw_nucleus(addr, val);
3055 break;
3056 case 4:
3057 stl_nucleus(addr, val);
3058 break;
3059 default:
3060 case 8:
3061 stq_nucleus(addr, val);
3062 break;
3063 }
3064 break;
3065 }
3066
83469015 3067 case 0x4a: // UPA config
0f8a249a
BS
3068 // XXX
3069 return;
3475187d 3070 case 0x45: // LSU
0f8a249a
BS
3071 {
3072 uint64_t oldreg;
3073
3074 oldreg = env->lsu;
1a2fb1c0 3075 env->lsu = val & (DMMU_E | IMMU_E);
0f8a249a
BS
3076 // Mappings generated during D/I MMU disabled mode are
3077 // invalid in normal mode
3078 if (oldreg != env->lsu) {
77f193da
BS
3079 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
3080 oldreg, env->lsu);
83469015 3081#ifdef DEBUG_MMU
d41160a3 3082 dump_mmu(stdout, fprintf, env1);
83469015 3083#endif
0f8a249a
BS
3084 tlb_flush(env, 1);
3085 }
3086 return;
3087 }
3475187d 3088 case 0x50: // I-MMU regs
0f8a249a 3089 {
1a2fb1c0 3090 int reg = (addr >> 3) & 0xf;
0f8a249a 3091 uint64_t oldreg;
3b46e624 3092
0f8a249a 3093 oldreg = env->immuregs[reg];
3475187d
FB
3094 switch(reg) {
3095 case 0: // RO
3475187d
FB
3096 return;
3097 case 1: // Not in I-MMU
3098 case 2:
3475187d
FB
3099 return;
3100 case 3: // SFSR
1a2fb1c0
BS
3101 if ((val & 1) == 0)
3102 val = 0; // Clear SFSR
6e8e7d4c 3103 env->immu.sfsr = val;
3475187d 3104 break;
6e8e7d4c
IK
3105 case 4: // RO
3106 return;
3475187d 3107 case 5: // TSB access
6e8e7d4c
IK
3108 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
3109 PRIx64 "\n", env->immu.tsb, val);
3110 env->immu.tsb = val;
3111 break;
3475187d 3112 case 6: // Tag access
6e8e7d4c
IK
3113 env->immu.tag_access = val;
3114 break;
3115 case 7:
3116 case 8:
3117 return;
3475187d
FB
3118 default:
3119 break;
3120 }
6e8e7d4c 3121
3475187d 3122 if (oldreg != env->immuregs[reg]) {
6e8e7d4c 3123 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
77f193da 3124 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
3475187d 3125 }
952a328f 3126#ifdef DEBUG_MMU
d41160a3 3127 dump_mmu(stdout, fprintf, env);
3475187d 3128#endif
0f8a249a
BS
3129 return;
3130 }
3475187d 3131 case 0x54: // I-MMU data in
f707726e
IK
3132 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
3133 return;
3475187d 3134 case 0x55: // I-MMU data access
0f8a249a 3135 {
cc6747f4
BS
3136 // TODO: auto demap
3137
1a2fb1c0 3138 unsigned int i = (addr >> 3) & 0x3f;
3475187d 3139
f707726e 3140 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
6e8e7d4c
IK
3141
3142#ifdef DEBUG_MMU
f707726e 3143 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
d41160a3 3144 dump_mmu(stdout, fprintf, env);
6e8e7d4c 3145#endif
0f8a249a
BS
3146 return;
3147 }
3475187d 3148 case 0x57: // I-MMU demap
170f4c55 3149 demap_tlb(env->itlb, addr, "immu", env);
0f8a249a 3150 return;
3475187d 3151 case 0x58: // D-MMU regs
0f8a249a 3152 {
1a2fb1c0 3153 int reg = (addr >> 3) & 0xf;
0f8a249a 3154 uint64_t oldreg;
3b46e624 3155
0f8a249a 3156 oldreg = env->dmmuregs[reg];
3475187d
FB
3157 switch(reg) {
3158 case 0: // RO
3159 case 4:
3160 return;
3161 case 3: // SFSR
1a2fb1c0
BS
3162 if ((val & 1) == 0) {
3163 val = 0; // Clear SFSR, Fault address
6e8e7d4c 3164 env->dmmu.sfar = 0;
0f8a249a 3165 }
6e8e7d4c 3166 env->dmmu.sfsr = val;
3475187d
FB
3167 break;
3168 case 1: // Primary context
6e8e7d4c 3169 env->dmmu.mmu_primary_context = val;
664a65b0
IK
3170 /* can be optimized to only flush MMU_USER_IDX
3171 and MMU_KERNEL_IDX entries */
3172 tlb_flush(env, 1);
6e8e7d4c 3173 break;
3475187d 3174 case 2: // Secondary context
6e8e7d4c 3175 env->dmmu.mmu_secondary_context = val;
664a65b0
IK
3176 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
3177 and MMU_KERNEL_SECONDARY_IDX entries */
3178 tlb_flush(env, 1);
6e8e7d4c 3179 break;
3475187d 3180 case 5: // TSB access
6e8e7d4c
IK
3181 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
3182 PRIx64 "\n", env->dmmu.tsb, val);
3183 env->dmmu.tsb = val;
3184 break;
3475187d 3185 case 6: // Tag access
6e8e7d4c
IK
3186 env->dmmu.tag_access = val;
3187 break;
3475187d
FB
3188 case 7: // Virtual Watchpoint
3189 case 8: // Physical Watchpoint
3190 default:
6e8e7d4c 3191 env->dmmuregs[reg] = val;
3475187d
FB
3192 break;
3193 }
6e8e7d4c 3194
3475187d 3195 if (oldreg != env->dmmuregs[reg]) {
6e8e7d4c 3196 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
77f193da 3197 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3475187d 3198 }
952a328f 3199#ifdef DEBUG_MMU
d41160a3 3200 dump_mmu(stdout, fprintf, env);
3475187d 3201#endif
0f8a249a
BS
3202 return;
3203 }
3475187d 3204 case 0x5c: // D-MMU data in
f707726e
IK
3205 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
3206 return;
3475187d 3207 case 0x5d: // D-MMU data access
0f8a249a 3208 {
1a2fb1c0 3209 unsigned int i = (addr >> 3) & 0x3f;
3475187d 3210
f707726e
IK
3211 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
3212
6e8e7d4c 3213#ifdef DEBUG_MMU
f707726e 3214 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
d41160a3 3215 dump_mmu(stdout, fprintf, env);
6e8e7d4c 3216#endif
0f8a249a
BS
3217 return;
3218 }
3475187d 3219 case 0x5f: // D-MMU demap
170f4c55 3220 demap_tlb(env->dtlb, addr, "dmmu", env);
cc6747f4 3221 return;
83469015 3222 case 0x49: // Interrupt data receive
0f8a249a
BS
3223 // XXX
3224 return;
f7350b47
BS
3225 case 0x46: // D-cache data
3226 case 0x47: // D-cache tag access
a5a52cf2
BS
3227 case 0x4b: // E-cache error enable
3228 case 0x4c: // E-cache asynchronous fault status
3229 case 0x4d: // E-cache asynchronous fault address
f7350b47
BS
3230 case 0x4e: // E-cache tag data
3231 case 0x66: // I-cache instruction access
3232 case 0x67: // I-cache tag access
3233 case 0x6e: // I-cache predecode
3234 case 0x6f: // I-cache LRU etc.
3235 case 0x76: // E-cache tag
3236 case 0x7e: // E-cache tag
3237 return;
3475187d
FB
3238 case 0x51: // I-MMU 8k TSB pointer, RO
3239 case 0x52: // I-MMU 64k TSB pointer, RO
3240 case 0x56: // I-MMU tag read, RO
3241 case 0x59: // D-MMU 8k TSB pointer, RO
3242 case 0x5a: // D-MMU 64k TSB pointer, RO
3243 case 0x5b: // D-MMU data pointer, RO
3244 case 0x5e: // D-MMU tag read, RO
83469015
FB
3245 case 0x48: // Interrupt dispatch, RO
3246 case 0x7f: // Incoming interrupt vector, RO
3247 case 0x82: // Primary no-fault, RO
3248 case 0x83: // Secondary no-fault, RO
3249 case 0x8a: // Primary no-fault LE, RO
3250 case 0x8b: // Secondary no-fault LE, RO
3475187d 3251 default:
e18231a3 3252 do_unassigned_access(addr, 1, 0, 1, size);
0f8a249a 3253 return;
3475187d
FB
3254 }
3255}
81ad8ba2 3256#endif /* CONFIG_USER_ONLY */
3391c818 3257
db166940
BS
3258void helper_ldda_asi(target_ulong addr, int asi, int rd)
3259{
db166940 3260 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2aae2b8e 3261 || (cpu_has_hypervisor(env)
5578ceab 3262 && asi >= 0x30 && asi < 0x80
fb79ceb9 3263 && !(env->hpstate & HS_PRIV)))
db166940
BS
3264 raise_exception(TT_PRIV_ACT);
3265
1295001c
IK
3266 addr = asi_address_mask(env, asi, addr);
3267
db166940 3268 switch (asi) {
03ae77d6 3269#if !defined(CONFIG_USER_ONLY)
db166940
BS
3270 case 0x24: // Nucleus quad LDD 128 bit atomic
3271 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3272 helper_check_align(addr, 0xf);
3273 if (rd == 0) {
54a3c0f0 3274 env->gregs[1] = ldq_nucleus(addr + 8);
db166940
BS
3275 if (asi == 0x2c)
3276 bswap64s(&env->gregs[1]);
3277 } else if (rd < 8) {
54a3c0f0
IK
3278 env->gregs[rd] = ldq_nucleus(addr);
3279 env->gregs[rd + 1] = ldq_nucleus(addr + 8);
db166940
BS
3280 if (asi == 0x2c) {
3281 bswap64s(&env->gregs[rd]);
3282 bswap64s(&env->gregs[rd + 1]);
3283 }
3284 } else {
54a3c0f0
IK
3285 env->regwptr[rd] = ldq_nucleus(addr);
3286 env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
db166940
BS
3287 if (asi == 0x2c) {
3288 bswap64s(&env->regwptr[rd]);
3289 bswap64s(&env->regwptr[rd + 1]);
3290 }
3291 }
3292 break;
03ae77d6 3293#endif
db166940
BS
3294 default:
3295 helper_check_align(addr, 0x3);
3296 if (rd == 0)
3297 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3298 else if (rd < 8) {
3299 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3300 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3301 } else {
3302 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3303 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3304 }
3305 break;
3306 }
3307}
3308
1a2fb1c0 3309void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 3310{
3391c818 3311 unsigned int i;
1a2fb1c0 3312 target_ulong val;
3391c818 3313
c2bc0e38 3314 helper_check_align(addr, 3);
1295001c
IK
3315 addr = asi_address_mask(env, asi, addr);
3316
3391c818
BS
3317 switch (asi) {
3318 case 0xf0: // Block load primary
3319 case 0xf1: // Block load secondary
3320 case 0xf8: // Block load primary LE
3321 case 0xf9: // Block load secondary LE
51996525
BS
3322 if (rd & 7) {
3323 raise_exception(TT_ILL_INSN);
3324 return;
3325 }
c2bc0e38 3326 helper_check_align(addr, 0x3f);
51996525 3327 for (i = 0; i < 16; i++) {
77f193da
BS
3328 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3329 0);
1a2fb1c0 3330 addr += 4;
3391c818 3331 }
3391c818 3332
0e2fa9ca
IK
3333 return;
3334 case 0x70: // Block load primary, user privilege
3335 case 0x71: // Block load secondary, user privilege
3336 if (rd & 7) {
3337 raise_exception(TT_ILL_INSN);
3338 return;
3339 }
3340 helper_check_align(addr, 0x3f);
3341 for (i = 0; i < 16; i++) {
3342 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x1f, 4,
3343 0);
3344 addr += 4;
3345 }
3346
3391c818
BS
3347 return;
3348 default:
3349 break;
3350 }
3351
1a2fb1c0 3352 val = helper_ld_asi(addr, asi, size, 0);
3391c818
BS
3353 switch(size) {
3354 default:
3355 case 4:
714547bb 3356 *((uint32_t *)&env->fpr[rd]) = val;
3391c818
BS
3357 break;
3358 case 8:
1a2fb1c0 3359 *((int64_t *)&DT0) = val;
3391c818 3360 break;
1f587329
BS
3361 case 16:
3362 // XXX
3363 break;
3391c818 3364 }
3391c818
BS
3365}
3366
1a2fb1c0 3367void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 3368{
3391c818 3369 unsigned int i;
1a2fb1c0 3370 target_ulong val = 0;
3391c818 3371
c2bc0e38 3372 helper_check_align(addr, 3);
1295001c
IK
3373 addr = asi_address_mask(env, asi, addr);
3374
3391c818 3375 switch (asi) {
c99657d3
BS
3376 case 0xe0: // UA2007 Block commit store primary (cache flush)
3377 case 0xe1: // UA2007 Block commit store secondary (cache flush)
3391c818
BS
3378 case 0xf0: // Block store primary
3379 case 0xf1: // Block store secondary
3380 case 0xf8: // Block store primary LE
3381 case 0xf9: // Block store secondary LE
51996525
BS
3382 if (rd & 7) {
3383 raise_exception(TT_ILL_INSN);
3384 return;
3385 }
c2bc0e38 3386 helper_check_align(addr, 0x3f);
51996525 3387 for (i = 0; i < 16; i++) {
1a2fb1c0
BS
3388 val = *(uint32_t *)&env->fpr[rd++];
3389 helper_st_asi(addr, val, asi & 0x8f, 4);
3390 addr += 4;
3391c818 3391 }
3391c818 3392
0e2fa9ca
IK
3393 return;
3394 case 0x70: // Block store primary, user privilege
3395 case 0x71: // Block store secondary, user privilege
3396 if (rd & 7) {
3397 raise_exception(TT_ILL_INSN);
3398 return;
3399 }
3400 helper_check_align(addr, 0x3f);
3401 for (i = 0; i < 16; i++) {
3402 val = *(uint32_t *)&env->fpr[rd++];
3403 helper_st_asi(addr, val, asi & 0x1f, 4);
3404 addr += 4;
3405 }
3406
3391c818
BS
3407 return;
3408 default:
3409 break;
3410 }
3411
3412 switch(size) {
3413 default:
3414 case 4:
714547bb 3415 val = *((uint32_t *)&env->fpr[rd]);
3391c818
BS
3416 break;
3417 case 8:
1a2fb1c0 3418 val = *((int64_t *)&DT0);
3391c818 3419 break;
1f587329
BS
3420 case 16:
3421 // XXX
3422 break;
3391c818 3423 }
1a2fb1c0
BS
3424 helper_st_asi(addr, val, asi, size);
3425}
3426
3427target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3428 target_ulong val2, uint32_t asi)
3429{
3430 target_ulong ret;
3431
1121f879 3432 val2 &= 0xffffffffUL;
1a2fb1c0
BS
3433 ret = helper_ld_asi(addr, asi, 4, 0);
3434 ret &= 0xffffffffUL;
1121f879
BS
3435 if (val2 == ret)
3436 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
1a2fb1c0 3437 return ret;
3391c818
BS
3438}
3439
1a2fb1c0
BS
3440target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3441 target_ulong val2, uint32_t asi)
3442{
3443 target_ulong ret;
3444
3445 ret = helper_ld_asi(addr, asi, 8, 0);
1121f879
BS
3446 if (val2 == ret)
3447 helper_st_asi(addr, val1, asi, 8);
1a2fb1c0
BS
3448 return ret;
3449}
81ad8ba2 3450#endif /* TARGET_SPARC64 */
3475187d
FB
3451
3452#ifndef TARGET_SPARC64
1a2fb1c0 3453void helper_rett(void)
e8af50a3 3454{
af7bf89b
FB
3455 unsigned int cwp;
3456
d4218d99
BS
3457 if (env->psret == 1)
3458 raise_exception(TT_ILL_INSN);
3459
e8af50a3 3460 env->psret = 1;
5a834bb4 3461 cwp = cwp_inc(env->cwp + 1) ;
e8af50a3
FB
3462 if (env->wim & (1 << cwp)) {
3463 raise_exception(TT_WIN_UNF);
3464 }
3465 set_cwp(cwp);
3466 env->psrs = env->psrps;
3467}
3475187d 3468#endif
e8af50a3 3469
0fcec41e 3470static target_ulong helper_udiv_common(target_ulong a, target_ulong b, int cc)
3b89f26c 3471{
0fcec41e 3472 int overflow = 0;
3b89f26c
BS
3473 uint64_t x0;
3474 uint32_t x1;
3475
7621a90d 3476 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
09487205 3477 x1 = (b & 0xffffffff);
3b89f26c
BS
3478
3479 if (x1 == 0) {
3480 raise_exception(TT_DIV_ZERO);
3481 }
3482
3483 x0 = x0 / x1;
3484 if (x0 > 0xffffffff) {
0fcec41e
AJ
3485 x0 = 0xffffffff;
3486 overflow = 1;
3487 }
3488
3489 if (cc) {
3490 env->cc_dst = x0;
3491 env->cc_src2 = overflow;
3492 env->cc_op = CC_OP_DIV;
3b89f26c 3493 }
0fcec41e 3494 return x0;
3b89f26c
BS
3495}
3496
0fcec41e
AJ
3497target_ulong helper_udiv(target_ulong a, target_ulong b)
3498{
3499 return helper_udiv_common(a, b, 0);
3500}
3501
3502target_ulong helper_udiv_cc(target_ulong a, target_ulong b)
3503{
3504 return helper_udiv_common(a, b, 1);
3505}
3506
3507static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc)
3b89f26c 3508{
0fcec41e 3509 int overflow = 0;
3b89f26c
BS
3510 int64_t x0;
3511 int32_t x1;
3512
7621a90d 3513 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
09487205 3514 x1 = (b & 0xffffffff);
3b89f26c
BS
3515
3516 if (x1 == 0) {
3517 raise_exception(TT_DIV_ZERO);
3518 }
3519
3520 x0 = x0 / x1;
3521 if ((int32_t) x0 != x0) {
0fcec41e
AJ
3522 x0 = x0 < 0 ? 0x80000000: 0x7fffffff;
3523 overflow = 1;
3524 }
3525
3526 if (cc) {
3527 env->cc_dst = x0;
3528 env->cc_src2 = overflow;
3529 env->cc_op = CC_OP_DIV;
3b89f26c 3530 }
0fcec41e
AJ
3531 return x0;
3532}
3533
3534target_ulong helper_sdiv(target_ulong a, target_ulong b)
3535{
3536 return helper_sdiv_common(a, b, 0);
3537}
3538
3539target_ulong helper_sdiv_cc(target_ulong a, target_ulong b)
3540{
3541 return helper_sdiv_common(a, b, 1);
3b89f26c
BS
3542}
3543
7fa76c0b
BS
3544void helper_stdf(target_ulong addr, int mem_idx)
3545{
c2bc0e38 3546 helper_check_align(addr, 7);
7fa76c0b
BS
3547#if !defined(CONFIG_USER_ONLY)
3548 switch (mem_idx) {
b219094a 3549 case MMU_USER_IDX:
c2bc0e38 3550 stfq_user(addr, DT0);
7fa76c0b 3551 break;
b219094a 3552 case MMU_KERNEL_IDX:
c2bc0e38 3553 stfq_kernel(addr, DT0);
7fa76c0b
BS
3554 break;
3555#ifdef TARGET_SPARC64
b219094a 3556 case MMU_HYPV_IDX:
c2bc0e38 3557 stfq_hypv(addr, DT0);
7fa76c0b
BS
3558 break;
3559#endif
3560 default:
b219094a 3561 DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
7fa76c0b
BS
3562 break;
3563 }
3564#else
41db525e 3565 stfq_raw(address_mask(env, addr), DT0);
7fa76c0b
BS
3566#endif
3567}
3568
3569void helper_lddf(target_ulong addr, int mem_idx)
3570{
c2bc0e38 3571 helper_check_align(addr, 7);
7fa76c0b
BS
3572#if !defined(CONFIG_USER_ONLY)
3573 switch (mem_idx) {
b219094a 3574 case MMU_USER_IDX:
c2bc0e38 3575 DT0 = ldfq_user(addr);
7fa76c0b 3576 break;
b219094a 3577 case MMU_KERNEL_IDX:
c2bc0e38 3578 DT0 = ldfq_kernel(addr);
7fa76c0b
BS
3579 break;
3580#ifdef TARGET_SPARC64
b219094a 3581 case MMU_HYPV_IDX:
c2bc0e38 3582 DT0 = ldfq_hypv(addr);
7fa76c0b
BS
3583 break;
3584#endif
3585 default:
b219094a 3586 DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
7fa76c0b
BS
3587 break;
3588 }
3589#else
41db525e 3590 DT0 = ldfq_raw(address_mask(env, addr));
7fa76c0b
BS
3591#endif
3592}
3593
64a88d5d 3594void helper_ldqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
3595{
3596 // XXX add 128 bit load
3597 CPU_QuadU u;
3598
c2bc0e38 3599 helper_check_align(addr, 7);
64a88d5d
BS
3600#if !defined(CONFIG_USER_ONLY)
3601 switch (mem_idx) {
b219094a 3602 case MMU_USER_IDX:
c2bc0e38
BS
3603 u.ll.upper = ldq_user(addr);
3604 u.ll.lower = ldq_user(addr + 8);
64a88d5d
BS
3605 QT0 = u.q;
3606 break;
b219094a 3607 case MMU_KERNEL_IDX:
c2bc0e38
BS
3608 u.ll.upper = ldq_kernel(addr);
3609 u.ll.lower = ldq_kernel(addr + 8);
64a88d5d
BS
3610 QT0 = u.q;
3611 break;
3612#ifdef TARGET_SPARC64
b219094a 3613 case MMU_HYPV_IDX:
c2bc0e38
BS
3614 u.ll.upper = ldq_hypv(addr);
3615 u.ll.lower = ldq_hypv(addr + 8);
64a88d5d
BS
3616 QT0 = u.q;
3617 break;
3618#endif
3619 default:
b219094a 3620 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
64a88d5d
BS
3621 break;
3622 }
3623#else
41db525e
RH
3624 u.ll.upper = ldq_raw(address_mask(env, addr));
3625 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
7fa76c0b 3626 QT0 = u.q;
64a88d5d 3627#endif
7fa76c0b
BS
3628}
3629
64a88d5d 3630void helper_stqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
3631{
3632 // XXX add 128 bit store
3633 CPU_QuadU u;
3634
c2bc0e38 3635 helper_check_align(addr, 7);
64a88d5d
BS
3636#if !defined(CONFIG_USER_ONLY)
3637 switch (mem_idx) {
b219094a 3638 case MMU_USER_IDX:
64a88d5d 3639 u.q = QT0;
c2bc0e38
BS
3640 stq_user(addr, u.ll.upper);
3641 stq_user(addr + 8, u.ll.lower);
64a88d5d 3642 break;
b219094a 3643 case MMU_KERNEL_IDX:
64a88d5d 3644 u.q = QT0;
c2bc0e38
BS
3645 stq_kernel(addr, u.ll.upper);
3646 stq_kernel(addr + 8, u.ll.lower);
64a88d5d
BS
3647 break;
3648#ifdef TARGET_SPARC64
b219094a 3649 case MMU_HYPV_IDX:
64a88d5d 3650 u.q = QT0;
c2bc0e38
BS
3651 stq_hypv(addr, u.ll.upper);
3652 stq_hypv(addr + 8, u.ll.lower);
64a88d5d
BS
3653 break;
3654#endif
3655 default:
b219094a 3656 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
64a88d5d
BS
3657 break;
3658 }
3659#else
7fa76c0b 3660 u.q = QT0;
41db525e
RH
3661 stq_raw(address_mask(env, addr), u.ll.upper);
3662 stq_raw(address_mask(env, addr + 8), u.ll.lower);
7fa76c0b 3663#endif
64a88d5d 3664}
7fa76c0b 3665
3a3b925d 3666static inline void set_fsr(void)
e8af50a3 3667{
7a0e1f41 3668 int rnd_mode;
bb5529bb 3669
e8af50a3
FB
3670 switch (env->fsr & FSR_RD_MASK) {
3671 case FSR_RD_NEAREST:
7a0e1f41 3672 rnd_mode = float_round_nearest_even;
0f8a249a 3673 break;
ed910241 3674 default:
e8af50a3 3675 case FSR_RD_ZERO:
7a0e1f41 3676 rnd_mode = float_round_to_zero;
0f8a249a 3677 break;
e8af50a3 3678 case FSR_RD_POS:
7a0e1f41 3679 rnd_mode = float_round_up;
0f8a249a 3680 break;
e8af50a3 3681 case FSR_RD_NEG:
7a0e1f41 3682 rnd_mode = float_round_down;
0f8a249a 3683 break;
e8af50a3 3684 }
7a0e1f41 3685 set_float_rounding_mode(rnd_mode, &env->fp_status);
e8af50a3 3686}
e80cfcfc 3687
3a3b925d 3688void helper_ldfsr(uint32_t new_fsr)
bb5529bb 3689{
3a3b925d
BS
3690 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3691 set_fsr();
bb5529bb
BS
3692}
3693
3a3b925d
BS
3694#ifdef TARGET_SPARC64
3695void helper_ldxfsr(uint64_t new_fsr)
3696{
3697 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3698 set_fsr();
3699}
3700#endif
3701
bb5529bb 3702void helper_debug(void)
e80cfcfc
FB
3703{
3704 env->exception_index = EXCP_DEBUG;
3705 cpu_loop_exit();
3706}
af7bf89b 3707
3475187d 3708#ifndef TARGET_SPARC64
72a9747b
BS
3709/* XXX: use another pointer for %iN registers to avoid slow wrapping
3710 handling ? */
3711void helper_save(void)
3712{
3713 uint32_t cwp;
3714
5a834bb4 3715 cwp = cwp_dec(env->cwp - 1);
72a9747b
BS
3716 if (env->wim & (1 << cwp)) {
3717 raise_exception(TT_WIN_OVF);
3718 }
3719 set_cwp(cwp);
3720}
3721
3722void helper_restore(void)
3723{
3724 uint32_t cwp;
3725
5a834bb4 3726 cwp = cwp_inc(env->cwp + 1);
72a9747b
BS
3727 if (env->wim & (1 << cwp)) {
3728 raise_exception(TT_WIN_UNF);
3729 }
3730 set_cwp(cwp);
3731}
3732
1a2fb1c0 3733void helper_wrpsr(target_ulong new_psr)
af7bf89b 3734{
5a834bb4 3735 if ((new_psr & PSR_CWP) >= env->nwindows) {
d4218d99 3736 raise_exception(TT_ILL_INSN);
5a834bb4
BS
3737 } else {
3738 cpu_put_psr(env, new_psr);
3739 }
af7bf89b
FB
3740}
3741
1a2fb1c0 3742target_ulong helper_rdpsr(void)
af7bf89b 3743{
5a834bb4 3744 return get_psr();
af7bf89b 3745}
3475187d
FB
3746
3747#else
72a9747b
BS
3748/* XXX: use another pointer for %iN registers to avoid slow wrapping
3749 handling ? */
3750void helper_save(void)
3751{
3752 uint32_t cwp;
3753
5a834bb4 3754 cwp = cwp_dec(env->cwp - 1);
72a9747b
BS
3755 if (env->cansave == 0) {
3756 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3757 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3758 ((env->wstate & 0x7) << 2)));
3759 } else {
3760 if (env->cleanwin - env->canrestore == 0) {
3761 // XXX Clean windows without trap
3762 raise_exception(TT_CLRWIN);
3763 } else {
3764 env->cansave--;
3765 env->canrestore++;
3766 set_cwp(cwp);
3767 }
3768 }
3769}
3770
3771void helper_restore(void)
3772{
3773 uint32_t cwp;
3774
5a834bb4 3775 cwp = cwp_inc(env->cwp + 1);
72a9747b
BS
3776 if (env->canrestore == 0) {
3777 raise_exception(TT_FILL | (env->otherwin != 0 ?
3778 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3779 ((env->wstate & 0x7) << 2)));
3780 } else {
3781 env->cansave++;
3782 env->canrestore--;
3783 set_cwp(cwp);
3784 }
3785}
3786
3787void helper_flushw(void)
3788{
1a14026e 3789 if (env->cansave != env->nwindows - 2) {
72a9747b
BS
3790 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3791 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3792 ((env->wstate & 0x7) << 2)));
3793 }
3794}
3795
3796void helper_saved(void)
3797{
3798 env->cansave++;
3799 if (env->otherwin == 0)
3800 env->canrestore--;
3801 else
3802 env->otherwin--;
3803}
3804
3805void helper_restored(void)
3806{
3807 env->canrestore++;
1a14026e 3808 if (env->cleanwin < env->nwindows - 1)
72a9747b
BS
3809 env->cleanwin++;
3810 if (env->otherwin == 0)
3811 env->cansave--;
3812 else
3813 env->otherwin--;
3814}
3815
5a834bb4
BS
3816static target_ulong get_ccr(void)
3817{
3818 target_ulong psr;
3819
3820 psr = get_psr();
3821
3822 return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3823}
3824
3825target_ulong cpu_get_ccr(CPUState *env1)
3826{
3827 CPUState *saved_env;
3828 target_ulong ret;
3829
3830 saved_env = env;
3831 env = env1;
3832 ret = get_ccr();
3833 env = saved_env;
3834 return ret;
3835}
3836
3837static void put_ccr(target_ulong val)
3838{
3839 target_ulong tmp = val;
3840
3841 env->xcc = (tmp >> 4) << 20;
3842 env->psr = (tmp & 0xf) << 20;
3843 CC_OP = CC_OP_FLAGS;
3844}
3845
3846void cpu_put_ccr(CPUState *env1, target_ulong val)
3847{
3848 CPUState *saved_env;
3849
3850 saved_env = env;
3851 env = env1;
3852 put_ccr(val);
3853 env = saved_env;
3854}
3855
3856static target_ulong get_cwp64(void)
3857{
3858 return env->nwindows - 1 - env->cwp;
3859}
3860
3861target_ulong cpu_get_cwp64(CPUState *env1)
3862{
3863 CPUState *saved_env;
3864 target_ulong ret;
3865
3866 saved_env = env;
3867 env = env1;
3868 ret = get_cwp64();
3869 env = saved_env;
3870 return ret;
3871}
3872
3873static void put_cwp64(int cwp)
3874{
3875 if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3876 cwp %= env->nwindows;
3877 }
3878 set_cwp(env->nwindows - 1 - cwp);
3879}
3880
3881void cpu_put_cwp64(CPUState *env1, int cwp)
3882{
3883 CPUState *saved_env;
3884
3885 saved_env = env;
3886 env = env1;
3887 put_cwp64(cwp);
3888 env = saved_env;
3889}
3890
d35527d9
BS
3891target_ulong helper_rdccr(void)
3892{
5a834bb4 3893 return get_ccr();
d35527d9
BS
3894}
3895
3896void helper_wrccr(target_ulong new_ccr)
3897{
5a834bb4 3898 put_ccr(new_ccr);
d35527d9
BS
3899}
3900
3901// CWP handling is reversed in V9, but we still use the V8 register
3902// order.
3903target_ulong helper_rdcwp(void)
3904{
5a834bb4 3905 return get_cwp64();
d35527d9
BS
3906}
3907
3908void helper_wrcwp(target_ulong new_cwp)
3909{
5a834bb4 3910 put_cwp64(new_cwp);
d35527d9 3911}
3475187d 3912
1f5063fb
BS
3913// This function uses non-native bit order
3914#define GET_FIELD(X, FROM, TO) \
3915 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3916
3917// This function uses the order in the manuals, i.e. bit 0 is 2^0
3918#define GET_FIELD_SP(X, FROM, TO) \
3919 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3920
3921target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3922{
3923 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3924 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3925 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3926 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3927 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3928 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3929 (((pixel_addr >> 55) & 1) << 4) |
3930 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3931 GET_FIELD_SP(pixel_addr, 11, 12);
3932}
3933
3934target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3935{
3936 uint64_t tmp;
3937
3938 tmp = addr + offset;
3939 env->gsr &= ~7ULL;
3940 env->gsr |= tmp & 7ULL;
3941 return tmp & ~7ULL;
3942}
3943
1a2fb1c0 3944target_ulong helper_popc(target_ulong val)
3475187d 3945{
1a2fb1c0 3946 return ctpop64(val);
3475187d 3947}
83469015 3948
d780a466 3949static inline uint64_t *get_gregset(uint32_t pstate)
83469015
FB
3950{
3951 switch (pstate) {
3952 default:
7e8695ed
IK
3953 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3954 pstate,
3955 (pstate & PS_IG) ? " IG" : "",
3956 (pstate & PS_MG) ? " MG" : "",
3957 (pstate & PS_AG) ? " AG" : "");
3958 /* pass through to normal set of global registers */
83469015 3959 case 0:
0f8a249a 3960 return env->bgregs;
83469015 3961 case PS_AG:
0f8a249a 3962 return env->agregs;
83469015 3963 case PS_MG:
0f8a249a 3964 return env->mgregs;
83469015 3965 case PS_IG:
0f8a249a 3966 return env->igregs;
83469015
FB
3967 }
3968}
3969
d780a466 3970static inline void change_pstate(uint32_t new_pstate)
83469015 3971{
d780a466 3972 uint32_t pstate_regs, new_pstate_regs;
83469015
FB
3973 uint64_t *src, *dst;
3974
5210977a
IK
3975 if (env->def->features & CPU_FEATURE_GL) {
3976 // PS_AG is not implemented in this case
3977 new_pstate &= ~PS_AG;
3978 }
3979
83469015
FB
3980 pstate_regs = env->pstate & 0xc01;
3981 new_pstate_regs = new_pstate & 0xc01;
5210977a 3982
83469015 3983 if (new_pstate_regs != pstate_regs) {
7e8695ed
IK
3984 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
3985 pstate_regs, new_pstate_regs);
0f8a249a
BS
3986 // Switch global register bank
3987 src = get_gregset(new_pstate_regs);
3988 dst = get_gregset(pstate_regs);
3989 memcpy32(dst, env->gregs);
3990 memcpy32(env->gregs, src);
83469015 3991 }
7e8695ed
IK
3992 else {
3993 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
3994 new_pstate_regs);
3995 }
83469015
FB
3996 env->pstate = new_pstate;
3997}
3998
1a2fb1c0 3999void helper_wrpstate(target_ulong new_state)
8f1f22f6 4000{
5210977a 4001 change_pstate(new_state & 0xf3f);
4dc28134
IK
4002
4003#if !defined(CONFIG_USER_ONLY)
4004 if (cpu_interrupts_enabled(env)) {
4005 cpu_check_irqs(env);
4006 }
4007#endif
8f1f22f6
BS
4008}
4009
1fae7b70
IK
4010void helper_wrpil(target_ulong new_pil)
4011{
4012#if !defined(CONFIG_USER_ONLY)
4013 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
4014 env->psrpil, (uint32_t)new_pil);
4015
4016 env->psrpil = new_pil;
4017
4018 if (cpu_interrupts_enabled(env)) {
4019 cpu_check_irqs(env);
4020 }
4021#endif
4022}
4023
1a2fb1c0 4024void helper_done(void)
83469015 4025{
8194f35a
IK
4026 trap_state* tsptr = cpu_tsptr(env);
4027
3723cd09 4028 env->pc = tsptr->tnpc;
8194f35a 4029 env->npc = tsptr->tnpc + 4;
5a834bb4 4030 put_ccr(tsptr->tstate >> 32);
8194f35a
IK
4031 env->asi = (tsptr->tstate >> 24) & 0xff;
4032 change_pstate((tsptr->tstate >> 8) & 0xf3f);
5a834bb4 4033 put_cwp64(tsptr->tstate & 0xff);
e6bf7d70 4034 env->tl--;
4dc28134
IK
4035
4036 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
4037
4038#if !defined(CONFIG_USER_ONLY)
4039 if (cpu_interrupts_enabled(env)) {
4040 cpu_check_irqs(env);
4041 }
4042#endif
83469015
FB
4043}
4044
1a2fb1c0 4045void helper_retry(void)
83469015 4046{
8194f35a
IK
4047 trap_state* tsptr = cpu_tsptr(env);
4048
4049 env->pc = tsptr->tpc;
4050 env->npc = tsptr->tnpc;
5a834bb4 4051 put_ccr(tsptr->tstate >> 32);
8194f35a
IK
4052 env->asi = (tsptr->tstate >> 24) & 0xff;
4053 change_pstate((tsptr->tstate >> 8) & 0xf3f);
5a834bb4 4054 put_cwp64(tsptr->tstate & 0xff);
e6bf7d70 4055 env->tl--;
4dc28134
IK
4056
4057 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
4058
4059#if !defined(CONFIG_USER_ONLY)
4060 if (cpu_interrupts_enabled(env)) {
4061 cpu_check_irqs(env);
4062 }
4063#endif
4064}
4065
4066static void do_modify_softint(const char* operation, uint32_t value)
4067{
4068 if (env->softint != value) {
4069 env->softint = value;
4070 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
4071#if !defined(CONFIG_USER_ONLY)
4072 if (cpu_interrupts_enabled(env)) {
4073 cpu_check_irqs(env);
4074 }
4075#endif
4076 }
83469015 4077}
9d926598
BS
4078
4079void helper_set_softint(uint64_t value)
4080{
4dc28134 4081 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
9d926598
BS
4082}
4083
4084void helper_clear_softint(uint64_t value)
4085{
4dc28134 4086 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
9d926598
BS
4087}
4088
4089void helper_write_softint(uint64_t value)
4090{
4dc28134 4091 do_modify_softint("helper_write_softint", (uint32_t)value);
9d926598 4092}
3475187d 4093#endif
ee5bbe38 4094
91736d37 4095void helper_flush(target_ulong addr)
ee5bbe38 4096{
91736d37
BS
4097 addr &= ~7;
4098 tb_invalidate_page_range(addr, addr + 8);
ee5bbe38
FB
4099}
4100
91736d37
BS
4101#ifdef TARGET_SPARC64
4102#ifdef DEBUG_PCALL
4103static const char * const excp_names[0x80] = {
4104 [TT_TFAULT] = "Instruction Access Fault",
4105 [TT_TMISS] = "Instruction Access MMU Miss",
4106 [TT_CODE_ACCESS] = "Instruction Access Error",
4107 [TT_ILL_INSN] = "Illegal Instruction",
4108 [TT_PRIV_INSN] = "Privileged Instruction",
4109 [TT_NFPU_INSN] = "FPU Disabled",
4110 [TT_FP_EXCP] = "FPU Exception",
4111 [TT_TOVF] = "Tag Overflow",
4112 [TT_CLRWIN] = "Clean Windows",
4113 [TT_DIV_ZERO] = "Division By Zero",
4114 [TT_DFAULT] = "Data Access Fault",
4115 [TT_DMISS] = "Data Access MMU Miss",
4116 [TT_DATA_ACCESS] = "Data Access Error",
4117 [TT_DPROT] = "Data Protection Error",
4118 [TT_UNALIGNED] = "Unaligned Memory Access",
4119 [TT_PRIV_ACT] = "Privileged Action",
4120 [TT_EXTINT | 0x1] = "External Interrupt 1",
4121 [TT_EXTINT | 0x2] = "External Interrupt 2",
4122 [TT_EXTINT | 0x3] = "External Interrupt 3",
4123 [TT_EXTINT | 0x4] = "External Interrupt 4",
4124 [TT_EXTINT | 0x5] = "External Interrupt 5",
4125 [TT_EXTINT | 0x6] = "External Interrupt 6",
4126 [TT_EXTINT | 0x7] = "External Interrupt 7",
4127 [TT_EXTINT | 0x8] = "External Interrupt 8",
4128 [TT_EXTINT | 0x9] = "External Interrupt 9",
4129 [TT_EXTINT | 0xa] = "External Interrupt 10",
4130 [TT_EXTINT | 0xb] = "External Interrupt 11",
4131 [TT_EXTINT | 0xc] = "External Interrupt 12",
4132 [TT_EXTINT | 0xd] = "External Interrupt 13",
4133 [TT_EXTINT | 0xe] = "External Interrupt 14",
4134 [TT_EXTINT | 0xf] = "External Interrupt 15",
4135};
4136#endif
4137
8194f35a
IK
4138trap_state* cpu_tsptr(CPUState* env)
4139{
4140 return &env->ts[env->tl & MAXTL_MASK];
4141}
4142
91736d37
BS
4143void do_interrupt(CPUState *env)
4144{
4145 int intno = env->exception_index;
8194f35a 4146 trap_state* tsptr;
91736d37
BS
4147
4148#ifdef DEBUG_PCALL
8fec2b8c 4149 if (qemu_loglevel_mask(CPU_LOG_INT)) {
91736d37
BS
4150 static int count;
4151 const char *name;
4152
4153 if (intno < 0 || intno >= 0x180)
4154 name = "Unknown";
4155 else if (intno >= 0x100)
4156 name = "Trap Instruction";
4157 else if (intno >= 0xc0)
4158 name = "Window Fill";
4159 else if (intno >= 0x80)
4160 name = "Window Spill";
4161 else {
4162 name = excp_names[intno];
4163 if (!name)
4164 name = "Unknown";
4165 }
4166
93fcfe39 4167 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
91736d37
BS
4168 " SP=%016" PRIx64 "\n",
4169 count, name, intno,
4170 env->pc,
4171 env->npc, env->regwptr[6]);
93fcfe39 4172 log_cpu_state(env, 0);
91736d37
BS
4173#if 0
4174 {
4175 int i;
4176 uint8_t *ptr;
4177
93fcfe39 4178 qemu_log(" code=");
91736d37
BS
4179 ptr = (uint8_t *)env->pc;
4180 for(i = 0; i < 16; i++) {
93fcfe39 4181 qemu_log(" %02x", ldub(ptr + i));
91736d37 4182 }
93fcfe39 4183 qemu_log("\n");
91736d37
BS
4184 }
4185#endif
4186 count++;
4187 }
4188#endif
4189#if !defined(CONFIG_USER_ONLY)
4190 if (env->tl >= env->maxtl) {
4191 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
4192 " Error state", env->exception_index, env->tl, env->maxtl);
4193 return;
4194 }
4195#endif
4196 if (env->tl < env->maxtl - 1) {
4197 env->tl++;
4198 } else {
4199 env->pstate |= PS_RED;
4200 if (env->tl < env->maxtl)
4201 env->tl++;
4202 }
8194f35a
IK
4203 tsptr = cpu_tsptr(env);
4204
5a834bb4 4205 tsptr->tstate = (get_ccr() << 32) |
91736d37 4206 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
5a834bb4 4207 get_cwp64();
8194f35a
IK
4208 tsptr->tpc = env->pc;
4209 tsptr->tnpc = env->npc;
4210 tsptr->tt = intno;
5210977a
IK
4211
4212 switch (intno) {
4213 case TT_IVEC:
4214 change_pstate(PS_PEF | PS_PRIV | PS_IG);
4215 break;
4216 case TT_TFAULT:
5210977a 4217 case TT_DFAULT:
87f6d3f6
IK
4218 case TT_TMISS ... TT_TMISS + 3:
4219 case TT_DMISS ... TT_DMISS + 3:
4220 case TT_DPROT ... TT_DPROT + 3:
5210977a
IK
4221 change_pstate(PS_PEF | PS_PRIV | PS_MG);
4222 break;
4223 default:
4224 change_pstate(PS_PEF | PS_PRIV | PS_AG);
4225 break;
91736d37 4226 }
5210977a 4227
5a834bb4
BS
4228 if (intno == TT_CLRWIN) {
4229 set_cwp(cwp_dec(env->cwp - 1));
4230 } else if ((intno & 0x1c0) == TT_SPILL) {
4231 set_cwp(cwp_dec(env->cwp - env->cansave - 2));
4232 } else if ((intno & 0x1c0) == TT_FILL) {
4233 set_cwp(cwp_inc(env->cwp + 1));
4234 }
91736d37
BS
4235 env->tbr &= ~0x7fffULL;
4236 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
4237 env->pc = env->tbr;
4238 env->npc = env->pc + 4;
821b19fe 4239 env->exception_index = -1;
ee5bbe38 4240}
91736d37
BS
4241#else
4242#ifdef DEBUG_PCALL
4243static const char * const excp_names[0x80] = {
4244 [TT_TFAULT] = "Instruction Access Fault",
4245 [TT_ILL_INSN] = "Illegal Instruction",
4246 [TT_PRIV_INSN] = "Privileged Instruction",
4247 [TT_NFPU_INSN] = "FPU Disabled",
4248 [TT_WIN_OVF] = "Window Overflow",
4249 [TT_WIN_UNF] = "Window Underflow",
4250 [TT_UNALIGNED] = "Unaligned Memory Access",
4251 [TT_FP_EXCP] = "FPU Exception",
4252 [TT_DFAULT] = "Data Access Fault",
4253 [TT_TOVF] = "Tag Overflow",
4254 [TT_EXTINT | 0x1] = "External Interrupt 1",
4255 [TT_EXTINT | 0x2] = "External Interrupt 2",
4256 [TT_EXTINT | 0x3] = "External Interrupt 3",
4257 [TT_EXTINT | 0x4] = "External Interrupt 4",
4258 [TT_EXTINT | 0x5] = "External Interrupt 5",
4259 [TT_EXTINT | 0x6] = "External Interrupt 6",
4260 [TT_EXTINT | 0x7] = "External Interrupt 7",
4261 [TT_EXTINT | 0x8] = "External Interrupt 8",
4262 [TT_EXTINT | 0x9] = "External Interrupt 9",
4263 [TT_EXTINT | 0xa] = "External Interrupt 10",
4264 [TT_EXTINT | 0xb] = "External Interrupt 11",
4265 [TT_EXTINT | 0xc] = "External Interrupt 12",
4266 [TT_EXTINT | 0xd] = "External Interrupt 13",
4267 [TT_EXTINT | 0xe] = "External Interrupt 14",
4268 [TT_EXTINT | 0xf] = "External Interrupt 15",
4269 [TT_TOVF] = "Tag Overflow",
4270 [TT_CODE_ACCESS] = "Instruction Access Error",
4271 [TT_DATA_ACCESS] = "Data Access Error",
4272 [TT_DIV_ZERO] = "Division By Zero",
4273 [TT_NCP_INSN] = "Coprocessor Disabled",
4274};
4275#endif
ee5bbe38 4276
91736d37 4277void do_interrupt(CPUState *env)
ee5bbe38 4278{
91736d37
BS
4279 int cwp, intno = env->exception_index;
4280
4281#ifdef DEBUG_PCALL
8fec2b8c 4282 if (qemu_loglevel_mask(CPU_LOG_INT)) {
91736d37
BS
4283 static int count;
4284 const char *name;
4285
4286 if (intno < 0 || intno >= 0x100)
4287 name = "Unknown";
4288 else if (intno >= 0x80)
4289 name = "Trap Instruction";
4290 else {
4291 name = excp_names[intno];
4292 if (!name)
4293 name = "Unknown";
4294 }
4295
93fcfe39 4296 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
91736d37
BS
4297 count, name, intno,
4298 env->pc,
4299 env->npc, env->regwptr[6]);
93fcfe39 4300 log_cpu_state(env, 0);
91736d37
BS
4301#if 0
4302 {
4303 int i;
4304 uint8_t *ptr;
4305
93fcfe39 4306 qemu_log(" code=");
91736d37
BS
4307 ptr = (uint8_t *)env->pc;
4308 for(i = 0; i < 16; i++) {
93fcfe39 4309 qemu_log(" %02x", ldub(ptr + i));
91736d37 4310 }
93fcfe39 4311 qemu_log("\n");
91736d37
BS
4312 }
4313#endif
4314 count++;
4315 }
4316#endif
4317#if !defined(CONFIG_USER_ONLY)
4318 if (env->psret == 0) {
4319 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
4320 env->exception_index);
4321 return;
4322 }
4323#endif
4324 env->psret = 0;
5a834bb4
BS
4325 cwp = cwp_dec(env->cwp - 1);
4326 set_cwp(cwp);
91736d37
BS
4327 env->regwptr[9] = env->pc;
4328 env->regwptr[10] = env->npc;
4329 env->psrps = env->psrs;
4330 env->psrs = 1;
4331 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
4332 env->pc = env->tbr;
4333 env->npc = env->pc + 4;
95372a39 4334 env->exception_index = -1;
b04d9890
FC
4335
4336#if !defined(CONFIG_USER_ONLY)
4337 /* IRQ acknowledgment */
4338 if ((intno & ~15) == TT_EXTINT && env->qemu_irq_ack != NULL) {
4339 env->qemu_irq_ack(env->irq_manager, intno);
4340 }
4341#endif
ee5bbe38 4342}
91736d37 4343#endif
ee5bbe38 4344
5fafdf24 4345#if !defined(CONFIG_USER_ONLY)
ee5bbe38 4346
d2889a3e
BS
4347static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4348 void *retaddr);
4349
ee5bbe38 4350#define MMUSUFFIX _mmu
d2889a3e 4351#define ALIGNED_ONLY
ee5bbe38
FB
4352
4353#define SHIFT 0
4354#include "softmmu_template.h"
4355
4356#define SHIFT 1
4357#include "softmmu_template.h"
4358
4359#define SHIFT 2
4360#include "softmmu_template.h"
4361
4362#define SHIFT 3
4363#include "softmmu_template.h"
4364
c2bc0e38
BS
4365/* XXX: make it generic ? */
4366static void cpu_restore_state2(void *retaddr)
4367{
4368 TranslationBlock *tb;
4369 unsigned long pc;
4370
4371 if (retaddr) {
4372 /* now we have a real cpu fault */
4373 pc = (unsigned long)retaddr;
4374 tb = tb_find_pc(pc);
4375 if (tb) {
4376 /* the PC is inside the translated code. It means that we have
4377 a virtual CPU fault */
4378 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
4379 }
4380 }
4381}
4382
d2889a3e
BS
4383static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4384 void *retaddr)
4385{
94554550 4386#ifdef DEBUG_UNALIGNED
c2bc0e38
BS
4387 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
4388 "\n", addr, env->pc);
94554550 4389#endif
c2bc0e38 4390 cpu_restore_state2(retaddr);
94554550 4391 raise_exception(TT_UNALIGNED);
d2889a3e 4392}
ee5bbe38
FB
4393
4394/* try to fill the TLB and return an exception if error. If retaddr is
4395 NULL, it means that the function was called in C code (i.e. not
4396 from generated code or from helper.c) */
4397/* XXX: fix it to restore all registers */
6ebbf390 4398void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
ee5bbe38 4399{
ee5bbe38 4400 int ret;
ee5bbe38
FB
4401 CPUState *saved_env;
4402
4403 /* XXX: hack to restore env in all cases, even if not called from
4404 generated code */
4405 saved_env = env;
4406 env = cpu_single_env;
4407
6ebbf390 4408 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
ee5bbe38 4409 if (ret) {
c2bc0e38 4410 cpu_restore_state2(retaddr);
ee5bbe38
FB
4411 cpu_loop_exit();
4412 }
4413 env = saved_env;
4414}
4415
3c7b48b7 4416#endif /* !CONFIG_USER_ONLY */
6c36d3fa
BS
4417
4418#ifndef TARGET_SPARC64
3c7b48b7 4419#if !defined(CONFIG_USER_ONLY)
c227f099 4420void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
e18231a3 4421 int is_asi, int size)
6c36d3fa
BS
4422{
4423 CPUState *saved_env;
576c2cdc 4424 int fault_type;
6c36d3fa
BS
4425
4426 /* XXX: hack to restore env in all cases, even if not called from
4427 generated code */
4428 saved_env = env;
4429 env = cpu_single_env;
8543e2cf
BS
4430#ifdef DEBUG_UNASSIGNED
4431 if (is_asi)
e18231a3 4432 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
77f193da 4433 " asi 0x%02x from " TARGET_FMT_lx "\n",
e18231a3
BS
4434 is_exec ? "exec" : is_write ? "write" : "read", size,
4435 size == 1 ? "" : "s", addr, is_asi, env->pc);
8543e2cf 4436 else
e18231a3
BS
4437 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4438 " from " TARGET_FMT_lx "\n",
4439 is_exec ? "exec" : is_write ? "write" : "read", size,
4440 size == 1 ? "" : "s", addr, env->pc);
8543e2cf 4441#endif
576c2cdc
AT
4442 /* Don't overwrite translation and access faults */
4443 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
4444 if ((fault_type > 4) || (fault_type == 0)) {
4445 env->mmuregs[3] = 0; /* Fault status register */
4446 if (is_asi)
4447 env->mmuregs[3] |= 1 << 16;
4448 if (env->psrs)
4449 env->mmuregs[3] |= 1 << 5;
4450 if (is_exec)
4451 env->mmuregs[3] |= 1 << 6;
4452 if (is_write)
4453 env->mmuregs[3] |= 1 << 7;
4454 env->mmuregs[3] |= (5 << 2) | 2;
4455 /* SuperSPARC will never place instruction fault addresses in the FAR */
4456 if (!is_exec) {
4457 env->mmuregs[4] = addr; /* Fault address register */
4458 }
4459 }
4460 /* overflow (same type fault was not read before another fault) */
4461 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
4462 env->mmuregs[3] |= 1;
4463 }
4464
6c36d3fa 4465 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1b2e93c1
BS
4466 if (is_exec)
4467 raise_exception(TT_CODE_ACCESS);
4468 else
4469 raise_exception(TT_DATA_ACCESS);
6c36d3fa 4470 }
576c2cdc
AT
4471
4472 /* flush neverland mappings created during no-fault mode,
4473 so the sequential MMU faults report proper fault types */
4474 if (env->mmuregs[0] & MMU_NF) {
4475 tlb_flush(env, 1);
4476 }
15e7c451
AT
4477
4478 env = saved_env;
6c36d3fa 4479}
3c7b48b7
PB
4480#endif
4481#else
4482#if defined(CONFIG_USER_ONLY)
4483static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
4484 int is_asi, int size)
6c36d3fa 4485#else
c227f099 4486void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
e18231a3 4487 int is_asi, int size)
3c7b48b7 4488#endif
6c36d3fa 4489{
6c36d3fa
BS
4490 CPUState *saved_env;
4491
4492 /* XXX: hack to restore env in all cases, even if not called from
4493 generated code */
4494 saved_env = env;
4495 env = cpu_single_env;
dffbe217
IK
4496
4497#ifdef DEBUG_UNASSIGNED
77f193da
BS
4498 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
4499 "\n", addr, env->pc);
6c36d3fa 4500#endif
dffbe217 4501
1b2e93c1
BS
4502 if (is_exec)
4503 raise_exception(TT_CODE_ACCESS);
4504 else
4505 raise_exception(TT_DATA_ACCESS);
dffbe217
IK
4506
4507 env = saved_env;
6c36d3fa
BS
4508}
4509#endif
20c9f095 4510
3c7b48b7 4511
f4b1a842
BS
4512#ifdef TARGET_SPARC64
4513void helper_tick_set_count(void *opaque, uint64_t count)
4514{
4515#if !defined(CONFIG_USER_ONLY)
4516 cpu_tick_set_count(opaque, count);
4517#endif
4518}
4519
4520uint64_t helper_tick_get_count(void *opaque)
4521{
4522#if !defined(CONFIG_USER_ONLY)
4523 return cpu_tick_get_count(opaque);
4524#else
4525 return 0;
4526#endif
4527}
4528
4529void helper_tick_set_limit(void *opaque, uint64_t limit)
4530{
4531#if !defined(CONFIG_USER_ONLY)
4532 cpu_tick_set_limit(opaque, limit);
4533#endif
4534}
4535#endif