]> git.proxmox.com Git - qemu.git/blame - target-sparc/op_helper.c
Give the kernel more room
[qemu.git] / target-sparc / op_helper.c
CommitLineData
e8af50a3 1#include "exec.h"
eed152bb 2#include "host-utils.h"
1a2fb1c0 3#include "helper.h"
0828b448
BS
4#if !defined(CONFIG_USER_ONLY)
5#include "softmmu_exec.h"
6#endif /* !defined(CONFIG_USER_ONLY) */
e8af50a3 7
e80cfcfc 8//#define DEBUG_MMU
952a328f 9//#define DEBUG_MXCC
94554550 10//#define DEBUG_UNALIGNED
6c36d3fa 11//#define DEBUG_UNASSIGNED
8543e2cf 12//#define DEBUG_ASI
d81fd722 13//#define DEBUG_PCALL
e80cfcfc 14
952a328f 15#ifdef DEBUG_MMU
001faf32
BS
16#define DPRINTF_MMU(fmt, ...) \
17 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
952a328f 18#else
001faf32 19#define DPRINTF_MMU(fmt, ...) do {} while (0)
952a328f
BS
20#endif
21
22#ifdef DEBUG_MXCC
001faf32
BS
23#define DPRINTF_MXCC(fmt, ...) \
24 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
952a328f 25#else
001faf32 26#define DPRINTF_MXCC(fmt, ...) do {} while (0)
952a328f
BS
27#endif
28
8543e2cf 29#ifdef DEBUG_ASI
001faf32
BS
30#define DPRINTF_ASI(fmt, ...) \
31 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
8543e2cf
BS
32#endif
33
2cade6a3
BS
34#ifdef TARGET_SPARC64
35#ifndef TARGET_ABI32
36#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
c2bc0e38 37#else
2cade6a3
BS
38#define AM_CHECK(env1) (1)
39#endif
c2bc0e38
BS
40#endif
41
9c22a623 42#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
697a77e6
IK
43// Calculates TSB pointer value for fault page size 8k or 64k
44static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
45 uint64_t tag_access_register,
46 int page_size)
47{
48 uint64_t tsb_base = tsb_register & ~0x1fffULL;
49 int tsb_split = (env->dmmuregs[5] & 0x1000ULL) ? 1 : 0;
50 int tsb_size = env->dmmuregs[5] & 0xf;
51
52 // discard lower 13 bits which hold tag access context
53 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
54
55 // now reorder bits
56 uint64_t tsb_base_mask = ~0x1fffULL;
57 uint64_t va = tag_access_va;
58
59 // move va bits to correct position
60 if (page_size == 8*1024) {
61 va >>= 9;
62 } else if (page_size == 64*1024) {
63 va >>= 12;
64 }
65
66 if (tsb_size) {
67 tsb_base_mask <<= tsb_size;
68 }
69
70 // calculate tsb_base mask and adjust va if split is in use
71 if (tsb_split) {
72 if (page_size == 8*1024) {
73 va &= ~(1ULL << (13 + tsb_size));
74 } else if (page_size == 64*1024) {
75 va |= (1ULL << (13 + tsb_size));
76 }
77 tsb_base_mask <<= 1;
78 }
79
80 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
81}
82
83// Calculates tag target register value by reordering bits
84// in tag access register
85static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
86{
87 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
88}
89
90#endif
91
2cade6a3
BS
92static inline void address_mask(CPUState *env1, target_ulong *addr)
93{
94#ifdef TARGET_SPARC64
95 if (AM_CHECK(env1))
96 *addr &= 0xffffffffULL;
97#endif
98}
99
f4a5a5ba 100static void raise_exception(int tt)
9d893301
FB
101{
102 env->exception_index = tt;
103 cpu_loop_exit();
3b46e624 104}
9d893301 105
a7812ae4
PB
106void HELPER(raise_exception)(int tt)
107{
108 raise_exception(tt);
109}
110
91736d37
BS
111static inline void set_cwp(int new_cwp)
112{
113 cpu_set_cwp(env, new_cwp);
114}
115
2b29924f
BS
116void helper_check_align(target_ulong addr, uint32_t align)
117{
c2bc0e38
BS
118 if (addr & align) {
119#ifdef DEBUG_UNALIGNED
120 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
121 "\n", addr, env->pc);
122#endif
2b29924f 123 raise_exception(TT_UNALIGNED);
c2bc0e38 124 }
2b29924f
BS
125}
126
44e7757c
BS
127#define F_HELPER(name, p) void helper_f##name##p(void)
128
44e7757c 129#define F_BINOP(name) \
714547bb 130 float32 helper_f ## name ## s (float32 src1, float32 src2) \
44e7757c 131 { \
714547bb 132 return float32_ ## name (src1, src2, &env->fp_status); \
44e7757c
BS
133 } \
134 F_HELPER(name, d) \
135 { \
136 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
4e14008f
BS
137 } \
138 F_HELPER(name, q) \
139 { \
140 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
44e7757c 141 }
44e7757c
BS
142
143F_BINOP(add);
144F_BINOP(sub);
145F_BINOP(mul);
146F_BINOP(div);
147#undef F_BINOP
148
d84763bc 149void helper_fsmuld(float32 src1, float32 src2)
1a2fb1c0 150{
d84763bc
BS
151 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
152 float32_to_float64(src2, &env->fp_status),
44e7757c
BS
153 &env->fp_status);
154}
1a2fb1c0 155
4e14008f
BS
156void helper_fdmulq(void)
157{
158 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
159 float64_to_float128(DT1, &env->fp_status),
160 &env->fp_status);
161}
4e14008f 162
714547bb 163float32 helper_fnegs(float32 src)
44e7757c 164{
714547bb 165 return float32_chs(src);
417454b0
BS
166}
167
44e7757c
BS
168#ifdef TARGET_SPARC64
169F_HELPER(neg, d)
7e8c2b6c 170{
44e7757c 171 DT0 = float64_chs(DT1);
7e8c2b6c 172}
4e14008f 173
4e14008f
BS
174F_HELPER(neg, q)
175{
176 QT0 = float128_chs(QT1);
177}
178#endif
44e7757c
BS
179
180/* Integer to float conversion. */
714547bb 181float32 helper_fitos(int32_t src)
a0c4cb4a 182{
714547bb 183 return int32_to_float32(src, &env->fp_status);
a0c4cb4a
FB
184}
185
d84763bc 186void helper_fitod(int32_t src)
a0c4cb4a 187{
d84763bc 188 DT0 = int32_to_float64(src, &env->fp_status);
a0c4cb4a 189}
9c2b428e 190
c5d04e99 191void helper_fitoq(int32_t src)
4e14008f 192{
c5d04e99 193 QT0 = int32_to_float128(src, &env->fp_status);
4e14008f 194}
4e14008f 195
1e64e78d 196#ifdef TARGET_SPARC64
d84763bc 197float32 helper_fxtos(void)
1e64e78d 198{
d84763bc 199 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
1e64e78d
BS
200}
201
44e7757c 202F_HELPER(xto, d)
1e64e78d 203{
1e64e78d 204 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
1e64e78d 205}
64a88d5d 206
4e14008f
BS
207F_HELPER(xto, q)
208{
209 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
210}
211#endif
44e7757c
BS
212#undef F_HELPER
213
214/* floating point conversion */
d84763bc 215float32 helper_fdtos(void)
44e7757c 216{
d84763bc 217 return float64_to_float32(DT1, &env->fp_status);
44e7757c
BS
218}
219
d84763bc 220void helper_fstod(float32 src)
44e7757c 221{
d84763bc 222 DT0 = float32_to_float64(src, &env->fp_status);
44e7757c 223}
9c2b428e 224
c5d04e99 225float32 helper_fqtos(void)
4e14008f 226{
c5d04e99 227 return float128_to_float32(QT1, &env->fp_status);
4e14008f
BS
228}
229
c5d04e99 230void helper_fstoq(float32 src)
4e14008f 231{
c5d04e99 232 QT0 = float32_to_float128(src, &env->fp_status);
4e14008f
BS
233}
234
235void helper_fqtod(void)
236{
237 DT0 = float128_to_float64(QT1, &env->fp_status);
238}
239
240void helper_fdtoq(void)
241{
242 QT0 = float64_to_float128(DT1, &env->fp_status);
243}
4e14008f 244
44e7757c 245/* Float to integer conversion. */
714547bb 246int32_t helper_fstoi(float32 src)
44e7757c 247{
714547bb 248 return float32_to_int32_round_to_zero(src, &env->fp_status);
44e7757c
BS
249}
250
d84763bc 251int32_t helper_fdtoi(void)
44e7757c 252{
d84763bc 253 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
44e7757c
BS
254}
255
c5d04e99 256int32_t helper_fqtoi(void)
4e14008f 257{
c5d04e99 258 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
4e14008f 259}
4e14008f 260
44e7757c 261#ifdef TARGET_SPARC64
d84763bc 262void helper_fstox(float32 src)
44e7757c 263{
d84763bc 264 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
44e7757c
BS
265}
266
267void helper_fdtox(void)
268{
269 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
270}
271
4e14008f
BS
272void helper_fqtox(void)
273{
274 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
275}
4e14008f 276
44e7757c
BS
277void helper_faligndata(void)
278{
279 uint64_t tmp;
280
281 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
06057e6f
BS
282 /* on many architectures a shift of 64 does nothing */
283 if ((env->gsr & 7) != 0) {
284 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
285 }
44e7757c
BS
286 *((uint64_t *)&DT0) = tmp;
287}
288
44e7757c
BS
289#ifdef WORDS_BIGENDIAN
290#define VIS_B64(n) b[7 - (n)]
291#define VIS_W64(n) w[3 - (n)]
292#define VIS_SW64(n) sw[3 - (n)]
293#define VIS_L64(n) l[1 - (n)]
294#define VIS_B32(n) b[3 - (n)]
295#define VIS_W32(n) w[1 - (n)]
296#else
297#define VIS_B64(n) b[n]
298#define VIS_W64(n) w[n]
299#define VIS_SW64(n) sw[n]
300#define VIS_L64(n) l[n]
301#define VIS_B32(n) b[n]
302#define VIS_W32(n) w[n]
303#endif
304
305typedef union {
306 uint8_t b[8];
307 uint16_t w[4];
308 int16_t sw[4];
309 uint32_t l[2];
310 float64 d;
311} vis64;
312
313typedef union {
314 uint8_t b[4];
315 uint16_t w[2];
316 uint32_t l;
317 float32 f;
318} vis32;
319
320void helper_fpmerge(void)
321{
322 vis64 s, d;
323
324 s.d = DT0;
325 d.d = DT1;
326
327 // Reverse calculation order to handle overlap
328 d.VIS_B64(7) = s.VIS_B64(3);
329 d.VIS_B64(6) = d.VIS_B64(3);
330 d.VIS_B64(5) = s.VIS_B64(2);
331 d.VIS_B64(4) = d.VIS_B64(2);
332 d.VIS_B64(3) = s.VIS_B64(1);
333 d.VIS_B64(2) = d.VIS_B64(1);
334 d.VIS_B64(1) = s.VIS_B64(0);
335 //d.VIS_B64(0) = d.VIS_B64(0);
336
337 DT0 = d.d;
338}
339
340void helper_fmul8x16(void)
341{
342 vis64 s, d;
343 uint32_t tmp;
344
345 s.d = DT0;
346 d.d = DT1;
347
348#define PMUL(r) \
349 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
350 if ((tmp & 0xff) > 0x7f) \
351 tmp += 0x100; \
352 d.VIS_W64(r) = tmp >> 8;
353
354 PMUL(0);
355 PMUL(1);
356 PMUL(2);
357 PMUL(3);
358#undef PMUL
359
360 DT0 = d.d;
361}
362
363void helper_fmul8x16al(void)
364{
365 vis64 s, d;
366 uint32_t tmp;
367
368 s.d = DT0;
369 d.d = DT1;
370
371#define PMUL(r) \
372 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
373 if ((tmp & 0xff) > 0x7f) \
374 tmp += 0x100; \
375 d.VIS_W64(r) = tmp >> 8;
376
377 PMUL(0);
378 PMUL(1);
379 PMUL(2);
380 PMUL(3);
381#undef PMUL
382
383 DT0 = d.d;
384}
385
386void helper_fmul8x16au(void)
387{
388 vis64 s, d;
389 uint32_t tmp;
390
391 s.d = DT0;
392 d.d = DT1;
393
394#define PMUL(r) \
395 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
396 if ((tmp & 0xff) > 0x7f) \
397 tmp += 0x100; \
398 d.VIS_W64(r) = tmp >> 8;
399
400 PMUL(0);
401 PMUL(1);
402 PMUL(2);
403 PMUL(3);
404#undef PMUL
405
406 DT0 = d.d;
407}
408
409void helper_fmul8sux16(void)
410{
411 vis64 s, d;
412 uint32_t tmp;
413
414 s.d = DT0;
415 d.d = DT1;
416
417#define PMUL(r) \
418 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
419 if ((tmp & 0xff) > 0x7f) \
420 tmp += 0x100; \
421 d.VIS_W64(r) = tmp >> 8;
422
423 PMUL(0);
424 PMUL(1);
425 PMUL(2);
426 PMUL(3);
427#undef PMUL
428
429 DT0 = d.d;
430}
431
432void helper_fmul8ulx16(void)
433{
434 vis64 s, d;
435 uint32_t tmp;
436
437 s.d = DT0;
438 d.d = DT1;
439
440#define PMUL(r) \
441 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
442 if ((tmp & 0xff) > 0x7f) \
443 tmp += 0x100; \
444 d.VIS_W64(r) = tmp >> 8;
445
446 PMUL(0);
447 PMUL(1);
448 PMUL(2);
449 PMUL(3);
450#undef PMUL
451
452 DT0 = d.d;
453}
454
455void helper_fmuld8sux16(void)
456{
457 vis64 s, d;
458 uint32_t tmp;
459
460 s.d = DT0;
461 d.d = DT1;
462
463#define PMUL(r) \
464 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
465 if ((tmp & 0xff) > 0x7f) \
466 tmp += 0x100; \
467 d.VIS_L64(r) = tmp;
468
469 // Reverse calculation order to handle overlap
470 PMUL(1);
471 PMUL(0);
472#undef PMUL
473
474 DT0 = d.d;
475}
476
477void helper_fmuld8ulx16(void)
478{
479 vis64 s, d;
480 uint32_t tmp;
481
482 s.d = DT0;
483 d.d = DT1;
484
485#define PMUL(r) \
486 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
487 if ((tmp & 0xff) > 0x7f) \
488 tmp += 0x100; \
489 d.VIS_L64(r) = tmp;
490
491 // Reverse calculation order to handle overlap
492 PMUL(1);
493 PMUL(0);
494#undef PMUL
495
496 DT0 = d.d;
497}
498
499void helper_fexpand(void)
500{
501 vis32 s;
502 vis64 d;
503
504 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
505 d.d = DT1;
c55bda30
BS
506 d.VIS_W64(0) = s.VIS_B32(0) << 4;
507 d.VIS_W64(1) = s.VIS_B32(1) << 4;
508 d.VIS_W64(2) = s.VIS_B32(2) << 4;
509 d.VIS_W64(3) = s.VIS_B32(3) << 4;
44e7757c
BS
510
511 DT0 = d.d;
512}
513
514#define VIS_HELPER(name, F) \
515 void name##16(void) \
516 { \
517 vis64 s, d; \
518 \
519 s.d = DT0; \
520 d.d = DT1; \
521 \
522 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
523 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
524 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
525 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
526 \
527 DT0 = d.d; \
528 } \
529 \
1d01299d 530 uint32_t name##16s(uint32_t src1, uint32_t src2) \
44e7757c
BS
531 { \
532 vis32 s, d; \
533 \
1d01299d
BS
534 s.l = src1; \
535 d.l = src2; \
44e7757c
BS
536 \
537 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
538 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
539 \
1d01299d 540 return d.l; \
44e7757c
BS
541 } \
542 \
543 void name##32(void) \
544 { \
545 vis64 s, d; \
546 \
547 s.d = DT0; \
548 d.d = DT1; \
549 \
550 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
551 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
552 \
553 DT0 = d.d; \
554 } \
555 \
1d01299d 556 uint32_t name##32s(uint32_t src1, uint32_t src2) \
44e7757c
BS
557 { \
558 vis32 s, d; \
559 \
1d01299d
BS
560 s.l = src1; \
561 d.l = src2; \
44e7757c
BS
562 \
563 d.l = F(d.l, s.l); \
564 \
1d01299d 565 return d.l; \
44e7757c
BS
566 }
567
568#define FADD(a, b) ((a) + (b))
569#define FSUB(a, b) ((a) - (b))
570VIS_HELPER(helper_fpadd, FADD)
571VIS_HELPER(helper_fpsub, FSUB)
572
573#define VIS_CMPHELPER(name, F) \
574 void name##16(void) \
575 { \
576 vis64 s, d; \
577 \
578 s.d = DT0; \
579 d.d = DT1; \
580 \
581 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
582 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
583 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
584 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
585 \
586 DT0 = d.d; \
587 } \
588 \
589 void name##32(void) \
590 { \
591 vis64 s, d; \
592 \
593 s.d = DT0; \
594 d.d = DT1; \
595 \
596 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
597 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
598 \
599 DT0 = d.d; \
600 }
601
602#define FCMPGT(a, b) ((a) > (b))
603#define FCMPEQ(a, b) ((a) == (b))
604#define FCMPLE(a, b) ((a) <= (b))
605#define FCMPNE(a, b) ((a) != (b))
606
607VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
608VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
609VIS_CMPHELPER(helper_fcmple, FCMPLE)
610VIS_CMPHELPER(helper_fcmpne, FCMPNE)
611#endif
612
613void helper_check_ieee_exceptions(void)
614{
615 target_ulong status;
616
617 status = get_float_exception_flags(&env->fp_status);
618 if (status) {
619 /* Copy IEEE 754 flags into FSR */
620 if (status & float_flag_invalid)
621 env->fsr |= FSR_NVC;
622 if (status & float_flag_overflow)
623 env->fsr |= FSR_OFC;
624 if (status & float_flag_underflow)
625 env->fsr |= FSR_UFC;
626 if (status & float_flag_divbyzero)
627 env->fsr |= FSR_DZC;
628 if (status & float_flag_inexact)
629 env->fsr |= FSR_NXC;
630
631 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
632 /* Unmasked exception, generate a trap */
633 env->fsr |= FSR_FTT_IEEE_EXCP;
634 raise_exception(TT_FP_EXCP);
635 } else {
636 /* Accumulate exceptions */
637 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
638 }
639 }
640}
641
642void helper_clear_float_exceptions(void)
643{
644 set_float_exception_flags(0, &env->fp_status);
645}
646
714547bb 647float32 helper_fabss(float32 src)
e8af50a3 648{
714547bb 649 return float32_abs(src);
e8af50a3
FB
650}
651
3475187d 652#ifdef TARGET_SPARC64
7e8c2b6c 653void helper_fabsd(void)
3475187d
FB
654{
655 DT0 = float64_abs(DT1);
656}
4e14008f 657
4e14008f
BS
658void helper_fabsq(void)
659{
660 QT0 = float128_abs(QT1);
661}
662#endif
3475187d 663
714547bb 664float32 helper_fsqrts(float32 src)
e8af50a3 665{
714547bb 666 return float32_sqrt(src, &env->fp_status);
e8af50a3
FB
667}
668
7e8c2b6c 669void helper_fsqrtd(void)
e8af50a3 670{
7a0e1f41 671 DT0 = float64_sqrt(DT1, &env->fp_status);
e8af50a3
FB
672}
673
4e14008f
BS
674void helper_fsqrtq(void)
675{
676 QT0 = float128_sqrt(QT1, &env->fp_status);
677}
4e14008f 678
417454b0 679#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
7e8c2b6c 680 void glue(helper_, name) (void) \
65ce8c2f 681 { \
1a2fb1c0
BS
682 target_ulong new_fsr; \
683 \
65ce8c2f
FB
684 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
685 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
686 case float_relation_unordered: \
1a2fb1c0 687 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
417454b0 688 if ((env->fsr & FSR_NVM) || TRAP) { \
1a2fb1c0 689 env->fsr |= new_fsr; \
417454b0
BS
690 env->fsr |= FSR_NVC; \
691 env->fsr |= FSR_FTT_IEEE_EXCP; \
65ce8c2f
FB
692 raise_exception(TT_FP_EXCP); \
693 } else { \
694 env->fsr |= FSR_NVA; \
695 } \
696 break; \
697 case float_relation_less: \
1a2fb1c0 698 new_fsr = FSR_FCC0 << FS; \
65ce8c2f
FB
699 break; \
700 case float_relation_greater: \
1a2fb1c0 701 new_fsr = FSR_FCC1 << FS; \
65ce8c2f
FB
702 break; \
703 default: \
1a2fb1c0 704 new_fsr = 0; \
65ce8c2f
FB
705 break; \
706 } \
1a2fb1c0 707 env->fsr |= new_fsr; \
e8af50a3 708 }
714547bb
BS
709#define GEN_FCMPS(name, size, FS, TRAP) \
710 void glue(helper_, name)(float32 src1, float32 src2) \
711 { \
712 target_ulong new_fsr; \
713 \
714 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
715 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
716 case float_relation_unordered: \
717 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
718 if ((env->fsr & FSR_NVM) || TRAP) { \
719 env->fsr |= new_fsr; \
720 env->fsr |= FSR_NVC; \
721 env->fsr |= FSR_FTT_IEEE_EXCP; \
722 raise_exception(TT_FP_EXCP); \
723 } else { \
724 env->fsr |= FSR_NVA; \
725 } \
726 break; \
727 case float_relation_less: \
728 new_fsr = FSR_FCC0 << FS; \
729 break; \
730 case float_relation_greater: \
731 new_fsr = FSR_FCC1 << FS; \
732 break; \
733 default: \
734 new_fsr = 0; \
735 break; \
736 } \
737 env->fsr |= new_fsr; \
738 }
e8af50a3 739
714547bb 740GEN_FCMPS(fcmps, float32, 0, 0);
417454b0
BS
741GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
742
714547bb 743GEN_FCMPS(fcmpes, float32, 0, 1);
417454b0 744GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
3475187d 745
4e14008f
BS
746GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
747GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
4e14008f 748
8393617c
BS
749static uint32_t compute_all_flags(void)
750{
751 return env->psr & PSR_ICC;
752}
753
754static uint32_t compute_C_flags(void)
755{
756 return env->psr & PSR_CARRY;
757}
758
bdf9f35d
BS
759static inline uint32_t get_NZ_icc(target_ulong dst)
760{
761 uint32_t ret = 0;
762
763 if (!(dst & 0xffffffffULL))
764 ret |= PSR_ZERO;
765 if ((int32_t) (dst & 0xffffffffULL) < 0)
766 ret |= PSR_NEG;
767 return ret;
768}
769
8393617c
BS
770#ifdef TARGET_SPARC64
771static uint32_t compute_all_flags_xcc(void)
772{
773 return env->xcc & PSR_ICC;
774}
775
776static uint32_t compute_C_flags_xcc(void)
777{
778 return env->xcc & PSR_CARRY;
779}
780
bdf9f35d
BS
781static inline uint32_t get_NZ_xcc(target_ulong dst)
782{
783 uint32_t ret = 0;
784
785 if (!dst)
786 ret |= PSR_ZERO;
787 if ((int64_t)dst < 0)
788 ret |= PSR_NEG;
789 return ret;
790}
791#endif
792
6c78ea32
BS
793static inline uint32_t get_V_div_icc(target_ulong src2)
794{
795 uint32_t ret = 0;
796
797 if (src2 != 0)
798 ret |= PSR_OVF;
799 return ret;
800}
801
802static uint32_t compute_all_div(void)
803{
804 uint32_t ret;
805
806 ret = get_NZ_icc(CC_DST);
807 ret |= get_V_div_icc(CC_SRC2);
808 return ret;
809}
810
811static uint32_t compute_C_div(void)
812{
813 return 0;
814}
815
bdf9f35d
BS
816static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1)
817{
818 uint32_t ret = 0;
819
820 if ((dst & 0xffffffffULL) < (src1 & 0xffffffffULL))
821 ret |= PSR_CARRY;
822 return ret;
823}
824
825static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
826 target_ulong src2)
827{
828 uint32_t ret = 0;
829
830 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
831 ret |= PSR_OVF;
832 return ret;
833}
834
835static uint32_t compute_all_add(void)
836{
837 uint32_t ret;
838
839 ret = get_NZ_icc(CC_DST);
840 ret |= get_C_add_icc(CC_DST, CC_SRC);
841 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
842 return ret;
843}
844
845static uint32_t compute_C_add(void)
846{
847 return get_C_add_icc(CC_DST, CC_SRC);
848}
849
850#ifdef TARGET_SPARC64
851static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
852{
853 uint32_t ret = 0;
854
855 if (dst < src1)
856 ret |= PSR_CARRY;
857 return ret;
858}
859
860static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
861 target_ulong src2)
862{
863 uint32_t ret = 0;
864
865 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
866 ret |= PSR_OVF;
867 return ret;
868}
869
870static uint32_t compute_all_add_xcc(void)
871{
872 uint32_t ret;
873
874 ret = get_NZ_xcc(CC_DST);
875 ret |= get_C_add_xcc(CC_DST, CC_SRC);
876 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
877 return ret;
878}
879
880static uint32_t compute_C_add_xcc(void)
881{
882 return get_C_add_xcc(CC_DST, CC_SRC);
883}
8393617c
BS
884#endif
885
789c91ef
BS
886static uint32_t compute_all_addx(void)
887{
888 uint32_t ret;
889
890 ret = get_NZ_icc(CC_DST);
891 ret |= get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
892 ret |= get_C_add_icc(CC_DST, CC_SRC);
893 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
894 return ret;
895}
896
897static uint32_t compute_C_addx(void)
898{
899 uint32_t ret;
900
901 ret = get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
902 ret |= get_C_add_icc(CC_DST, CC_SRC);
903 return ret;
904}
905
906#ifdef TARGET_SPARC64
907static uint32_t compute_all_addx_xcc(void)
908{
909 uint32_t ret;
910
911 ret = get_NZ_xcc(CC_DST);
912 ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
913 ret |= get_C_add_xcc(CC_DST, CC_SRC);
914 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
915 return ret;
916}
917
918static uint32_t compute_C_addx_xcc(void)
919{
920 uint32_t ret;
921
922 ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
923 ret |= get_C_add_xcc(CC_DST, CC_SRC);
924 return ret;
925}
926#endif
927
3b2d1e92
BS
928static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
929{
930 uint32_t ret = 0;
931
932 if ((src1 | src2) & 0x3)
933 ret |= PSR_OVF;
934 return ret;
935}
936
937static uint32_t compute_all_tadd(void)
938{
939 uint32_t ret;
940
941 ret = get_NZ_icc(CC_DST);
942 ret |= get_C_add_icc(CC_DST, CC_SRC);
943 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
944 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
945 return ret;
946}
947
948static uint32_t compute_C_tadd(void)
949{
950 return get_C_add_icc(CC_DST, CC_SRC);
951}
952
953static uint32_t compute_all_taddtv(void)
954{
955 uint32_t ret;
956
957 ret = get_NZ_icc(CC_DST);
958 ret |= get_C_add_icc(CC_DST, CC_SRC);
959 return ret;
960}
961
962static uint32_t compute_C_taddtv(void)
963{
964 return get_C_add_icc(CC_DST, CC_SRC);
965}
966
d4b0d468
BS
967static inline uint32_t get_C_sub_icc(target_ulong src1, target_ulong src2)
968{
969 uint32_t ret = 0;
970
971 if ((src1 & 0xffffffffULL) < (src2 & 0xffffffffULL))
972 ret |= PSR_CARRY;
973 return ret;
974}
975
976static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
977 target_ulong src2)
978{
979 uint32_t ret = 0;
980
981 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
982 ret |= PSR_OVF;
983 return ret;
984}
985
986static uint32_t compute_all_sub(void)
987{
988 uint32_t ret;
989
990 ret = get_NZ_icc(CC_DST);
991 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
992 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
993 return ret;
994}
995
996static uint32_t compute_C_sub(void)
997{
998 return get_C_sub_icc(CC_SRC, CC_SRC2);
999}
1000
1001#ifdef TARGET_SPARC64
1002static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1003{
1004 uint32_t ret = 0;
1005
1006 if (src1 < src2)
1007 ret |= PSR_CARRY;
1008 return ret;
1009}
1010
1011static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1012 target_ulong src2)
1013{
1014 uint32_t ret = 0;
1015
1016 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
1017 ret |= PSR_OVF;
1018 return ret;
1019}
1020
1021static uint32_t compute_all_sub_xcc(void)
1022{
1023 uint32_t ret;
1024
1025 ret = get_NZ_xcc(CC_DST);
1026 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1027 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1028 return ret;
1029}
1030
1031static uint32_t compute_C_sub_xcc(void)
1032{
1033 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1034}
1035#endif
1036
2ca1d92b
BS
1037static uint32_t compute_all_subx(void)
1038{
1039 uint32_t ret;
1040
1041 ret = get_NZ_icc(CC_DST);
1042 ret |= get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
1043 ret |= get_C_sub_icc(CC_DST, CC_SRC2);
1044 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1045 return ret;
1046}
1047
1048static uint32_t compute_C_subx(void)
1049{
1050 uint32_t ret;
1051
1052 ret = get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
1053 ret |= get_C_sub_icc(CC_DST, CC_SRC2);
1054 return ret;
1055}
1056
1057#ifdef TARGET_SPARC64
1058static uint32_t compute_all_subx_xcc(void)
1059{
1060 uint32_t ret;
1061
1062 ret = get_NZ_xcc(CC_DST);
1063 ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1064 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1065 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1066 return ret;
1067}
1068
1069static uint32_t compute_C_subx_xcc(void)
1070{
1071 uint32_t ret;
1072
1073 ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1074 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1075 return ret;
1076}
1077#endif
1078
3b2d1e92
BS
1079static uint32_t compute_all_tsub(void)
1080{
1081 uint32_t ret;
1082
1083 ret = get_NZ_icc(CC_DST);
1084 ret |= get_C_sub_icc(CC_DST, CC_SRC);
1085 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1086 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1087 return ret;
1088}
1089
1090static uint32_t compute_C_tsub(void)
1091{
1092 return get_C_sub_icc(CC_DST, CC_SRC);
1093}
1094
1095static uint32_t compute_all_tsubtv(void)
1096{
1097 uint32_t ret;
1098
1099 ret = get_NZ_icc(CC_DST);
1100 ret |= get_C_sub_icc(CC_DST, CC_SRC);
1101 return ret;
1102}
1103
1104static uint32_t compute_C_tsubtv(void)
1105{
1106 return get_C_sub_icc(CC_DST, CC_SRC);
1107}
1108
38482a77
BS
1109static uint32_t compute_all_logic(void)
1110{
1111 return get_NZ_icc(CC_DST);
1112}
1113
1114static uint32_t compute_C_logic(void)
1115{
1116 return 0;
1117}
1118
1119#ifdef TARGET_SPARC64
1120static uint32_t compute_all_logic_xcc(void)
1121{
1122 return get_NZ_xcc(CC_DST);
1123}
1124#endif
1125
8393617c
BS
1126typedef struct CCTable {
1127 uint32_t (*compute_all)(void); /* return all the flags */
1128 uint32_t (*compute_c)(void); /* return the C flag */
1129} CCTable;
1130
1131static const CCTable icc_table[CC_OP_NB] = {
1132 /* CC_OP_DYNAMIC should never happen */
1133 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
6c78ea32 1134 [CC_OP_DIV] = { compute_all_div, compute_C_div },
bdf9f35d 1135 [CC_OP_ADD] = { compute_all_add, compute_C_add },
789c91ef 1136 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
3b2d1e92
BS
1137 [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
1138 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
d4b0d468 1139 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
2ca1d92b 1140 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
3b2d1e92
BS
1141 [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
1142 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
38482a77 1143 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
8393617c
BS
1144};
1145
1146#ifdef TARGET_SPARC64
1147static const CCTable xcc_table[CC_OP_NB] = {
1148 /* CC_OP_DYNAMIC should never happen */
1149 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
6c78ea32 1150 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
bdf9f35d 1151 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
789c91ef 1152 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
3b2d1e92
BS
1153 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1154 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
d4b0d468 1155 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
2ca1d92b 1156 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
3b2d1e92
BS
1157 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1158 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
38482a77 1159 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
8393617c
BS
1160};
1161#endif
1162
1163void helper_compute_psr(void)
1164{
1165 uint32_t new_psr;
1166
1167 new_psr = icc_table[CC_OP].compute_all();
1168 env->psr = new_psr;
1169#ifdef TARGET_SPARC64
1170 new_psr = xcc_table[CC_OP].compute_all();
1171 env->xcc = new_psr;
1172#endif
1173 CC_OP = CC_OP_FLAGS;
1174}
1175
1176uint32_t helper_compute_C_icc(void)
1177{
1178 uint32_t ret;
1179
1180 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1181 return ret;
1182}
1183
3475187d 1184#ifdef TARGET_SPARC64
714547bb 1185GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
417454b0 1186GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
64a88d5d 1187GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
417454b0 1188
714547bb 1189GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
417454b0 1190GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
64a88d5d 1191GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
417454b0 1192
714547bb 1193GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
417454b0 1194GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
64a88d5d 1195GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
417454b0 1196
714547bb 1197GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
417454b0 1198GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
64a88d5d 1199GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
3475187d 1200
714547bb 1201GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
417454b0 1202GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
64a88d5d 1203GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
3475187d 1204
714547bb 1205GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
417454b0 1206GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
4e14008f
BS
1207GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1208#endif
714547bb 1209#undef GEN_FCMPS
3475187d 1210
77f193da
BS
1211#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1212 defined(DEBUG_MXCC)
952a328f
BS
1213static void dump_mxcc(CPUState *env)
1214{
0bf9e31a
BS
1215 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1216 "\n",
77f193da
BS
1217 env->mxccdata[0], env->mxccdata[1],
1218 env->mxccdata[2], env->mxccdata[3]);
0bf9e31a
BS
1219 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1220 "\n"
1221 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1222 "\n",
77f193da
BS
1223 env->mxccregs[0], env->mxccregs[1],
1224 env->mxccregs[2], env->mxccregs[3],
1225 env->mxccregs[4], env->mxccregs[5],
1226 env->mxccregs[6], env->mxccregs[7]);
952a328f
BS
1227}
1228#endif
1229
1a2fb1c0
BS
1230#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1231 && defined(DEBUG_ASI)
1232static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1233 uint64_t r1)
8543e2cf
BS
1234{
1235 switch (size)
1236 {
1237 case 1:
1a2fb1c0
BS
1238 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1239 addr, asi, r1 & 0xff);
8543e2cf
BS
1240 break;
1241 case 2:
1a2fb1c0
BS
1242 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1243 addr, asi, r1 & 0xffff);
8543e2cf
BS
1244 break;
1245 case 4:
1a2fb1c0
BS
1246 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1247 addr, asi, r1 & 0xffffffff);
8543e2cf
BS
1248 break;
1249 case 8:
1a2fb1c0
BS
1250 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1251 addr, asi, r1);
8543e2cf
BS
1252 break;
1253 }
1254}
1255#endif
1256
1a2fb1c0
BS
1257#ifndef TARGET_SPARC64
1258#ifndef CONFIG_USER_ONLY
1259uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
e8af50a3 1260{
1a2fb1c0 1261 uint64_t ret = 0;
8543e2cf 1262#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1a2fb1c0 1263 uint32_t last_addr = addr;
952a328f 1264#endif
e80cfcfc 1265
c2bc0e38 1266 helper_check_align(addr, size - 1);
e80cfcfc 1267 switch (asi) {
6c36d3fa 1268 case 2: /* SuperSparc MXCC registers */
1a2fb1c0 1269 switch (addr) {
952a328f 1270 case 0x01c00a00: /* MXCC control register */
1a2fb1c0
BS
1271 if (size == 8)
1272 ret = env->mxccregs[3];
1273 else
77f193da
BS
1274 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1275 size);
952a328f
BS
1276 break;
1277 case 0x01c00a04: /* MXCC control register */
1278 if (size == 4)
1279 ret = env->mxccregs[3];
1280 else
77f193da
BS
1281 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1282 size);
952a328f 1283 break;
295db113
BS
1284 case 0x01c00c00: /* Module reset register */
1285 if (size == 8) {
1a2fb1c0 1286 ret = env->mxccregs[5];
295db113
BS
1287 // should we do something here?
1288 } else
77f193da
BS
1289 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1290 size);
295db113 1291 break;
952a328f 1292 case 0x01c00f00: /* MBus port address register */
1a2fb1c0
BS
1293 if (size == 8)
1294 ret = env->mxccregs[7];
1295 else
77f193da
BS
1296 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1297 size);
952a328f
BS
1298 break;
1299 default:
77f193da
BS
1300 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1301 size);
952a328f
BS
1302 break;
1303 }
77f193da 1304 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
9827e450 1305 "addr = %08x -> ret = %" PRIx64 ","
1a2fb1c0 1306 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
952a328f
BS
1307#ifdef DEBUG_MXCC
1308 dump_mxcc(env);
1309#endif
6c36d3fa 1310 break;
e8af50a3 1311 case 3: /* MMU probe */
0f8a249a
BS
1312 {
1313 int mmulev;
1314
1a2fb1c0 1315 mmulev = (addr >> 8) & 15;
0f8a249a
BS
1316 if (mmulev > 4)
1317 ret = 0;
1a2fb1c0
BS
1318 else
1319 ret = mmu_probe(env, addr, mmulev);
1320 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1321 addr, mmulev, ret);
0f8a249a
BS
1322 }
1323 break;
e8af50a3 1324 case 4: /* read MMU regs */
0f8a249a 1325 {
1a2fb1c0 1326 int reg = (addr >> 8) & 0x1f;
3b46e624 1327
0f8a249a
BS
1328 ret = env->mmuregs[reg];
1329 if (reg == 3) /* Fault status cleared on read */
3dd9a152
BS
1330 env->mmuregs[3] = 0;
1331 else if (reg == 0x13) /* Fault status read */
1332 ret = env->mmuregs[3];
1333 else if (reg == 0x14) /* Fault address read */
1334 ret = env->mmuregs[4];
1a2fb1c0 1335 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
0f8a249a
BS
1336 }
1337 break;
045380be
BS
1338 case 5: // Turbosparc ITLB Diagnostic
1339 case 6: // Turbosparc DTLB Diagnostic
1340 case 7: // Turbosparc IOTLB Diagnostic
1341 break;
6c36d3fa
BS
1342 case 9: /* Supervisor code access */
1343 switch(size) {
1344 case 1:
1a2fb1c0 1345 ret = ldub_code(addr);
6c36d3fa
BS
1346 break;
1347 case 2:
a4e7dd52 1348 ret = lduw_code(addr);
6c36d3fa
BS
1349 break;
1350 default:
1351 case 4:
a4e7dd52 1352 ret = ldl_code(addr);
6c36d3fa
BS
1353 break;
1354 case 8:
a4e7dd52 1355 ret = ldq_code(addr);
6c36d3fa
BS
1356 break;
1357 }
1358 break;
81ad8ba2
BS
1359 case 0xa: /* User data access */
1360 switch(size) {
1361 case 1:
1a2fb1c0 1362 ret = ldub_user(addr);
81ad8ba2
BS
1363 break;
1364 case 2:
a4e7dd52 1365 ret = lduw_user(addr);
81ad8ba2
BS
1366 break;
1367 default:
1368 case 4:
a4e7dd52 1369 ret = ldl_user(addr);
81ad8ba2
BS
1370 break;
1371 case 8:
a4e7dd52 1372 ret = ldq_user(addr);
81ad8ba2
BS
1373 break;
1374 }
1375 break;
1376 case 0xb: /* Supervisor data access */
1377 switch(size) {
1378 case 1:
1a2fb1c0 1379 ret = ldub_kernel(addr);
81ad8ba2
BS
1380 break;
1381 case 2:
a4e7dd52 1382 ret = lduw_kernel(addr);
81ad8ba2
BS
1383 break;
1384 default:
1385 case 4:
a4e7dd52 1386 ret = ldl_kernel(addr);
81ad8ba2
BS
1387 break;
1388 case 8:
a4e7dd52 1389 ret = ldq_kernel(addr);
81ad8ba2
BS
1390 break;
1391 }
1392 break;
6c36d3fa
BS
1393 case 0xc: /* I-cache tag */
1394 case 0xd: /* I-cache data */
1395 case 0xe: /* D-cache tag */
1396 case 0xf: /* D-cache data */
1397 break;
1398 case 0x20: /* MMU passthrough */
02aab46a
FB
1399 switch(size) {
1400 case 1:
1a2fb1c0 1401 ret = ldub_phys(addr);
02aab46a
FB
1402 break;
1403 case 2:
a4e7dd52 1404 ret = lduw_phys(addr);
02aab46a
FB
1405 break;
1406 default:
1407 case 4:
a4e7dd52 1408 ret = ldl_phys(addr);
02aab46a 1409 break;
9e61bde5 1410 case 8:
a4e7dd52 1411 ret = ldq_phys(addr);
0f8a249a 1412 break;
02aab46a 1413 }
0f8a249a 1414 break;
7d85892b 1415 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
5dcb6b91
BS
1416 switch(size) {
1417 case 1:
1a2fb1c0 1418 ret = ldub_phys((target_phys_addr_t)addr
5dcb6b91
BS
1419 | ((target_phys_addr_t)(asi & 0xf) << 32));
1420 break;
1421 case 2:
a4e7dd52 1422 ret = lduw_phys((target_phys_addr_t)addr
5dcb6b91
BS
1423 | ((target_phys_addr_t)(asi & 0xf) << 32));
1424 break;
1425 default:
1426 case 4:
a4e7dd52 1427 ret = ldl_phys((target_phys_addr_t)addr
5dcb6b91
BS
1428 | ((target_phys_addr_t)(asi & 0xf) << 32));
1429 break;
1430 case 8:
a4e7dd52 1431 ret = ldq_phys((target_phys_addr_t)addr
5dcb6b91 1432 | ((target_phys_addr_t)(asi & 0xf) << 32));
0f8a249a 1433 break;
5dcb6b91 1434 }
0f8a249a 1435 break;
045380be
BS
1436 case 0x30: // Turbosparc secondary cache diagnostic
1437 case 0x31: // Turbosparc RAM snoop
1438 case 0x32: // Turbosparc page table descriptor diagnostic
666c87aa
BS
1439 case 0x39: /* data cache diagnostic register */
1440 ret = 0;
1441 break;
4017190e
BS
1442 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1443 {
1444 int reg = (addr >> 8) & 3;
1445
1446 switch(reg) {
1447 case 0: /* Breakpoint Value (Addr) */
1448 ret = env->mmubpregs[reg];
1449 break;
1450 case 1: /* Breakpoint Mask */
1451 ret = env->mmubpregs[reg];
1452 break;
1453 case 2: /* Breakpoint Control */
1454 ret = env->mmubpregs[reg];
1455 break;
1456 case 3: /* Breakpoint Status */
1457 ret = env->mmubpregs[reg];
1458 env->mmubpregs[reg] = 0ULL;
1459 break;
1460 }
0bf9e31a
BS
1461 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1462 ret);
4017190e
BS
1463 }
1464 break;
045380be 1465 case 8: /* User code access, XXX */
e8af50a3 1466 default:
e18231a3 1467 do_unassigned_access(addr, 0, 0, asi, size);
0f8a249a
BS
1468 ret = 0;
1469 break;
e8af50a3 1470 }
81ad8ba2
BS
1471 if (sign) {
1472 switch(size) {
1473 case 1:
1a2fb1c0 1474 ret = (int8_t) ret;
e32664fb 1475 break;
81ad8ba2 1476 case 2:
1a2fb1c0
BS
1477 ret = (int16_t) ret;
1478 break;
1479 case 4:
1480 ret = (int32_t) ret;
e32664fb 1481 break;
81ad8ba2 1482 default:
81ad8ba2
BS
1483 break;
1484 }
1485 }
8543e2cf 1486#ifdef DEBUG_ASI
1a2fb1c0 1487 dump_asi("read ", last_addr, asi, size, ret);
8543e2cf 1488#endif
1a2fb1c0 1489 return ret;
e8af50a3
FB
1490}
1491
1a2fb1c0 1492void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
e8af50a3 1493{
c2bc0e38 1494 helper_check_align(addr, size - 1);
e8af50a3 1495 switch(asi) {
6c36d3fa 1496 case 2: /* SuperSparc MXCC registers */
1a2fb1c0 1497 switch (addr) {
952a328f
BS
1498 case 0x01c00000: /* MXCC stream data register 0 */
1499 if (size == 8)
1a2fb1c0 1500 env->mxccdata[0] = val;
952a328f 1501 else
77f193da
BS
1502 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1503 size);
952a328f
BS
1504 break;
1505 case 0x01c00008: /* MXCC stream data register 1 */
1506 if (size == 8)
1a2fb1c0 1507 env->mxccdata[1] = val;
952a328f 1508 else
77f193da
BS
1509 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1510 size);
952a328f
BS
1511 break;
1512 case 0x01c00010: /* MXCC stream data register 2 */
1513 if (size == 8)
1a2fb1c0 1514 env->mxccdata[2] = val;
952a328f 1515 else
77f193da
BS
1516 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1517 size);
952a328f
BS
1518 break;
1519 case 0x01c00018: /* MXCC stream data register 3 */
1520 if (size == 8)
1a2fb1c0 1521 env->mxccdata[3] = val;
952a328f 1522 else
77f193da
BS
1523 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1524 size);
952a328f
BS
1525 break;
1526 case 0x01c00100: /* MXCC stream source */
1527 if (size == 8)
1a2fb1c0 1528 env->mxccregs[0] = val;
952a328f 1529 else
77f193da
BS
1530 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1531 size);
1532 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1533 0);
1534 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1535 8);
1536 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1537 16);
1538 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1539 24);
952a328f
BS
1540 break;
1541 case 0x01c00200: /* MXCC stream destination */
1542 if (size == 8)
1a2fb1c0 1543 env->mxccregs[1] = val;
952a328f 1544 else
77f193da
BS
1545 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1546 size);
1547 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1548 env->mxccdata[0]);
1549 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1550 env->mxccdata[1]);
1551 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1552 env->mxccdata[2]);
1553 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1554 env->mxccdata[3]);
952a328f
BS
1555 break;
1556 case 0x01c00a00: /* MXCC control register */
1557 if (size == 8)
1a2fb1c0 1558 env->mxccregs[3] = val;
952a328f 1559 else
77f193da
BS
1560 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1561 size);
952a328f
BS
1562 break;
1563 case 0x01c00a04: /* MXCC control register */
1564 if (size == 4)
9f4576f0 1565 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
77f193da 1566 | val;
952a328f 1567 else
77f193da
BS
1568 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1569 size);
952a328f
BS
1570 break;
1571 case 0x01c00e00: /* MXCC error register */
bbf7d96b 1572 // writing a 1 bit clears the error
952a328f 1573 if (size == 8)
1a2fb1c0 1574 env->mxccregs[6] &= ~val;
952a328f 1575 else
77f193da
BS
1576 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1577 size);
952a328f
BS
1578 break;
1579 case 0x01c00f00: /* MBus port address register */
1580 if (size == 8)
1a2fb1c0 1581 env->mxccregs[7] = val;
952a328f 1582 else
77f193da
BS
1583 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1584 size);
952a328f
BS
1585 break;
1586 default:
77f193da
BS
1587 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1588 size);
952a328f
BS
1589 break;
1590 }
9827e450
BS
1591 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1592 asi, size, addr, val);
952a328f
BS
1593#ifdef DEBUG_MXCC
1594 dump_mxcc(env);
1595#endif
6c36d3fa 1596 break;
e8af50a3 1597 case 3: /* MMU flush */
0f8a249a
BS
1598 {
1599 int mmulev;
e80cfcfc 1600
1a2fb1c0 1601 mmulev = (addr >> 8) & 15;
952a328f 1602 DPRINTF_MMU("mmu flush level %d\n", mmulev);
0f8a249a
BS
1603 switch (mmulev) {
1604 case 0: // flush page
1a2fb1c0 1605 tlb_flush_page(env, addr & 0xfffff000);
0f8a249a
BS
1606 break;
1607 case 1: // flush segment (256k)
1608 case 2: // flush region (16M)
1609 case 3: // flush context (4G)
1610 case 4: // flush entire
1611 tlb_flush(env, 1);
1612 break;
1613 default:
1614 break;
1615 }
55754d9e 1616#ifdef DEBUG_MMU
0f8a249a 1617 dump_mmu(env);
55754d9e 1618#endif
0f8a249a 1619 }
8543e2cf 1620 break;
e8af50a3 1621 case 4: /* write MMU regs */
0f8a249a 1622 {
1a2fb1c0 1623 int reg = (addr >> 8) & 0x1f;
0f8a249a 1624 uint32_t oldreg;
3b46e624 1625
0f8a249a 1626 oldreg = env->mmuregs[reg];
55754d9e 1627 switch(reg) {
3deaeab7 1628 case 0: // Control Register
3dd9a152 1629 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1a2fb1c0 1630 (val & 0x00ffffff);
0f8a249a
BS
1631 // Mappings generated during no-fault mode or MMU
1632 // disabled mode are invalid in normal mode
5578ceab
BS
1633 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1634 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
55754d9e
FB
1635 tlb_flush(env, 1);
1636 break;
3deaeab7 1637 case 1: // Context Table Pointer Register
5578ceab 1638 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
3deaeab7
BS
1639 break;
1640 case 2: // Context Register
5578ceab 1641 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
55754d9e
FB
1642 if (oldreg != env->mmuregs[reg]) {
1643 /* we flush when the MMU context changes because
1644 QEMU has no MMU context support */
1645 tlb_flush(env, 1);
1646 }
1647 break;
3deaeab7
BS
1648 case 3: // Synchronous Fault Status Register with Clear
1649 case 4: // Synchronous Fault Address Register
1650 break;
1651 case 0x10: // TLB Replacement Control Register
5578ceab 1652 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
55754d9e 1653 break;
3deaeab7 1654 case 0x13: // Synchronous Fault Status Register with Read and Clear
5578ceab 1655 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
3dd9a152 1656 break;
3deaeab7 1657 case 0x14: // Synchronous Fault Address Register
1a2fb1c0 1658 env->mmuregs[4] = val;
3dd9a152 1659 break;
55754d9e 1660 default:
1a2fb1c0 1661 env->mmuregs[reg] = val;
55754d9e
FB
1662 break;
1663 }
55754d9e 1664 if (oldreg != env->mmuregs[reg]) {
77f193da
BS
1665 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1666 reg, oldreg, env->mmuregs[reg]);
55754d9e 1667 }
952a328f 1668#ifdef DEBUG_MMU
0f8a249a 1669 dump_mmu(env);
55754d9e 1670#endif
0f8a249a 1671 }
8543e2cf 1672 break;
045380be
BS
1673 case 5: // Turbosparc ITLB Diagnostic
1674 case 6: // Turbosparc DTLB Diagnostic
1675 case 7: // Turbosparc IOTLB Diagnostic
1676 break;
81ad8ba2
BS
1677 case 0xa: /* User data access */
1678 switch(size) {
1679 case 1:
1a2fb1c0 1680 stb_user(addr, val);
81ad8ba2
BS
1681 break;
1682 case 2:
a4e7dd52 1683 stw_user(addr, val);
81ad8ba2
BS
1684 break;
1685 default:
1686 case 4:
a4e7dd52 1687 stl_user(addr, val);
81ad8ba2
BS
1688 break;
1689 case 8:
a4e7dd52 1690 stq_user(addr, val);
81ad8ba2
BS
1691 break;
1692 }
1693 break;
1694 case 0xb: /* Supervisor data access */
1695 switch(size) {
1696 case 1:
1a2fb1c0 1697 stb_kernel(addr, val);
81ad8ba2
BS
1698 break;
1699 case 2:
a4e7dd52 1700 stw_kernel(addr, val);
81ad8ba2
BS
1701 break;
1702 default:
1703 case 4:
a4e7dd52 1704 stl_kernel(addr, val);
81ad8ba2
BS
1705 break;
1706 case 8:
a4e7dd52 1707 stq_kernel(addr, val);
81ad8ba2
BS
1708 break;
1709 }
1710 break;
6c36d3fa
BS
1711 case 0xc: /* I-cache tag */
1712 case 0xd: /* I-cache data */
1713 case 0xe: /* D-cache tag */
1714 case 0xf: /* D-cache data */
1715 case 0x10: /* I/D-cache flush page */
1716 case 0x11: /* I/D-cache flush segment */
1717 case 0x12: /* I/D-cache flush region */
1718 case 0x13: /* I/D-cache flush context */
1719 case 0x14: /* I/D-cache flush user */
1720 break;
e80cfcfc 1721 case 0x17: /* Block copy, sta access */
0f8a249a 1722 {
1a2fb1c0
BS
1723 // val = src
1724 // addr = dst
0f8a249a 1725 // copy 32 bytes
6c36d3fa 1726 unsigned int i;
1a2fb1c0 1727 uint32_t src = val & ~3, dst = addr & ~3, temp;
3b46e624 1728
6c36d3fa
BS
1729 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1730 temp = ldl_kernel(src);
1731 stl_kernel(dst, temp);
1732 }
0f8a249a 1733 }
8543e2cf 1734 break;
e80cfcfc 1735 case 0x1f: /* Block fill, stda access */
0f8a249a 1736 {
1a2fb1c0
BS
1737 // addr = dst
1738 // fill 32 bytes with val
6c36d3fa 1739 unsigned int i;
1a2fb1c0 1740 uint32_t dst = addr & 7;
6c36d3fa
BS
1741
1742 for (i = 0; i < 32; i += 8, dst += 8)
1743 stq_kernel(dst, val);
0f8a249a 1744 }
8543e2cf 1745 break;
6c36d3fa 1746 case 0x20: /* MMU passthrough */
0f8a249a 1747 {
02aab46a
FB
1748 switch(size) {
1749 case 1:
1a2fb1c0 1750 stb_phys(addr, val);
02aab46a
FB
1751 break;
1752 case 2:
a4e7dd52 1753 stw_phys(addr, val);
02aab46a
FB
1754 break;
1755 case 4:
1756 default:
a4e7dd52 1757 stl_phys(addr, val);
02aab46a 1758 break;
9e61bde5 1759 case 8:
a4e7dd52 1760 stq_phys(addr, val);
9e61bde5 1761 break;
02aab46a 1762 }
0f8a249a 1763 }
8543e2cf 1764 break;
045380be 1765 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
0f8a249a 1766 {
5dcb6b91
BS
1767 switch(size) {
1768 case 1:
1a2fb1c0
BS
1769 stb_phys((target_phys_addr_t)addr
1770 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1771 break;
1772 case 2:
a4e7dd52 1773 stw_phys((target_phys_addr_t)addr
1a2fb1c0 1774 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1775 break;
1776 case 4:
1777 default:
a4e7dd52 1778 stl_phys((target_phys_addr_t)addr
1a2fb1c0 1779 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1780 break;
1781 case 8:
a4e7dd52 1782 stq_phys((target_phys_addr_t)addr
1a2fb1c0 1783 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1784 break;
1785 }
0f8a249a 1786 }
8543e2cf 1787 break;
045380be
BS
1788 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1789 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1790 // Turbosparc snoop RAM
77f193da
BS
1791 case 0x32: // store buffer control or Turbosparc page table
1792 // descriptor diagnostic
6c36d3fa
BS
1793 case 0x36: /* I-cache flash clear */
1794 case 0x37: /* D-cache flash clear */
666c87aa 1795 case 0x4c: /* breakpoint action */
6c36d3fa 1796 break;
4017190e
BS
1797 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1798 {
1799 int reg = (addr >> 8) & 3;
1800
1801 switch(reg) {
1802 case 0: /* Breakpoint Value (Addr) */
1803 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1804 break;
1805 case 1: /* Breakpoint Mask */
1806 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1807 break;
1808 case 2: /* Breakpoint Control */
1809 env->mmubpregs[reg] = (val & 0x7fULL);
1810 break;
1811 case 3: /* Breakpoint Status */
1812 env->mmubpregs[reg] = (val & 0xfULL);
1813 break;
1814 }
0bf9e31a 1815 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
4017190e
BS
1816 env->mmuregs[reg]);
1817 }
1818 break;
045380be 1819 case 8: /* User code access, XXX */
6c36d3fa 1820 case 9: /* Supervisor code access, XXX */
e8af50a3 1821 default:
e18231a3 1822 do_unassigned_access(addr, 1, 0, asi, size);
8543e2cf 1823 break;
e8af50a3 1824 }
8543e2cf 1825#ifdef DEBUG_ASI
1a2fb1c0 1826 dump_asi("write", addr, asi, size, val);
8543e2cf 1827#endif
e8af50a3
FB
1828}
1829
81ad8ba2
BS
1830#endif /* CONFIG_USER_ONLY */
1831#else /* TARGET_SPARC64 */
1832
1833#ifdef CONFIG_USER_ONLY
1a2fb1c0 1834uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
81ad8ba2
BS
1835{
1836 uint64_t ret = 0;
1a2fb1c0
BS
1837#if defined(DEBUG_ASI)
1838 target_ulong last_addr = addr;
1839#endif
81ad8ba2
BS
1840
1841 if (asi < 0x80)
1842 raise_exception(TT_PRIV_ACT);
1843
c2bc0e38 1844 helper_check_align(addr, size - 1);
2cade6a3 1845 address_mask(env, &addr);
c2bc0e38 1846
81ad8ba2 1847 switch (asi) {
81ad8ba2 1848 case 0x82: // Primary no-fault
81ad8ba2 1849 case 0x8a: // Primary no-fault LE
e83ce550
BS
1850 if (page_check_range(addr, size, PAGE_READ) == -1) {
1851#ifdef DEBUG_ASI
1852 dump_asi("read ", last_addr, asi, size, ret);
1853#endif
1854 return 0;
1855 }
1856 // Fall through
1857 case 0x80: // Primary
1858 case 0x88: // Primary LE
81ad8ba2
BS
1859 {
1860 switch(size) {
1861 case 1:
1a2fb1c0 1862 ret = ldub_raw(addr);
81ad8ba2
BS
1863 break;
1864 case 2:
a4e7dd52 1865 ret = lduw_raw(addr);
81ad8ba2
BS
1866 break;
1867 case 4:
a4e7dd52 1868 ret = ldl_raw(addr);
81ad8ba2
BS
1869 break;
1870 default:
1871 case 8:
a4e7dd52 1872 ret = ldq_raw(addr);
81ad8ba2
BS
1873 break;
1874 }
1875 }
1876 break;
81ad8ba2 1877 case 0x83: // Secondary no-fault
81ad8ba2 1878 case 0x8b: // Secondary no-fault LE
e83ce550
BS
1879 if (page_check_range(addr, size, PAGE_READ) == -1) {
1880#ifdef DEBUG_ASI
1881 dump_asi("read ", last_addr, asi, size, ret);
1882#endif
1883 return 0;
1884 }
1885 // Fall through
1886 case 0x81: // Secondary
1887 case 0x89: // Secondary LE
81ad8ba2
BS
1888 // XXX
1889 break;
1890 default:
1891 break;
1892 }
1893
1894 /* Convert from little endian */
1895 switch (asi) {
1896 case 0x88: // Primary LE
1897 case 0x89: // Secondary LE
1898 case 0x8a: // Primary no-fault LE
1899 case 0x8b: // Secondary no-fault LE
1900 switch(size) {
1901 case 2:
1902 ret = bswap16(ret);
e32664fb 1903 break;
81ad8ba2
BS
1904 case 4:
1905 ret = bswap32(ret);
e32664fb 1906 break;
81ad8ba2
BS
1907 case 8:
1908 ret = bswap64(ret);
e32664fb 1909 break;
81ad8ba2
BS
1910 default:
1911 break;
1912 }
1913 default:
1914 break;
1915 }
1916
1917 /* Convert to signed number */
1918 if (sign) {
1919 switch(size) {
1920 case 1:
1921 ret = (int8_t) ret;
e32664fb 1922 break;
81ad8ba2
BS
1923 case 2:
1924 ret = (int16_t) ret;
e32664fb 1925 break;
81ad8ba2
BS
1926 case 4:
1927 ret = (int32_t) ret;
e32664fb 1928 break;
81ad8ba2
BS
1929 default:
1930 break;
1931 }
1932 }
1a2fb1c0
BS
1933#ifdef DEBUG_ASI
1934 dump_asi("read ", last_addr, asi, size, ret);
1935#endif
1936 return ret;
81ad8ba2
BS
1937}
1938
1a2fb1c0 1939void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
81ad8ba2 1940{
1a2fb1c0
BS
1941#ifdef DEBUG_ASI
1942 dump_asi("write", addr, asi, size, val);
1943#endif
81ad8ba2
BS
1944 if (asi < 0x80)
1945 raise_exception(TT_PRIV_ACT);
1946
c2bc0e38 1947 helper_check_align(addr, size - 1);
2cade6a3 1948 address_mask(env, &addr);
c2bc0e38 1949
81ad8ba2
BS
1950 /* Convert to little endian */
1951 switch (asi) {
1952 case 0x88: // Primary LE
1953 case 0x89: // Secondary LE
1954 switch(size) {
1955 case 2:
5b0f0bec 1956 val = bswap16(val);
e32664fb 1957 break;
81ad8ba2 1958 case 4:
5b0f0bec 1959 val = bswap32(val);
e32664fb 1960 break;
81ad8ba2 1961 case 8:
5b0f0bec 1962 val = bswap64(val);
e32664fb 1963 break;
81ad8ba2
BS
1964 default:
1965 break;
1966 }
1967 default:
1968 break;
1969 }
1970
1971 switch(asi) {
1972 case 0x80: // Primary
1973 case 0x88: // Primary LE
1974 {
1975 switch(size) {
1976 case 1:
1a2fb1c0 1977 stb_raw(addr, val);
81ad8ba2
BS
1978 break;
1979 case 2:
a4e7dd52 1980 stw_raw(addr, val);
81ad8ba2
BS
1981 break;
1982 case 4:
a4e7dd52 1983 stl_raw(addr, val);
81ad8ba2
BS
1984 break;
1985 case 8:
1986 default:
a4e7dd52 1987 stq_raw(addr, val);
81ad8ba2
BS
1988 break;
1989 }
1990 }
1991 break;
1992 case 0x81: // Secondary
1993 case 0x89: // Secondary LE
1994 // XXX
1995 return;
1996
1997 case 0x82: // Primary no-fault, RO
1998 case 0x83: // Secondary no-fault, RO
1999 case 0x8a: // Primary no-fault LE, RO
2000 case 0x8b: // Secondary no-fault LE, RO
2001 default:
e18231a3 2002 do_unassigned_access(addr, 1, 0, 1, size);
81ad8ba2
BS
2003 return;
2004 }
2005}
2006
2007#else /* CONFIG_USER_ONLY */
3475187d 2008
1a2fb1c0 2009uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
3475187d 2010{
83469015 2011 uint64_t ret = 0;
1a2fb1c0
BS
2012#if defined(DEBUG_ASI)
2013 target_ulong last_addr = addr;
2014#endif
3475187d 2015
6f27aba6 2016 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
2017 || ((env->def->features & CPU_FEATURE_HYPV)
2018 && asi >= 0x30 && asi < 0x80
fb79ceb9 2019 && !(env->hpstate & HS_PRIV)))
0f8a249a 2020 raise_exception(TT_PRIV_ACT);
3475187d 2021
c2bc0e38 2022 helper_check_align(addr, size - 1);
3475187d 2023 switch (asi) {
e83ce550
BS
2024 case 0x82: // Primary no-fault
2025 case 0x8a: // Primary no-fault LE
2026 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2027#ifdef DEBUG_ASI
2028 dump_asi("read ", last_addr, asi, size, ret);
2029#endif
2030 return 0;
2031 }
2032 // Fall through
81ad8ba2
BS
2033 case 0x10: // As if user primary
2034 case 0x18: // As if user primary LE
2035 case 0x80: // Primary
81ad8ba2 2036 case 0x88: // Primary LE
c99657d3
BS
2037 case 0xe2: // UA2007 Primary block init
2038 case 0xe3: // UA2007 Secondary block init
81ad8ba2 2039 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
5578ceab
BS
2040 if ((env->def->features & CPU_FEATURE_HYPV)
2041 && env->hpstate & HS_PRIV) {
6f27aba6
BS
2042 switch(size) {
2043 case 1:
1a2fb1c0 2044 ret = ldub_hypv(addr);
6f27aba6
BS
2045 break;
2046 case 2:
a4e7dd52 2047 ret = lduw_hypv(addr);
6f27aba6
BS
2048 break;
2049 case 4:
a4e7dd52 2050 ret = ldl_hypv(addr);
6f27aba6
BS
2051 break;
2052 default:
2053 case 8:
a4e7dd52 2054 ret = ldq_hypv(addr);
6f27aba6
BS
2055 break;
2056 }
2057 } else {
2058 switch(size) {
2059 case 1:
1a2fb1c0 2060 ret = ldub_kernel(addr);
6f27aba6
BS
2061 break;
2062 case 2:
a4e7dd52 2063 ret = lduw_kernel(addr);
6f27aba6
BS
2064 break;
2065 case 4:
a4e7dd52 2066 ret = ldl_kernel(addr);
6f27aba6
BS
2067 break;
2068 default:
2069 case 8:
a4e7dd52 2070 ret = ldq_kernel(addr);
6f27aba6
BS
2071 break;
2072 }
81ad8ba2
BS
2073 }
2074 } else {
2075 switch(size) {
2076 case 1:
1a2fb1c0 2077 ret = ldub_user(addr);
81ad8ba2
BS
2078 break;
2079 case 2:
a4e7dd52 2080 ret = lduw_user(addr);
81ad8ba2
BS
2081 break;
2082 case 4:
a4e7dd52 2083 ret = ldl_user(addr);
81ad8ba2
BS
2084 break;
2085 default:
2086 case 8:
a4e7dd52 2087 ret = ldq_user(addr);
81ad8ba2
BS
2088 break;
2089 }
2090 }
2091 break;
3475187d
FB
2092 case 0x14: // Bypass
2093 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
2094 case 0x1c: // Bypass LE
2095 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 2096 {
02aab46a
FB
2097 switch(size) {
2098 case 1:
1a2fb1c0 2099 ret = ldub_phys(addr);
02aab46a
FB
2100 break;
2101 case 2:
a4e7dd52 2102 ret = lduw_phys(addr);
02aab46a
FB
2103 break;
2104 case 4:
a4e7dd52 2105 ret = ldl_phys(addr);
02aab46a
FB
2106 break;
2107 default:
2108 case 8:
a4e7dd52 2109 ret = ldq_phys(addr);
02aab46a
FB
2110 break;
2111 }
0f8a249a
BS
2112 break;
2113 }
db166940
BS
2114 case 0x24: // Nucleus quad LDD 128 bit atomic
2115 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2116 // Only ldda allowed
2117 raise_exception(TT_ILL_INSN);
2118 return 0;
e83ce550
BS
2119 case 0x83: // Secondary no-fault
2120 case 0x8b: // Secondary no-fault LE
2121 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2122#ifdef DEBUG_ASI
2123 dump_asi("read ", last_addr, asi, size, ret);
2124#endif
2125 return 0;
2126 }
2127 // Fall through
83469015
FB
2128 case 0x04: // Nucleus
2129 case 0x0c: // Nucleus Little Endian (LE)
83469015 2130 case 0x11: // As if user secondary
83469015 2131 case 0x19: // As if user secondary LE
83469015 2132 case 0x4a: // UPA config
81ad8ba2 2133 case 0x81: // Secondary
83469015 2134 case 0x89: // Secondary LE
0f8a249a
BS
2135 // XXX
2136 break;
3475187d 2137 case 0x45: // LSU
0f8a249a
BS
2138 ret = env->lsu;
2139 break;
3475187d 2140 case 0x50: // I-MMU regs
0f8a249a 2141 {
1a2fb1c0 2142 int reg = (addr >> 3) & 0xf;
3475187d 2143
697a77e6
IK
2144 if (reg == 0) {
2145 // I-TSB Tag Target register
2146 ret = ultrasparc_tag_target(env->immuregs[6]);
2147 } else {
2148 ret = env->immuregs[reg];
2149 }
2150
0f8a249a
BS
2151 break;
2152 }
3475187d 2153 case 0x51: // I-MMU 8k TSB pointer
697a77e6
IK
2154 {
2155 // env->immuregs[5] holds I-MMU TSB register value
2156 // env->immuregs[6] holds I-MMU Tag Access register value
2157 ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
2158 8*1024);
2159 break;
2160 }
3475187d 2161 case 0x52: // I-MMU 64k TSB pointer
697a77e6
IK
2162 {
2163 // env->immuregs[5] holds I-MMU TSB register value
2164 // env->immuregs[6] holds I-MMU Tag Access register value
2165 ret = ultrasparc_tsb_pointer(env->immuregs[5], env->immuregs[6],
2166 64*1024);
2167 break;
2168 }
a5a52cf2
BS
2169 case 0x55: // I-MMU data access
2170 {
2171 int reg = (addr >> 3) & 0x3f;
2172
2173 ret = env->itlb_tte[reg];
2174 break;
2175 }
83469015 2176 case 0x56: // I-MMU tag read
0f8a249a 2177 {
43e9e742 2178 int reg = (addr >> 3) & 0x3f;
0f8a249a 2179
43e9e742 2180 ret = env->itlb_tag[reg];
0f8a249a
BS
2181 break;
2182 }
3475187d 2183 case 0x58: // D-MMU regs
0f8a249a 2184 {
1a2fb1c0 2185 int reg = (addr >> 3) & 0xf;
3475187d 2186
697a77e6
IK
2187 if (reg == 0) {
2188 // D-TSB Tag Target register
2189 ret = ultrasparc_tag_target(env->dmmuregs[6]);
2190 } else {
2191 ret = env->dmmuregs[reg];
2192 }
2193 break;
2194 }
2195 case 0x59: // D-MMU 8k TSB pointer
2196 {
2197 // env->dmmuregs[5] holds D-MMU TSB register value
2198 // env->dmmuregs[6] holds D-MMU Tag Access register value
2199 ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
2200 8*1024);
2201 break;
2202 }
2203 case 0x5a: // D-MMU 64k TSB pointer
2204 {
2205 // env->dmmuregs[5] holds D-MMU TSB register value
2206 // env->dmmuregs[6] holds D-MMU Tag Access register value
2207 ret = ultrasparc_tsb_pointer(env->dmmuregs[5], env->dmmuregs[6],
2208 64*1024);
0f8a249a
BS
2209 break;
2210 }
a5a52cf2
BS
2211 case 0x5d: // D-MMU data access
2212 {
2213 int reg = (addr >> 3) & 0x3f;
2214
2215 ret = env->dtlb_tte[reg];
2216 break;
2217 }
83469015 2218 case 0x5e: // D-MMU tag read
0f8a249a 2219 {
43e9e742 2220 int reg = (addr >> 3) & 0x3f;
0f8a249a 2221
43e9e742 2222 ret = env->dtlb_tag[reg];
0f8a249a
BS
2223 break;
2224 }
f7350b47
BS
2225 case 0x46: // D-cache data
2226 case 0x47: // D-cache tag access
a5a52cf2
BS
2227 case 0x4b: // E-cache error enable
2228 case 0x4c: // E-cache asynchronous fault status
2229 case 0x4d: // E-cache asynchronous fault address
f7350b47
BS
2230 case 0x4e: // E-cache tag data
2231 case 0x66: // I-cache instruction access
2232 case 0x67: // I-cache tag access
2233 case 0x6e: // I-cache predecode
2234 case 0x6f: // I-cache LRU etc.
2235 case 0x76: // E-cache tag
2236 case 0x7e: // E-cache tag
2237 break;
3475187d 2238 case 0x5b: // D-MMU data pointer
83469015
FB
2239 case 0x48: // Interrupt dispatch, RO
2240 case 0x49: // Interrupt data receive
2241 case 0x7f: // Incoming interrupt vector, RO
0f8a249a
BS
2242 // XXX
2243 break;
3475187d
FB
2244 case 0x54: // I-MMU data in, WO
2245 case 0x57: // I-MMU demap, WO
2246 case 0x5c: // D-MMU data in, WO
2247 case 0x5f: // D-MMU demap, WO
83469015 2248 case 0x77: // Interrupt vector, WO
3475187d 2249 default:
e18231a3 2250 do_unassigned_access(addr, 0, 0, 1, size);
0f8a249a
BS
2251 ret = 0;
2252 break;
3475187d 2253 }
81ad8ba2
BS
2254
2255 /* Convert from little endian */
2256 switch (asi) {
2257 case 0x0c: // Nucleus Little Endian (LE)
2258 case 0x18: // As if user primary LE
2259 case 0x19: // As if user secondary LE
2260 case 0x1c: // Bypass LE
2261 case 0x1d: // Bypass, non-cacheable LE
2262 case 0x88: // Primary LE
2263 case 0x89: // Secondary LE
2264 case 0x8a: // Primary no-fault LE
2265 case 0x8b: // Secondary no-fault LE
2266 switch(size) {
2267 case 2:
2268 ret = bswap16(ret);
e32664fb 2269 break;
81ad8ba2
BS
2270 case 4:
2271 ret = bswap32(ret);
e32664fb 2272 break;
81ad8ba2
BS
2273 case 8:
2274 ret = bswap64(ret);
e32664fb 2275 break;
81ad8ba2
BS
2276 default:
2277 break;
2278 }
2279 default:
2280 break;
2281 }
2282
2283 /* Convert to signed number */
2284 if (sign) {
2285 switch(size) {
2286 case 1:
2287 ret = (int8_t) ret;
e32664fb 2288 break;
81ad8ba2
BS
2289 case 2:
2290 ret = (int16_t) ret;
e32664fb 2291 break;
81ad8ba2
BS
2292 case 4:
2293 ret = (int32_t) ret;
e32664fb 2294 break;
81ad8ba2
BS
2295 default:
2296 break;
2297 }
2298 }
1a2fb1c0
BS
2299#ifdef DEBUG_ASI
2300 dump_asi("read ", last_addr, asi, size, ret);
2301#endif
2302 return ret;
3475187d
FB
2303}
2304
1a2fb1c0 2305void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
3475187d 2306{
1a2fb1c0
BS
2307#ifdef DEBUG_ASI
2308 dump_asi("write", addr, asi, size, val);
2309#endif
6f27aba6 2310 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
2311 || ((env->def->features & CPU_FEATURE_HYPV)
2312 && asi >= 0x30 && asi < 0x80
fb79ceb9 2313 && !(env->hpstate & HS_PRIV)))
0f8a249a 2314 raise_exception(TT_PRIV_ACT);
3475187d 2315
c2bc0e38 2316 helper_check_align(addr, size - 1);
81ad8ba2
BS
2317 /* Convert to little endian */
2318 switch (asi) {
2319 case 0x0c: // Nucleus Little Endian (LE)
2320 case 0x18: // As if user primary LE
2321 case 0x19: // As if user secondary LE
2322 case 0x1c: // Bypass LE
2323 case 0x1d: // Bypass, non-cacheable LE
81ad8ba2
BS
2324 case 0x88: // Primary LE
2325 case 0x89: // Secondary LE
2326 switch(size) {
2327 case 2:
5b0f0bec 2328 val = bswap16(val);
e32664fb 2329 break;
81ad8ba2 2330 case 4:
5b0f0bec 2331 val = bswap32(val);
e32664fb 2332 break;
81ad8ba2 2333 case 8:
5b0f0bec 2334 val = bswap64(val);
e32664fb 2335 break;
81ad8ba2
BS
2336 default:
2337 break;
2338 }
2339 default:
2340 break;
2341 }
2342
3475187d 2343 switch(asi) {
81ad8ba2
BS
2344 case 0x10: // As if user primary
2345 case 0x18: // As if user primary LE
2346 case 0x80: // Primary
2347 case 0x88: // Primary LE
c99657d3
BS
2348 case 0xe2: // UA2007 Primary block init
2349 case 0xe3: // UA2007 Secondary block init
81ad8ba2 2350 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
5578ceab
BS
2351 if ((env->def->features & CPU_FEATURE_HYPV)
2352 && env->hpstate & HS_PRIV) {
6f27aba6
BS
2353 switch(size) {
2354 case 1:
1a2fb1c0 2355 stb_hypv(addr, val);
6f27aba6
BS
2356 break;
2357 case 2:
a4e7dd52 2358 stw_hypv(addr, val);
6f27aba6
BS
2359 break;
2360 case 4:
a4e7dd52 2361 stl_hypv(addr, val);
6f27aba6
BS
2362 break;
2363 case 8:
2364 default:
a4e7dd52 2365 stq_hypv(addr, val);
6f27aba6
BS
2366 break;
2367 }
2368 } else {
2369 switch(size) {
2370 case 1:
1a2fb1c0 2371 stb_kernel(addr, val);
6f27aba6
BS
2372 break;
2373 case 2:
a4e7dd52 2374 stw_kernel(addr, val);
6f27aba6
BS
2375 break;
2376 case 4:
a4e7dd52 2377 stl_kernel(addr, val);
6f27aba6
BS
2378 break;
2379 case 8:
2380 default:
a4e7dd52 2381 stq_kernel(addr, val);
6f27aba6
BS
2382 break;
2383 }
81ad8ba2
BS
2384 }
2385 } else {
2386 switch(size) {
2387 case 1:
1a2fb1c0 2388 stb_user(addr, val);
81ad8ba2
BS
2389 break;
2390 case 2:
a4e7dd52 2391 stw_user(addr, val);
81ad8ba2
BS
2392 break;
2393 case 4:
a4e7dd52 2394 stl_user(addr, val);
81ad8ba2
BS
2395 break;
2396 case 8:
2397 default:
a4e7dd52 2398 stq_user(addr, val);
81ad8ba2
BS
2399 break;
2400 }
2401 }
2402 break;
3475187d
FB
2403 case 0x14: // Bypass
2404 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
2405 case 0x1c: // Bypass LE
2406 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 2407 {
02aab46a
FB
2408 switch(size) {
2409 case 1:
1a2fb1c0 2410 stb_phys(addr, val);
02aab46a
FB
2411 break;
2412 case 2:
a4e7dd52 2413 stw_phys(addr, val);
02aab46a
FB
2414 break;
2415 case 4:
a4e7dd52 2416 stl_phys(addr, val);
02aab46a
FB
2417 break;
2418 case 8:
2419 default:
a4e7dd52 2420 stq_phys(addr, val);
02aab46a
FB
2421 break;
2422 }
0f8a249a
BS
2423 }
2424 return;
db166940
BS
2425 case 0x24: // Nucleus quad LDD 128 bit atomic
2426 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2427 // Only ldda allowed
2428 raise_exception(TT_ILL_INSN);
2429 return;
83469015
FB
2430 case 0x04: // Nucleus
2431 case 0x0c: // Nucleus Little Endian (LE)
83469015 2432 case 0x11: // As if user secondary
83469015 2433 case 0x19: // As if user secondary LE
83469015 2434 case 0x4a: // UPA config
51996525 2435 case 0x81: // Secondary
83469015 2436 case 0x89: // Secondary LE
0f8a249a
BS
2437 // XXX
2438 return;
3475187d 2439 case 0x45: // LSU
0f8a249a
BS
2440 {
2441 uint64_t oldreg;
2442
2443 oldreg = env->lsu;
1a2fb1c0 2444 env->lsu = val & (DMMU_E | IMMU_E);
0f8a249a
BS
2445 // Mappings generated during D/I MMU disabled mode are
2446 // invalid in normal mode
2447 if (oldreg != env->lsu) {
77f193da
BS
2448 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2449 oldreg, env->lsu);
83469015 2450#ifdef DEBUG_MMU
0f8a249a 2451 dump_mmu(env);
83469015 2452#endif
0f8a249a
BS
2453 tlb_flush(env, 1);
2454 }
2455 return;
2456 }
3475187d 2457 case 0x50: // I-MMU regs
0f8a249a 2458 {
1a2fb1c0 2459 int reg = (addr >> 3) & 0xf;
0f8a249a 2460 uint64_t oldreg;
3b46e624 2461
0f8a249a 2462 oldreg = env->immuregs[reg];
3475187d
FB
2463 switch(reg) {
2464 case 0: // RO
2465 case 4:
2466 return;
2467 case 1: // Not in I-MMU
2468 case 2:
2469 case 7:
2470 case 8:
2471 return;
2472 case 3: // SFSR
1a2fb1c0
BS
2473 if ((val & 1) == 0)
2474 val = 0; // Clear SFSR
3475187d
FB
2475 break;
2476 case 5: // TSB access
2477 case 6: // Tag access
2478 default:
2479 break;
2480 }
1a2fb1c0 2481 env->immuregs[reg] = val;
3475187d 2482 if (oldreg != env->immuregs[reg]) {
77f193da
BS
2483 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2484 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
3475187d 2485 }
952a328f 2486#ifdef DEBUG_MMU
0f8a249a 2487 dump_mmu(env);
3475187d 2488#endif
0f8a249a
BS
2489 return;
2490 }
3475187d 2491 case 0x54: // I-MMU data in
0f8a249a
BS
2492 {
2493 unsigned int i;
2494
2495 // Try finding an invalid entry
2496 for (i = 0; i < 64; i++) {
2497 if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
2498 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 2499 env->itlb_tte[i] = val;
0f8a249a
BS
2500 return;
2501 }
2502 }
2503 // Try finding an unlocked entry
2504 for (i = 0; i < 64; i++) {
2505 if ((env->itlb_tte[i] & 0x40) == 0) {
2506 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 2507 env->itlb_tte[i] = val;
0f8a249a
BS
2508 return;
2509 }
2510 }
2511 // error state?
2512 return;
2513 }
3475187d 2514 case 0x55: // I-MMU data access
0f8a249a 2515 {
cc6747f4
BS
2516 // TODO: auto demap
2517
1a2fb1c0 2518 unsigned int i = (addr >> 3) & 0x3f;
3475187d 2519
0f8a249a 2520 env->itlb_tag[i] = env->immuregs[6];
1a2fb1c0 2521 env->itlb_tte[i] = val;
0f8a249a
BS
2522 return;
2523 }
3475187d 2524 case 0x57: // I-MMU demap
cc6747f4
BS
2525 {
2526 unsigned int i;
2527
2528 for (i = 0; i < 64; i++) {
2529 if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0) {
2530 target_ulong mask = 0xffffffffffffe000ULL;
2531
2532 mask <<= 3 * ((env->itlb_tte[i] >> 61) & 3);
2533 if ((val & mask) == (env->itlb_tag[i] & mask)) {
2534 env->itlb_tag[i] = 0;
2535 env->itlb_tte[i] = 0;
2536 }
2537 return;
2538 }
2539 }
2540 }
0f8a249a 2541 return;
3475187d 2542 case 0x58: // D-MMU regs
0f8a249a 2543 {
1a2fb1c0 2544 int reg = (addr >> 3) & 0xf;
0f8a249a 2545 uint64_t oldreg;
3b46e624 2546
0f8a249a 2547 oldreg = env->dmmuregs[reg];
3475187d
FB
2548 switch(reg) {
2549 case 0: // RO
2550 case 4:
2551 return;
2552 case 3: // SFSR
1a2fb1c0
BS
2553 if ((val & 1) == 0) {
2554 val = 0; // Clear SFSR, Fault address
0f8a249a
BS
2555 env->dmmuregs[4] = 0;
2556 }
1a2fb1c0 2557 env->dmmuregs[reg] = val;
3475187d
FB
2558 break;
2559 case 1: // Primary context
2560 case 2: // Secondary context
2561 case 5: // TSB access
2562 case 6: // Tag access
2563 case 7: // Virtual Watchpoint
2564 case 8: // Physical Watchpoint
2565 default:
2566 break;
2567 }
1a2fb1c0 2568 env->dmmuregs[reg] = val;
3475187d 2569 if (oldreg != env->dmmuregs[reg]) {
77f193da
BS
2570 DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08"
2571 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3475187d 2572 }
952a328f 2573#ifdef DEBUG_MMU
0f8a249a 2574 dump_mmu(env);
3475187d 2575#endif
0f8a249a
BS
2576 return;
2577 }
3475187d 2578 case 0x5c: // D-MMU data in
0f8a249a
BS
2579 {
2580 unsigned int i;
2581
2582 // Try finding an invalid entry
2583 for (i = 0; i < 64; i++) {
2584 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
2585 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2586 env->dtlb_tte[i] = val;
0f8a249a
BS
2587 return;
2588 }
2589 }
2590 // Try finding an unlocked entry
2591 for (i = 0; i < 64; i++) {
2592 if ((env->dtlb_tte[i] & 0x40) == 0) {
2593 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2594 env->dtlb_tte[i] = val;
0f8a249a
BS
2595 return;
2596 }
2597 }
2598 // error state?
2599 return;
2600 }
3475187d 2601 case 0x5d: // D-MMU data access
0f8a249a 2602 {
1a2fb1c0 2603 unsigned int i = (addr >> 3) & 0x3f;
3475187d 2604
0f8a249a 2605 env->dtlb_tag[i] = env->dmmuregs[6];
1a2fb1c0 2606 env->dtlb_tte[i] = val;
0f8a249a
BS
2607 return;
2608 }
3475187d 2609 case 0x5f: // D-MMU demap
cc6747f4
BS
2610 {
2611 unsigned int i;
2612
2613 for (i = 0; i < 64; i++) {
2614 if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0) {
2615 target_ulong mask = 0xffffffffffffe000ULL;
2616
2617 mask <<= 3 * ((env->dtlb_tte[i] >> 61) & 3);
2618 if ((val & mask) == (env->dtlb_tag[i] & mask)) {
2619 env->dtlb_tag[i] = 0;
2620 env->dtlb_tte[i] = 0;
2621 }
2622 return;
2623 }
2624 }
2625 }
2626 return;
83469015 2627 case 0x49: // Interrupt data receive
0f8a249a
BS
2628 // XXX
2629 return;
f7350b47
BS
2630 case 0x46: // D-cache data
2631 case 0x47: // D-cache tag access
a5a52cf2
BS
2632 case 0x4b: // E-cache error enable
2633 case 0x4c: // E-cache asynchronous fault status
2634 case 0x4d: // E-cache asynchronous fault address
f7350b47
BS
2635 case 0x4e: // E-cache tag data
2636 case 0x66: // I-cache instruction access
2637 case 0x67: // I-cache tag access
2638 case 0x6e: // I-cache predecode
2639 case 0x6f: // I-cache LRU etc.
2640 case 0x76: // E-cache tag
2641 case 0x7e: // E-cache tag
2642 return;
3475187d
FB
2643 case 0x51: // I-MMU 8k TSB pointer, RO
2644 case 0x52: // I-MMU 64k TSB pointer, RO
2645 case 0x56: // I-MMU tag read, RO
2646 case 0x59: // D-MMU 8k TSB pointer, RO
2647 case 0x5a: // D-MMU 64k TSB pointer, RO
2648 case 0x5b: // D-MMU data pointer, RO
2649 case 0x5e: // D-MMU tag read, RO
83469015
FB
2650 case 0x48: // Interrupt dispatch, RO
2651 case 0x7f: // Incoming interrupt vector, RO
2652 case 0x82: // Primary no-fault, RO
2653 case 0x83: // Secondary no-fault, RO
2654 case 0x8a: // Primary no-fault LE, RO
2655 case 0x8b: // Secondary no-fault LE, RO
3475187d 2656 default:
e18231a3 2657 do_unassigned_access(addr, 1, 0, 1, size);
0f8a249a 2658 return;
3475187d
FB
2659 }
2660}
81ad8ba2 2661#endif /* CONFIG_USER_ONLY */
3391c818 2662
db166940
BS
2663void helper_ldda_asi(target_ulong addr, int asi, int rd)
2664{
db166940 2665 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
2666 || ((env->def->features & CPU_FEATURE_HYPV)
2667 && asi >= 0x30 && asi < 0x80
fb79ceb9 2668 && !(env->hpstate & HS_PRIV)))
db166940
BS
2669 raise_exception(TT_PRIV_ACT);
2670
2671 switch (asi) {
2672 case 0x24: // Nucleus quad LDD 128 bit atomic
2673 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2674 helper_check_align(addr, 0xf);
2675 if (rd == 0) {
2676 env->gregs[1] = ldq_kernel(addr + 8);
2677 if (asi == 0x2c)
2678 bswap64s(&env->gregs[1]);
2679 } else if (rd < 8) {
2680 env->gregs[rd] = ldq_kernel(addr);
2681 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2682 if (asi == 0x2c) {
2683 bswap64s(&env->gregs[rd]);
2684 bswap64s(&env->gregs[rd + 1]);
2685 }
2686 } else {
2687 env->regwptr[rd] = ldq_kernel(addr);
2688 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2689 if (asi == 0x2c) {
2690 bswap64s(&env->regwptr[rd]);
2691 bswap64s(&env->regwptr[rd + 1]);
2692 }
2693 }
2694 break;
2695 default:
2696 helper_check_align(addr, 0x3);
2697 if (rd == 0)
2698 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2699 else if (rd < 8) {
2700 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2701 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2702 } else {
2703 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2704 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2705 }
2706 break;
2707 }
2708}
2709
1a2fb1c0 2710void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 2711{
3391c818 2712 unsigned int i;
1a2fb1c0 2713 target_ulong val;
3391c818 2714
c2bc0e38 2715 helper_check_align(addr, 3);
3391c818
BS
2716 switch (asi) {
2717 case 0xf0: // Block load primary
2718 case 0xf1: // Block load secondary
2719 case 0xf8: // Block load primary LE
2720 case 0xf9: // Block load secondary LE
51996525
BS
2721 if (rd & 7) {
2722 raise_exception(TT_ILL_INSN);
2723 return;
2724 }
c2bc0e38 2725 helper_check_align(addr, 0x3f);
51996525 2726 for (i = 0; i < 16; i++) {
77f193da
BS
2727 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2728 0);
1a2fb1c0 2729 addr += 4;
3391c818 2730 }
3391c818
BS
2731
2732 return;
2733 default:
2734 break;
2735 }
2736
1a2fb1c0 2737 val = helper_ld_asi(addr, asi, size, 0);
3391c818
BS
2738 switch(size) {
2739 default:
2740 case 4:
714547bb 2741 *((uint32_t *)&env->fpr[rd]) = val;
3391c818
BS
2742 break;
2743 case 8:
1a2fb1c0 2744 *((int64_t *)&DT0) = val;
3391c818 2745 break;
1f587329
BS
2746 case 16:
2747 // XXX
2748 break;
3391c818 2749 }
3391c818
BS
2750}
2751
1a2fb1c0 2752void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 2753{
3391c818 2754 unsigned int i;
1a2fb1c0 2755 target_ulong val = 0;
3391c818 2756
c2bc0e38 2757 helper_check_align(addr, 3);
3391c818 2758 switch (asi) {
c99657d3
BS
2759 case 0xe0: // UA2007 Block commit store primary (cache flush)
2760 case 0xe1: // UA2007 Block commit store secondary (cache flush)
3391c818
BS
2761 case 0xf0: // Block store primary
2762 case 0xf1: // Block store secondary
2763 case 0xf8: // Block store primary LE
2764 case 0xf9: // Block store secondary LE
51996525
BS
2765 if (rd & 7) {
2766 raise_exception(TT_ILL_INSN);
2767 return;
2768 }
c2bc0e38 2769 helper_check_align(addr, 0x3f);
51996525 2770 for (i = 0; i < 16; i++) {
1a2fb1c0
BS
2771 val = *(uint32_t *)&env->fpr[rd++];
2772 helper_st_asi(addr, val, asi & 0x8f, 4);
2773 addr += 4;
3391c818 2774 }
3391c818
BS
2775
2776 return;
2777 default:
2778 break;
2779 }
2780
2781 switch(size) {
2782 default:
2783 case 4:
714547bb 2784 val = *((uint32_t *)&env->fpr[rd]);
3391c818
BS
2785 break;
2786 case 8:
1a2fb1c0 2787 val = *((int64_t *)&DT0);
3391c818 2788 break;
1f587329
BS
2789 case 16:
2790 // XXX
2791 break;
3391c818 2792 }
1a2fb1c0
BS
2793 helper_st_asi(addr, val, asi, size);
2794}
2795
2796target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2797 target_ulong val2, uint32_t asi)
2798{
2799 target_ulong ret;
2800
1121f879 2801 val2 &= 0xffffffffUL;
1a2fb1c0
BS
2802 ret = helper_ld_asi(addr, asi, 4, 0);
2803 ret &= 0xffffffffUL;
1121f879
BS
2804 if (val2 == ret)
2805 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
1a2fb1c0 2806 return ret;
3391c818
BS
2807}
2808
1a2fb1c0
BS
2809target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2810 target_ulong val2, uint32_t asi)
2811{
2812 target_ulong ret;
2813
2814 ret = helper_ld_asi(addr, asi, 8, 0);
1121f879
BS
2815 if (val2 == ret)
2816 helper_st_asi(addr, val1, asi, 8);
1a2fb1c0
BS
2817 return ret;
2818}
81ad8ba2 2819#endif /* TARGET_SPARC64 */
3475187d
FB
2820
2821#ifndef TARGET_SPARC64
1a2fb1c0 2822void helper_rett(void)
e8af50a3 2823{
af7bf89b
FB
2824 unsigned int cwp;
2825
d4218d99
BS
2826 if (env->psret == 1)
2827 raise_exception(TT_ILL_INSN);
2828
e8af50a3 2829 env->psret = 1;
1a14026e 2830 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
e8af50a3
FB
2831 if (env->wim & (1 << cwp)) {
2832 raise_exception(TT_WIN_UNF);
2833 }
2834 set_cwp(cwp);
2835 env->psrs = env->psrps;
2836}
3475187d 2837#endif
e8af50a3 2838
3b89f26c
BS
2839target_ulong helper_udiv(target_ulong a, target_ulong b)
2840{
2841 uint64_t x0;
2842 uint32_t x1;
2843
7621a90d 2844 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3b89f26c
BS
2845 x1 = b;
2846
2847 if (x1 == 0) {
2848 raise_exception(TT_DIV_ZERO);
2849 }
2850
2851 x0 = x0 / x1;
2852 if (x0 > 0xffffffff) {
2853 env->cc_src2 = 1;
2854 return 0xffffffff;
2855 } else {
2856 env->cc_src2 = 0;
2857 return x0;
2858 }
2859}
2860
2861target_ulong helper_sdiv(target_ulong a, target_ulong b)
2862{
2863 int64_t x0;
2864 int32_t x1;
2865
7621a90d 2866 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3b89f26c
BS
2867 x1 = b;
2868
2869 if (x1 == 0) {
2870 raise_exception(TT_DIV_ZERO);
2871 }
2872
2873 x0 = x0 / x1;
2874 if ((int32_t) x0 != x0) {
2875 env->cc_src2 = 1;
2876 return x0 < 0? 0x80000000: 0x7fffffff;
2877 } else {
2878 env->cc_src2 = 0;
2879 return x0;
2880 }
2881}
2882
7fa76c0b
BS
2883void helper_stdf(target_ulong addr, int mem_idx)
2884{
c2bc0e38 2885 helper_check_align(addr, 7);
7fa76c0b
BS
2886#if !defined(CONFIG_USER_ONLY)
2887 switch (mem_idx) {
2888 case 0:
c2bc0e38 2889 stfq_user(addr, DT0);
7fa76c0b
BS
2890 break;
2891 case 1:
c2bc0e38 2892 stfq_kernel(addr, DT0);
7fa76c0b
BS
2893 break;
2894#ifdef TARGET_SPARC64
2895 case 2:
c2bc0e38 2896 stfq_hypv(addr, DT0);
7fa76c0b
BS
2897 break;
2898#endif
2899 default:
2900 break;
2901 }
2902#else
2cade6a3 2903 address_mask(env, &addr);
c2bc0e38 2904 stfq_raw(addr, DT0);
7fa76c0b
BS
2905#endif
2906}
2907
2908void helper_lddf(target_ulong addr, int mem_idx)
2909{
c2bc0e38 2910 helper_check_align(addr, 7);
7fa76c0b
BS
2911#if !defined(CONFIG_USER_ONLY)
2912 switch (mem_idx) {
2913 case 0:
c2bc0e38 2914 DT0 = ldfq_user(addr);
7fa76c0b
BS
2915 break;
2916 case 1:
c2bc0e38 2917 DT0 = ldfq_kernel(addr);
7fa76c0b
BS
2918 break;
2919#ifdef TARGET_SPARC64
2920 case 2:
c2bc0e38 2921 DT0 = ldfq_hypv(addr);
7fa76c0b
BS
2922 break;
2923#endif
2924 default:
2925 break;
2926 }
2927#else
2cade6a3 2928 address_mask(env, &addr);
c2bc0e38 2929 DT0 = ldfq_raw(addr);
7fa76c0b
BS
2930#endif
2931}
2932
64a88d5d 2933void helper_ldqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
2934{
2935 // XXX add 128 bit load
2936 CPU_QuadU u;
2937
c2bc0e38 2938 helper_check_align(addr, 7);
64a88d5d
BS
2939#if !defined(CONFIG_USER_ONLY)
2940 switch (mem_idx) {
2941 case 0:
c2bc0e38
BS
2942 u.ll.upper = ldq_user(addr);
2943 u.ll.lower = ldq_user(addr + 8);
64a88d5d
BS
2944 QT0 = u.q;
2945 break;
2946 case 1:
c2bc0e38
BS
2947 u.ll.upper = ldq_kernel(addr);
2948 u.ll.lower = ldq_kernel(addr + 8);
64a88d5d
BS
2949 QT0 = u.q;
2950 break;
2951#ifdef TARGET_SPARC64
2952 case 2:
c2bc0e38
BS
2953 u.ll.upper = ldq_hypv(addr);
2954 u.ll.lower = ldq_hypv(addr + 8);
64a88d5d
BS
2955 QT0 = u.q;
2956 break;
2957#endif
2958 default:
2959 break;
2960 }
2961#else
2cade6a3 2962 address_mask(env, &addr);
c2bc0e38
BS
2963 u.ll.upper = ldq_raw(addr);
2964 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
7fa76c0b 2965 QT0 = u.q;
64a88d5d 2966#endif
7fa76c0b
BS
2967}
2968
64a88d5d 2969void helper_stqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
2970{
2971 // XXX add 128 bit store
2972 CPU_QuadU u;
2973
c2bc0e38 2974 helper_check_align(addr, 7);
64a88d5d
BS
2975#if !defined(CONFIG_USER_ONLY)
2976 switch (mem_idx) {
2977 case 0:
2978 u.q = QT0;
c2bc0e38
BS
2979 stq_user(addr, u.ll.upper);
2980 stq_user(addr + 8, u.ll.lower);
64a88d5d
BS
2981 break;
2982 case 1:
2983 u.q = QT0;
c2bc0e38
BS
2984 stq_kernel(addr, u.ll.upper);
2985 stq_kernel(addr + 8, u.ll.lower);
64a88d5d
BS
2986 break;
2987#ifdef TARGET_SPARC64
2988 case 2:
2989 u.q = QT0;
c2bc0e38
BS
2990 stq_hypv(addr, u.ll.upper);
2991 stq_hypv(addr + 8, u.ll.lower);
64a88d5d
BS
2992 break;
2993#endif
2994 default:
2995 break;
2996 }
2997#else
7fa76c0b 2998 u.q = QT0;
2cade6a3 2999 address_mask(env, &addr);
c2bc0e38
BS
3000 stq_raw(addr, u.ll.upper);
3001 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
7fa76c0b 3002#endif
64a88d5d 3003}
7fa76c0b 3004
3a3b925d 3005static inline void set_fsr(void)
e8af50a3 3006{
7a0e1f41 3007 int rnd_mode;
bb5529bb 3008
e8af50a3
FB
3009 switch (env->fsr & FSR_RD_MASK) {
3010 case FSR_RD_NEAREST:
7a0e1f41 3011 rnd_mode = float_round_nearest_even;
0f8a249a 3012 break;
ed910241 3013 default:
e8af50a3 3014 case FSR_RD_ZERO:
7a0e1f41 3015 rnd_mode = float_round_to_zero;
0f8a249a 3016 break;
e8af50a3 3017 case FSR_RD_POS:
7a0e1f41 3018 rnd_mode = float_round_up;
0f8a249a 3019 break;
e8af50a3 3020 case FSR_RD_NEG:
7a0e1f41 3021 rnd_mode = float_round_down;
0f8a249a 3022 break;
e8af50a3 3023 }
7a0e1f41 3024 set_float_rounding_mode(rnd_mode, &env->fp_status);
e8af50a3 3025}
e80cfcfc 3026
3a3b925d 3027void helper_ldfsr(uint32_t new_fsr)
bb5529bb 3028{
3a3b925d
BS
3029 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3030 set_fsr();
bb5529bb
BS
3031}
3032
3a3b925d
BS
3033#ifdef TARGET_SPARC64
3034void helper_ldxfsr(uint64_t new_fsr)
3035{
3036 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3037 set_fsr();
3038}
3039#endif
3040
bb5529bb 3041void helper_debug(void)
e80cfcfc
FB
3042{
3043 env->exception_index = EXCP_DEBUG;
3044 cpu_loop_exit();
3045}
af7bf89b 3046
3475187d 3047#ifndef TARGET_SPARC64
72a9747b
BS
3048/* XXX: use another pointer for %iN registers to avoid slow wrapping
3049 handling ? */
3050void helper_save(void)
3051{
3052 uint32_t cwp;
3053
1a14026e 3054 cwp = cpu_cwp_dec(env, env->cwp - 1);
72a9747b
BS
3055 if (env->wim & (1 << cwp)) {
3056 raise_exception(TT_WIN_OVF);
3057 }
3058 set_cwp(cwp);
3059}
3060
3061void helper_restore(void)
3062{
3063 uint32_t cwp;
3064
1a14026e 3065 cwp = cpu_cwp_inc(env, env->cwp + 1);
72a9747b
BS
3066 if (env->wim & (1 << cwp)) {
3067 raise_exception(TT_WIN_UNF);
3068 }
3069 set_cwp(cwp);
3070}
3071
1a2fb1c0 3072void helper_wrpsr(target_ulong new_psr)
af7bf89b 3073{
1a14026e 3074 if ((new_psr & PSR_CWP) >= env->nwindows)
d4218d99
BS
3075 raise_exception(TT_ILL_INSN);
3076 else
1a2fb1c0 3077 PUT_PSR(env, new_psr);
af7bf89b
FB
3078}
3079
1a2fb1c0 3080target_ulong helper_rdpsr(void)
af7bf89b 3081{
1a2fb1c0 3082 return GET_PSR(env);
af7bf89b 3083}
3475187d
FB
3084
3085#else
72a9747b
BS
3086/* XXX: use another pointer for %iN registers to avoid slow wrapping
3087 handling ? */
3088void helper_save(void)
3089{
3090 uint32_t cwp;
3091
1a14026e 3092 cwp = cpu_cwp_dec(env, env->cwp - 1);
72a9747b
BS
3093 if (env->cansave == 0) {
3094 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3095 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3096 ((env->wstate & 0x7) << 2)));
3097 } else {
3098 if (env->cleanwin - env->canrestore == 0) {
3099 // XXX Clean windows without trap
3100 raise_exception(TT_CLRWIN);
3101 } else {
3102 env->cansave--;
3103 env->canrestore++;
3104 set_cwp(cwp);
3105 }
3106 }
3107}
3108
3109void helper_restore(void)
3110{
3111 uint32_t cwp;
3112
1a14026e 3113 cwp = cpu_cwp_inc(env, env->cwp + 1);
72a9747b
BS
3114 if (env->canrestore == 0) {
3115 raise_exception(TT_FILL | (env->otherwin != 0 ?
3116 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3117 ((env->wstate & 0x7) << 2)));
3118 } else {
3119 env->cansave++;
3120 env->canrestore--;
3121 set_cwp(cwp);
3122 }
3123}
3124
3125void helper_flushw(void)
3126{
1a14026e 3127 if (env->cansave != env->nwindows - 2) {
72a9747b
BS
3128 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3129 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3130 ((env->wstate & 0x7) << 2)));
3131 }
3132}
3133
3134void helper_saved(void)
3135{
3136 env->cansave++;
3137 if (env->otherwin == 0)
3138 env->canrestore--;
3139 else
3140 env->otherwin--;
3141}
3142
3143void helper_restored(void)
3144{
3145 env->canrestore++;
1a14026e 3146 if (env->cleanwin < env->nwindows - 1)
72a9747b
BS
3147 env->cleanwin++;
3148 if (env->otherwin == 0)
3149 env->cansave--;
3150 else
3151 env->otherwin--;
3152}
3153
d35527d9
BS
3154target_ulong helper_rdccr(void)
3155{
3156 return GET_CCR(env);
3157}
3158
3159void helper_wrccr(target_ulong new_ccr)
3160{
3161 PUT_CCR(env, new_ccr);
3162}
3163
3164// CWP handling is reversed in V9, but we still use the V8 register
3165// order.
3166target_ulong helper_rdcwp(void)
3167{
3168 return GET_CWP64(env);
3169}
3170
3171void helper_wrcwp(target_ulong new_cwp)
3172{
3173 PUT_CWP64(env, new_cwp);
3174}
3475187d 3175
1f5063fb
BS
3176// This function uses non-native bit order
3177#define GET_FIELD(X, FROM, TO) \
3178 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3179
3180// This function uses the order in the manuals, i.e. bit 0 is 2^0
3181#define GET_FIELD_SP(X, FROM, TO) \
3182 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3183
3184target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3185{
3186 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3187 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3188 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3189 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3190 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3191 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3192 (((pixel_addr >> 55) & 1) << 4) |
3193 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3194 GET_FIELD_SP(pixel_addr, 11, 12);
3195}
3196
3197target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3198{
3199 uint64_t tmp;
3200
3201 tmp = addr + offset;
3202 env->gsr &= ~7ULL;
3203 env->gsr |= tmp & 7ULL;
3204 return tmp & ~7ULL;
3205}
3206
1a2fb1c0 3207target_ulong helper_popc(target_ulong val)
3475187d 3208{
1a2fb1c0 3209 return ctpop64(val);
3475187d 3210}
83469015
FB
3211
3212static inline uint64_t *get_gregset(uint64_t pstate)
3213{
3214 switch (pstate) {
3215 default:
3216 case 0:
0f8a249a 3217 return env->bgregs;
83469015 3218 case PS_AG:
0f8a249a 3219 return env->agregs;
83469015 3220 case PS_MG:
0f8a249a 3221 return env->mgregs;
83469015 3222 case PS_IG:
0f8a249a 3223 return env->igregs;
83469015
FB
3224 }
3225}
3226
91736d37 3227static inline void change_pstate(uint64_t new_pstate)
83469015 3228{
8f1f22f6 3229 uint64_t pstate_regs, new_pstate_regs;
83469015
FB
3230 uint64_t *src, *dst;
3231
5210977a
IK
3232 if (env->def->features & CPU_FEATURE_GL) {
3233 // PS_AG is not implemented in this case
3234 new_pstate &= ~PS_AG;
3235 }
3236
83469015
FB
3237 pstate_regs = env->pstate & 0xc01;
3238 new_pstate_regs = new_pstate & 0xc01;
5210977a 3239
83469015 3240 if (new_pstate_regs != pstate_regs) {
0f8a249a
BS
3241 // Switch global register bank
3242 src = get_gregset(new_pstate_regs);
3243 dst = get_gregset(pstate_regs);
3244 memcpy32(dst, env->gregs);
3245 memcpy32(env->gregs, src);
83469015
FB
3246 }
3247 env->pstate = new_pstate;
3248}
3249
1a2fb1c0 3250void helper_wrpstate(target_ulong new_state)
8f1f22f6 3251{
5210977a 3252 change_pstate(new_state & 0xf3f);
8f1f22f6
BS
3253}
3254
1a2fb1c0 3255void helper_done(void)
83469015 3256{
375ee38b
BS
3257 env->pc = env->tsptr->tpc;
3258 env->npc = env->tsptr->tnpc + 4;
3259 PUT_CCR(env, env->tsptr->tstate >> 32);
3260 env->asi = (env->tsptr->tstate >> 24) & 0xff;
3261 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
3262 PUT_CWP64(env, env->tsptr->tstate & 0xff);
e6bf7d70 3263 env->tl--;
c19148bd 3264 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
83469015
FB
3265}
3266
1a2fb1c0 3267void helper_retry(void)
83469015 3268{
375ee38b
BS
3269 env->pc = env->tsptr->tpc;
3270 env->npc = env->tsptr->tnpc;
3271 PUT_CCR(env, env->tsptr->tstate >> 32);
3272 env->asi = (env->tsptr->tstate >> 24) & 0xff;
3273 change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
3274 PUT_CWP64(env, env->tsptr->tstate & 0xff);
e6bf7d70 3275 env->tl--;
c19148bd 3276 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
83469015 3277}
9d926598
BS
3278
3279void helper_set_softint(uint64_t value)
3280{
3281 env->softint |= (uint32_t)value;
3282}
3283
3284void helper_clear_softint(uint64_t value)
3285{
3286 env->softint &= (uint32_t)~value;
3287}
3288
3289void helper_write_softint(uint64_t value)
3290{
3291 env->softint = (uint32_t)value;
3292}
3475187d 3293#endif
ee5bbe38 3294
91736d37 3295void helper_flush(target_ulong addr)
ee5bbe38 3296{
91736d37
BS
3297 addr &= ~7;
3298 tb_invalidate_page_range(addr, addr + 8);
ee5bbe38
FB
3299}
3300
91736d37
BS
3301#ifdef TARGET_SPARC64
3302#ifdef DEBUG_PCALL
3303static const char * const excp_names[0x80] = {
3304 [TT_TFAULT] = "Instruction Access Fault",
3305 [TT_TMISS] = "Instruction Access MMU Miss",
3306 [TT_CODE_ACCESS] = "Instruction Access Error",
3307 [TT_ILL_INSN] = "Illegal Instruction",
3308 [TT_PRIV_INSN] = "Privileged Instruction",
3309 [TT_NFPU_INSN] = "FPU Disabled",
3310 [TT_FP_EXCP] = "FPU Exception",
3311 [TT_TOVF] = "Tag Overflow",
3312 [TT_CLRWIN] = "Clean Windows",
3313 [TT_DIV_ZERO] = "Division By Zero",
3314 [TT_DFAULT] = "Data Access Fault",
3315 [TT_DMISS] = "Data Access MMU Miss",
3316 [TT_DATA_ACCESS] = "Data Access Error",
3317 [TT_DPROT] = "Data Protection Error",
3318 [TT_UNALIGNED] = "Unaligned Memory Access",
3319 [TT_PRIV_ACT] = "Privileged Action",
3320 [TT_EXTINT | 0x1] = "External Interrupt 1",
3321 [TT_EXTINT | 0x2] = "External Interrupt 2",
3322 [TT_EXTINT | 0x3] = "External Interrupt 3",
3323 [TT_EXTINT | 0x4] = "External Interrupt 4",
3324 [TT_EXTINT | 0x5] = "External Interrupt 5",
3325 [TT_EXTINT | 0x6] = "External Interrupt 6",
3326 [TT_EXTINT | 0x7] = "External Interrupt 7",
3327 [TT_EXTINT | 0x8] = "External Interrupt 8",
3328 [TT_EXTINT | 0x9] = "External Interrupt 9",
3329 [TT_EXTINT | 0xa] = "External Interrupt 10",
3330 [TT_EXTINT | 0xb] = "External Interrupt 11",
3331 [TT_EXTINT | 0xc] = "External Interrupt 12",
3332 [TT_EXTINT | 0xd] = "External Interrupt 13",
3333 [TT_EXTINT | 0xe] = "External Interrupt 14",
3334 [TT_EXTINT | 0xf] = "External Interrupt 15",
3335};
3336#endif
3337
3338void do_interrupt(CPUState *env)
3339{
3340 int intno = env->exception_index;
3341
3342#ifdef DEBUG_PCALL
8fec2b8c 3343 if (qemu_loglevel_mask(CPU_LOG_INT)) {
91736d37
BS
3344 static int count;
3345 const char *name;
3346
3347 if (intno < 0 || intno >= 0x180)
3348 name = "Unknown";
3349 else if (intno >= 0x100)
3350 name = "Trap Instruction";
3351 else if (intno >= 0xc0)
3352 name = "Window Fill";
3353 else if (intno >= 0x80)
3354 name = "Window Spill";
3355 else {
3356 name = excp_names[intno];
3357 if (!name)
3358 name = "Unknown";
3359 }
3360
93fcfe39 3361 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
91736d37
BS
3362 " SP=%016" PRIx64 "\n",
3363 count, name, intno,
3364 env->pc,
3365 env->npc, env->regwptr[6]);
93fcfe39 3366 log_cpu_state(env, 0);
91736d37
BS
3367#if 0
3368 {
3369 int i;
3370 uint8_t *ptr;
3371
93fcfe39 3372 qemu_log(" code=");
91736d37
BS
3373 ptr = (uint8_t *)env->pc;
3374 for(i = 0; i < 16; i++) {
93fcfe39 3375 qemu_log(" %02x", ldub(ptr + i));
91736d37 3376 }
93fcfe39 3377 qemu_log("\n");
91736d37
BS
3378 }
3379#endif
3380 count++;
3381 }
3382#endif
3383#if !defined(CONFIG_USER_ONLY)
3384 if (env->tl >= env->maxtl) {
3385 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3386 " Error state", env->exception_index, env->tl, env->maxtl);
3387 return;
3388 }
3389#endif
3390 if (env->tl < env->maxtl - 1) {
3391 env->tl++;
3392 } else {
3393 env->pstate |= PS_RED;
3394 if (env->tl < env->maxtl)
3395 env->tl++;
3396 }
3397 env->tsptr = &env->ts[env->tl & MAXTL_MASK];
3398 env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
3399 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3400 GET_CWP64(env);
3401 env->tsptr->tpc = env->pc;
3402 env->tsptr->tnpc = env->npc;
3403 env->tsptr->tt = intno;
5210977a
IK
3404
3405 switch (intno) {
3406 case TT_IVEC:
3407 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3408 break;
3409 case TT_TFAULT:
3410 case TT_TMISS:
3411 case TT_DFAULT:
3412 case TT_DMISS:
3413 case TT_DPROT:
3414 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3415 break;
3416 default:
3417 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3418 break;
91736d37 3419 }
5210977a 3420
91736d37
BS
3421 if (intno == TT_CLRWIN)
3422 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
3423 else if ((intno & 0x1c0) == TT_SPILL)
3424 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
3425 else if ((intno & 0x1c0) == TT_FILL)
3426 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
3427 env->tbr &= ~0x7fffULL;
3428 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3429 env->pc = env->tbr;
3430 env->npc = env->pc + 4;
3431 env->exception_index = 0;
ee5bbe38 3432}
91736d37
BS
3433#else
3434#ifdef DEBUG_PCALL
3435static const char * const excp_names[0x80] = {
3436 [TT_TFAULT] = "Instruction Access Fault",
3437 [TT_ILL_INSN] = "Illegal Instruction",
3438 [TT_PRIV_INSN] = "Privileged Instruction",
3439 [TT_NFPU_INSN] = "FPU Disabled",
3440 [TT_WIN_OVF] = "Window Overflow",
3441 [TT_WIN_UNF] = "Window Underflow",
3442 [TT_UNALIGNED] = "Unaligned Memory Access",
3443 [TT_FP_EXCP] = "FPU Exception",
3444 [TT_DFAULT] = "Data Access Fault",
3445 [TT_TOVF] = "Tag Overflow",
3446 [TT_EXTINT | 0x1] = "External Interrupt 1",
3447 [TT_EXTINT | 0x2] = "External Interrupt 2",
3448 [TT_EXTINT | 0x3] = "External Interrupt 3",
3449 [TT_EXTINT | 0x4] = "External Interrupt 4",
3450 [TT_EXTINT | 0x5] = "External Interrupt 5",
3451 [TT_EXTINT | 0x6] = "External Interrupt 6",
3452 [TT_EXTINT | 0x7] = "External Interrupt 7",
3453 [TT_EXTINT | 0x8] = "External Interrupt 8",
3454 [TT_EXTINT | 0x9] = "External Interrupt 9",
3455 [TT_EXTINT | 0xa] = "External Interrupt 10",
3456 [TT_EXTINT | 0xb] = "External Interrupt 11",
3457 [TT_EXTINT | 0xc] = "External Interrupt 12",
3458 [TT_EXTINT | 0xd] = "External Interrupt 13",
3459 [TT_EXTINT | 0xe] = "External Interrupt 14",
3460 [TT_EXTINT | 0xf] = "External Interrupt 15",
3461 [TT_TOVF] = "Tag Overflow",
3462 [TT_CODE_ACCESS] = "Instruction Access Error",
3463 [TT_DATA_ACCESS] = "Data Access Error",
3464 [TT_DIV_ZERO] = "Division By Zero",
3465 [TT_NCP_INSN] = "Coprocessor Disabled",
3466};
3467#endif
ee5bbe38 3468
91736d37 3469void do_interrupt(CPUState *env)
ee5bbe38 3470{
91736d37
BS
3471 int cwp, intno = env->exception_index;
3472
3473#ifdef DEBUG_PCALL
8fec2b8c 3474 if (qemu_loglevel_mask(CPU_LOG_INT)) {
91736d37
BS
3475 static int count;
3476 const char *name;
3477
3478 if (intno < 0 || intno >= 0x100)
3479 name = "Unknown";
3480 else if (intno >= 0x80)
3481 name = "Trap Instruction";
3482 else {
3483 name = excp_names[intno];
3484 if (!name)
3485 name = "Unknown";
3486 }
3487
93fcfe39 3488 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
91736d37
BS
3489 count, name, intno,
3490 env->pc,
3491 env->npc, env->regwptr[6]);
93fcfe39 3492 log_cpu_state(env, 0);
91736d37
BS
3493#if 0
3494 {
3495 int i;
3496 uint8_t *ptr;
3497
93fcfe39 3498 qemu_log(" code=");
91736d37
BS
3499 ptr = (uint8_t *)env->pc;
3500 for(i = 0; i < 16; i++) {
93fcfe39 3501 qemu_log(" %02x", ldub(ptr + i));
91736d37 3502 }
93fcfe39 3503 qemu_log("\n");
91736d37
BS
3504 }
3505#endif
3506 count++;
3507 }
3508#endif
3509#if !defined(CONFIG_USER_ONLY)
3510 if (env->psret == 0) {
3511 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3512 env->exception_index);
3513 return;
3514 }
3515#endif
3516 env->psret = 0;
3517 cwp = cpu_cwp_dec(env, env->cwp - 1);
3518 cpu_set_cwp(env, cwp);
3519 env->regwptr[9] = env->pc;
3520 env->regwptr[10] = env->npc;
3521 env->psrps = env->psrs;
3522 env->psrs = 1;
3523 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3524 env->pc = env->tbr;
3525 env->npc = env->pc + 4;
3526 env->exception_index = 0;
ee5bbe38 3527}
91736d37 3528#endif
ee5bbe38 3529
5fafdf24 3530#if !defined(CONFIG_USER_ONLY)
ee5bbe38 3531
d2889a3e
BS
3532static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3533 void *retaddr);
3534
ee5bbe38 3535#define MMUSUFFIX _mmu
d2889a3e 3536#define ALIGNED_ONLY
ee5bbe38
FB
3537
3538#define SHIFT 0
3539#include "softmmu_template.h"
3540
3541#define SHIFT 1
3542#include "softmmu_template.h"
3543
3544#define SHIFT 2
3545#include "softmmu_template.h"
3546
3547#define SHIFT 3
3548#include "softmmu_template.h"
3549
c2bc0e38
BS
3550/* XXX: make it generic ? */
3551static void cpu_restore_state2(void *retaddr)
3552{
3553 TranslationBlock *tb;
3554 unsigned long pc;
3555
3556 if (retaddr) {
3557 /* now we have a real cpu fault */
3558 pc = (unsigned long)retaddr;
3559 tb = tb_find_pc(pc);
3560 if (tb) {
3561 /* the PC is inside the translated code. It means that we have
3562 a virtual CPU fault */
3563 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3564 }
3565 }
3566}
3567
d2889a3e
BS
3568static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3569 void *retaddr)
3570{
94554550 3571#ifdef DEBUG_UNALIGNED
c2bc0e38
BS
3572 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3573 "\n", addr, env->pc);
94554550 3574#endif
c2bc0e38 3575 cpu_restore_state2(retaddr);
94554550 3576 raise_exception(TT_UNALIGNED);
d2889a3e 3577}
ee5bbe38
FB
3578
3579/* try to fill the TLB and return an exception if error. If retaddr is
3580 NULL, it means that the function was called in C code (i.e. not
3581 from generated code or from helper.c) */
3582/* XXX: fix it to restore all registers */
6ebbf390 3583void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
ee5bbe38 3584{
ee5bbe38 3585 int ret;
ee5bbe38
FB
3586 CPUState *saved_env;
3587
3588 /* XXX: hack to restore env in all cases, even if not called from
3589 generated code */
3590 saved_env = env;
3591 env = cpu_single_env;
3592
6ebbf390 3593 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
ee5bbe38 3594 if (ret) {
c2bc0e38 3595 cpu_restore_state2(retaddr);
ee5bbe38
FB
3596 cpu_loop_exit();
3597 }
3598 env = saved_env;
3599}
3600
3601#endif
6c36d3fa
BS
3602
3603#ifndef TARGET_SPARC64
5dcb6b91 3604void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
e18231a3 3605 int is_asi, int size)
6c36d3fa
BS
3606{
3607 CPUState *saved_env;
3608
3609 /* XXX: hack to restore env in all cases, even if not called from
3610 generated code */
3611 saved_env = env;
3612 env = cpu_single_env;
8543e2cf
BS
3613#ifdef DEBUG_UNASSIGNED
3614 if (is_asi)
e18231a3 3615 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
77f193da 3616 " asi 0x%02x from " TARGET_FMT_lx "\n",
e18231a3
BS
3617 is_exec ? "exec" : is_write ? "write" : "read", size,
3618 size == 1 ? "" : "s", addr, is_asi, env->pc);
8543e2cf 3619 else
e18231a3
BS
3620 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3621 " from " TARGET_FMT_lx "\n",
3622 is_exec ? "exec" : is_write ? "write" : "read", size,
3623 size == 1 ? "" : "s", addr, env->pc);
8543e2cf 3624#endif
6c36d3fa 3625 if (env->mmuregs[3]) /* Fault status register */
0f8a249a 3626 env->mmuregs[3] = 1; /* overflow (not read before another fault) */
6c36d3fa
BS
3627 if (is_asi)
3628 env->mmuregs[3] |= 1 << 16;
3629 if (env->psrs)
3630 env->mmuregs[3] |= 1 << 5;
3631 if (is_exec)
3632 env->mmuregs[3] |= 1 << 6;
3633 if (is_write)
3634 env->mmuregs[3] |= 1 << 7;
3635 env->mmuregs[3] |= (5 << 2) | 2;
3636 env->mmuregs[4] = addr; /* Fault address register */
3637 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1b2e93c1
BS
3638 if (is_exec)
3639 raise_exception(TT_CODE_ACCESS);
3640 else
3641 raise_exception(TT_DATA_ACCESS);
6c36d3fa
BS
3642 }
3643 env = saved_env;
3644}
3645#else
5dcb6b91 3646void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
e18231a3 3647 int is_asi, int size)
6c36d3fa
BS
3648{
3649#ifdef DEBUG_UNASSIGNED
3650 CPUState *saved_env;
3651
3652 /* XXX: hack to restore env in all cases, even if not called from
3653 generated code */
3654 saved_env = env;
3655 env = cpu_single_env;
77f193da
BS
3656 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3657 "\n", addr, env->pc);
6c36d3fa
BS
3658 env = saved_env;
3659#endif
1b2e93c1
BS
3660 if (is_exec)
3661 raise_exception(TT_CODE_ACCESS);
3662 else
3663 raise_exception(TT_DATA_ACCESS);
6c36d3fa
BS
3664}
3665#endif
20c9f095 3666
f4b1a842
BS
3667#ifdef TARGET_SPARC64
3668void helper_tick_set_count(void *opaque, uint64_t count)
3669{
3670#if !defined(CONFIG_USER_ONLY)
3671 cpu_tick_set_count(opaque, count);
3672#endif
3673}
3674
3675uint64_t helper_tick_get_count(void *opaque)
3676{
3677#if !defined(CONFIG_USER_ONLY)
3678 return cpu_tick_get_count(opaque);
3679#else
3680 return 0;
3681#endif
3682}
3683
3684void helper_tick_set_limit(void *opaque, uint64_t limit)
3685{
3686#if !defined(CONFIG_USER_ONLY)
3687 cpu_tick_set_limit(opaque, limit);
3688#endif
3689}
3690#endif