]> git.proxmox.com Git - qemu.git/blame - target-sparc/op_helper.c
Remove cpu_get_phys_page_debug from userspace emulation
[qemu.git] / target-sparc / op_helper.c
CommitLineData
e8af50a3 1#include "exec.h"
eed152bb 2#include "host-utils.h"
1a2fb1c0 3#include "helper.h"
0828b448
BS
4#if !defined(CONFIG_USER_ONLY)
5#include "softmmu_exec.h"
6#endif /* !defined(CONFIG_USER_ONLY) */
e8af50a3 7
e80cfcfc 8//#define DEBUG_MMU
952a328f 9//#define DEBUG_MXCC
94554550 10//#define DEBUG_UNALIGNED
6c36d3fa 11//#define DEBUG_UNASSIGNED
8543e2cf 12//#define DEBUG_ASI
d81fd722 13//#define DEBUG_PCALL
7e8695ed 14//#define DEBUG_PSTATE
e80cfcfc 15
952a328f 16#ifdef DEBUG_MMU
001faf32
BS
17#define DPRINTF_MMU(fmt, ...) \
18 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
952a328f 19#else
001faf32 20#define DPRINTF_MMU(fmt, ...) do {} while (0)
952a328f
BS
21#endif
22
23#ifdef DEBUG_MXCC
001faf32
BS
24#define DPRINTF_MXCC(fmt, ...) \
25 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
952a328f 26#else
001faf32 27#define DPRINTF_MXCC(fmt, ...) do {} while (0)
952a328f
BS
28#endif
29
8543e2cf 30#ifdef DEBUG_ASI
001faf32
BS
31#define DPRINTF_ASI(fmt, ...) \
32 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
8543e2cf
BS
33#endif
34
7e8695ed
IK
35#ifdef DEBUG_PSTATE
36#define DPRINTF_PSTATE(fmt, ...) \
37 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
38#else
39#define DPRINTF_PSTATE(fmt, ...) do {} while (0)
40#endif
41
2cade6a3
BS
42#ifdef TARGET_SPARC64
43#ifndef TARGET_ABI32
44#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
c2bc0e38 45#else
2cade6a3
BS
46#define AM_CHECK(env1) (1)
47#endif
c2bc0e38
BS
48#endif
49
9c22a623 50#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
697a77e6
IK
51// Calculates TSB pointer value for fault page size 8k or 64k
52static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
53 uint64_t tag_access_register,
54 int page_size)
55{
56 uint64_t tsb_base = tsb_register & ~0x1fffULL;
6e8e7d4c
IK
57 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
58 int tsb_size = tsb_register & 0xf;
697a77e6
IK
59
60 // discard lower 13 bits which hold tag access context
61 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
62
63 // now reorder bits
64 uint64_t tsb_base_mask = ~0x1fffULL;
65 uint64_t va = tag_access_va;
66
67 // move va bits to correct position
68 if (page_size == 8*1024) {
69 va >>= 9;
70 } else if (page_size == 64*1024) {
71 va >>= 12;
72 }
73
74 if (tsb_size) {
75 tsb_base_mask <<= tsb_size;
76 }
77
78 // calculate tsb_base mask and adjust va if split is in use
79 if (tsb_split) {
80 if (page_size == 8*1024) {
81 va &= ~(1ULL << (13 + tsb_size));
82 } else if (page_size == 64*1024) {
83 va |= (1ULL << (13 + tsb_size));
84 }
85 tsb_base_mask <<= 1;
86 }
87
88 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
89}
90
91// Calculates tag target register value by reordering bits
92// in tag access register
93static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
94{
95 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
96}
97
f707726e
IK
98static void replace_tlb_entry(SparcTLBEntry *tlb,
99 uint64_t tlb_tag, uint64_t tlb_tte,
100 CPUState *env1)
6e8e7d4c
IK
101{
102 target_ulong mask, size, va, offset;
103
104 // flush page range if translation is valid
f707726e 105 if (TTE_IS_VALID(tlb->tte)) {
6e8e7d4c
IK
106
107 mask = 0xffffffffffffe000ULL;
108 mask <<= 3 * ((tlb->tte >> 61) & 3);
109 size = ~mask + 1;
110
111 va = tlb->tag & mask;
112
113 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
114 tlb_flush_page(env1, va + offset);
115 }
116 }
117
118 tlb->tag = tlb_tag;
119 tlb->tte = tlb_tte;
120}
121
122static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
f707726e 123 const char* strmmu, CPUState *env1)
6e8e7d4c
IK
124{
125 unsigned int i;
126 target_ulong mask;
127
128 for (i = 0; i < 64; i++) {
f707726e 129 if (TTE_IS_VALID(tlb[i].tte)) {
6e8e7d4c
IK
130
131 mask = 0xffffffffffffe000ULL;
132 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
133
134 if ((demap_addr & mask) == (tlb[i].tag & mask)) {
f707726e 135 replace_tlb_entry(&tlb[i], 0, 0, env1);
6e8e7d4c 136#ifdef DEBUG_MMU
f707726e
IK
137 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
138 dump_mmu(env1);
6e8e7d4c
IK
139#endif
140 }
141 //return;
142 }
143 }
144
145}
146
f707726e
IK
147static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
148 uint64_t tlb_tag, uint64_t tlb_tte,
149 const char* strmmu, CPUState *env1)
150{
151 unsigned int i, replace_used;
152
153 // Try replacing invalid entry
154 for (i = 0; i < 64; i++) {
155 if (!TTE_IS_VALID(tlb[i].tte)) {
156 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
157#ifdef DEBUG_MMU
158 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
159 dump_mmu(env1);
160#endif
161 return;
162 }
163 }
164
165 // All entries are valid, try replacing unlocked entry
166
167 for (replace_used = 0; replace_used < 2; ++replace_used) {
168
169 // Used entries are not replaced on first pass
170
171 for (i = 0; i < 64; i++) {
172 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
173
174 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
175#ifdef DEBUG_MMU
176 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
177 strmmu, (replace_used?"used":"unused"), i);
178 dump_mmu(env1);
179#endif
180 return;
181 }
182 }
183
184 // Now reset used bit and search for unused entries again
185
186 for (i = 0; i < 64; i++) {
187 TTE_SET_UNUSED(tlb[i].tte);
188 }
189 }
190
191#ifdef DEBUG_MMU
192 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
193#endif
194 // error state?
195}
196
697a77e6
IK
197#endif
198
2cade6a3
BS
199static inline void address_mask(CPUState *env1, target_ulong *addr)
200{
201#ifdef TARGET_SPARC64
202 if (AM_CHECK(env1))
203 *addr &= 0xffffffffULL;
204#endif
205}
206
f4a5a5ba 207static void raise_exception(int tt)
9d893301
FB
208{
209 env->exception_index = tt;
210 cpu_loop_exit();
3b46e624 211}
9d893301 212
a7812ae4
PB
213void HELPER(raise_exception)(int tt)
214{
215 raise_exception(tt);
216}
217
91736d37
BS
218static inline void set_cwp(int new_cwp)
219{
220 cpu_set_cwp(env, new_cwp);
221}
222
2b29924f
BS
223void helper_check_align(target_ulong addr, uint32_t align)
224{
c2bc0e38
BS
225 if (addr & align) {
226#ifdef DEBUG_UNALIGNED
227 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
228 "\n", addr, env->pc);
229#endif
2b29924f 230 raise_exception(TT_UNALIGNED);
c2bc0e38 231 }
2b29924f
BS
232}
233
44e7757c
BS
234#define F_HELPER(name, p) void helper_f##name##p(void)
235
44e7757c 236#define F_BINOP(name) \
714547bb 237 float32 helper_f ## name ## s (float32 src1, float32 src2) \
44e7757c 238 { \
714547bb 239 return float32_ ## name (src1, src2, &env->fp_status); \
44e7757c
BS
240 } \
241 F_HELPER(name, d) \
242 { \
243 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
4e14008f
BS
244 } \
245 F_HELPER(name, q) \
246 { \
247 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
44e7757c 248 }
44e7757c
BS
249
250F_BINOP(add);
251F_BINOP(sub);
252F_BINOP(mul);
253F_BINOP(div);
254#undef F_BINOP
255
d84763bc 256void helper_fsmuld(float32 src1, float32 src2)
1a2fb1c0 257{
d84763bc
BS
258 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
259 float32_to_float64(src2, &env->fp_status),
44e7757c
BS
260 &env->fp_status);
261}
1a2fb1c0 262
4e14008f
BS
263void helper_fdmulq(void)
264{
265 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
266 float64_to_float128(DT1, &env->fp_status),
267 &env->fp_status);
268}
4e14008f 269
714547bb 270float32 helper_fnegs(float32 src)
44e7757c 271{
714547bb 272 return float32_chs(src);
417454b0
BS
273}
274
44e7757c
BS
275#ifdef TARGET_SPARC64
276F_HELPER(neg, d)
7e8c2b6c 277{
44e7757c 278 DT0 = float64_chs(DT1);
7e8c2b6c 279}
4e14008f 280
4e14008f
BS
281F_HELPER(neg, q)
282{
283 QT0 = float128_chs(QT1);
284}
285#endif
44e7757c
BS
286
287/* Integer to float conversion. */
714547bb 288float32 helper_fitos(int32_t src)
a0c4cb4a 289{
714547bb 290 return int32_to_float32(src, &env->fp_status);
a0c4cb4a
FB
291}
292
d84763bc 293void helper_fitod(int32_t src)
a0c4cb4a 294{
d84763bc 295 DT0 = int32_to_float64(src, &env->fp_status);
a0c4cb4a 296}
9c2b428e 297
c5d04e99 298void helper_fitoq(int32_t src)
4e14008f 299{
c5d04e99 300 QT0 = int32_to_float128(src, &env->fp_status);
4e14008f 301}
4e14008f 302
1e64e78d 303#ifdef TARGET_SPARC64
d84763bc 304float32 helper_fxtos(void)
1e64e78d 305{
d84763bc 306 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
1e64e78d
BS
307}
308
44e7757c 309F_HELPER(xto, d)
1e64e78d 310{
1e64e78d 311 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
1e64e78d 312}
64a88d5d 313
4e14008f
BS
314F_HELPER(xto, q)
315{
316 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
317}
318#endif
44e7757c
BS
319#undef F_HELPER
320
321/* floating point conversion */
d84763bc 322float32 helper_fdtos(void)
44e7757c 323{
d84763bc 324 return float64_to_float32(DT1, &env->fp_status);
44e7757c
BS
325}
326
d84763bc 327void helper_fstod(float32 src)
44e7757c 328{
d84763bc 329 DT0 = float32_to_float64(src, &env->fp_status);
44e7757c 330}
9c2b428e 331
c5d04e99 332float32 helper_fqtos(void)
4e14008f 333{
c5d04e99 334 return float128_to_float32(QT1, &env->fp_status);
4e14008f
BS
335}
336
c5d04e99 337void helper_fstoq(float32 src)
4e14008f 338{
c5d04e99 339 QT0 = float32_to_float128(src, &env->fp_status);
4e14008f
BS
340}
341
342void helper_fqtod(void)
343{
344 DT0 = float128_to_float64(QT1, &env->fp_status);
345}
346
347void helper_fdtoq(void)
348{
349 QT0 = float64_to_float128(DT1, &env->fp_status);
350}
4e14008f 351
44e7757c 352/* Float to integer conversion. */
714547bb 353int32_t helper_fstoi(float32 src)
44e7757c 354{
714547bb 355 return float32_to_int32_round_to_zero(src, &env->fp_status);
44e7757c
BS
356}
357
d84763bc 358int32_t helper_fdtoi(void)
44e7757c 359{
d84763bc 360 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
44e7757c
BS
361}
362
c5d04e99 363int32_t helper_fqtoi(void)
4e14008f 364{
c5d04e99 365 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
4e14008f 366}
4e14008f 367
44e7757c 368#ifdef TARGET_SPARC64
d84763bc 369void helper_fstox(float32 src)
44e7757c 370{
d84763bc 371 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
44e7757c
BS
372}
373
374void helper_fdtox(void)
375{
376 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
377}
378
4e14008f
BS
379void helper_fqtox(void)
380{
381 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
382}
4e14008f 383
44e7757c
BS
384void helper_faligndata(void)
385{
386 uint64_t tmp;
387
388 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
06057e6f
BS
389 /* on many architectures a shift of 64 does nothing */
390 if ((env->gsr & 7) != 0) {
391 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
392 }
44e7757c
BS
393 *((uint64_t *)&DT0) = tmp;
394}
395
e2542fe2 396#ifdef HOST_WORDS_BIGENDIAN
44e7757c
BS
397#define VIS_B64(n) b[7 - (n)]
398#define VIS_W64(n) w[3 - (n)]
399#define VIS_SW64(n) sw[3 - (n)]
400#define VIS_L64(n) l[1 - (n)]
401#define VIS_B32(n) b[3 - (n)]
402#define VIS_W32(n) w[1 - (n)]
403#else
404#define VIS_B64(n) b[n]
405#define VIS_W64(n) w[n]
406#define VIS_SW64(n) sw[n]
407#define VIS_L64(n) l[n]
408#define VIS_B32(n) b[n]
409#define VIS_W32(n) w[n]
410#endif
411
412typedef union {
413 uint8_t b[8];
414 uint16_t w[4];
415 int16_t sw[4];
416 uint32_t l[2];
417 float64 d;
418} vis64;
419
420typedef union {
421 uint8_t b[4];
422 uint16_t w[2];
423 uint32_t l;
424 float32 f;
425} vis32;
426
427void helper_fpmerge(void)
428{
429 vis64 s, d;
430
431 s.d = DT0;
432 d.d = DT1;
433
434 // Reverse calculation order to handle overlap
435 d.VIS_B64(7) = s.VIS_B64(3);
436 d.VIS_B64(6) = d.VIS_B64(3);
437 d.VIS_B64(5) = s.VIS_B64(2);
438 d.VIS_B64(4) = d.VIS_B64(2);
439 d.VIS_B64(3) = s.VIS_B64(1);
440 d.VIS_B64(2) = d.VIS_B64(1);
441 d.VIS_B64(1) = s.VIS_B64(0);
442 //d.VIS_B64(0) = d.VIS_B64(0);
443
444 DT0 = d.d;
445}
446
447void helper_fmul8x16(void)
448{
449 vis64 s, d;
450 uint32_t tmp;
451
452 s.d = DT0;
453 d.d = DT1;
454
455#define PMUL(r) \
456 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
457 if ((tmp & 0xff) > 0x7f) \
458 tmp += 0x100; \
459 d.VIS_W64(r) = tmp >> 8;
460
461 PMUL(0);
462 PMUL(1);
463 PMUL(2);
464 PMUL(3);
465#undef PMUL
466
467 DT0 = d.d;
468}
469
470void helper_fmul8x16al(void)
471{
472 vis64 s, d;
473 uint32_t tmp;
474
475 s.d = DT0;
476 d.d = DT1;
477
478#define PMUL(r) \
479 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
480 if ((tmp & 0xff) > 0x7f) \
481 tmp += 0x100; \
482 d.VIS_W64(r) = tmp >> 8;
483
484 PMUL(0);
485 PMUL(1);
486 PMUL(2);
487 PMUL(3);
488#undef PMUL
489
490 DT0 = d.d;
491}
492
493void helper_fmul8x16au(void)
494{
495 vis64 s, d;
496 uint32_t tmp;
497
498 s.d = DT0;
499 d.d = DT1;
500
501#define PMUL(r) \
502 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
503 if ((tmp & 0xff) > 0x7f) \
504 tmp += 0x100; \
505 d.VIS_W64(r) = tmp >> 8;
506
507 PMUL(0);
508 PMUL(1);
509 PMUL(2);
510 PMUL(3);
511#undef PMUL
512
513 DT0 = d.d;
514}
515
516void helper_fmul8sux16(void)
517{
518 vis64 s, d;
519 uint32_t tmp;
520
521 s.d = DT0;
522 d.d = DT1;
523
524#define PMUL(r) \
525 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
526 if ((tmp & 0xff) > 0x7f) \
527 tmp += 0x100; \
528 d.VIS_W64(r) = tmp >> 8;
529
530 PMUL(0);
531 PMUL(1);
532 PMUL(2);
533 PMUL(3);
534#undef PMUL
535
536 DT0 = d.d;
537}
538
539void helper_fmul8ulx16(void)
540{
541 vis64 s, d;
542 uint32_t tmp;
543
544 s.d = DT0;
545 d.d = DT1;
546
547#define PMUL(r) \
548 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
549 if ((tmp & 0xff) > 0x7f) \
550 tmp += 0x100; \
551 d.VIS_W64(r) = tmp >> 8;
552
553 PMUL(0);
554 PMUL(1);
555 PMUL(2);
556 PMUL(3);
557#undef PMUL
558
559 DT0 = d.d;
560}
561
562void helper_fmuld8sux16(void)
563{
564 vis64 s, d;
565 uint32_t tmp;
566
567 s.d = DT0;
568 d.d = DT1;
569
570#define PMUL(r) \
571 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
572 if ((tmp & 0xff) > 0x7f) \
573 tmp += 0x100; \
574 d.VIS_L64(r) = tmp;
575
576 // Reverse calculation order to handle overlap
577 PMUL(1);
578 PMUL(0);
579#undef PMUL
580
581 DT0 = d.d;
582}
583
584void helper_fmuld8ulx16(void)
585{
586 vis64 s, d;
587 uint32_t tmp;
588
589 s.d = DT0;
590 d.d = DT1;
591
592#define PMUL(r) \
593 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
594 if ((tmp & 0xff) > 0x7f) \
595 tmp += 0x100; \
596 d.VIS_L64(r) = tmp;
597
598 // Reverse calculation order to handle overlap
599 PMUL(1);
600 PMUL(0);
601#undef PMUL
602
603 DT0 = d.d;
604}
605
606void helper_fexpand(void)
607{
608 vis32 s;
609 vis64 d;
610
611 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
612 d.d = DT1;
c55bda30
BS
613 d.VIS_W64(0) = s.VIS_B32(0) << 4;
614 d.VIS_W64(1) = s.VIS_B32(1) << 4;
615 d.VIS_W64(2) = s.VIS_B32(2) << 4;
616 d.VIS_W64(3) = s.VIS_B32(3) << 4;
44e7757c
BS
617
618 DT0 = d.d;
619}
620
621#define VIS_HELPER(name, F) \
622 void name##16(void) \
623 { \
624 vis64 s, d; \
625 \
626 s.d = DT0; \
627 d.d = DT1; \
628 \
629 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
630 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
631 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
632 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
633 \
634 DT0 = d.d; \
635 } \
636 \
1d01299d 637 uint32_t name##16s(uint32_t src1, uint32_t src2) \
44e7757c
BS
638 { \
639 vis32 s, d; \
640 \
1d01299d
BS
641 s.l = src1; \
642 d.l = src2; \
44e7757c
BS
643 \
644 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
645 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
646 \
1d01299d 647 return d.l; \
44e7757c
BS
648 } \
649 \
650 void name##32(void) \
651 { \
652 vis64 s, d; \
653 \
654 s.d = DT0; \
655 d.d = DT1; \
656 \
657 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
658 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
659 \
660 DT0 = d.d; \
661 } \
662 \
1d01299d 663 uint32_t name##32s(uint32_t src1, uint32_t src2) \
44e7757c
BS
664 { \
665 vis32 s, d; \
666 \
1d01299d
BS
667 s.l = src1; \
668 d.l = src2; \
44e7757c
BS
669 \
670 d.l = F(d.l, s.l); \
671 \
1d01299d 672 return d.l; \
44e7757c
BS
673 }
674
675#define FADD(a, b) ((a) + (b))
676#define FSUB(a, b) ((a) - (b))
677VIS_HELPER(helper_fpadd, FADD)
678VIS_HELPER(helper_fpsub, FSUB)
679
680#define VIS_CMPHELPER(name, F) \
681 void name##16(void) \
682 { \
683 vis64 s, d; \
684 \
685 s.d = DT0; \
686 d.d = DT1; \
687 \
688 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
689 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
690 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
691 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
692 \
693 DT0 = d.d; \
694 } \
695 \
696 void name##32(void) \
697 { \
698 vis64 s, d; \
699 \
700 s.d = DT0; \
701 d.d = DT1; \
702 \
703 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
704 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
705 \
706 DT0 = d.d; \
707 }
708
709#define FCMPGT(a, b) ((a) > (b))
710#define FCMPEQ(a, b) ((a) == (b))
711#define FCMPLE(a, b) ((a) <= (b))
712#define FCMPNE(a, b) ((a) != (b))
713
714VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
715VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
716VIS_CMPHELPER(helper_fcmple, FCMPLE)
717VIS_CMPHELPER(helper_fcmpne, FCMPNE)
718#endif
719
720void helper_check_ieee_exceptions(void)
721{
722 target_ulong status;
723
724 status = get_float_exception_flags(&env->fp_status);
725 if (status) {
726 /* Copy IEEE 754 flags into FSR */
727 if (status & float_flag_invalid)
728 env->fsr |= FSR_NVC;
729 if (status & float_flag_overflow)
730 env->fsr |= FSR_OFC;
731 if (status & float_flag_underflow)
732 env->fsr |= FSR_UFC;
733 if (status & float_flag_divbyzero)
734 env->fsr |= FSR_DZC;
735 if (status & float_flag_inexact)
736 env->fsr |= FSR_NXC;
737
738 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
739 /* Unmasked exception, generate a trap */
740 env->fsr |= FSR_FTT_IEEE_EXCP;
741 raise_exception(TT_FP_EXCP);
742 } else {
743 /* Accumulate exceptions */
744 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
745 }
746 }
747}
748
749void helper_clear_float_exceptions(void)
750{
751 set_float_exception_flags(0, &env->fp_status);
752}
753
714547bb 754float32 helper_fabss(float32 src)
e8af50a3 755{
714547bb 756 return float32_abs(src);
e8af50a3
FB
757}
758
3475187d 759#ifdef TARGET_SPARC64
7e8c2b6c 760void helper_fabsd(void)
3475187d
FB
761{
762 DT0 = float64_abs(DT1);
763}
4e14008f 764
4e14008f
BS
765void helper_fabsq(void)
766{
767 QT0 = float128_abs(QT1);
768}
769#endif
3475187d 770
714547bb 771float32 helper_fsqrts(float32 src)
e8af50a3 772{
714547bb 773 return float32_sqrt(src, &env->fp_status);
e8af50a3
FB
774}
775
7e8c2b6c 776void helper_fsqrtd(void)
e8af50a3 777{
7a0e1f41 778 DT0 = float64_sqrt(DT1, &env->fp_status);
e8af50a3
FB
779}
780
4e14008f
BS
781void helper_fsqrtq(void)
782{
783 QT0 = float128_sqrt(QT1, &env->fp_status);
784}
4e14008f 785
417454b0 786#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
7e8c2b6c 787 void glue(helper_, name) (void) \
65ce8c2f 788 { \
1a2fb1c0
BS
789 target_ulong new_fsr; \
790 \
65ce8c2f
FB
791 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
792 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
793 case float_relation_unordered: \
1a2fb1c0 794 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
417454b0 795 if ((env->fsr & FSR_NVM) || TRAP) { \
1a2fb1c0 796 env->fsr |= new_fsr; \
417454b0
BS
797 env->fsr |= FSR_NVC; \
798 env->fsr |= FSR_FTT_IEEE_EXCP; \
65ce8c2f
FB
799 raise_exception(TT_FP_EXCP); \
800 } else { \
801 env->fsr |= FSR_NVA; \
802 } \
803 break; \
804 case float_relation_less: \
1a2fb1c0 805 new_fsr = FSR_FCC0 << FS; \
65ce8c2f
FB
806 break; \
807 case float_relation_greater: \
1a2fb1c0 808 new_fsr = FSR_FCC1 << FS; \
65ce8c2f
FB
809 break; \
810 default: \
1a2fb1c0 811 new_fsr = 0; \
65ce8c2f
FB
812 break; \
813 } \
1a2fb1c0 814 env->fsr |= new_fsr; \
e8af50a3 815 }
714547bb
BS
816#define GEN_FCMPS(name, size, FS, TRAP) \
817 void glue(helper_, name)(float32 src1, float32 src2) \
818 { \
819 target_ulong new_fsr; \
820 \
821 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
822 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
823 case float_relation_unordered: \
824 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
825 if ((env->fsr & FSR_NVM) || TRAP) { \
826 env->fsr |= new_fsr; \
827 env->fsr |= FSR_NVC; \
828 env->fsr |= FSR_FTT_IEEE_EXCP; \
829 raise_exception(TT_FP_EXCP); \
830 } else { \
831 env->fsr |= FSR_NVA; \
832 } \
833 break; \
834 case float_relation_less: \
835 new_fsr = FSR_FCC0 << FS; \
836 break; \
837 case float_relation_greater: \
838 new_fsr = FSR_FCC1 << FS; \
839 break; \
840 default: \
841 new_fsr = 0; \
842 break; \
843 } \
844 env->fsr |= new_fsr; \
845 }
e8af50a3 846
714547bb 847GEN_FCMPS(fcmps, float32, 0, 0);
417454b0
BS
848GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
849
714547bb 850GEN_FCMPS(fcmpes, float32, 0, 1);
417454b0 851GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
3475187d 852
4e14008f
BS
853GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
854GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
4e14008f 855
8393617c
BS
856static uint32_t compute_all_flags(void)
857{
858 return env->psr & PSR_ICC;
859}
860
861static uint32_t compute_C_flags(void)
862{
863 return env->psr & PSR_CARRY;
864}
865
bdf9f35d
BS
866static inline uint32_t get_NZ_icc(target_ulong dst)
867{
868 uint32_t ret = 0;
869
870 if (!(dst & 0xffffffffULL))
871 ret |= PSR_ZERO;
872 if ((int32_t) (dst & 0xffffffffULL) < 0)
873 ret |= PSR_NEG;
874 return ret;
875}
876
8393617c
BS
877#ifdef TARGET_SPARC64
878static uint32_t compute_all_flags_xcc(void)
879{
880 return env->xcc & PSR_ICC;
881}
882
883static uint32_t compute_C_flags_xcc(void)
884{
885 return env->xcc & PSR_CARRY;
886}
887
bdf9f35d
BS
888static inline uint32_t get_NZ_xcc(target_ulong dst)
889{
890 uint32_t ret = 0;
891
892 if (!dst)
893 ret |= PSR_ZERO;
894 if ((int64_t)dst < 0)
895 ret |= PSR_NEG;
896 return ret;
897}
898#endif
899
6c78ea32
BS
900static inline uint32_t get_V_div_icc(target_ulong src2)
901{
902 uint32_t ret = 0;
903
904 if (src2 != 0)
905 ret |= PSR_OVF;
906 return ret;
907}
908
909static uint32_t compute_all_div(void)
910{
911 uint32_t ret;
912
913 ret = get_NZ_icc(CC_DST);
914 ret |= get_V_div_icc(CC_SRC2);
915 return ret;
916}
917
918static uint32_t compute_C_div(void)
919{
920 return 0;
921}
922
3e6ba503
AT
923/* carry = (src1[31] & src2[31]) | ( ~dst[31] & (src1[31] | src2[31])) */
924static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1,
925 target_ulong src2)
bdf9f35d
BS
926{
927 uint32_t ret = 0;
928
3e6ba503
AT
929 if (((src1 & (1ULL << 31)) & (src2 & (1ULL << 31)))
930 | ((~(dst & (1ULL << 31)))
931 & ((src1 & (1ULL << 31)) | (src2 & (1ULL << 31)))))
bdf9f35d
BS
932 ret |= PSR_CARRY;
933 return ret;
934}
935
936static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
937 target_ulong src2)
938{
939 uint32_t ret = 0;
940
941 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
942 ret |= PSR_OVF;
943 return ret;
944}
945
bdf9f35d
BS
946#ifdef TARGET_SPARC64
947static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
948{
949 uint32_t ret = 0;
950
951 if (dst < src1)
952 ret |= PSR_CARRY;
953 return ret;
954}
955
956static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
957 target_ulong src2)
958{
959 uint32_t ret = 0;
960
961 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
962 ret |= PSR_OVF;
963 return ret;
964}
965
966static uint32_t compute_all_add_xcc(void)
967{
968 uint32_t ret;
969
970 ret = get_NZ_xcc(CC_DST);
971 ret |= get_C_add_xcc(CC_DST, CC_SRC);
972 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
973 return ret;
974}
975
976static uint32_t compute_C_add_xcc(void)
977{
978 return get_C_add_xcc(CC_DST, CC_SRC);
979}
8393617c
BS
980#endif
981
3e6ba503 982static uint32_t compute_all_add(void)
789c91ef
BS
983{
984 uint32_t ret;
985
986 ret = get_NZ_icc(CC_DST);
3e6ba503 987 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
789c91ef
BS
988 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
989 return ret;
990}
991
3e6ba503 992static uint32_t compute_C_add(void)
789c91ef 993{
3e6ba503 994 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
789c91ef
BS
995}
996
997#ifdef TARGET_SPARC64
998static uint32_t compute_all_addx_xcc(void)
999{
1000 uint32_t ret;
1001
1002 ret = get_NZ_xcc(CC_DST);
1003 ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1004 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1005 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1006 return ret;
1007}
1008
1009static uint32_t compute_C_addx_xcc(void)
1010{
1011 uint32_t ret;
1012
1013 ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1014 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1015 return ret;
1016}
1017#endif
1018
3b2d1e92
BS
1019static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1020{
1021 uint32_t ret = 0;
1022
1023 if ((src1 | src2) & 0x3)
1024 ret |= PSR_OVF;
1025 return ret;
1026}
1027
1028static uint32_t compute_all_tadd(void)
1029{
1030 uint32_t ret;
1031
1032 ret = get_NZ_icc(CC_DST);
3e6ba503 1033 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
3b2d1e92
BS
1034 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1035 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1036 return ret;
1037}
1038
1039static uint32_t compute_C_tadd(void)
1040{
3e6ba503 1041 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
3b2d1e92
BS
1042}
1043
1044static uint32_t compute_all_taddtv(void)
1045{
1046 uint32_t ret;
1047
1048 ret = get_NZ_icc(CC_DST);
3e6ba503 1049 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
3b2d1e92
BS
1050 return ret;
1051}
1052
1053static uint32_t compute_C_taddtv(void)
1054{
3e6ba503 1055 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
3b2d1e92
BS
1056}
1057
3e6ba503
AT
1058/* carry = (~src1[31] & src2[31]) | ( dst[31] & (~src1[31] | src2[31])) */
1059static inline uint32_t get_C_sub_icc(target_ulong dst, target_ulong src1,
1060 target_ulong src2)
d4b0d468
BS
1061{
1062 uint32_t ret = 0;
1063
3e6ba503
AT
1064 if (((~(src1 & (1ULL << 31))) & (src2 & (1ULL << 31)))
1065 | ((dst & (1ULL << 31)) & (( ~(src1 & (1ULL << 31)))
1066 | (src2 & (1ULL << 31)))))
d4b0d468
BS
1067 ret |= PSR_CARRY;
1068 return ret;
1069}
1070
1071static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
1072 target_ulong src2)
1073{
1074 uint32_t ret = 0;
1075
1076 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
1077 ret |= PSR_OVF;
1078 return ret;
1079}
1080
d4b0d468
BS
1081
1082#ifdef TARGET_SPARC64
1083static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1084{
1085 uint32_t ret = 0;
1086
1087 if (src1 < src2)
1088 ret |= PSR_CARRY;
1089 return ret;
1090}
1091
1092static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1093 target_ulong src2)
1094{
1095 uint32_t ret = 0;
1096
1097 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
1098 ret |= PSR_OVF;
1099 return ret;
1100}
1101
1102static uint32_t compute_all_sub_xcc(void)
1103{
1104 uint32_t ret;
1105
1106 ret = get_NZ_xcc(CC_DST);
1107 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1108 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1109 return ret;
1110}
1111
1112static uint32_t compute_C_sub_xcc(void)
1113{
1114 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1115}
1116#endif
1117
3e6ba503 1118static uint32_t compute_all_sub(void)
2ca1d92b
BS
1119{
1120 uint32_t ret;
1121
1122 ret = get_NZ_icc(CC_DST);
3e6ba503 1123 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
2ca1d92b
BS
1124 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1125 return ret;
1126}
1127
3e6ba503 1128static uint32_t compute_C_sub(void)
2ca1d92b 1129{
3e6ba503 1130 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
2ca1d92b
BS
1131}
1132
1133#ifdef TARGET_SPARC64
1134static uint32_t compute_all_subx_xcc(void)
1135{
1136 uint32_t ret;
1137
1138 ret = get_NZ_xcc(CC_DST);
1139 ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1140 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1141 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1142 return ret;
1143}
1144
1145static uint32_t compute_C_subx_xcc(void)
1146{
1147 uint32_t ret;
1148
1149 ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1150 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1151 return ret;
1152}
1153#endif
1154
3b2d1e92
BS
1155static uint32_t compute_all_tsub(void)
1156{
1157 uint32_t ret;
1158
1159 ret = get_NZ_icc(CC_DST);
3e6ba503 1160 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
3b2d1e92
BS
1161 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1162 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1163 return ret;
1164}
1165
1166static uint32_t compute_C_tsub(void)
1167{
3e6ba503 1168 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
3b2d1e92
BS
1169}
1170
1171static uint32_t compute_all_tsubtv(void)
1172{
1173 uint32_t ret;
1174
1175 ret = get_NZ_icc(CC_DST);
3e6ba503 1176 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
3b2d1e92
BS
1177 return ret;
1178}
1179
1180static uint32_t compute_C_tsubtv(void)
1181{
3e6ba503 1182 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
3b2d1e92
BS
1183}
1184
38482a77
BS
1185static uint32_t compute_all_logic(void)
1186{
1187 return get_NZ_icc(CC_DST);
1188}
1189
1190static uint32_t compute_C_logic(void)
1191{
1192 return 0;
1193}
1194
1195#ifdef TARGET_SPARC64
1196static uint32_t compute_all_logic_xcc(void)
1197{
1198 return get_NZ_xcc(CC_DST);
1199}
1200#endif
1201
8393617c
BS
1202typedef struct CCTable {
1203 uint32_t (*compute_all)(void); /* return all the flags */
1204 uint32_t (*compute_c)(void); /* return the C flag */
1205} CCTable;
1206
1207static const CCTable icc_table[CC_OP_NB] = {
1208 /* CC_OP_DYNAMIC should never happen */
1209 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
6c78ea32 1210 [CC_OP_DIV] = { compute_all_div, compute_C_div },
bdf9f35d 1211 [CC_OP_ADD] = { compute_all_add, compute_C_add },
3e6ba503 1212 [CC_OP_ADDX] = { compute_all_add, compute_C_add },
3b2d1e92
BS
1213 [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
1214 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
d4b0d468 1215 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
3e6ba503 1216 [CC_OP_SUBX] = { compute_all_sub, compute_C_sub },
3b2d1e92
BS
1217 [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
1218 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
38482a77 1219 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
8393617c
BS
1220};
1221
1222#ifdef TARGET_SPARC64
1223static const CCTable xcc_table[CC_OP_NB] = {
1224 /* CC_OP_DYNAMIC should never happen */
1225 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
6c78ea32 1226 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
bdf9f35d 1227 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
789c91ef 1228 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
3b2d1e92
BS
1229 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1230 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
d4b0d468 1231 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
2ca1d92b 1232 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
3b2d1e92
BS
1233 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1234 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
38482a77 1235 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
8393617c
BS
1236};
1237#endif
1238
1239void helper_compute_psr(void)
1240{
1241 uint32_t new_psr;
1242
1243 new_psr = icc_table[CC_OP].compute_all();
1244 env->psr = new_psr;
1245#ifdef TARGET_SPARC64
1246 new_psr = xcc_table[CC_OP].compute_all();
1247 env->xcc = new_psr;
1248#endif
1249 CC_OP = CC_OP_FLAGS;
1250}
1251
1252uint32_t helper_compute_C_icc(void)
1253{
1254 uint32_t ret;
1255
1256 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1257 return ret;
1258}
1259
3475187d 1260#ifdef TARGET_SPARC64
714547bb 1261GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
417454b0 1262GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
64a88d5d 1263GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
417454b0 1264
714547bb 1265GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
417454b0 1266GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
64a88d5d 1267GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
417454b0 1268
714547bb 1269GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
417454b0 1270GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
64a88d5d 1271GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
417454b0 1272
714547bb 1273GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
417454b0 1274GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
64a88d5d 1275GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
3475187d 1276
714547bb 1277GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
417454b0 1278GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
64a88d5d 1279GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
3475187d 1280
714547bb 1281GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
417454b0 1282GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
4e14008f
BS
1283GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1284#endif
714547bb 1285#undef GEN_FCMPS
3475187d 1286
77f193da
BS
1287#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1288 defined(DEBUG_MXCC)
952a328f
BS
1289static void dump_mxcc(CPUState *env)
1290{
0bf9e31a
BS
1291 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1292 "\n",
77f193da
BS
1293 env->mxccdata[0], env->mxccdata[1],
1294 env->mxccdata[2], env->mxccdata[3]);
0bf9e31a
BS
1295 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1296 "\n"
1297 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1298 "\n",
77f193da
BS
1299 env->mxccregs[0], env->mxccregs[1],
1300 env->mxccregs[2], env->mxccregs[3],
1301 env->mxccregs[4], env->mxccregs[5],
1302 env->mxccregs[6], env->mxccregs[7]);
952a328f
BS
1303}
1304#endif
1305
1a2fb1c0
BS
1306#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1307 && defined(DEBUG_ASI)
1308static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1309 uint64_t r1)
8543e2cf
BS
1310{
1311 switch (size)
1312 {
1313 case 1:
1a2fb1c0
BS
1314 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1315 addr, asi, r1 & 0xff);
8543e2cf
BS
1316 break;
1317 case 2:
1a2fb1c0
BS
1318 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1319 addr, asi, r1 & 0xffff);
8543e2cf
BS
1320 break;
1321 case 4:
1a2fb1c0
BS
1322 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1323 addr, asi, r1 & 0xffffffff);
8543e2cf
BS
1324 break;
1325 case 8:
1a2fb1c0
BS
1326 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1327 addr, asi, r1);
8543e2cf
BS
1328 break;
1329 }
1330}
1331#endif
1332
1a2fb1c0
BS
1333#ifndef TARGET_SPARC64
1334#ifndef CONFIG_USER_ONLY
1335uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
e8af50a3 1336{
1a2fb1c0 1337 uint64_t ret = 0;
8543e2cf 1338#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1a2fb1c0 1339 uint32_t last_addr = addr;
952a328f 1340#endif
e80cfcfc 1341
c2bc0e38 1342 helper_check_align(addr, size - 1);
e80cfcfc 1343 switch (asi) {
6c36d3fa 1344 case 2: /* SuperSparc MXCC registers */
1a2fb1c0 1345 switch (addr) {
952a328f 1346 case 0x01c00a00: /* MXCC control register */
1a2fb1c0
BS
1347 if (size == 8)
1348 ret = env->mxccregs[3];
1349 else
77f193da
BS
1350 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1351 size);
952a328f
BS
1352 break;
1353 case 0x01c00a04: /* MXCC control register */
1354 if (size == 4)
1355 ret = env->mxccregs[3];
1356 else
77f193da
BS
1357 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1358 size);
952a328f 1359 break;
295db113
BS
1360 case 0x01c00c00: /* Module reset register */
1361 if (size == 8) {
1a2fb1c0 1362 ret = env->mxccregs[5];
295db113
BS
1363 // should we do something here?
1364 } else
77f193da
BS
1365 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1366 size);
295db113 1367 break;
952a328f 1368 case 0x01c00f00: /* MBus port address register */
1a2fb1c0
BS
1369 if (size == 8)
1370 ret = env->mxccregs[7];
1371 else
77f193da
BS
1372 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1373 size);
952a328f
BS
1374 break;
1375 default:
77f193da
BS
1376 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1377 size);
952a328f
BS
1378 break;
1379 }
77f193da 1380 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
9827e450 1381 "addr = %08x -> ret = %" PRIx64 ","
1a2fb1c0 1382 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
952a328f
BS
1383#ifdef DEBUG_MXCC
1384 dump_mxcc(env);
1385#endif
6c36d3fa 1386 break;
e8af50a3 1387 case 3: /* MMU probe */
0f8a249a
BS
1388 {
1389 int mmulev;
1390
1a2fb1c0 1391 mmulev = (addr >> 8) & 15;
0f8a249a
BS
1392 if (mmulev > 4)
1393 ret = 0;
1a2fb1c0
BS
1394 else
1395 ret = mmu_probe(env, addr, mmulev);
1396 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1397 addr, mmulev, ret);
0f8a249a
BS
1398 }
1399 break;
e8af50a3 1400 case 4: /* read MMU regs */
0f8a249a 1401 {
1a2fb1c0 1402 int reg = (addr >> 8) & 0x1f;
3b46e624 1403
0f8a249a
BS
1404 ret = env->mmuregs[reg];
1405 if (reg == 3) /* Fault status cleared on read */
3dd9a152
BS
1406 env->mmuregs[3] = 0;
1407 else if (reg == 0x13) /* Fault status read */
1408 ret = env->mmuregs[3];
1409 else if (reg == 0x14) /* Fault address read */
1410 ret = env->mmuregs[4];
1a2fb1c0 1411 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
0f8a249a
BS
1412 }
1413 break;
045380be
BS
1414 case 5: // Turbosparc ITLB Diagnostic
1415 case 6: // Turbosparc DTLB Diagnostic
1416 case 7: // Turbosparc IOTLB Diagnostic
1417 break;
6c36d3fa
BS
1418 case 9: /* Supervisor code access */
1419 switch(size) {
1420 case 1:
1a2fb1c0 1421 ret = ldub_code(addr);
6c36d3fa
BS
1422 break;
1423 case 2:
a4e7dd52 1424 ret = lduw_code(addr);
6c36d3fa
BS
1425 break;
1426 default:
1427 case 4:
a4e7dd52 1428 ret = ldl_code(addr);
6c36d3fa
BS
1429 break;
1430 case 8:
a4e7dd52 1431 ret = ldq_code(addr);
6c36d3fa
BS
1432 break;
1433 }
1434 break;
81ad8ba2
BS
1435 case 0xa: /* User data access */
1436 switch(size) {
1437 case 1:
1a2fb1c0 1438 ret = ldub_user(addr);
81ad8ba2
BS
1439 break;
1440 case 2:
a4e7dd52 1441 ret = lduw_user(addr);
81ad8ba2
BS
1442 break;
1443 default:
1444 case 4:
a4e7dd52 1445 ret = ldl_user(addr);
81ad8ba2
BS
1446 break;
1447 case 8:
a4e7dd52 1448 ret = ldq_user(addr);
81ad8ba2
BS
1449 break;
1450 }
1451 break;
1452 case 0xb: /* Supervisor data access */
1453 switch(size) {
1454 case 1:
1a2fb1c0 1455 ret = ldub_kernel(addr);
81ad8ba2
BS
1456 break;
1457 case 2:
a4e7dd52 1458 ret = lduw_kernel(addr);
81ad8ba2
BS
1459 break;
1460 default:
1461 case 4:
a4e7dd52 1462 ret = ldl_kernel(addr);
81ad8ba2
BS
1463 break;
1464 case 8:
a4e7dd52 1465 ret = ldq_kernel(addr);
81ad8ba2
BS
1466 break;
1467 }
1468 break;
6c36d3fa
BS
1469 case 0xc: /* I-cache tag */
1470 case 0xd: /* I-cache data */
1471 case 0xe: /* D-cache tag */
1472 case 0xf: /* D-cache data */
1473 break;
1474 case 0x20: /* MMU passthrough */
02aab46a
FB
1475 switch(size) {
1476 case 1:
1a2fb1c0 1477 ret = ldub_phys(addr);
02aab46a
FB
1478 break;
1479 case 2:
a4e7dd52 1480 ret = lduw_phys(addr);
02aab46a
FB
1481 break;
1482 default:
1483 case 4:
a4e7dd52 1484 ret = ldl_phys(addr);
02aab46a 1485 break;
9e61bde5 1486 case 8:
a4e7dd52 1487 ret = ldq_phys(addr);
0f8a249a 1488 break;
02aab46a 1489 }
0f8a249a 1490 break;
7d85892b 1491 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
5dcb6b91
BS
1492 switch(size) {
1493 case 1:
c227f099
AL
1494 ret = ldub_phys((target_phys_addr_t)addr
1495 | ((target_phys_addr_t)(asi & 0xf) << 32));
5dcb6b91
BS
1496 break;
1497 case 2:
c227f099
AL
1498 ret = lduw_phys((target_phys_addr_t)addr
1499 | ((target_phys_addr_t)(asi & 0xf) << 32));
5dcb6b91
BS
1500 break;
1501 default:
1502 case 4:
c227f099
AL
1503 ret = ldl_phys((target_phys_addr_t)addr
1504 | ((target_phys_addr_t)(asi & 0xf) << 32));
5dcb6b91
BS
1505 break;
1506 case 8:
c227f099
AL
1507 ret = ldq_phys((target_phys_addr_t)addr
1508 | ((target_phys_addr_t)(asi & 0xf) << 32));
0f8a249a 1509 break;
5dcb6b91 1510 }
0f8a249a 1511 break;
045380be
BS
1512 case 0x30: // Turbosparc secondary cache diagnostic
1513 case 0x31: // Turbosparc RAM snoop
1514 case 0x32: // Turbosparc page table descriptor diagnostic
666c87aa
BS
1515 case 0x39: /* data cache diagnostic register */
1516 ret = 0;
1517 break;
4017190e
BS
1518 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1519 {
1520 int reg = (addr >> 8) & 3;
1521
1522 switch(reg) {
1523 case 0: /* Breakpoint Value (Addr) */
1524 ret = env->mmubpregs[reg];
1525 break;
1526 case 1: /* Breakpoint Mask */
1527 ret = env->mmubpregs[reg];
1528 break;
1529 case 2: /* Breakpoint Control */
1530 ret = env->mmubpregs[reg];
1531 break;
1532 case 3: /* Breakpoint Status */
1533 ret = env->mmubpregs[reg];
1534 env->mmubpregs[reg] = 0ULL;
1535 break;
1536 }
0bf9e31a
BS
1537 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1538 ret);
4017190e
BS
1539 }
1540 break;
045380be 1541 case 8: /* User code access, XXX */
e8af50a3 1542 default:
e18231a3 1543 do_unassigned_access(addr, 0, 0, asi, size);
0f8a249a
BS
1544 ret = 0;
1545 break;
e8af50a3 1546 }
81ad8ba2
BS
1547 if (sign) {
1548 switch(size) {
1549 case 1:
1a2fb1c0 1550 ret = (int8_t) ret;
e32664fb 1551 break;
81ad8ba2 1552 case 2:
1a2fb1c0
BS
1553 ret = (int16_t) ret;
1554 break;
1555 case 4:
1556 ret = (int32_t) ret;
e32664fb 1557 break;
81ad8ba2 1558 default:
81ad8ba2
BS
1559 break;
1560 }
1561 }
8543e2cf 1562#ifdef DEBUG_ASI
1a2fb1c0 1563 dump_asi("read ", last_addr, asi, size, ret);
8543e2cf 1564#endif
1a2fb1c0 1565 return ret;
e8af50a3
FB
1566}
1567
1a2fb1c0 1568void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
e8af50a3 1569{
c2bc0e38 1570 helper_check_align(addr, size - 1);
e8af50a3 1571 switch(asi) {
6c36d3fa 1572 case 2: /* SuperSparc MXCC registers */
1a2fb1c0 1573 switch (addr) {
952a328f
BS
1574 case 0x01c00000: /* MXCC stream data register 0 */
1575 if (size == 8)
1a2fb1c0 1576 env->mxccdata[0] = val;
952a328f 1577 else
77f193da
BS
1578 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1579 size);
952a328f
BS
1580 break;
1581 case 0x01c00008: /* MXCC stream data register 1 */
1582 if (size == 8)
1a2fb1c0 1583 env->mxccdata[1] = val;
952a328f 1584 else
77f193da
BS
1585 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1586 size);
952a328f
BS
1587 break;
1588 case 0x01c00010: /* MXCC stream data register 2 */
1589 if (size == 8)
1a2fb1c0 1590 env->mxccdata[2] = val;
952a328f 1591 else
77f193da
BS
1592 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1593 size);
952a328f
BS
1594 break;
1595 case 0x01c00018: /* MXCC stream data register 3 */
1596 if (size == 8)
1a2fb1c0 1597 env->mxccdata[3] = val;
952a328f 1598 else
77f193da
BS
1599 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1600 size);
952a328f
BS
1601 break;
1602 case 0x01c00100: /* MXCC stream source */
1603 if (size == 8)
1a2fb1c0 1604 env->mxccregs[0] = val;
952a328f 1605 else
77f193da
BS
1606 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1607 size);
1608 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1609 0);
1610 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1611 8);
1612 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1613 16);
1614 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1615 24);
952a328f
BS
1616 break;
1617 case 0x01c00200: /* MXCC stream destination */
1618 if (size == 8)
1a2fb1c0 1619 env->mxccregs[1] = val;
952a328f 1620 else
77f193da
BS
1621 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1622 size);
1623 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1624 env->mxccdata[0]);
1625 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1626 env->mxccdata[1]);
1627 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1628 env->mxccdata[2]);
1629 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1630 env->mxccdata[3]);
952a328f
BS
1631 break;
1632 case 0x01c00a00: /* MXCC control register */
1633 if (size == 8)
1a2fb1c0 1634 env->mxccregs[3] = val;
952a328f 1635 else
77f193da
BS
1636 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1637 size);
952a328f
BS
1638 break;
1639 case 0x01c00a04: /* MXCC control register */
1640 if (size == 4)
9f4576f0 1641 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
77f193da 1642 | val;
952a328f 1643 else
77f193da
BS
1644 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1645 size);
952a328f
BS
1646 break;
1647 case 0x01c00e00: /* MXCC error register */
bbf7d96b 1648 // writing a 1 bit clears the error
952a328f 1649 if (size == 8)
1a2fb1c0 1650 env->mxccregs[6] &= ~val;
952a328f 1651 else
77f193da
BS
1652 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1653 size);
952a328f
BS
1654 break;
1655 case 0x01c00f00: /* MBus port address register */
1656 if (size == 8)
1a2fb1c0 1657 env->mxccregs[7] = val;
952a328f 1658 else
77f193da
BS
1659 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1660 size);
952a328f
BS
1661 break;
1662 default:
77f193da
BS
1663 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1664 size);
952a328f
BS
1665 break;
1666 }
9827e450
BS
1667 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1668 asi, size, addr, val);
952a328f
BS
1669#ifdef DEBUG_MXCC
1670 dump_mxcc(env);
1671#endif
6c36d3fa 1672 break;
e8af50a3 1673 case 3: /* MMU flush */
0f8a249a
BS
1674 {
1675 int mmulev;
e80cfcfc 1676
1a2fb1c0 1677 mmulev = (addr >> 8) & 15;
952a328f 1678 DPRINTF_MMU("mmu flush level %d\n", mmulev);
0f8a249a
BS
1679 switch (mmulev) {
1680 case 0: // flush page
1a2fb1c0 1681 tlb_flush_page(env, addr & 0xfffff000);
0f8a249a
BS
1682 break;
1683 case 1: // flush segment (256k)
1684 case 2: // flush region (16M)
1685 case 3: // flush context (4G)
1686 case 4: // flush entire
1687 tlb_flush(env, 1);
1688 break;
1689 default:
1690 break;
1691 }
55754d9e 1692#ifdef DEBUG_MMU
0f8a249a 1693 dump_mmu(env);
55754d9e 1694#endif
0f8a249a 1695 }
8543e2cf 1696 break;
e8af50a3 1697 case 4: /* write MMU regs */
0f8a249a 1698 {
1a2fb1c0 1699 int reg = (addr >> 8) & 0x1f;
0f8a249a 1700 uint32_t oldreg;
3b46e624 1701
0f8a249a 1702 oldreg = env->mmuregs[reg];
55754d9e 1703 switch(reg) {
3deaeab7 1704 case 0: // Control Register
3dd9a152 1705 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1a2fb1c0 1706 (val & 0x00ffffff);
0f8a249a
BS
1707 // Mappings generated during no-fault mode or MMU
1708 // disabled mode are invalid in normal mode
5578ceab
BS
1709 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1710 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
55754d9e
FB
1711 tlb_flush(env, 1);
1712 break;
3deaeab7 1713 case 1: // Context Table Pointer Register
5578ceab 1714 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
3deaeab7
BS
1715 break;
1716 case 2: // Context Register
5578ceab 1717 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
55754d9e
FB
1718 if (oldreg != env->mmuregs[reg]) {
1719 /* we flush when the MMU context changes because
1720 QEMU has no MMU context support */
1721 tlb_flush(env, 1);
1722 }
1723 break;
3deaeab7
BS
1724 case 3: // Synchronous Fault Status Register with Clear
1725 case 4: // Synchronous Fault Address Register
1726 break;
1727 case 0x10: // TLB Replacement Control Register
5578ceab 1728 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
55754d9e 1729 break;
3deaeab7 1730 case 0x13: // Synchronous Fault Status Register with Read and Clear
5578ceab 1731 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
3dd9a152 1732 break;
3deaeab7 1733 case 0x14: // Synchronous Fault Address Register
1a2fb1c0 1734 env->mmuregs[4] = val;
3dd9a152 1735 break;
55754d9e 1736 default:
1a2fb1c0 1737 env->mmuregs[reg] = val;
55754d9e
FB
1738 break;
1739 }
55754d9e 1740 if (oldreg != env->mmuregs[reg]) {
77f193da
BS
1741 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1742 reg, oldreg, env->mmuregs[reg]);
55754d9e 1743 }
952a328f 1744#ifdef DEBUG_MMU
0f8a249a 1745 dump_mmu(env);
55754d9e 1746#endif
0f8a249a 1747 }
8543e2cf 1748 break;
045380be
BS
1749 case 5: // Turbosparc ITLB Diagnostic
1750 case 6: // Turbosparc DTLB Diagnostic
1751 case 7: // Turbosparc IOTLB Diagnostic
1752 break;
81ad8ba2
BS
1753 case 0xa: /* User data access */
1754 switch(size) {
1755 case 1:
1a2fb1c0 1756 stb_user(addr, val);
81ad8ba2
BS
1757 break;
1758 case 2:
a4e7dd52 1759 stw_user(addr, val);
81ad8ba2
BS
1760 break;
1761 default:
1762 case 4:
a4e7dd52 1763 stl_user(addr, val);
81ad8ba2
BS
1764 break;
1765 case 8:
a4e7dd52 1766 stq_user(addr, val);
81ad8ba2
BS
1767 break;
1768 }
1769 break;
1770 case 0xb: /* Supervisor data access */
1771 switch(size) {
1772 case 1:
1a2fb1c0 1773 stb_kernel(addr, val);
81ad8ba2
BS
1774 break;
1775 case 2:
a4e7dd52 1776 stw_kernel(addr, val);
81ad8ba2
BS
1777 break;
1778 default:
1779 case 4:
a4e7dd52 1780 stl_kernel(addr, val);
81ad8ba2
BS
1781 break;
1782 case 8:
a4e7dd52 1783 stq_kernel(addr, val);
81ad8ba2
BS
1784 break;
1785 }
1786 break;
6c36d3fa
BS
1787 case 0xc: /* I-cache tag */
1788 case 0xd: /* I-cache data */
1789 case 0xe: /* D-cache tag */
1790 case 0xf: /* D-cache data */
1791 case 0x10: /* I/D-cache flush page */
1792 case 0x11: /* I/D-cache flush segment */
1793 case 0x12: /* I/D-cache flush region */
1794 case 0x13: /* I/D-cache flush context */
1795 case 0x14: /* I/D-cache flush user */
1796 break;
e80cfcfc 1797 case 0x17: /* Block copy, sta access */
0f8a249a 1798 {
1a2fb1c0
BS
1799 // val = src
1800 // addr = dst
0f8a249a 1801 // copy 32 bytes
6c36d3fa 1802 unsigned int i;
1a2fb1c0 1803 uint32_t src = val & ~3, dst = addr & ~3, temp;
3b46e624 1804
6c36d3fa
BS
1805 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1806 temp = ldl_kernel(src);
1807 stl_kernel(dst, temp);
1808 }
0f8a249a 1809 }
8543e2cf 1810 break;
e80cfcfc 1811 case 0x1f: /* Block fill, stda access */
0f8a249a 1812 {
1a2fb1c0
BS
1813 // addr = dst
1814 // fill 32 bytes with val
6c36d3fa 1815 unsigned int i;
1a2fb1c0 1816 uint32_t dst = addr & 7;
6c36d3fa
BS
1817
1818 for (i = 0; i < 32; i += 8, dst += 8)
1819 stq_kernel(dst, val);
0f8a249a 1820 }
8543e2cf 1821 break;
6c36d3fa 1822 case 0x20: /* MMU passthrough */
0f8a249a 1823 {
02aab46a
FB
1824 switch(size) {
1825 case 1:
1a2fb1c0 1826 stb_phys(addr, val);
02aab46a
FB
1827 break;
1828 case 2:
a4e7dd52 1829 stw_phys(addr, val);
02aab46a
FB
1830 break;
1831 case 4:
1832 default:
a4e7dd52 1833 stl_phys(addr, val);
02aab46a 1834 break;
9e61bde5 1835 case 8:
a4e7dd52 1836 stq_phys(addr, val);
9e61bde5 1837 break;
02aab46a 1838 }
0f8a249a 1839 }
8543e2cf 1840 break;
045380be 1841 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
0f8a249a 1842 {
5dcb6b91
BS
1843 switch(size) {
1844 case 1:
c227f099
AL
1845 stb_phys((target_phys_addr_t)addr
1846 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1847 break;
1848 case 2:
c227f099
AL
1849 stw_phys((target_phys_addr_t)addr
1850 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1851 break;
1852 case 4:
1853 default:
c227f099
AL
1854 stl_phys((target_phys_addr_t)addr
1855 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1856 break;
1857 case 8:
c227f099
AL
1858 stq_phys((target_phys_addr_t)addr
1859 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
5dcb6b91
BS
1860 break;
1861 }
0f8a249a 1862 }
8543e2cf 1863 break;
045380be
BS
1864 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
1865 case 0x31: // store buffer data, Ross RT620 I-cache flush or
1866 // Turbosparc snoop RAM
77f193da
BS
1867 case 0x32: // store buffer control or Turbosparc page table
1868 // descriptor diagnostic
6c36d3fa
BS
1869 case 0x36: /* I-cache flash clear */
1870 case 0x37: /* D-cache flash clear */
666c87aa 1871 case 0x4c: /* breakpoint action */
6c36d3fa 1872 break;
4017190e
BS
1873 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1874 {
1875 int reg = (addr >> 8) & 3;
1876
1877 switch(reg) {
1878 case 0: /* Breakpoint Value (Addr) */
1879 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1880 break;
1881 case 1: /* Breakpoint Mask */
1882 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1883 break;
1884 case 2: /* Breakpoint Control */
1885 env->mmubpregs[reg] = (val & 0x7fULL);
1886 break;
1887 case 3: /* Breakpoint Status */
1888 env->mmubpregs[reg] = (val & 0xfULL);
1889 break;
1890 }
0bf9e31a 1891 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
4017190e
BS
1892 env->mmuregs[reg]);
1893 }
1894 break;
045380be 1895 case 8: /* User code access, XXX */
6c36d3fa 1896 case 9: /* Supervisor code access, XXX */
e8af50a3 1897 default:
e18231a3 1898 do_unassigned_access(addr, 1, 0, asi, size);
8543e2cf 1899 break;
e8af50a3 1900 }
8543e2cf 1901#ifdef DEBUG_ASI
1a2fb1c0 1902 dump_asi("write", addr, asi, size, val);
8543e2cf 1903#endif
e8af50a3
FB
1904}
1905
81ad8ba2
BS
1906#endif /* CONFIG_USER_ONLY */
1907#else /* TARGET_SPARC64 */
1908
1909#ifdef CONFIG_USER_ONLY
1a2fb1c0 1910uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
81ad8ba2
BS
1911{
1912 uint64_t ret = 0;
1a2fb1c0
BS
1913#if defined(DEBUG_ASI)
1914 target_ulong last_addr = addr;
1915#endif
81ad8ba2
BS
1916
1917 if (asi < 0x80)
1918 raise_exception(TT_PRIV_ACT);
1919
c2bc0e38 1920 helper_check_align(addr, size - 1);
2cade6a3 1921 address_mask(env, &addr);
c2bc0e38 1922
81ad8ba2 1923 switch (asi) {
81ad8ba2 1924 case 0x82: // Primary no-fault
81ad8ba2 1925 case 0x8a: // Primary no-fault LE
e83ce550
BS
1926 if (page_check_range(addr, size, PAGE_READ) == -1) {
1927#ifdef DEBUG_ASI
1928 dump_asi("read ", last_addr, asi, size, ret);
1929#endif
1930 return 0;
1931 }
1932 // Fall through
1933 case 0x80: // Primary
1934 case 0x88: // Primary LE
81ad8ba2
BS
1935 {
1936 switch(size) {
1937 case 1:
1a2fb1c0 1938 ret = ldub_raw(addr);
81ad8ba2
BS
1939 break;
1940 case 2:
a4e7dd52 1941 ret = lduw_raw(addr);
81ad8ba2
BS
1942 break;
1943 case 4:
a4e7dd52 1944 ret = ldl_raw(addr);
81ad8ba2
BS
1945 break;
1946 default:
1947 case 8:
a4e7dd52 1948 ret = ldq_raw(addr);
81ad8ba2
BS
1949 break;
1950 }
1951 }
1952 break;
81ad8ba2 1953 case 0x83: // Secondary no-fault
81ad8ba2 1954 case 0x8b: // Secondary no-fault LE
e83ce550
BS
1955 if (page_check_range(addr, size, PAGE_READ) == -1) {
1956#ifdef DEBUG_ASI
1957 dump_asi("read ", last_addr, asi, size, ret);
1958#endif
1959 return 0;
1960 }
1961 // Fall through
1962 case 0x81: // Secondary
1963 case 0x89: // Secondary LE
81ad8ba2
BS
1964 // XXX
1965 break;
1966 default:
1967 break;
1968 }
1969
1970 /* Convert from little endian */
1971 switch (asi) {
1972 case 0x88: // Primary LE
1973 case 0x89: // Secondary LE
1974 case 0x8a: // Primary no-fault LE
1975 case 0x8b: // Secondary no-fault LE
1976 switch(size) {
1977 case 2:
1978 ret = bswap16(ret);
e32664fb 1979 break;
81ad8ba2
BS
1980 case 4:
1981 ret = bswap32(ret);
e32664fb 1982 break;
81ad8ba2
BS
1983 case 8:
1984 ret = bswap64(ret);
e32664fb 1985 break;
81ad8ba2
BS
1986 default:
1987 break;
1988 }
1989 default:
1990 break;
1991 }
1992
1993 /* Convert to signed number */
1994 if (sign) {
1995 switch(size) {
1996 case 1:
1997 ret = (int8_t) ret;
e32664fb 1998 break;
81ad8ba2
BS
1999 case 2:
2000 ret = (int16_t) ret;
e32664fb 2001 break;
81ad8ba2
BS
2002 case 4:
2003 ret = (int32_t) ret;
e32664fb 2004 break;
81ad8ba2
BS
2005 default:
2006 break;
2007 }
2008 }
1a2fb1c0
BS
2009#ifdef DEBUG_ASI
2010 dump_asi("read ", last_addr, asi, size, ret);
2011#endif
2012 return ret;
81ad8ba2
BS
2013}
2014
1a2fb1c0 2015void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
81ad8ba2 2016{
1a2fb1c0
BS
2017#ifdef DEBUG_ASI
2018 dump_asi("write", addr, asi, size, val);
2019#endif
81ad8ba2
BS
2020 if (asi < 0x80)
2021 raise_exception(TT_PRIV_ACT);
2022
c2bc0e38 2023 helper_check_align(addr, size - 1);
2cade6a3 2024 address_mask(env, &addr);
c2bc0e38 2025
81ad8ba2
BS
2026 /* Convert to little endian */
2027 switch (asi) {
2028 case 0x88: // Primary LE
2029 case 0x89: // Secondary LE
2030 switch(size) {
2031 case 2:
5b0f0bec 2032 val = bswap16(val);
e32664fb 2033 break;
81ad8ba2 2034 case 4:
5b0f0bec 2035 val = bswap32(val);
e32664fb 2036 break;
81ad8ba2 2037 case 8:
5b0f0bec 2038 val = bswap64(val);
e32664fb 2039 break;
81ad8ba2
BS
2040 default:
2041 break;
2042 }
2043 default:
2044 break;
2045 }
2046
2047 switch(asi) {
2048 case 0x80: // Primary
2049 case 0x88: // Primary LE
2050 {
2051 switch(size) {
2052 case 1:
1a2fb1c0 2053 stb_raw(addr, val);
81ad8ba2
BS
2054 break;
2055 case 2:
a4e7dd52 2056 stw_raw(addr, val);
81ad8ba2
BS
2057 break;
2058 case 4:
a4e7dd52 2059 stl_raw(addr, val);
81ad8ba2
BS
2060 break;
2061 case 8:
2062 default:
a4e7dd52 2063 stq_raw(addr, val);
81ad8ba2
BS
2064 break;
2065 }
2066 }
2067 break;
2068 case 0x81: // Secondary
2069 case 0x89: // Secondary LE
2070 // XXX
2071 return;
2072
2073 case 0x82: // Primary no-fault, RO
2074 case 0x83: // Secondary no-fault, RO
2075 case 0x8a: // Primary no-fault LE, RO
2076 case 0x8b: // Secondary no-fault LE, RO
2077 default:
e18231a3 2078 do_unassigned_access(addr, 1, 0, 1, size);
81ad8ba2
BS
2079 return;
2080 }
2081}
2082
2083#else /* CONFIG_USER_ONLY */
3475187d 2084
1a2fb1c0 2085uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
3475187d 2086{
83469015 2087 uint64_t ret = 0;
1a2fb1c0
BS
2088#if defined(DEBUG_ASI)
2089 target_ulong last_addr = addr;
2090#endif
3475187d 2091
01b5d4e5
IK
2092 asi &= 0xff;
2093
6f27aba6 2094 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
2095 || ((env->def->features & CPU_FEATURE_HYPV)
2096 && asi >= 0x30 && asi < 0x80
fb79ceb9 2097 && !(env->hpstate & HS_PRIV)))
0f8a249a 2098 raise_exception(TT_PRIV_ACT);
3475187d 2099
c2bc0e38 2100 helper_check_align(addr, size - 1);
3475187d 2101 switch (asi) {
e83ce550
BS
2102 case 0x82: // Primary no-fault
2103 case 0x8a: // Primary no-fault LE
2104 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2105#ifdef DEBUG_ASI
2106 dump_asi("read ", last_addr, asi, size, ret);
2107#endif
2108 return 0;
2109 }
2110 // Fall through
81ad8ba2
BS
2111 case 0x10: // As if user primary
2112 case 0x18: // As if user primary LE
2113 case 0x80: // Primary
81ad8ba2 2114 case 0x88: // Primary LE
c99657d3
BS
2115 case 0xe2: // UA2007 Primary block init
2116 case 0xe3: // UA2007 Secondary block init
81ad8ba2 2117 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
5578ceab
BS
2118 if ((env->def->features & CPU_FEATURE_HYPV)
2119 && env->hpstate & HS_PRIV) {
6f27aba6
BS
2120 switch(size) {
2121 case 1:
1a2fb1c0 2122 ret = ldub_hypv(addr);
6f27aba6
BS
2123 break;
2124 case 2:
a4e7dd52 2125 ret = lduw_hypv(addr);
6f27aba6
BS
2126 break;
2127 case 4:
a4e7dd52 2128 ret = ldl_hypv(addr);
6f27aba6
BS
2129 break;
2130 default:
2131 case 8:
a4e7dd52 2132 ret = ldq_hypv(addr);
6f27aba6
BS
2133 break;
2134 }
2135 } else {
2136 switch(size) {
2137 case 1:
1a2fb1c0 2138 ret = ldub_kernel(addr);
6f27aba6
BS
2139 break;
2140 case 2:
a4e7dd52 2141 ret = lduw_kernel(addr);
6f27aba6
BS
2142 break;
2143 case 4:
a4e7dd52 2144 ret = ldl_kernel(addr);
6f27aba6
BS
2145 break;
2146 default:
2147 case 8:
a4e7dd52 2148 ret = ldq_kernel(addr);
6f27aba6
BS
2149 break;
2150 }
81ad8ba2
BS
2151 }
2152 } else {
2153 switch(size) {
2154 case 1:
1a2fb1c0 2155 ret = ldub_user(addr);
81ad8ba2
BS
2156 break;
2157 case 2:
a4e7dd52 2158 ret = lduw_user(addr);
81ad8ba2
BS
2159 break;
2160 case 4:
a4e7dd52 2161 ret = ldl_user(addr);
81ad8ba2
BS
2162 break;
2163 default:
2164 case 8:
a4e7dd52 2165 ret = ldq_user(addr);
81ad8ba2
BS
2166 break;
2167 }
2168 }
2169 break;
3475187d
FB
2170 case 0x14: // Bypass
2171 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
2172 case 0x1c: // Bypass LE
2173 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 2174 {
02aab46a
FB
2175 switch(size) {
2176 case 1:
1a2fb1c0 2177 ret = ldub_phys(addr);
02aab46a
FB
2178 break;
2179 case 2:
a4e7dd52 2180 ret = lduw_phys(addr);
02aab46a
FB
2181 break;
2182 case 4:
a4e7dd52 2183 ret = ldl_phys(addr);
02aab46a
FB
2184 break;
2185 default:
2186 case 8:
a4e7dd52 2187 ret = ldq_phys(addr);
02aab46a
FB
2188 break;
2189 }
0f8a249a
BS
2190 break;
2191 }
db166940
BS
2192 case 0x24: // Nucleus quad LDD 128 bit atomic
2193 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2194 // Only ldda allowed
2195 raise_exception(TT_ILL_INSN);
2196 return 0;
e83ce550
BS
2197 case 0x83: // Secondary no-fault
2198 case 0x8b: // Secondary no-fault LE
2199 if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
2200#ifdef DEBUG_ASI
2201 dump_asi("read ", last_addr, asi, size, ret);
2202#endif
2203 return 0;
2204 }
2205 // Fall through
83469015
FB
2206 case 0x04: // Nucleus
2207 case 0x0c: // Nucleus Little Endian (LE)
83469015 2208 case 0x11: // As if user secondary
83469015 2209 case 0x19: // As if user secondary LE
83469015 2210 case 0x4a: // UPA config
81ad8ba2 2211 case 0x81: // Secondary
83469015 2212 case 0x89: // Secondary LE
0f8a249a
BS
2213 // XXX
2214 break;
3475187d 2215 case 0x45: // LSU
0f8a249a
BS
2216 ret = env->lsu;
2217 break;
3475187d 2218 case 0x50: // I-MMU regs
0f8a249a 2219 {
1a2fb1c0 2220 int reg = (addr >> 3) & 0xf;
3475187d 2221
697a77e6
IK
2222 if (reg == 0) {
2223 // I-TSB Tag Target register
6e8e7d4c 2224 ret = ultrasparc_tag_target(env->immu.tag_access);
697a77e6
IK
2225 } else {
2226 ret = env->immuregs[reg];
2227 }
2228
0f8a249a
BS
2229 break;
2230 }
3475187d 2231 case 0x51: // I-MMU 8k TSB pointer
697a77e6
IK
2232 {
2233 // env->immuregs[5] holds I-MMU TSB register value
2234 // env->immuregs[6] holds I-MMU Tag Access register value
6e8e7d4c 2235 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
697a77e6
IK
2236 8*1024);
2237 break;
2238 }
3475187d 2239 case 0x52: // I-MMU 64k TSB pointer
697a77e6
IK
2240 {
2241 // env->immuregs[5] holds I-MMU TSB register value
2242 // env->immuregs[6] holds I-MMU Tag Access register value
6e8e7d4c 2243 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
697a77e6
IK
2244 64*1024);
2245 break;
2246 }
a5a52cf2
BS
2247 case 0x55: // I-MMU data access
2248 {
2249 int reg = (addr >> 3) & 0x3f;
2250
6e8e7d4c 2251 ret = env->itlb[reg].tte;
a5a52cf2
BS
2252 break;
2253 }
83469015 2254 case 0x56: // I-MMU tag read
0f8a249a 2255 {
43e9e742 2256 int reg = (addr >> 3) & 0x3f;
0f8a249a 2257
6e8e7d4c 2258 ret = env->itlb[reg].tag;
0f8a249a
BS
2259 break;
2260 }
3475187d 2261 case 0x58: // D-MMU regs
0f8a249a 2262 {
1a2fb1c0 2263 int reg = (addr >> 3) & 0xf;
3475187d 2264
697a77e6
IK
2265 if (reg == 0) {
2266 // D-TSB Tag Target register
6e8e7d4c 2267 ret = ultrasparc_tag_target(env->dmmu.tag_access);
697a77e6
IK
2268 } else {
2269 ret = env->dmmuregs[reg];
2270 }
2271 break;
2272 }
2273 case 0x59: // D-MMU 8k TSB pointer
2274 {
2275 // env->dmmuregs[5] holds D-MMU TSB register value
2276 // env->dmmuregs[6] holds D-MMU Tag Access register value
6e8e7d4c 2277 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
697a77e6
IK
2278 8*1024);
2279 break;
2280 }
2281 case 0x5a: // D-MMU 64k TSB pointer
2282 {
2283 // env->dmmuregs[5] holds D-MMU TSB register value
2284 // env->dmmuregs[6] holds D-MMU Tag Access register value
6e8e7d4c 2285 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
697a77e6 2286 64*1024);
0f8a249a
BS
2287 break;
2288 }
a5a52cf2
BS
2289 case 0x5d: // D-MMU data access
2290 {
2291 int reg = (addr >> 3) & 0x3f;
2292
6e8e7d4c 2293 ret = env->dtlb[reg].tte;
a5a52cf2
BS
2294 break;
2295 }
83469015 2296 case 0x5e: // D-MMU tag read
0f8a249a 2297 {
43e9e742 2298 int reg = (addr >> 3) & 0x3f;
0f8a249a 2299
6e8e7d4c 2300 ret = env->dtlb[reg].tag;
0f8a249a
BS
2301 break;
2302 }
f7350b47
BS
2303 case 0x46: // D-cache data
2304 case 0x47: // D-cache tag access
a5a52cf2
BS
2305 case 0x4b: // E-cache error enable
2306 case 0x4c: // E-cache asynchronous fault status
2307 case 0x4d: // E-cache asynchronous fault address
f7350b47
BS
2308 case 0x4e: // E-cache tag data
2309 case 0x66: // I-cache instruction access
2310 case 0x67: // I-cache tag access
2311 case 0x6e: // I-cache predecode
2312 case 0x6f: // I-cache LRU etc.
2313 case 0x76: // E-cache tag
2314 case 0x7e: // E-cache tag
2315 break;
3475187d 2316 case 0x5b: // D-MMU data pointer
83469015
FB
2317 case 0x48: // Interrupt dispatch, RO
2318 case 0x49: // Interrupt data receive
2319 case 0x7f: // Incoming interrupt vector, RO
0f8a249a
BS
2320 // XXX
2321 break;
3475187d
FB
2322 case 0x54: // I-MMU data in, WO
2323 case 0x57: // I-MMU demap, WO
2324 case 0x5c: // D-MMU data in, WO
2325 case 0x5f: // D-MMU demap, WO
83469015 2326 case 0x77: // Interrupt vector, WO
3475187d 2327 default:
e18231a3 2328 do_unassigned_access(addr, 0, 0, 1, size);
0f8a249a
BS
2329 ret = 0;
2330 break;
3475187d 2331 }
81ad8ba2
BS
2332
2333 /* Convert from little endian */
2334 switch (asi) {
2335 case 0x0c: // Nucleus Little Endian (LE)
2336 case 0x18: // As if user primary LE
2337 case 0x19: // As if user secondary LE
2338 case 0x1c: // Bypass LE
2339 case 0x1d: // Bypass, non-cacheable LE
2340 case 0x88: // Primary LE
2341 case 0x89: // Secondary LE
2342 case 0x8a: // Primary no-fault LE
2343 case 0x8b: // Secondary no-fault LE
2344 switch(size) {
2345 case 2:
2346 ret = bswap16(ret);
e32664fb 2347 break;
81ad8ba2
BS
2348 case 4:
2349 ret = bswap32(ret);
e32664fb 2350 break;
81ad8ba2
BS
2351 case 8:
2352 ret = bswap64(ret);
e32664fb 2353 break;
81ad8ba2
BS
2354 default:
2355 break;
2356 }
2357 default:
2358 break;
2359 }
2360
2361 /* Convert to signed number */
2362 if (sign) {
2363 switch(size) {
2364 case 1:
2365 ret = (int8_t) ret;
e32664fb 2366 break;
81ad8ba2
BS
2367 case 2:
2368 ret = (int16_t) ret;
e32664fb 2369 break;
81ad8ba2
BS
2370 case 4:
2371 ret = (int32_t) ret;
e32664fb 2372 break;
81ad8ba2
BS
2373 default:
2374 break;
2375 }
2376 }
1a2fb1c0
BS
2377#ifdef DEBUG_ASI
2378 dump_asi("read ", last_addr, asi, size, ret);
2379#endif
2380 return ret;
3475187d
FB
2381}
2382
1a2fb1c0 2383void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
3475187d 2384{
1a2fb1c0
BS
2385#ifdef DEBUG_ASI
2386 dump_asi("write", addr, asi, size, val);
2387#endif
01b5d4e5
IK
2388
2389 asi &= 0xff;
2390
6f27aba6 2391 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
2392 || ((env->def->features & CPU_FEATURE_HYPV)
2393 && asi >= 0x30 && asi < 0x80
fb79ceb9 2394 && !(env->hpstate & HS_PRIV)))
0f8a249a 2395 raise_exception(TT_PRIV_ACT);
3475187d 2396
c2bc0e38 2397 helper_check_align(addr, size - 1);
81ad8ba2
BS
2398 /* Convert to little endian */
2399 switch (asi) {
2400 case 0x0c: // Nucleus Little Endian (LE)
2401 case 0x18: // As if user primary LE
2402 case 0x19: // As if user secondary LE
2403 case 0x1c: // Bypass LE
2404 case 0x1d: // Bypass, non-cacheable LE
81ad8ba2
BS
2405 case 0x88: // Primary LE
2406 case 0x89: // Secondary LE
2407 switch(size) {
2408 case 2:
5b0f0bec 2409 val = bswap16(val);
e32664fb 2410 break;
81ad8ba2 2411 case 4:
5b0f0bec 2412 val = bswap32(val);
e32664fb 2413 break;
81ad8ba2 2414 case 8:
5b0f0bec 2415 val = bswap64(val);
e32664fb 2416 break;
81ad8ba2
BS
2417 default:
2418 break;
2419 }
2420 default:
2421 break;
2422 }
2423
3475187d 2424 switch(asi) {
81ad8ba2
BS
2425 case 0x10: // As if user primary
2426 case 0x18: // As if user primary LE
2427 case 0x80: // Primary
2428 case 0x88: // Primary LE
c99657d3
BS
2429 case 0xe2: // UA2007 Primary block init
2430 case 0xe3: // UA2007 Secondary block init
81ad8ba2 2431 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
5578ceab
BS
2432 if ((env->def->features & CPU_FEATURE_HYPV)
2433 && env->hpstate & HS_PRIV) {
6f27aba6
BS
2434 switch(size) {
2435 case 1:
1a2fb1c0 2436 stb_hypv(addr, val);
6f27aba6
BS
2437 break;
2438 case 2:
a4e7dd52 2439 stw_hypv(addr, val);
6f27aba6
BS
2440 break;
2441 case 4:
a4e7dd52 2442 stl_hypv(addr, val);
6f27aba6
BS
2443 break;
2444 case 8:
2445 default:
a4e7dd52 2446 stq_hypv(addr, val);
6f27aba6
BS
2447 break;
2448 }
2449 } else {
2450 switch(size) {
2451 case 1:
1a2fb1c0 2452 stb_kernel(addr, val);
6f27aba6
BS
2453 break;
2454 case 2:
a4e7dd52 2455 stw_kernel(addr, val);
6f27aba6
BS
2456 break;
2457 case 4:
a4e7dd52 2458 stl_kernel(addr, val);
6f27aba6
BS
2459 break;
2460 case 8:
2461 default:
a4e7dd52 2462 stq_kernel(addr, val);
6f27aba6
BS
2463 break;
2464 }
81ad8ba2
BS
2465 }
2466 } else {
2467 switch(size) {
2468 case 1:
1a2fb1c0 2469 stb_user(addr, val);
81ad8ba2
BS
2470 break;
2471 case 2:
a4e7dd52 2472 stw_user(addr, val);
81ad8ba2
BS
2473 break;
2474 case 4:
a4e7dd52 2475 stl_user(addr, val);
81ad8ba2
BS
2476 break;
2477 case 8:
2478 default:
a4e7dd52 2479 stq_user(addr, val);
81ad8ba2
BS
2480 break;
2481 }
2482 }
2483 break;
3475187d
FB
2484 case 0x14: // Bypass
2485 case 0x15: // Bypass, non-cacheable
81ad8ba2
BS
2486 case 0x1c: // Bypass LE
2487 case 0x1d: // Bypass, non-cacheable LE
0f8a249a 2488 {
02aab46a
FB
2489 switch(size) {
2490 case 1:
1a2fb1c0 2491 stb_phys(addr, val);
02aab46a
FB
2492 break;
2493 case 2:
a4e7dd52 2494 stw_phys(addr, val);
02aab46a
FB
2495 break;
2496 case 4:
a4e7dd52 2497 stl_phys(addr, val);
02aab46a
FB
2498 break;
2499 case 8:
2500 default:
a4e7dd52 2501 stq_phys(addr, val);
02aab46a
FB
2502 break;
2503 }
0f8a249a
BS
2504 }
2505 return;
db166940
BS
2506 case 0x24: // Nucleus quad LDD 128 bit atomic
2507 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2508 // Only ldda allowed
2509 raise_exception(TT_ILL_INSN);
2510 return;
83469015
FB
2511 case 0x04: // Nucleus
2512 case 0x0c: // Nucleus Little Endian (LE)
83469015 2513 case 0x11: // As if user secondary
83469015 2514 case 0x19: // As if user secondary LE
83469015 2515 case 0x4a: // UPA config
51996525 2516 case 0x81: // Secondary
83469015 2517 case 0x89: // Secondary LE
0f8a249a
BS
2518 // XXX
2519 return;
3475187d 2520 case 0x45: // LSU
0f8a249a
BS
2521 {
2522 uint64_t oldreg;
2523
2524 oldreg = env->lsu;
1a2fb1c0 2525 env->lsu = val & (DMMU_E | IMMU_E);
0f8a249a
BS
2526 // Mappings generated during D/I MMU disabled mode are
2527 // invalid in normal mode
2528 if (oldreg != env->lsu) {
77f193da
BS
2529 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2530 oldreg, env->lsu);
83469015 2531#ifdef DEBUG_MMU
0f8a249a 2532 dump_mmu(env);
83469015 2533#endif
0f8a249a
BS
2534 tlb_flush(env, 1);
2535 }
2536 return;
2537 }
3475187d 2538 case 0x50: // I-MMU regs
0f8a249a 2539 {
1a2fb1c0 2540 int reg = (addr >> 3) & 0xf;
0f8a249a 2541 uint64_t oldreg;
3b46e624 2542
0f8a249a 2543 oldreg = env->immuregs[reg];
3475187d
FB
2544 switch(reg) {
2545 case 0: // RO
3475187d
FB
2546 return;
2547 case 1: // Not in I-MMU
2548 case 2:
3475187d
FB
2549 return;
2550 case 3: // SFSR
1a2fb1c0
BS
2551 if ((val & 1) == 0)
2552 val = 0; // Clear SFSR
6e8e7d4c 2553 env->immu.sfsr = val;
3475187d 2554 break;
6e8e7d4c
IK
2555 case 4: // RO
2556 return;
3475187d 2557 case 5: // TSB access
6e8e7d4c
IK
2558 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2559 PRIx64 "\n", env->immu.tsb, val);
2560 env->immu.tsb = val;
2561 break;
3475187d 2562 case 6: // Tag access
6e8e7d4c
IK
2563 env->immu.tag_access = val;
2564 break;
2565 case 7:
2566 case 8:
2567 return;
3475187d
FB
2568 default:
2569 break;
2570 }
6e8e7d4c 2571
3475187d 2572 if (oldreg != env->immuregs[reg]) {
6e8e7d4c 2573 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
77f193da 2574 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
3475187d 2575 }
952a328f 2576#ifdef DEBUG_MMU
0f8a249a 2577 dump_mmu(env);
3475187d 2578#endif
0f8a249a
BS
2579 return;
2580 }
3475187d 2581 case 0x54: // I-MMU data in
f707726e
IK
2582 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2583 return;
3475187d 2584 case 0x55: // I-MMU data access
0f8a249a 2585 {
cc6747f4
BS
2586 // TODO: auto demap
2587
1a2fb1c0 2588 unsigned int i = (addr >> 3) & 0x3f;
3475187d 2589
f707726e 2590 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
6e8e7d4c
IK
2591
2592#ifdef DEBUG_MMU
f707726e 2593 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
6e8e7d4c
IK
2594 dump_mmu(env);
2595#endif
0f8a249a
BS
2596 return;
2597 }
3475187d 2598 case 0x57: // I-MMU demap
f707726e 2599 demap_tlb(env->itlb, val, "immu", env);
0f8a249a 2600 return;
3475187d 2601 case 0x58: // D-MMU regs
0f8a249a 2602 {
1a2fb1c0 2603 int reg = (addr >> 3) & 0xf;
0f8a249a 2604 uint64_t oldreg;
3b46e624 2605
0f8a249a 2606 oldreg = env->dmmuregs[reg];
3475187d
FB
2607 switch(reg) {
2608 case 0: // RO
2609 case 4:
2610 return;
2611 case 3: // SFSR
1a2fb1c0
BS
2612 if ((val & 1) == 0) {
2613 val = 0; // Clear SFSR, Fault address
6e8e7d4c 2614 env->dmmu.sfar = 0;
0f8a249a 2615 }
6e8e7d4c 2616 env->dmmu.sfsr = val;
3475187d
FB
2617 break;
2618 case 1: // Primary context
6e8e7d4c
IK
2619 env->dmmu.mmu_primary_context = val;
2620 break;
3475187d 2621 case 2: // Secondary context
6e8e7d4c
IK
2622 env->dmmu.mmu_secondary_context = val;
2623 break;
3475187d 2624 case 5: // TSB access
6e8e7d4c
IK
2625 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
2626 PRIx64 "\n", env->dmmu.tsb, val);
2627 env->dmmu.tsb = val;
2628 break;
3475187d 2629 case 6: // Tag access
6e8e7d4c
IK
2630 env->dmmu.tag_access = val;
2631 break;
3475187d
FB
2632 case 7: // Virtual Watchpoint
2633 case 8: // Physical Watchpoint
2634 default:
6e8e7d4c 2635 env->dmmuregs[reg] = val;
3475187d
FB
2636 break;
2637 }
6e8e7d4c 2638
3475187d 2639 if (oldreg != env->dmmuregs[reg]) {
6e8e7d4c 2640 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
77f193da 2641 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3475187d 2642 }
952a328f 2643#ifdef DEBUG_MMU
0f8a249a 2644 dump_mmu(env);
3475187d 2645#endif
0f8a249a
BS
2646 return;
2647 }
3475187d 2648 case 0x5c: // D-MMU data in
f707726e
IK
2649 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
2650 return;
3475187d 2651 case 0x5d: // D-MMU data access
0f8a249a 2652 {
1a2fb1c0 2653 unsigned int i = (addr >> 3) & 0x3f;
3475187d 2654
f707726e
IK
2655 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
2656
6e8e7d4c 2657#ifdef DEBUG_MMU
f707726e 2658 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
6e8e7d4c
IK
2659 dump_mmu(env);
2660#endif
0f8a249a
BS
2661 return;
2662 }
3475187d 2663 case 0x5f: // D-MMU demap
f707726e 2664 demap_tlb(env->dtlb, val, "dmmu", env);
cc6747f4 2665 return;
83469015 2666 case 0x49: // Interrupt data receive
0f8a249a
BS
2667 // XXX
2668 return;
f7350b47
BS
2669 case 0x46: // D-cache data
2670 case 0x47: // D-cache tag access
a5a52cf2
BS
2671 case 0x4b: // E-cache error enable
2672 case 0x4c: // E-cache asynchronous fault status
2673 case 0x4d: // E-cache asynchronous fault address
f7350b47
BS
2674 case 0x4e: // E-cache tag data
2675 case 0x66: // I-cache instruction access
2676 case 0x67: // I-cache tag access
2677 case 0x6e: // I-cache predecode
2678 case 0x6f: // I-cache LRU etc.
2679 case 0x76: // E-cache tag
2680 case 0x7e: // E-cache tag
2681 return;
3475187d
FB
2682 case 0x51: // I-MMU 8k TSB pointer, RO
2683 case 0x52: // I-MMU 64k TSB pointer, RO
2684 case 0x56: // I-MMU tag read, RO
2685 case 0x59: // D-MMU 8k TSB pointer, RO
2686 case 0x5a: // D-MMU 64k TSB pointer, RO
2687 case 0x5b: // D-MMU data pointer, RO
2688 case 0x5e: // D-MMU tag read, RO
83469015
FB
2689 case 0x48: // Interrupt dispatch, RO
2690 case 0x7f: // Incoming interrupt vector, RO
2691 case 0x82: // Primary no-fault, RO
2692 case 0x83: // Secondary no-fault, RO
2693 case 0x8a: // Primary no-fault LE, RO
2694 case 0x8b: // Secondary no-fault LE, RO
3475187d 2695 default:
e18231a3 2696 do_unassigned_access(addr, 1, 0, 1, size);
0f8a249a 2697 return;
3475187d
FB
2698 }
2699}
81ad8ba2 2700#endif /* CONFIG_USER_ONLY */
3391c818 2701
db166940
BS
2702void helper_ldda_asi(target_ulong addr, int asi, int rd)
2703{
db166940 2704 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
5578ceab
BS
2705 || ((env->def->features & CPU_FEATURE_HYPV)
2706 && asi >= 0x30 && asi < 0x80
fb79ceb9 2707 && !(env->hpstate & HS_PRIV)))
db166940
BS
2708 raise_exception(TT_PRIV_ACT);
2709
2710 switch (asi) {
2711 case 0x24: // Nucleus quad LDD 128 bit atomic
2712 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2713 helper_check_align(addr, 0xf);
2714 if (rd == 0) {
2715 env->gregs[1] = ldq_kernel(addr + 8);
2716 if (asi == 0x2c)
2717 bswap64s(&env->gregs[1]);
2718 } else if (rd < 8) {
2719 env->gregs[rd] = ldq_kernel(addr);
2720 env->gregs[rd + 1] = ldq_kernel(addr + 8);
2721 if (asi == 0x2c) {
2722 bswap64s(&env->gregs[rd]);
2723 bswap64s(&env->gregs[rd + 1]);
2724 }
2725 } else {
2726 env->regwptr[rd] = ldq_kernel(addr);
2727 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
2728 if (asi == 0x2c) {
2729 bswap64s(&env->regwptr[rd]);
2730 bswap64s(&env->regwptr[rd + 1]);
2731 }
2732 }
2733 break;
2734 default:
2735 helper_check_align(addr, 0x3);
2736 if (rd == 0)
2737 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
2738 else if (rd < 8) {
2739 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
2740 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2741 } else {
2742 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
2743 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
2744 }
2745 break;
2746 }
2747}
2748
1a2fb1c0 2749void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 2750{
3391c818 2751 unsigned int i;
1a2fb1c0 2752 target_ulong val;
3391c818 2753
c2bc0e38 2754 helper_check_align(addr, 3);
3391c818
BS
2755 switch (asi) {
2756 case 0xf0: // Block load primary
2757 case 0xf1: // Block load secondary
2758 case 0xf8: // Block load primary LE
2759 case 0xf9: // Block load secondary LE
51996525
BS
2760 if (rd & 7) {
2761 raise_exception(TT_ILL_INSN);
2762 return;
2763 }
c2bc0e38 2764 helper_check_align(addr, 0x3f);
51996525 2765 for (i = 0; i < 16; i++) {
77f193da
BS
2766 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
2767 0);
1a2fb1c0 2768 addr += 4;
3391c818 2769 }
3391c818
BS
2770
2771 return;
2772 default:
2773 break;
2774 }
2775
1a2fb1c0 2776 val = helper_ld_asi(addr, asi, size, 0);
3391c818
BS
2777 switch(size) {
2778 default:
2779 case 4:
714547bb 2780 *((uint32_t *)&env->fpr[rd]) = val;
3391c818
BS
2781 break;
2782 case 8:
1a2fb1c0 2783 *((int64_t *)&DT0) = val;
3391c818 2784 break;
1f587329
BS
2785 case 16:
2786 // XXX
2787 break;
3391c818 2788 }
3391c818
BS
2789}
2790
1a2fb1c0 2791void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3391c818 2792{
3391c818 2793 unsigned int i;
1a2fb1c0 2794 target_ulong val = 0;
3391c818 2795
c2bc0e38 2796 helper_check_align(addr, 3);
3391c818 2797 switch (asi) {
c99657d3
BS
2798 case 0xe0: // UA2007 Block commit store primary (cache flush)
2799 case 0xe1: // UA2007 Block commit store secondary (cache flush)
3391c818
BS
2800 case 0xf0: // Block store primary
2801 case 0xf1: // Block store secondary
2802 case 0xf8: // Block store primary LE
2803 case 0xf9: // Block store secondary LE
51996525
BS
2804 if (rd & 7) {
2805 raise_exception(TT_ILL_INSN);
2806 return;
2807 }
c2bc0e38 2808 helper_check_align(addr, 0x3f);
51996525 2809 for (i = 0; i < 16; i++) {
1a2fb1c0
BS
2810 val = *(uint32_t *)&env->fpr[rd++];
2811 helper_st_asi(addr, val, asi & 0x8f, 4);
2812 addr += 4;
3391c818 2813 }
3391c818
BS
2814
2815 return;
2816 default:
2817 break;
2818 }
2819
2820 switch(size) {
2821 default:
2822 case 4:
714547bb 2823 val = *((uint32_t *)&env->fpr[rd]);
3391c818
BS
2824 break;
2825 case 8:
1a2fb1c0 2826 val = *((int64_t *)&DT0);
3391c818 2827 break;
1f587329
BS
2828 case 16:
2829 // XXX
2830 break;
3391c818 2831 }
1a2fb1c0
BS
2832 helper_st_asi(addr, val, asi, size);
2833}
2834
2835target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
2836 target_ulong val2, uint32_t asi)
2837{
2838 target_ulong ret;
2839
1121f879 2840 val2 &= 0xffffffffUL;
1a2fb1c0
BS
2841 ret = helper_ld_asi(addr, asi, 4, 0);
2842 ret &= 0xffffffffUL;
1121f879
BS
2843 if (val2 == ret)
2844 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
1a2fb1c0 2845 return ret;
3391c818
BS
2846}
2847
1a2fb1c0
BS
2848target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
2849 target_ulong val2, uint32_t asi)
2850{
2851 target_ulong ret;
2852
2853 ret = helper_ld_asi(addr, asi, 8, 0);
1121f879
BS
2854 if (val2 == ret)
2855 helper_st_asi(addr, val1, asi, 8);
1a2fb1c0
BS
2856 return ret;
2857}
81ad8ba2 2858#endif /* TARGET_SPARC64 */
3475187d
FB
2859
2860#ifndef TARGET_SPARC64
1a2fb1c0 2861void helper_rett(void)
e8af50a3 2862{
af7bf89b
FB
2863 unsigned int cwp;
2864
d4218d99
BS
2865 if (env->psret == 1)
2866 raise_exception(TT_ILL_INSN);
2867
e8af50a3 2868 env->psret = 1;
1a14026e 2869 cwp = cpu_cwp_inc(env, env->cwp + 1) ;
e8af50a3
FB
2870 if (env->wim & (1 << cwp)) {
2871 raise_exception(TT_WIN_UNF);
2872 }
2873 set_cwp(cwp);
2874 env->psrs = env->psrps;
2875}
3475187d 2876#endif
e8af50a3 2877
3b89f26c
BS
2878target_ulong helper_udiv(target_ulong a, target_ulong b)
2879{
2880 uint64_t x0;
2881 uint32_t x1;
2882
7621a90d 2883 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3b89f26c
BS
2884 x1 = b;
2885
2886 if (x1 == 0) {
2887 raise_exception(TT_DIV_ZERO);
2888 }
2889
2890 x0 = x0 / x1;
2891 if (x0 > 0xffffffff) {
2892 env->cc_src2 = 1;
2893 return 0xffffffff;
2894 } else {
2895 env->cc_src2 = 0;
2896 return x0;
2897 }
2898}
2899
2900target_ulong helper_sdiv(target_ulong a, target_ulong b)
2901{
2902 int64_t x0;
2903 int32_t x1;
2904
7621a90d 2905 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3b89f26c
BS
2906 x1 = b;
2907
2908 if (x1 == 0) {
2909 raise_exception(TT_DIV_ZERO);
2910 }
2911
2912 x0 = x0 / x1;
2913 if ((int32_t) x0 != x0) {
2914 env->cc_src2 = 1;
2915 return x0 < 0? 0x80000000: 0x7fffffff;
2916 } else {
2917 env->cc_src2 = 0;
2918 return x0;
2919 }
2920}
2921
7fa76c0b
BS
2922void helper_stdf(target_ulong addr, int mem_idx)
2923{
c2bc0e38 2924 helper_check_align(addr, 7);
7fa76c0b
BS
2925#if !defined(CONFIG_USER_ONLY)
2926 switch (mem_idx) {
2927 case 0:
c2bc0e38 2928 stfq_user(addr, DT0);
7fa76c0b
BS
2929 break;
2930 case 1:
c2bc0e38 2931 stfq_kernel(addr, DT0);
7fa76c0b
BS
2932 break;
2933#ifdef TARGET_SPARC64
2934 case 2:
c2bc0e38 2935 stfq_hypv(addr, DT0);
7fa76c0b
BS
2936 break;
2937#endif
2938 default:
2939 break;
2940 }
2941#else
2cade6a3 2942 address_mask(env, &addr);
c2bc0e38 2943 stfq_raw(addr, DT0);
7fa76c0b
BS
2944#endif
2945}
2946
2947void helper_lddf(target_ulong addr, int mem_idx)
2948{
c2bc0e38 2949 helper_check_align(addr, 7);
7fa76c0b
BS
2950#if !defined(CONFIG_USER_ONLY)
2951 switch (mem_idx) {
2952 case 0:
c2bc0e38 2953 DT0 = ldfq_user(addr);
7fa76c0b
BS
2954 break;
2955 case 1:
c2bc0e38 2956 DT0 = ldfq_kernel(addr);
7fa76c0b
BS
2957 break;
2958#ifdef TARGET_SPARC64
2959 case 2:
c2bc0e38 2960 DT0 = ldfq_hypv(addr);
7fa76c0b
BS
2961 break;
2962#endif
2963 default:
2964 break;
2965 }
2966#else
2cade6a3 2967 address_mask(env, &addr);
c2bc0e38 2968 DT0 = ldfq_raw(addr);
7fa76c0b
BS
2969#endif
2970}
2971
64a88d5d 2972void helper_ldqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
2973{
2974 // XXX add 128 bit load
2975 CPU_QuadU u;
2976
c2bc0e38 2977 helper_check_align(addr, 7);
64a88d5d
BS
2978#if !defined(CONFIG_USER_ONLY)
2979 switch (mem_idx) {
2980 case 0:
c2bc0e38
BS
2981 u.ll.upper = ldq_user(addr);
2982 u.ll.lower = ldq_user(addr + 8);
64a88d5d
BS
2983 QT0 = u.q;
2984 break;
2985 case 1:
c2bc0e38
BS
2986 u.ll.upper = ldq_kernel(addr);
2987 u.ll.lower = ldq_kernel(addr + 8);
64a88d5d
BS
2988 QT0 = u.q;
2989 break;
2990#ifdef TARGET_SPARC64
2991 case 2:
c2bc0e38
BS
2992 u.ll.upper = ldq_hypv(addr);
2993 u.ll.lower = ldq_hypv(addr + 8);
64a88d5d
BS
2994 QT0 = u.q;
2995 break;
2996#endif
2997 default:
2998 break;
2999 }
3000#else
2cade6a3 3001 address_mask(env, &addr);
c2bc0e38
BS
3002 u.ll.upper = ldq_raw(addr);
3003 u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
7fa76c0b 3004 QT0 = u.q;
64a88d5d 3005#endif
7fa76c0b
BS
3006}
3007
64a88d5d 3008void helper_stqf(target_ulong addr, int mem_idx)
7fa76c0b
BS
3009{
3010 // XXX add 128 bit store
3011 CPU_QuadU u;
3012
c2bc0e38 3013 helper_check_align(addr, 7);
64a88d5d
BS
3014#if !defined(CONFIG_USER_ONLY)
3015 switch (mem_idx) {
3016 case 0:
3017 u.q = QT0;
c2bc0e38
BS
3018 stq_user(addr, u.ll.upper);
3019 stq_user(addr + 8, u.ll.lower);
64a88d5d
BS
3020 break;
3021 case 1:
3022 u.q = QT0;
c2bc0e38
BS
3023 stq_kernel(addr, u.ll.upper);
3024 stq_kernel(addr + 8, u.ll.lower);
64a88d5d
BS
3025 break;
3026#ifdef TARGET_SPARC64
3027 case 2:
3028 u.q = QT0;
c2bc0e38
BS
3029 stq_hypv(addr, u.ll.upper);
3030 stq_hypv(addr + 8, u.ll.lower);
64a88d5d
BS
3031 break;
3032#endif
3033 default:
3034 break;
3035 }
3036#else
7fa76c0b 3037 u.q = QT0;
2cade6a3 3038 address_mask(env, &addr);
c2bc0e38
BS
3039 stq_raw(addr, u.ll.upper);
3040 stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
7fa76c0b 3041#endif
64a88d5d 3042}
7fa76c0b 3043
3a3b925d 3044static inline void set_fsr(void)
e8af50a3 3045{
7a0e1f41 3046 int rnd_mode;
bb5529bb 3047
e8af50a3
FB
3048 switch (env->fsr & FSR_RD_MASK) {
3049 case FSR_RD_NEAREST:
7a0e1f41 3050 rnd_mode = float_round_nearest_even;
0f8a249a 3051 break;
ed910241 3052 default:
e8af50a3 3053 case FSR_RD_ZERO:
7a0e1f41 3054 rnd_mode = float_round_to_zero;
0f8a249a 3055 break;
e8af50a3 3056 case FSR_RD_POS:
7a0e1f41 3057 rnd_mode = float_round_up;
0f8a249a 3058 break;
e8af50a3 3059 case FSR_RD_NEG:
7a0e1f41 3060 rnd_mode = float_round_down;
0f8a249a 3061 break;
e8af50a3 3062 }
7a0e1f41 3063 set_float_rounding_mode(rnd_mode, &env->fp_status);
e8af50a3 3064}
e80cfcfc 3065
3a3b925d 3066void helper_ldfsr(uint32_t new_fsr)
bb5529bb 3067{
3a3b925d
BS
3068 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3069 set_fsr();
bb5529bb
BS
3070}
3071
3a3b925d
BS
3072#ifdef TARGET_SPARC64
3073void helper_ldxfsr(uint64_t new_fsr)
3074{
3075 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3076 set_fsr();
3077}
3078#endif
3079
bb5529bb 3080void helper_debug(void)
e80cfcfc
FB
3081{
3082 env->exception_index = EXCP_DEBUG;
3083 cpu_loop_exit();
3084}
af7bf89b 3085
3475187d 3086#ifndef TARGET_SPARC64
72a9747b
BS
3087/* XXX: use another pointer for %iN registers to avoid slow wrapping
3088 handling ? */
3089void helper_save(void)
3090{
3091 uint32_t cwp;
3092
1a14026e 3093 cwp = cpu_cwp_dec(env, env->cwp - 1);
72a9747b
BS
3094 if (env->wim & (1 << cwp)) {
3095 raise_exception(TT_WIN_OVF);
3096 }
3097 set_cwp(cwp);
3098}
3099
3100void helper_restore(void)
3101{
3102 uint32_t cwp;
3103
1a14026e 3104 cwp = cpu_cwp_inc(env, env->cwp + 1);
72a9747b
BS
3105 if (env->wim & (1 << cwp)) {
3106 raise_exception(TT_WIN_UNF);
3107 }
3108 set_cwp(cwp);
3109}
3110
1a2fb1c0 3111void helper_wrpsr(target_ulong new_psr)
af7bf89b 3112{
1a14026e 3113 if ((new_psr & PSR_CWP) >= env->nwindows)
d4218d99
BS
3114 raise_exception(TT_ILL_INSN);
3115 else
1a2fb1c0 3116 PUT_PSR(env, new_psr);
af7bf89b
FB
3117}
3118
1a2fb1c0 3119target_ulong helper_rdpsr(void)
af7bf89b 3120{
1a2fb1c0 3121 return GET_PSR(env);
af7bf89b 3122}
3475187d
FB
3123
3124#else
72a9747b
BS
3125/* XXX: use another pointer for %iN registers to avoid slow wrapping
3126 handling ? */
3127void helper_save(void)
3128{
3129 uint32_t cwp;
3130
1a14026e 3131 cwp = cpu_cwp_dec(env, env->cwp - 1);
72a9747b
BS
3132 if (env->cansave == 0) {
3133 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3134 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3135 ((env->wstate & 0x7) << 2)));
3136 } else {
3137 if (env->cleanwin - env->canrestore == 0) {
3138 // XXX Clean windows without trap
3139 raise_exception(TT_CLRWIN);
3140 } else {
3141 env->cansave--;
3142 env->canrestore++;
3143 set_cwp(cwp);
3144 }
3145 }
3146}
3147
3148void helper_restore(void)
3149{
3150 uint32_t cwp;
3151
1a14026e 3152 cwp = cpu_cwp_inc(env, env->cwp + 1);
72a9747b
BS
3153 if (env->canrestore == 0) {
3154 raise_exception(TT_FILL | (env->otherwin != 0 ?
3155 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3156 ((env->wstate & 0x7) << 2)));
3157 } else {
3158 env->cansave++;
3159 env->canrestore--;
3160 set_cwp(cwp);
3161 }
3162}
3163
3164void helper_flushw(void)
3165{
1a14026e 3166 if (env->cansave != env->nwindows - 2) {
72a9747b
BS
3167 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3168 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3169 ((env->wstate & 0x7) << 2)));
3170 }
3171}
3172
3173void helper_saved(void)
3174{
3175 env->cansave++;
3176 if (env->otherwin == 0)
3177 env->canrestore--;
3178 else
3179 env->otherwin--;
3180}
3181
3182void helper_restored(void)
3183{
3184 env->canrestore++;
1a14026e 3185 if (env->cleanwin < env->nwindows - 1)
72a9747b
BS
3186 env->cleanwin++;
3187 if (env->otherwin == 0)
3188 env->cansave--;
3189 else
3190 env->otherwin--;
3191}
3192
d35527d9
BS
3193target_ulong helper_rdccr(void)
3194{
3195 return GET_CCR(env);
3196}
3197
3198void helper_wrccr(target_ulong new_ccr)
3199{
3200 PUT_CCR(env, new_ccr);
3201}
3202
3203// CWP handling is reversed in V9, but we still use the V8 register
3204// order.
3205target_ulong helper_rdcwp(void)
3206{
3207 return GET_CWP64(env);
3208}
3209
3210void helper_wrcwp(target_ulong new_cwp)
3211{
3212 PUT_CWP64(env, new_cwp);
3213}
3475187d 3214
1f5063fb
BS
3215// This function uses non-native bit order
3216#define GET_FIELD(X, FROM, TO) \
3217 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3218
3219// This function uses the order in the manuals, i.e. bit 0 is 2^0
3220#define GET_FIELD_SP(X, FROM, TO) \
3221 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3222
3223target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3224{
3225 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3226 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3227 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3228 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3229 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3230 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3231 (((pixel_addr >> 55) & 1) << 4) |
3232 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3233 GET_FIELD_SP(pixel_addr, 11, 12);
3234}
3235
3236target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3237{
3238 uint64_t tmp;
3239
3240 tmp = addr + offset;
3241 env->gsr &= ~7ULL;
3242 env->gsr |= tmp & 7ULL;
3243 return tmp & ~7ULL;
3244}
3245
1a2fb1c0 3246target_ulong helper_popc(target_ulong val)
3475187d 3247{
1a2fb1c0 3248 return ctpop64(val);
3475187d 3249}
83469015 3250
d780a466 3251static inline uint64_t *get_gregset(uint32_t pstate)
83469015
FB
3252{
3253 switch (pstate) {
3254 default:
7e8695ed
IK
3255 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3256 pstate,
3257 (pstate & PS_IG) ? " IG" : "",
3258 (pstate & PS_MG) ? " MG" : "",
3259 (pstate & PS_AG) ? " AG" : "");
3260 /* pass through to normal set of global registers */
83469015 3261 case 0:
0f8a249a 3262 return env->bgregs;
83469015 3263 case PS_AG:
0f8a249a 3264 return env->agregs;
83469015 3265 case PS_MG:
0f8a249a 3266 return env->mgregs;
83469015 3267 case PS_IG:
0f8a249a 3268 return env->igregs;
83469015
FB
3269 }
3270}
3271
d780a466 3272static inline void change_pstate(uint32_t new_pstate)
83469015 3273{
d780a466 3274 uint32_t pstate_regs, new_pstate_regs;
83469015
FB
3275 uint64_t *src, *dst;
3276
5210977a
IK
3277 if (env->def->features & CPU_FEATURE_GL) {
3278 // PS_AG is not implemented in this case
3279 new_pstate &= ~PS_AG;
3280 }
3281
83469015
FB
3282 pstate_regs = env->pstate & 0xc01;
3283 new_pstate_regs = new_pstate & 0xc01;
5210977a 3284
83469015 3285 if (new_pstate_regs != pstate_regs) {
7e8695ed
IK
3286 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
3287 pstate_regs, new_pstate_regs);
0f8a249a
BS
3288 // Switch global register bank
3289 src = get_gregset(new_pstate_regs);
3290 dst = get_gregset(pstate_regs);
3291 memcpy32(dst, env->gregs);
3292 memcpy32(env->gregs, src);
83469015 3293 }
7e8695ed
IK
3294 else {
3295 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
3296 new_pstate_regs);
3297 }
83469015
FB
3298 env->pstate = new_pstate;
3299}
3300
1a2fb1c0 3301void helper_wrpstate(target_ulong new_state)
8f1f22f6 3302{
5210977a 3303 change_pstate(new_state & 0xf3f);
4dc28134
IK
3304
3305#if !defined(CONFIG_USER_ONLY)
3306 if (cpu_interrupts_enabled(env)) {
3307 cpu_check_irqs(env);
3308 }
3309#endif
8f1f22f6
BS
3310}
3311
1fae7b70
IK
3312void helper_wrpil(target_ulong new_pil)
3313{
3314#if !defined(CONFIG_USER_ONLY)
3315 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
3316 env->psrpil, (uint32_t)new_pil);
3317
3318 env->psrpil = new_pil;
3319
3320 if (cpu_interrupts_enabled(env)) {
3321 cpu_check_irqs(env);
3322 }
3323#endif
3324}
3325
1a2fb1c0 3326void helper_done(void)
83469015 3327{
8194f35a
IK
3328 trap_state* tsptr = cpu_tsptr(env);
3329
3723cd09 3330 env->pc = tsptr->tnpc;
8194f35a
IK
3331 env->npc = tsptr->tnpc + 4;
3332 PUT_CCR(env, tsptr->tstate >> 32);
3333 env->asi = (tsptr->tstate >> 24) & 0xff;
3334 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3335 PUT_CWP64(env, tsptr->tstate & 0xff);
e6bf7d70 3336 env->tl--;
4dc28134
IK
3337
3338 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
3339
3340#if !defined(CONFIG_USER_ONLY)
3341 if (cpu_interrupts_enabled(env)) {
3342 cpu_check_irqs(env);
3343 }
3344#endif
83469015
FB
3345}
3346
1a2fb1c0 3347void helper_retry(void)
83469015 3348{
8194f35a
IK
3349 trap_state* tsptr = cpu_tsptr(env);
3350
3351 env->pc = tsptr->tpc;
3352 env->npc = tsptr->tnpc;
3353 PUT_CCR(env, tsptr->tstate >> 32);
3354 env->asi = (tsptr->tstate >> 24) & 0xff;
3355 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3356 PUT_CWP64(env, tsptr->tstate & 0xff);
e6bf7d70 3357 env->tl--;
4dc28134
IK
3358
3359 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
3360
3361#if !defined(CONFIG_USER_ONLY)
3362 if (cpu_interrupts_enabled(env)) {
3363 cpu_check_irqs(env);
3364 }
3365#endif
3366}
3367
3368static void do_modify_softint(const char* operation, uint32_t value)
3369{
3370 if (env->softint != value) {
3371 env->softint = value;
3372 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
3373#if !defined(CONFIG_USER_ONLY)
3374 if (cpu_interrupts_enabled(env)) {
3375 cpu_check_irqs(env);
3376 }
3377#endif
3378 }
83469015 3379}
9d926598
BS
3380
3381void helper_set_softint(uint64_t value)
3382{
4dc28134 3383 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
9d926598
BS
3384}
3385
3386void helper_clear_softint(uint64_t value)
3387{
4dc28134 3388 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
9d926598
BS
3389}
3390
3391void helper_write_softint(uint64_t value)
3392{
4dc28134 3393 do_modify_softint("helper_write_softint", (uint32_t)value);
9d926598 3394}
3475187d 3395#endif
ee5bbe38 3396
91736d37 3397void helper_flush(target_ulong addr)
ee5bbe38 3398{
91736d37
BS
3399 addr &= ~7;
3400 tb_invalidate_page_range(addr, addr + 8);
ee5bbe38
FB
3401}
3402
91736d37
BS
3403#ifdef TARGET_SPARC64
3404#ifdef DEBUG_PCALL
3405static const char * const excp_names[0x80] = {
3406 [TT_TFAULT] = "Instruction Access Fault",
3407 [TT_TMISS] = "Instruction Access MMU Miss",
3408 [TT_CODE_ACCESS] = "Instruction Access Error",
3409 [TT_ILL_INSN] = "Illegal Instruction",
3410 [TT_PRIV_INSN] = "Privileged Instruction",
3411 [TT_NFPU_INSN] = "FPU Disabled",
3412 [TT_FP_EXCP] = "FPU Exception",
3413 [TT_TOVF] = "Tag Overflow",
3414 [TT_CLRWIN] = "Clean Windows",
3415 [TT_DIV_ZERO] = "Division By Zero",
3416 [TT_DFAULT] = "Data Access Fault",
3417 [TT_DMISS] = "Data Access MMU Miss",
3418 [TT_DATA_ACCESS] = "Data Access Error",
3419 [TT_DPROT] = "Data Protection Error",
3420 [TT_UNALIGNED] = "Unaligned Memory Access",
3421 [TT_PRIV_ACT] = "Privileged Action",
3422 [TT_EXTINT | 0x1] = "External Interrupt 1",
3423 [TT_EXTINT | 0x2] = "External Interrupt 2",
3424 [TT_EXTINT | 0x3] = "External Interrupt 3",
3425 [TT_EXTINT | 0x4] = "External Interrupt 4",
3426 [TT_EXTINT | 0x5] = "External Interrupt 5",
3427 [TT_EXTINT | 0x6] = "External Interrupt 6",
3428 [TT_EXTINT | 0x7] = "External Interrupt 7",
3429 [TT_EXTINT | 0x8] = "External Interrupt 8",
3430 [TT_EXTINT | 0x9] = "External Interrupt 9",
3431 [TT_EXTINT | 0xa] = "External Interrupt 10",
3432 [TT_EXTINT | 0xb] = "External Interrupt 11",
3433 [TT_EXTINT | 0xc] = "External Interrupt 12",
3434 [TT_EXTINT | 0xd] = "External Interrupt 13",
3435 [TT_EXTINT | 0xe] = "External Interrupt 14",
3436 [TT_EXTINT | 0xf] = "External Interrupt 15",
3437};
3438#endif
3439
8194f35a
IK
3440trap_state* cpu_tsptr(CPUState* env)
3441{
3442 return &env->ts[env->tl & MAXTL_MASK];
3443}
3444
91736d37
BS
3445void do_interrupt(CPUState *env)
3446{
3447 int intno = env->exception_index;
8194f35a 3448 trap_state* tsptr;
91736d37
BS
3449
3450#ifdef DEBUG_PCALL
8fec2b8c 3451 if (qemu_loglevel_mask(CPU_LOG_INT)) {
91736d37
BS
3452 static int count;
3453 const char *name;
3454
3455 if (intno < 0 || intno >= 0x180)
3456 name = "Unknown";
3457 else if (intno >= 0x100)
3458 name = "Trap Instruction";
3459 else if (intno >= 0xc0)
3460 name = "Window Fill";
3461 else if (intno >= 0x80)
3462 name = "Window Spill";
3463 else {
3464 name = excp_names[intno];
3465 if (!name)
3466 name = "Unknown";
3467 }
3468
93fcfe39 3469 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
91736d37
BS
3470 " SP=%016" PRIx64 "\n",
3471 count, name, intno,
3472 env->pc,
3473 env->npc, env->regwptr[6]);
93fcfe39 3474 log_cpu_state(env, 0);
91736d37
BS
3475#if 0
3476 {
3477 int i;
3478 uint8_t *ptr;
3479
93fcfe39 3480 qemu_log(" code=");
91736d37
BS
3481 ptr = (uint8_t *)env->pc;
3482 for(i = 0; i < 16; i++) {
93fcfe39 3483 qemu_log(" %02x", ldub(ptr + i));
91736d37 3484 }
93fcfe39 3485 qemu_log("\n");
91736d37
BS
3486 }
3487#endif
3488 count++;
3489 }
3490#endif
3491#if !defined(CONFIG_USER_ONLY)
3492 if (env->tl >= env->maxtl) {
3493 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3494 " Error state", env->exception_index, env->tl, env->maxtl);
3495 return;
3496 }
3497#endif
3498 if (env->tl < env->maxtl - 1) {
3499 env->tl++;
3500 } else {
3501 env->pstate |= PS_RED;
3502 if (env->tl < env->maxtl)
3503 env->tl++;
3504 }
8194f35a
IK
3505 tsptr = cpu_tsptr(env);
3506
3507 tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
91736d37
BS
3508 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3509 GET_CWP64(env);
8194f35a
IK
3510 tsptr->tpc = env->pc;
3511 tsptr->tnpc = env->npc;
3512 tsptr->tt = intno;
5210977a
IK
3513
3514 switch (intno) {
3515 case TT_IVEC:
3516 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3517 break;
3518 case TT_TFAULT:
5210977a 3519 case TT_DFAULT:
87f6d3f6
IK
3520 case TT_TMISS ... TT_TMISS + 3:
3521 case TT_DMISS ... TT_DMISS + 3:
3522 case TT_DPROT ... TT_DPROT + 3:
5210977a
IK
3523 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3524 break;
3525 default:
3526 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3527 break;
91736d37 3528 }
5210977a 3529
91736d37
BS
3530 if (intno == TT_CLRWIN)
3531 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
3532 else if ((intno & 0x1c0) == TT_SPILL)
3533 cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
3534 else if ((intno & 0x1c0) == TT_FILL)
3535 cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
3536 env->tbr &= ~0x7fffULL;
3537 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3538 env->pc = env->tbr;
3539 env->npc = env->pc + 4;
821b19fe 3540 env->exception_index = -1;
ee5bbe38 3541}
91736d37
BS
3542#else
3543#ifdef DEBUG_PCALL
3544static const char * const excp_names[0x80] = {
3545 [TT_TFAULT] = "Instruction Access Fault",
3546 [TT_ILL_INSN] = "Illegal Instruction",
3547 [TT_PRIV_INSN] = "Privileged Instruction",
3548 [TT_NFPU_INSN] = "FPU Disabled",
3549 [TT_WIN_OVF] = "Window Overflow",
3550 [TT_WIN_UNF] = "Window Underflow",
3551 [TT_UNALIGNED] = "Unaligned Memory Access",
3552 [TT_FP_EXCP] = "FPU Exception",
3553 [TT_DFAULT] = "Data Access Fault",
3554 [TT_TOVF] = "Tag Overflow",
3555 [TT_EXTINT | 0x1] = "External Interrupt 1",
3556 [TT_EXTINT | 0x2] = "External Interrupt 2",
3557 [TT_EXTINT | 0x3] = "External Interrupt 3",
3558 [TT_EXTINT | 0x4] = "External Interrupt 4",
3559 [TT_EXTINT | 0x5] = "External Interrupt 5",
3560 [TT_EXTINT | 0x6] = "External Interrupt 6",
3561 [TT_EXTINT | 0x7] = "External Interrupt 7",
3562 [TT_EXTINT | 0x8] = "External Interrupt 8",
3563 [TT_EXTINT | 0x9] = "External Interrupt 9",
3564 [TT_EXTINT | 0xa] = "External Interrupt 10",
3565 [TT_EXTINT | 0xb] = "External Interrupt 11",
3566 [TT_EXTINT | 0xc] = "External Interrupt 12",
3567 [TT_EXTINT | 0xd] = "External Interrupt 13",
3568 [TT_EXTINT | 0xe] = "External Interrupt 14",
3569 [TT_EXTINT | 0xf] = "External Interrupt 15",
3570 [TT_TOVF] = "Tag Overflow",
3571 [TT_CODE_ACCESS] = "Instruction Access Error",
3572 [TT_DATA_ACCESS] = "Data Access Error",
3573 [TT_DIV_ZERO] = "Division By Zero",
3574 [TT_NCP_INSN] = "Coprocessor Disabled",
3575};
3576#endif
ee5bbe38 3577
91736d37 3578void do_interrupt(CPUState *env)
ee5bbe38 3579{
91736d37
BS
3580 int cwp, intno = env->exception_index;
3581
3582#ifdef DEBUG_PCALL
8fec2b8c 3583 if (qemu_loglevel_mask(CPU_LOG_INT)) {
91736d37
BS
3584 static int count;
3585 const char *name;
3586
3587 if (intno < 0 || intno >= 0x100)
3588 name = "Unknown";
3589 else if (intno >= 0x80)
3590 name = "Trap Instruction";
3591 else {
3592 name = excp_names[intno];
3593 if (!name)
3594 name = "Unknown";
3595 }
3596
93fcfe39 3597 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
91736d37
BS
3598 count, name, intno,
3599 env->pc,
3600 env->npc, env->regwptr[6]);
93fcfe39 3601 log_cpu_state(env, 0);
91736d37
BS
3602#if 0
3603 {
3604 int i;
3605 uint8_t *ptr;
3606
93fcfe39 3607 qemu_log(" code=");
91736d37
BS
3608 ptr = (uint8_t *)env->pc;
3609 for(i = 0; i < 16; i++) {
93fcfe39 3610 qemu_log(" %02x", ldub(ptr + i));
91736d37 3611 }
93fcfe39 3612 qemu_log("\n");
91736d37
BS
3613 }
3614#endif
3615 count++;
3616 }
3617#endif
3618#if !defined(CONFIG_USER_ONLY)
3619 if (env->psret == 0) {
3620 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3621 env->exception_index);
3622 return;
3623 }
3624#endif
3625 env->psret = 0;
3626 cwp = cpu_cwp_dec(env, env->cwp - 1);
3627 cpu_set_cwp(env, cwp);
3628 env->regwptr[9] = env->pc;
3629 env->regwptr[10] = env->npc;
3630 env->psrps = env->psrs;
3631 env->psrs = 1;
3632 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3633 env->pc = env->tbr;
3634 env->npc = env->pc + 4;
95372a39 3635 env->exception_index = -1;
ee5bbe38 3636}
91736d37 3637#endif
ee5bbe38 3638
5fafdf24 3639#if !defined(CONFIG_USER_ONLY)
ee5bbe38 3640
d2889a3e
BS
3641static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3642 void *retaddr);
3643
ee5bbe38 3644#define MMUSUFFIX _mmu
d2889a3e 3645#define ALIGNED_ONLY
ee5bbe38
FB
3646
3647#define SHIFT 0
3648#include "softmmu_template.h"
3649
3650#define SHIFT 1
3651#include "softmmu_template.h"
3652
3653#define SHIFT 2
3654#include "softmmu_template.h"
3655
3656#define SHIFT 3
3657#include "softmmu_template.h"
3658
c2bc0e38
BS
3659/* XXX: make it generic ? */
3660static void cpu_restore_state2(void *retaddr)
3661{
3662 TranslationBlock *tb;
3663 unsigned long pc;
3664
3665 if (retaddr) {
3666 /* now we have a real cpu fault */
3667 pc = (unsigned long)retaddr;
3668 tb = tb_find_pc(pc);
3669 if (tb) {
3670 /* the PC is inside the translated code. It means that we have
3671 a virtual CPU fault */
3672 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
3673 }
3674 }
3675}
3676
d2889a3e
BS
3677static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
3678 void *retaddr)
3679{
94554550 3680#ifdef DEBUG_UNALIGNED
c2bc0e38
BS
3681 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
3682 "\n", addr, env->pc);
94554550 3683#endif
c2bc0e38 3684 cpu_restore_state2(retaddr);
94554550 3685 raise_exception(TT_UNALIGNED);
d2889a3e 3686}
ee5bbe38
FB
3687
3688/* try to fill the TLB and return an exception if error. If retaddr is
3689 NULL, it means that the function was called in C code (i.e. not
3690 from generated code or from helper.c) */
3691/* XXX: fix it to restore all registers */
6ebbf390 3692void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
ee5bbe38 3693{
ee5bbe38 3694 int ret;
ee5bbe38
FB
3695 CPUState *saved_env;
3696
3697 /* XXX: hack to restore env in all cases, even if not called from
3698 generated code */
3699 saved_env = env;
3700 env = cpu_single_env;
3701
6ebbf390 3702 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
ee5bbe38 3703 if (ret) {
c2bc0e38 3704 cpu_restore_state2(retaddr);
ee5bbe38
FB
3705 cpu_loop_exit();
3706 }
3707 env = saved_env;
3708}
3709
3710#endif
6c36d3fa
BS
3711
3712#ifndef TARGET_SPARC64
c227f099 3713void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
e18231a3 3714 int is_asi, int size)
6c36d3fa
BS
3715{
3716 CPUState *saved_env;
576c2cdc 3717 int fault_type;
6c36d3fa
BS
3718
3719 /* XXX: hack to restore env in all cases, even if not called from
3720 generated code */
3721 saved_env = env;
3722 env = cpu_single_env;
8543e2cf
BS
3723#ifdef DEBUG_UNASSIGNED
3724 if (is_asi)
e18231a3 3725 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
77f193da 3726 " asi 0x%02x from " TARGET_FMT_lx "\n",
e18231a3
BS
3727 is_exec ? "exec" : is_write ? "write" : "read", size,
3728 size == 1 ? "" : "s", addr, is_asi, env->pc);
8543e2cf 3729 else
e18231a3
BS
3730 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
3731 " from " TARGET_FMT_lx "\n",
3732 is_exec ? "exec" : is_write ? "write" : "read", size,
3733 size == 1 ? "" : "s", addr, env->pc);
8543e2cf 3734#endif
576c2cdc
AT
3735 /* Don't overwrite translation and access faults */
3736 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
3737 if ((fault_type > 4) || (fault_type == 0)) {
3738 env->mmuregs[3] = 0; /* Fault status register */
3739 if (is_asi)
3740 env->mmuregs[3] |= 1 << 16;
3741 if (env->psrs)
3742 env->mmuregs[3] |= 1 << 5;
3743 if (is_exec)
3744 env->mmuregs[3] |= 1 << 6;
3745 if (is_write)
3746 env->mmuregs[3] |= 1 << 7;
3747 env->mmuregs[3] |= (5 << 2) | 2;
3748 /* SuperSPARC will never place instruction fault addresses in the FAR */
3749 if (!is_exec) {
3750 env->mmuregs[4] = addr; /* Fault address register */
3751 }
3752 }
3753 /* overflow (same type fault was not read before another fault) */
3754 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
3755 env->mmuregs[3] |= 1;
3756 }
3757
6c36d3fa 3758 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1b2e93c1
BS
3759 if (is_exec)
3760 raise_exception(TT_CODE_ACCESS);
3761 else
3762 raise_exception(TT_DATA_ACCESS);
6c36d3fa 3763 }
576c2cdc
AT
3764
3765 /* flush neverland mappings created during no-fault mode,
3766 so the sequential MMU faults report proper fault types */
3767 if (env->mmuregs[0] & MMU_NF) {
3768 tlb_flush(env, 1);
3769 }
15e7c451
AT
3770
3771 env = saved_env;
6c36d3fa
BS
3772}
3773#else
c227f099 3774void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
e18231a3 3775 int is_asi, int size)
6c36d3fa 3776{
6c36d3fa
BS
3777 CPUState *saved_env;
3778
3779 /* XXX: hack to restore env in all cases, even if not called from
3780 generated code */
3781 saved_env = env;
3782 env = cpu_single_env;
dffbe217
IK
3783
3784#ifdef DEBUG_UNASSIGNED
77f193da
BS
3785 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
3786 "\n", addr, env->pc);
6c36d3fa 3787#endif
dffbe217 3788
1b2e93c1
BS
3789 if (is_exec)
3790 raise_exception(TT_CODE_ACCESS);
3791 else
3792 raise_exception(TT_DATA_ACCESS);
dffbe217
IK
3793
3794 env = saved_env;
6c36d3fa
BS
3795}
3796#endif
20c9f095 3797
f4b1a842
BS
3798#ifdef TARGET_SPARC64
3799void helper_tick_set_count(void *opaque, uint64_t count)
3800{
3801#if !defined(CONFIG_USER_ONLY)
3802 cpu_tick_set_count(opaque, count);
3803#endif
3804}
3805
3806uint64_t helper_tick_get_count(void *opaque)
3807{
3808#if !defined(CONFIG_USER_ONLY)
3809 return cpu_tick_get_count(opaque);
3810#else
3811 return 0;
3812#endif
3813}
3814
3815void helper_tick_set_limit(void *opaque, uint64_t limit)
3816{
3817#if !defined(CONFIG_USER_ONLY)
3818 cpu_tick_set_limit(opaque, limit);
3819#endif
3820}
3821#endif