]> git.proxmox.com Git - qemu.git/blame - target-xtensa/helper.c
target-xtensa: implement external interrupt mapping
[qemu.git] / target-xtensa / helper.c
CommitLineData
2328826b
MF
1/*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include "cpu.h"
29#include "exec-all.h"
30#include "gdbstub.h"
31#include "qemu-common.h"
32#include "host-utils.h"
33#if !defined(CONFIG_USER_ONLY)
34#include "hw/loader.h"
35#endif
36
ccfcaba6
MF
37#define XTREG(idx, ofs, bi, sz, al, no, flags, cp, typ, grp, name, \
38 a1, a2, a3, a4, a5, a6) \
39 { .targno = (no), .type = (typ), .group = (grp) },
40
63f95e4c
MF
41static const XtensaConfig core_config[0];
42
b67ea0cd
MF
43static void reset_mmu(CPUState *env);
44
2328826b
MF
45void cpu_reset(CPUXtensaState *env)
46{
40643d7c
MF
47 env->exception_taken = 0;
48 env->pc = env->config->exception_vector[EXC_RESET];
6ad6dbf7 49 env->sregs[LITBASE] &= ~1;
b994e91b
MF
50 env->sregs[PS] = xtensa_option_enabled(env->config,
51 XTENSA_OPTION_INTERRUPT) ? 0x1f : 0x10;
97836cee 52 env->sregs[VECBASE] = env->config->vecbase;
b994e91b
MF
53
54 env->pending_irq_level = 0;
b67ea0cd 55 reset_mmu(env);
2328826b
MF
56}
57
dedc5eae 58
2328826b
MF
59CPUXtensaState *cpu_xtensa_init(const char *cpu_model)
60{
61 static int tcg_inited;
62 CPUXtensaState *env;
dedc5eae
MF
63 const XtensaConfig *config = NULL;
64 int i;
65
66 for (i = 0; i < ARRAY_SIZE(core_config); ++i)
67 if (strcmp(core_config[i].name, cpu_model) == 0) {
68 config = core_config + i;
69 break;
70 }
71
72 if (config == NULL) {
73 return NULL;
74 }
2328826b
MF
75
76 env = g_malloc0(sizeof(*env));
dedc5eae 77 env->config = config;
2328826b
MF
78 cpu_exec_init(env);
79
80 if (!tcg_inited) {
81 tcg_inited = 1;
82 xtensa_translate_init();
83 }
84
b994e91b 85 xtensa_irq_init(env);
2328826b
MF
86 qemu_init_vcpu(env);
87 return env;
88}
89
90
91void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
92{
dedc5eae
MF
93 int i;
94 cpu_fprintf(f, "Available CPUs:\n");
95 for (i = 0; i < ARRAY_SIZE(core_config); ++i) {
96 cpu_fprintf(f, " %s\n", core_config[i].name);
97 }
2328826b
MF
98}
99
100target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
101{
b67ea0cd
MF
102 uint32_t paddr;
103 uint32_t page_size;
104 unsigned access;
105
106 if (xtensa_get_physical_addr(env, addr, 0, 0,
107 &paddr, &page_size, &access) == 0) {
108 return paddr;
109 }
110 if (xtensa_get_physical_addr(env, addr, 2, 0,
111 &paddr, &page_size, &access) == 0) {
112 return paddr;
113 }
114 return ~0;
2328826b
MF
115}
116
97836cee
MF
117static uint32_t relocated_vector(CPUState *env, uint32_t vector)
118{
119 if (xtensa_option_enabled(env->config,
120 XTENSA_OPTION_RELOCATABLE_VECTOR)) {
121 return vector - env->config->vecbase + env->sregs[VECBASE];
122 } else {
123 return vector;
124 }
125}
126
b994e91b
MF
127/*!
128 * Handle penging IRQ.
129 * For the high priority interrupt jump to the corresponding interrupt vector.
130 * For the level-1 interrupt convert it to either user, kernel or double
131 * exception with the 'level-1 interrupt' exception cause.
132 */
133static void handle_interrupt(CPUState *env)
134{
135 int level = env->pending_irq_level;
136
137 if (level > xtensa_get_cintlevel(env) &&
138 level <= env->config->nlevel &&
139 (env->config->level_mask[level] &
140 env->sregs[INTSET] &
141 env->sregs[INTENABLE])) {
142 if (level > 1) {
143 env->sregs[EPC1 + level - 1] = env->pc;
144 env->sregs[EPS2 + level - 2] = env->sregs[PS];
145 env->sregs[PS] =
146 (env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
97836cee
MF
147 env->pc = relocated_vector(env,
148 env->config->interrupt_vector[level]);
b994e91b
MF
149 } else {
150 env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
151
152 if (env->sregs[PS] & PS_EXCM) {
153 if (env->config->ndepc) {
154 env->sregs[DEPC] = env->pc;
155 } else {
156 env->sregs[EPC1] = env->pc;
157 }
158 env->exception_index = EXC_DOUBLE;
159 } else {
160 env->sregs[EPC1] = env->pc;
161 env->exception_index =
162 (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
163 }
164 env->sregs[PS] |= PS_EXCM;
165 }
166 env->exception_taken = 1;
167 }
168}
169
2328826b
MF
170void do_interrupt(CPUState *env)
171{
b994e91b
MF
172 if (env->exception_index == EXC_IRQ) {
173 qemu_log_mask(CPU_LOG_INT,
174 "%s(EXC_IRQ) level = %d, cintlevel = %d, "
175 "pc = %08x, a0 = %08x, ps = %08x, "
176 "intset = %08x, intenable = %08x, "
177 "ccount = %08x\n",
178 __func__, env->pending_irq_level, xtensa_get_cintlevel(env),
179 env->pc, env->regs[0], env->sregs[PS],
180 env->sregs[INTSET], env->sregs[INTENABLE],
181 env->sregs[CCOUNT]);
182 handle_interrupt(env);
183 }
184
40643d7c
MF
185 switch (env->exception_index) {
186 case EXC_WINDOW_OVERFLOW4:
187 case EXC_WINDOW_UNDERFLOW4:
188 case EXC_WINDOW_OVERFLOW8:
189 case EXC_WINDOW_UNDERFLOW8:
190 case EXC_WINDOW_OVERFLOW12:
191 case EXC_WINDOW_UNDERFLOW12:
192 case EXC_KERNEL:
193 case EXC_USER:
194 case EXC_DOUBLE:
b994e91b
MF
195 qemu_log_mask(CPU_LOG_INT, "%s(%d) "
196 "pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
197 __func__, env->exception_index,
198 env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
40643d7c 199 if (env->config->exception_vector[env->exception_index]) {
97836cee
MF
200 env->pc = relocated_vector(env,
201 env->config->exception_vector[env->exception_index]);
40643d7c
MF
202 env->exception_taken = 1;
203 } else {
204 qemu_log("%s(pc = %08x) bad exception_index: %d\n",
205 __func__, env->pc, env->exception_index);
206 }
207 break;
208
b994e91b
MF
209 case EXC_IRQ:
210 break;
211
212 default:
213 qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
214 __func__, env->pc, env->exception_index);
215 break;
40643d7c 216 }
b994e91b 217 check_interrupts(env);
2328826b 218}
b67ea0cd
MF
219
220static void reset_tlb_mmu_all_ways(CPUState *env,
221 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
222{
223 unsigned wi, ei;
224
225 for (wi = 0; wi < tlb->nways; ++wi) {
226 for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
227 entry[wi][ei].asid = 0;
228 entry[wi][ei].variable = true;
229 }
230 }
231}
232
233static void reset_tlb_mmu_ways56(CPUState *env,
234 const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
235{
236 if (!tlb->varway56) {
237 static const xtensa_tlb_entry way5[] = {
238 {
239 .vaddr = 0xd0000000,
240 .paddr = 0,
241 .asid = 1,
242 .attr = 7,
243 .variable = false,
244 }, {
245 .vaddr = 0xd8000000,
246 .paddr = 0,
247 .asid = 1,
248 .attr = 3,
249 .variable = false,
250 }
251 };
252 static const xtensa_tlb_entry way6[] = {
253 {
254 .vaddr = 0xe0000000,
255 .paddr = 0xf0000000,
256 .asid = 1,
257 .attr = 7,
258 .variable = false,
259 }, {
260 .vaddr = 0xf0000000,
261 .paddr = 0xf0000000,
262 .asid = 1,
263 .attr = 3,
264 .variable = false,
265 }
266 };
267 memcpy(entry[5], way5, sizeof(way5));
268 memcpy(entry[6], way6, sizeof(way6));
269 } else {
270 uint32_t ei;
271 for (ei = 0; ei < 8; ++ei) {
272 entry[6][ei].vaddr = ei << 29;
273 entry[6][ei].paddr = ei << 29;
274 entry[6][ei].asid = 1;
275 entry[6][ei].attr = 2;
276 }
277 }
278}
279
280static void reset_tlb_region_way0(CPUState *env,
281 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
282{
283 unsigned ei;
284
285 for (ei = 0; ei < 8; ++ei) {
286 entry[0][ei].vaddr = ei << 29;
287 entry[0][ei].paddr = ei << 29;
288 entry[0][ei].asid = 1;
289 entry[0][ei].attr = 2;
290 entry[0][ei].variable = true;
291 }
292}
293
294static void reset_mmu(CPUState *env)
295{
296 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
297 env->sregs[RASID] = 0x04030201;
298 env->sregs[ITLBCFG] = 0;
299 env->sregs[DTLBCFG] = 0;
300 env->autorefill_idx = 0;
301 reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
302 reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
303 reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
304 reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
305 } else {
306 reset_tlb_region_way0(env, env->itlb);
307 reset_tlb_region_way0(env, env->dtlb);
308 }
309}
310
311static unsigned get_ring(const CPUState *env, uint8_t asid)
312{
313 unsigned i;
314 for (i = 0; i < 4; ++i) {
315 if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
316 return i;
317 }
318 }
319 return 0xff;
320}
321
322/*!
323 * Lookup xtensa TLB for the given virtual address.
324 * See ISA, 4.6.2.2
325 *
326 * \param pwi: [out] way index
327 * \param pei: [out] entry index
328 * \param pring: [out] access ring
329 * \return 0 if ok, exception cause code otherwise
330 */
331int xtensa_tlb_lookup(const CPUState *env, uint32_t addr, bool dtlb,
332 uint32_t *pwi, uint32_t *pei, uint8_t *pring)
333{
334 const xtensa_tlb *tlb = dtlb ?
335 &env->config->dtlb : &env->config->itlb;
336 const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
337 env->dtlb : env->itlb;
338
339 int nhits = 0;
340 unsigned wi;
341
342 for (wi = 0; wi < tlb->nways; ++wi) {
343 uint32_t vpn;
344 uint32_t ei;
345 split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
346 if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
347 unsigned ring = get_ring(env, entry[wi][ei].asid);
348 if (ring < 4) {
349 if (++nhits > 1) {
350 return dtlb ?
351 LOAD_STORE_TLB_MULTI_HIT_CAUSE :
352 INST_TLB_MULTI_HIT_CAUSE;
353 }
354 *pwi = wi;
355 *pei = ei;
356 *pring = ring;
357 }
358 }
359 }
360 return nhits ? 0 :
361 (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
362}
363
364/*!
365 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
366 * See ISA, 4.6.5.10
367 */
368static unsigned mmu_attr_to_access(uint32_t attr)
369{
370 unsigned access = 0;
371 if (attr < 12) {
372 access |= PAGE_READ;
373 if (attr & 0x1) {
374 access |= PAGE_EXEC;
375 }
376 if (attr & 0x2) {
377 access |= PAGE_WRITE;
378 }
379 } else if (attr == 13) {
380 access |= PAGE_READ | PAGE_WRITE;
381 }
382 return access;
383}
384
385/*!
386 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
387 * See ISA, 4.6.3.3
388 */
389static unsigned region_attr_to_access(uint32_t attr)
390{
391 unsigned access = 0;
392 if ((attr < 6 && attr != 3) || attr == 14) {
393 access |= PAGE_READ | PAGE_WRITE;
394 }
395 if (attr > 0 && attr < 6) {
396 access |= PAGE_EXEC;
397 }
398 return access;
399}
400
401static bool is_access_granted(unsigned access, int is_write)
402{
403 switch (is_write) {
404 case 0:
405 return access & PAGE_READ;
406
407 case 1:
408 return access & PAGE_WRITE;
409
410 case 2:
411 return access & PAGE_EXEC;
412
413 default:
414 return 0;
415 }
416}
417
418static int autorefill_mmu(CPUState *env, uint32_t vaddr, bool dtlb,
419 uint32_t *wi, uint32_t *ei, uint8_t *ring);
420
421static int get_physical_addr_mmu(CPUState *env,
422 uint32_t vaddr, int is_write, int mmu_idx,
423 uint32_t *paddr, uint32_t *page_size, unsigned *access)
424{
425 bool dtlb = is_write != 2;
426 uint32_t wi;
427 uint32_t ei;
428 uint8_t ring;
429 int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
430
431 if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
432 (mmu_idx != 0 || ((vaddr ^ env->sregs[PTEVADDR]) & 0xffc00000)) &&
433 autorefill_mmu(env, vaddr, dtlb, &wi, &ei, &ring) == 0) {
434 ret = 0;
435 }
436 if (ret != 0) {
437 return ret;
438 }
439
440 const xtensa_tlb_entry *entry =
441 xtensa_tlb_get_entry(env, dtlb, wi, ei);
442
443 if (ring < mmu_idx) {
444 return dtlb ?
445 LOAD_STORE_PRIVILEGE_CAUSE :
446 INST_FETCH_PRIVILEGE_CAUSE;
447 }
448
449 *access = mmu_attr_to_access(entry->attr);
450 if (!is_access_granted(*access, is_write)) {
451 return dtlb ?
452 (is_write ?
453 STORE_PROHIBITED_CAUSE :
454 LOAD_PROHIBITED_CAUSE) :
455 INST_FETCH_PROHIBITED_CAUSE;
456 }
457
458 *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
459 *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
460
461 return 0;
462}
463
464static int autorefill_mmu(CPUState *env, uint32_t vaddr, bool dtlb,
465 uint32_t *wi, uint32_t *ei, uint8_t *ring)
466{
467 uint32_t paddr;
468 uint32_t page_size;
469 unsigned access;
470 uint32_t pt_vaddr =
471 (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
472 int ret = get_physical_addr_mmu(env, pt_vaddr, 0, 0,
473 &paddr, &page_size, &access);
474
475 qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
476 vaddr, ret ? ~0 : paddr);
477
478 if (ret == 0) {
479 uint32_t vpn;
480 uint32_t pte = ldl_phys(paddr);
481
482 *ring = (pte >> 4) & 0x3;
483 *wi = (++env->autorefill_idx) & 0x3;
484 split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, *wi, ei);
485 xtensa_tlb_set_entry(env, dtlb, *wi, *ei, vpn, pte);
486 qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
487 __func__, vaddr, vpn, pte);
488 }
489 return ret;
490}
491
492static int get_physical_addr_region(CPUState *env,
493 uint32_t vaddr, int is_write, int mmu_idx,
494 uint32_t *paddr, uint32_t *page_size, unsigned *access)
495{
496 bool dtlb = is_write != 2;
497 uint32_t wi = 0;
498 uint32_t ei = (vaddr >> 29) & 0x7;
499 const xtensa_tlb_entry *entry =
500 xtensa_tlb_get_entry(env, dtlb, wi, ei);
501
502 *access = region_attr_to_access(entry->attr);
503 if (!is_access_granted(*access, is_write)) {
504 return dtlb ?
505 (is_write ?
506 STORE_PROHIBITED_CAUSE :
507 LOAD_PROHIBITED_CAUSE) :
508 INST_FETCH_PROHIBITED_CAUSE;
509 }
510
511 *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
512 *page_size = ~REGION_PAGE_MASK + 1;
513
514 return 0;
515}
516
517/*!
518 * Convert virtual address to physical addr.
519 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
520 *
521 * \return 0 if ok, exception cause code otherwise
522 */
523int xtensa_get_physical_addr(CPUState *env,
524 uint32_t vaddr, int is_write, int mmu_idx,
525 uint32_t *paddr, uint32_t *page_size, unsigned *access)
526{
527 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
528 return get_physical_addr_mmu(env, vaddr, is_write, mmu_idx,
529 paddr, page_size, access);
530 } else if (xtensa_option_bits_enabled(env->config,
531 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
532 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
533 return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
534 paddr, page_size, access);
535 } else {
536 *paddr = vaddr;
537 *page_size = TARGET_PAGE_SIZE;
538 *access = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
539 return 0;
540 }
541}