]>
Commit | Line | Data |
---|---|---|
148954fa CC |
1 | /******************************************************************** |
2 | * * | |
3 | * THIS FILE IS PART OF THE 'ZYWRLE' VNC CODEC SOURCE CODE. * | |
4 | * * | |
5 | * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * | |
6 | * GOVERNED BY A FOLLOWING BSD-STYLE SOURCE LICENSE. * | |
7 | * PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * | |
8 | * * | |
9 | * THE 'ZYWRLE' VNC CODEC SOURCE CODE IS (C) COPYRIGHT 2006 * | |
10 | * BY Hitachi Systems & Services, Ltd. * | |
e7d81004 | 11 | * (Noriaki Yamazaki, Research & Development Center) * |
148954fa CC |
12 | * * |
13 | * * | |
14 | ******************************************************************** | |
15 | Redistribution and use in source and binary forms, with or without | |
16 | modification, are permitted provided that the following conditions | |
17 | are met: | |
18 | ||
19 | - Redistributions of source code must retain the above copyright | |
20 | notice, this list of conditions and the following disclaimer. | |
21 | ||
22 | - Redistributions in binary form must reproduce the above copyright | |
23 | notice, this list of conditions and the following disclaimer in the | |
24 | documentation and/or other materials provided with the distribution. | |
25 | ||
26 | - Neither the name of the Hitachi Systems & Services, Ltd. nor | |
27 | the names of its contributors may be used to endorse or promote | |
28 | products derived from this software without specific prior written | |
29 | permission. | |
30 | ||
31 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
32 | ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
33 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
34 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION | |
35 | OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
36 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
37 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
38 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
39 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
40 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
41 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
42 | ********************************************************************/ | |
43 | ||
44 | #ifndef VNC_ENCODING_ZYWRLE_H | |
45 | #define VNC_ENCODING_ZYWRLE_H | |
46 | ||
47 | /* Tables for Coefficients filtering. */ | |
48 | #ifndef ZYWRLE_QUANTIZE | |
49 | /* Type A:lower bit omitting of EZW style. */ | |
50 | static const unsigned int zywrle_param[3][3]={ | |
51 | {0x0000F000, 0x00000000, 0x00000000}, | |
52 | {0x0000C000, 0x00F0F0F0, 0x00000000}, | |
53 | {0x0000C000, 0x00C0C0C0, 0x00F0F0F0}, | |
54 | /* {0x0000FF00, 0x00000000, 0x00000000}, | |
55 | {0x0000FF00, 0x00FFFFFF, 0x00000000}, | |
56 | {0x0000FF00, 0x00FFFFFF, 0x00FFFFFF}, */ | |
57 | }; | |
58 | #else | |
59 | /* Type B:Non liner quantization filter. */ | |
60 | static const int8_t zywrle_conv[4][256]={ | |
61 | { /* bi=5, bo=5 r=0.0:PSNR=24.849 */ | |
62 | 0, 0, 0, 0, 0, 0, 0, 0, | |
63 | 0, 0, 0, 0, 0, 0, 0, 0, | |
64 | 0, 0, 0, 0, 0, 0, 0, 0, | |
65 | 0, 0, 0, 0, 0, 0, 0, 0, | |
66 | 0, 0, 0, 0, 0, 0, 0, 0, | |
67 | 0, 0, 0, 0, 0, 0, 0, 0, | |
68 | 0, 0, 0, 0, 0, 0, 0, 0, | |
69 | 0, 0, 0, 0, 0, 0, 0, 0, | |
70 | 0, 0, 0, 0, 0, 0, 0, 0, | |
71 | 0, 0, 0, 0, 0, 0, 0, 0, | |
72 | 0, 0, 0, 0, 0, 0, 0, 0, | |
73 | 0, 0, 0, 0, 0, 0, 0, 0, | |
74 | 0, 0, 0, 0, 0, 0, 0, 0, | |
75 | 0, 0, 0, 0, 0, 0, 0, 0, | |
76 | 0, 0, 0, 0, 0, 0, 0, 0, | |
77 | 0, 0, 0, 0, 0, 0, 0, 0, | |
78 | 0, 0, 0, 0, 0, 0, 0, 0, | |
79 | 0, 0, 0, 0, 0, 0, 0, 0, | |
80 | 0, 0, 0, 0, 0, 0, 0, 0, | |
81 | 0, 0, 0, 0, 0, 0, 0, 0, | |
82 | 0, 0, 0, 0, 0, 0, 0, 0, | |
83 | 0, 0, 0, 0, 0, 0, 0, 0, | |
84 | 0, 0, 0, 0, 0, 0, 0, 0, | |
85 | 0, 0, 0, 0, 0, 0, 0, 0, | |
86 | 0, 0, 0, 0, 0, 0, 0, 0, | |
87 | 0, 0, 0, 0, 0, 0, 0, 0, | |
88 | 0, 0, 0, 0, 0, 0, 0, 0, | |
89 | 0, 0, 0, 0, 0, 0, 0, 0, | |
90 | 0, 0, 0, 0, 0, 0, 0, 0, | |
91 | 0, 0, 0, 0, 0, 0, 0, 0, | |
92 | 0, 0, 0, 0, 0, 0, 0, 0, | |
93 | 0, 0, 0, 0, 0, 0, 0, 0, | |
94 | }, | |
95 | { /* bi=5, bo=5 r=2.0:PSNR=74.031 */ | |
96 | 0, 0, 0, 0, 0, 0, 0, 0, | |
97 | 0, 0, 0, 0, 0, 0, 0, 0, | |
98 | 0, 0, 0, 0, 0, 0, 0, 32, | |
99 | 32, 32, 32, 32, 32, 32, 32, 32, | |
100 | 32, 32, 32, 32, 32, 32, 32, 32, | |
101 | 48, 48, 48, 48, 48, 48, 48, 48, | |
102 | 48, 48, 48, 56, 56, 56, 56, 56, | |
103 | 56, 56, 56, 56, 64, 64, 64, 64, | |
104 | 64, 64, 64, 64, 72, 72, 72, 72, | |
105 | 72, 72, 72, 72, 80, 80, 80, 80, | |
106 | 80, 80, 88, 88, 88, 88, 88, 88, | |
107 | 88, 88, 88, 88, 88, 88, 96, 96, | |
108 | 96, 96, 96, 104, 104, 104, 104, 104, | |
109 | 104, 104, 104, 104, 104, 112, 112, 112, | |
110 | 112, 112, 112, 112, 112, 112, 120, 120, | |
111 | 120, 120, 120, 120, 120, 120, 120, 120, | |
112 | 0, -120, -120, -120, -120, -120, -120, -120, | |
113 | -120, -120, -120, -112, -112, -112, -112, -112, | |
114 | -112, -112, -112, -112, -104, -104, -104, -104, | |
115 | -104, -104, -104, -104, -104, -104, -96, -96, | |
116 | -96, -96, -96, -88, -88, -88, -88, -88, | |
117 | -88, -88, -88, -88, -88, -88, -88, -80, | |
118 | -80, -80, -80, -80, -80, -72, -72, -72, | |
119 | -72, -72, -72, -72, -72, -64, -64, -64, | |
120 | -64, -64, -64, -64, -64, -56, -56, -56, | |
121 | -56, -56, -56, -56, -56, -56, -48, -48, | |
122 | -48, -48, -48, -48, -48, -48, -48, -48, | |
123 | -48, -32, -32, -32, -32, -32, -32, -32, | |
124 | -32, -32, -32, -32, -32, -32, -32, -32, | |
125 | -32, -32, 0, 0, 0, 0, 0, 0, | |
126 | 0, 0, 0, 0, 0, 0, 0, 0, | |
127 | 0, 0, 0, 0, 0, 0, 0, 0, | |
128 | }, | |
129 | { /* bi=5, bo=4 r=2.0:PSNR=64.441 */ | |
130 | 0, 0, 0, 0, 0, 0, 0, 0, | |
131 | 0, 0, 0, 0, 0, 0, 0, 0, | |
132 | 0, 0, 0, 0, 0, 0, 0, 0, | |
133 | 0, 0, 0, 0, 0, 0, 0, 0, | |
134 | 48, 48, 48, 48, 48, 48, 48, 48, | |
135 | 48, 48, 48, 48, 48, 48, 48, 48, | |
136 | 48, 48, 48, 48, 48, 48, 48, 48, | |
137 | 64, 64, 64, 64, 64, 64, 64, 64, | |
138 | 64, 64, 64, 64, 64, 64, 64, 64, | |
139 | 80, 80, 80, 80, 80, 80, 80, 80, | |
140 | 80, 80, 80, 80, 80, 88, 88, 88, | |
141 | 88, 88, 88, 88, 88, 88, 88, 88, | |
142 | 104, 104, 104, 104, 104, 104, 104, 104, | |
143 | 104, 104, 104, 112, 112, 112, 112, 112, | |
144 | 112, 112, 112, 112, 120, 120, 120, 120, | |
145 | 120, 120, 120, 120, 120, 120, 120, 120, | |
146 | 0, -120, -120, -120, -120, -120, -120, -120, | |
147 | -120, -120, -120, -120, -120, -112, -112, -112, | |
148 | -112, -112, -112, -112, -112, -112, -104, -104, | |
149 | -104, -104, -104, -104, -104, -104, -104, -104, | |
150 | -104, -88, -88, -88, -88, -88, -88, -88, | |
151 | -88, -88, -88, -88, -80, -80, -80, -80, | |
152 | -80, -80, -80, -80, -80, -80, -80, -80, | |
153 | -80, -64, -64, -64, -64, -64, -64, -64, | |
154 | -64, -64, -64, -64, -64, -64, -64, -64, | |
155 | -64, -48, -48, -48, -48, -48, -48, -48, | |
156 | -48, -48, -48, -48, -48, -48, -48, -48, | |
157 | -48, -48, -48, -48, -48, -48, -48, -48, | |
158 | -48, 0, 0, 0, 0, 0, 0, 0, | |
159 | 0, 0, 0, 0, 0, 0, 0, 0, | |
160 | 0, 0, 0, 0, 0, 0, 0, 0, | |
161 | 0, 0, 0, 0, 0, 0, 0, 0, | |
162 | }, | |
163 | { /* bi=5, bo=2 r=2.0:PSNR=43.175 */ | |
164 | 0, 0, 0, 0, 0, 0, 0, 0, | |
165 | 0, 0, 0, 0, 0, 0, 0, 0, | |
166 | 0, 0, 0, 0, 0, 0, 0, 0, | |
167 | 0, 0, 0, 0, 0, 0, 0, 0, | |
168 | 0, 0, 0, 0, 0, 0, 0, 0, | |
169 | 0, 0, 0, 0, 0, 0, 0, 0, | |
170 | 0, 0, 0, 0, 0, 0, 0, 0, | |
171 | 0, 0, 0, 0, 0, 0, 0, 0, | |
172 | 88, 88, 88, 88, 88, 88, 88, 88, | |
173 | 88, 88, 88, 88, 88, 88, 88, 88, | |
174 | 88, 88, 88, 88, 88, 88, 88, 88, | |
175 | 88, 88, 88, 88, 88, 88, 88, 88, | |
176 | 88, 88, 88, 88, 88, 88, 88, 88, | |
177 | 88, 88, 88, 88, 88, 88, 88, 88, | |
178 | 88, 88, 88, 88, 88, 88, 88, 88, | |
179 | 88, 88, 88, 88, 88, 88, 88, 88, | |
180 | 0, -88, -88, -88, -88, -88, -88, -88, | |
181 | -88, -88, -88, -88, -88, -88, -88, -88, | |
182 | -88, -88, -88, -88, -88, -88, -88, -88, | |
183 | -88, -88, -88, -88, -88, -88, -88, -88, | |
184 | -88, -88, -88, -88, -88, -88, -88, -88, | |
185 | -88, -88, -88, -88, -88, -88, -88, -88, | |
186 | -88, -88, -88, -88, -88, -88, -88, -88, | |
187 | -88, -88, -88, -88, -88, -88, -88, -88, | |
188 | -88, 0, 0, 0, 0, 0, 0, 0, | |
189 | 0, 0, 0, 0, 0, 0, 0, 0, | |
190 | 0, 0, 0, 0, 0, 0, 0, 0, | |
191 | 0, 0, 0, 0, 0, 0, 0, 0, | |
192 | 0, 0, 0, 0, 0, 0, 0, 0, | |
193 | 0, 0, 0, 0, 0, 0, 0, 0, | |
194 | 0, 0, 0, 0, 0, 0, 0, 0, | |
195 | 0, 0, 0, 0, 0, 0, 0, 0, | |
196 | } | |
197 | }; | |
198 | ||
199 | static const int8_t *zywrle_param[3][3][3]={ | |
200 | {{zywrle_conv[0], zywrle_conv[2], zywrle_conv[0]}, | |
201 | {zywrle_conv[0], zywrle_conv[0], zywrle_conv[0]}, | |
202 | {zywrle_conv[0], zywrle_conv[0], zywrle_conv[0]}}, | |
203 | {{zywrle_conv[0], zywrle_conv[3], zywrle_conv[0]}, | |
204 | {zywrle_conv[1], zywrle_conv[1], zywrle_conv[1]}, | |
205 | {zywrle_conv[0], zywrle_conv[0], zywrle_conv[0]}}, | |
206 | {{zywrle_conv[0], zywrle_conv[3], zywrle_conv[0]}, | |
207 | {zywrle_conv[2], zywrle_conv[2], zywrle_conv[2]}, | |
208 | {zywrle_conv[1], zywrle_conv[1], zywrle_conv[1]}}, | |
209 | }; | |
210 | #endif | |
211 | ||
212 | /* Load/Save pixel stuffs. */ | |
213 | #define ZYWRLE_YMASK15 0xFFFFFFF8 | |
214 | #define ZYWRLE_UVMASK15 0xFFFFFFF8 | |
215 | #define ZYWRLE_LOAD_PIXEL15(src, r, g, b) \ | |
216 | do { \ | |
217 | r = (((uint8_t*)src)[S_1]<< 1)& 0xF8; \ | |
218 | g = (((uint8_t*)src)[S_1]<< 6) | (((uint8_t*)src)[S_0]>> 2); \ | |
219 | g &= 0xF8; \ | |
220 | b = (((uint8_t*)src)[S_0]<< 3)& 0xF8; \ | |
221 | } while (0) | |
222 | ||
223 | #define ZYWRLE_SAVE_PIXEL15(dst, r, g, b) \ | |
224 | do { \ | |
225 | r &= 0xF8; \ | |
226 | g &= 0xF8; \ | |
227 | b &= 0xF8; \ | |
228 | ((uint8_t*)dst)[S_1] = (uint8_t)((r >> 1)|(g >> 6)); \ | |
229 | ((uint8_t*)dst)[S_0] = (uint8_t)(((b >> 3)|(g << 2))& 0xFF); \ | |
230 | } while (0) | |
231 | ||
232 | #define ZYWRLE_YMASK16 0xFFFFFFFC | |
233 | #define ZYWRLE_UVMASK16 0xFFFFFFF8 | |
234 | #define ZYWRLE_LOAD_PIXEL16(src, r, g, b) \ | |
235 | do { \ | |
236 | r = ((uint8_t*)src)[S_1] & 0xF8; \ | |
237 | g = (((uint8_t*)src)[S_1]<< 5) | (((uint8_t*)src)[S_0] >> 3); \ | |
238 | g &= 0xFC; \ | |
239 | b = (((uint8_t*)src)[S_0]<< 3) & 0xF8; \ | |
240 | } while (0) | |
241 | ||
242 | #define ZYWRLE_SAVE_PIXEL16(dst, r, g,b) \ | |
243 | do { \ | |
244 | r &= 0xF8; \ | |
245 | g &= 0xFC; \ | |
246 | b &= 0xF8; \ | |
247 | ((uint8_t*)dst)[S_1] = (uint8_t)(r | (g >> 5)); \ | |
248 | ((uint8_t*)dst)[S_0] = (uint8_t)(((b >> 3)|(g << 3)) & 0xFF); \ | |
249 | } while (0) | |
250 | ||
251 | #define ZYWRLE_YMASK32 0xFFFFFFFF | |
252 | #define ZYWRLE_UVMASK32 0xFFFFFFFF | |
253 | #define ZYWRLE_LOAD_PIXEL32(src, r, g, b) \ | |
254 | do { \ | |
255 | r = ((uint8_t*)src)[L_2]; \ | |
256 | g = ((uint8_t*)src)[L_1]; \ | |
257 | b = ((uint8_t*)src)[L_0]; \ | |
258 | } while (0) | |
259 | #define ZYWRLE_SAVE_PIXEL32(dst, r, g, b) \ | |
260 | do { \ | |
261 | ((uint8_t*)dst)[L_2] = (uint8_t)r; \ | |
262 | ((uint8_t*)dst)[L_1] = (uint8_t)g; \ | |
263 | ((uint8_t*)dst)[L_0] = (uint8_t)b; \ | |
264 | } while (0) | |
265 | ||
266 | static inline void harr(int8_t *px0, int8_t *px1) | |
267 | { | |
268 | /* Piecewise-Linear Harr(PLHarr) */ | |
269 | int x0 = (int)*px0, x1 = (int)*px1; | |
270 | int orgx0 = x0, orgx1 = x1; | |
271 | ||
272 | if ((x0 ^ x1) & 0x80) { | |
273 | /* differ sign */ | |
274 | x1 += x0; | |
275 | if (((x1 ^ orgx1) & 0x80) == 0) { | |
276 | /* |x1| > |x0| */ | |
277 | x0 -= x1; /* H = -B */ | |
278 | } | |
279 | } else { | |
280 | /* same sign */ | |
281 | x0 -= x1; | |
282 | if (((x0 ^ orgx0) & 0x80) == 0) { | |
283 | /* |x0| > |x1| */ | |
284 | x1 += x0; /* L = A */ | |
285 | } | |
286 | } | |
287 | *px0 = (int8_t)x1; | |
288 | *px1 = (int8_t)x0; | |
289 | } | |
290 | ||
291 | /* | |
292 | 1D-Wavelet transform. | |
293 | ||
294 | In coefficients array, the famous 'pyramid' decomposition is well used. | |
295 | ||
296 | 1D Model: | |
297 | |L0L0L0L0|L0L0L0L0|H0H0H0H0|H0H0H0H0| : level 0 | |
298 | |L1L1L1L1|H1H1H1H1|H0H0H0H0|H0H0H0H0| : level 1 | |
299 | ||
300 | But this method needs line buffer because H/L is different position from X0/X1. | |
301 | So, I used 'interleave' decomposition instead of it. | |
302 | ||
303 | 1D Model: | |
304 | |L0H0L0H0|L0H0L0H0|L0H0L0H0|L0H0L0H0| : level 0 | |
305 | |L1H0H1H0|L1H0H1H0|L1H0H1H0|L1H0H1H0| : level 1 | |
306 | ||
307 | In this method, H/L and X0/X1 is always same position. | |
308 | This lead us to more speed and less memory. | |
309 | Of cause, the result of both method is quite same | |
310 | because it's only difference that coefficient position. | |
311 | */ | |
312 | static inline void wavelet_level(int *data, int size, int l, int skip_pixel) | |
313 | { | |
314 | int s, ofs; | |
315 | int8_t *px0; | |
316 | int8_t *end; | |
317 | ||
318 | px0 = (int8_t*)data; | |
319 | s = (8 << l) * skip_pixel; | |
320 | end = px0 + (size >> (l + 1)) * s; | |
321 | s -= 2; | |
322 | ofs = (4 << l) * skip_pixel; | |
323 | ||
324 | while (px0 < end) { | |
325 | harr(px0, px0 + ofs); | |
326 | px0++; | |
327 | harr(px0, px0 + ofs); | |
328 | px0++; | |
329 | harr(px0, px0 + ofs); | |
330 | px0 += s; | |
331 | } | |
332 | } | |
333 | ||
334 | #ifndef ZYWRLE_QUANTIZE | |
335 | /* Type A:lower bit omitting of EZW style. */ | |
336 | static inline void filter_wavelet_square(int *buf, int width, int height, | |
337 | int level, int l) | |
338 | { | |
339 | int r, s; | |
340 | int x, y; | |
341 | int *h; | |
342 | const unsigned int *m; | |
343 | ||
344 | m = &(zywrle_param[level - 1][l]); | |
345 | s = 2 << l; | |
346 | ||
347 | for (r = 1; r < 4; r++) { | |
348 | h = buf; | |
349 | if (r & 0x01) { | |
350 | h += s >> 1; | |
351 | } | |
352 | if (r & 0x02) { | |
353 | h += (s >> 1) * width; | |
354 | } | |
355 | for (y = 0; y < height / s; y++) { | |
356 | for (x = 0; x < width / s; x++) { | |
357 | /* | |
358 | these are same following code. | |
359 | h[x] = h[x] / (~m[x]+1) * (~m[x]+1); | |
360 | ( round h[x] with m[x] bit ) | |
361 | '&' operator isn't 'round' but is 'floor'. | |
362 | So, we must offset when h[x] is negative. | |
363 | */ | |
364 | if (((int8_t*)h)[0] & 0x80) { | |
365 | ((int8_t*)h)[0] += ~((int8_t*)m)[0]; | |
366 | } | |
367 | if (((int8_t*)h)[1] & 0x80) { | |
368 | ((int8_t*)h)[1] += ~((int8_t*)m)[1]; | |
369 | } | |
370 | if (((int8_t*)h)[2] & 0x80) { | |
371 | ((int8_t*)h)[2] += ~((int8_t*)m)[2]; | |
372 | } | |
373 | *h &= *m; | |
374 | h += s; | |
375 | } | |
376 | h += (s-1)*width; | |
377 | } | |
378 | } | |
379 | } | |
380 | #else | |
381 | /* | |
382 | Type B:Non liner quantization filter. | |
383 | ||
384 | Coefficients have Gaussian curve and smaller value which is | |
385 | large part of coefficients isn't more important than larger value. | |
386 | So, I use filter of Non liner quantize/dequantize table. | |
387 | In general, Non liner quantize formula is explained as following. | |
388 | ||
389 | y=f(x) = sign(x)*round( ((abs(x)/(2^7))^ r )* 2^(bo-1) )*2^(8-bo) | |
390 | x=f-1(y) = sign(y)*round( ((abs(y)/(2^7))^(1/r))* 2^(bi-1) )*2^(8-bi) | |
391 | ( r:power coefficient bi:effective MSB in input bo:effective MSB in output ) | |
392 | ||
393 | r < 1.0 : Smaller value is more important than larger value. | |
394 | r > 1.0 : Larger value is more important than smaller value. | |
395 | r = 1.0 : Liner quantization which is same with EZW style. | |
396 | ||
397 | r = 0.75 is famous non liner quantization used in MP3 audio codec. | |
398 | In contrast to audio data, larger value is important in wavelet coefficients. | |
399 | So, I select r = 2.0 table( quantize is x^2, dequantize sqrt(x) ). | |
400 | ||
401 | As compared with EZW style liner quantization, this filter tended to be | |
402 | more sharp edge and be more compression rate but be more blocking noise and be | |
403 | less quality. Especially, the surface of graphic objects has distinguishable | |
404 | noise in middle quality mode. | |
405 | ||
406 | We need only quantized-dequantized(filtered) value rather than quantized value | |
407 | itself because all values are packed or palette-lized in later ZRLE section. | |
408 | This lead us not to need to modify client decoder when we change | |
409 | the filtering procedure in future. | |
410 | Client only decodes coefficients given by encoder. | |
411 | */ | |
412 | static inline void filter_wavelet_square(int *buf, int width, int height, | |
413 | int level, int l) | |
414 | { | |
415 | int r, s; | |
416 | int x, y; | |
417 | int *h; | |
418 | const int8_t **m; | |
419 | ||
420 | m = zywrle_param[level - 1][l]; | |
421 | s = 2 << l; | |
422 | ||
423 | for (r = 1; r < 4; r++) { | |
424 | h = buf; | |
425 | if (r & 0x01) { | |
426 | h += s >> 1; | |
427 | } | |
428 | if (r & 0x02) { | |
429 | h += (s >> 1) * width; | |
430 | } | |
431 | for (y = 0; y < height / s; y++) { | |
432 | for (x = 0; x < width / s; x++) { | |
433 | ((int8_t*)h)[0] = m[0][((uint8_t*)h)[0]]; | |
434 | ((int8_t*)h)[1] = m[1][((uint8_t*)h)[1]]; | |
435 | ((int8_t*)h)[2] = m[2][((uint8_t*)h)[2]]; | |
436 | h += s; | |
437 | } | |
438 | h += (s - 1) * width; | |
439 | } | |
440 | } | |
441 | } | |
442 | #endif | |
443 | ||
444 | static inline void wavelet(int *buf, int width, int height, int level) | |
445 | { | |
446 | int l, s; | |
447 | int *top; | |
448 | int *end; | |
449 | ||
450 | for (l = 0; l < level; l++) { | |
451 | top = buf; | |
452 | end = buf + height * width; | |
453 | s = width << l; | |
454 | while (top < end) { | |
455 | wavelet_level(top, width, l, 1); | |
456 | top += s; | |
457 | } | |
458 | top = buf; | |
459 | end = buf + width; | |
460 | s = 1<<l; | |
461 | while (top < end) { | |
462 | wavelet_level(top, height, l, width); | |
463 | top += s; | |
464 | } | |
465 | filter_wavelet_square(buf, width, height, level, l); | |
466 | } | |
467 | } | |
468 | ||
469 | ||
470 | /* Load/Save coefficients stuffs. | |
471 | Coefficients manages as 24 bits little-endian pixel. */ | |
472 | #define ZYWRLE_LOAD_COEFF(src, r, g, b) \ | |
473 | do { \ | |
474 | r = ((int8_t*)src)[2]; \ | |
475 | g = ((int8_t*)src)[1]; \ | |
476 | b = ((int8_t*)src)[0]; \ | |
477 | } while (0) | |
478 | ||
479 | #define ZYWRLE_SAVE_COEFF(dst, r, g, b) \ | |
480 | do { \ | |
481 | ((int8_t*)dst)[2] = (int8_t)r; \ | |
482 | ((int8_t*)dst)[1] = (int8_t)g; \ | |
483 | ((int8_t*)dst)[0] = (int8_t)b; \ | |
484 | } while (0) | |
485 | ||
486 | /* | |
487 | RGB <=> YUV conversion stuffs. | |
488 | YUV coversion is explained as following formula in strict meaning: | |
489 | Y = 0.299R + 0.587G + 0.114B ( 0<=Y<=255) | |
490 | U = -0.169R - 0.331G + 0.500B (-128<=U<=127) | |
491 | V = 0.500R - 0.419G - 0.081B (-128<=V<=127) | |
492 | ||
493 | I use simple conversion RCT(reversible color transform) which is described | |
494 | in JPEG-2000 specification. | |
495 | Y = (R + 2G + B)/4 ( 0<=Y<=255) | |
496 | U = B-G (-256<=U<=255) | |
497 | V = R-G (-256<=V<=255) | |
498 | */ | |
499 | ||
500 | /* RCT is N-bit RGB to N-bit Y and N+1-bit UV. | |
501 | For make Same N-bit, UV is lossy. | |
502 | More exact PLHarr, we reduce to odd range(-127<=x<=127). */ | |
503 | #define ZYWRLE_RGBYUV_(r, g, b, y, u, v, ymask, uvmask) \ | |
504 | do { \ | |
505 | y = (r + (g << 1) + b) >> 2; \ | |
506 | u = b - g; \ | |
507 | v = r - g; \ | |
508 | y -= 128; \ | |
509 | u >>= 1; \ | |
510 | v >>= 1; \ | |
511 | y &= ymask; \ | |
512 | u &= uvmask; \ | |
513 | v &= uvmask; \ | |
514 | if (y == -128) { \ | |
515 | y += (0xFFFFFFFF - ymask + 1); \ | |
516 | } \ | |
517 | if (u == -128) { \ | |
518 | u += (0xFFFFFFFF - uvmask + 1); \ | |
519 | } \ | |
520 | if (v == -128) { \ | |
521 | v += (0xFFFFFFFF - uvmask + 1); \ | |
522 | } \ | |
523 | } while (0) | |
524 | ||
525 | ||
526 | /* | |
527 | coefficient packing/unpacking stuffs. | |
528 | Wavelet transform makes 4 sub coefficient image from 1 original image. | |
529 | ||
530 | model with pyramid decomposition: | |
531 | +------+------+ | |
532 | | | | | |
533 | | L | Hx | | |
534 | | | | | |
535 | +------+------+ | |
536 | | | | | |
537 | | H | Hxy | | |
538 | | | | | |
539 | +------+------+ | |
540 | ||
541 | So, we must transfer each sub images individually in strict meaning. | |
542 | But at least ZRLE meaning, following one decompositon image is same as | |
543 | avobe individual sub image. I use this format. | |
544 | (Strictly saying, transfer order is reverse(Hxy->Hy->Hx->L) | |
545 | for simplified procedure for any wavelet level.) | |
546 | ||
547 | +------+------+ | |
548 | | L | | |
549 | +------+------+ | |
550 | | Hx | | |
551 | +------+------+ | |
552 | | Hy | | |
553 | +------+------+ | |
554 | | Hxy | | |
555 | +------+------+ | |
556 | */ | |
557 | #define ZYWRLE_INC_PTR(data) \ | |
558 | do { \ | |
559 | data++; \ | |
560 | if( data - p >= (w + uw) ) { \ | |
561 | data += scanline-(w + uw); \ | |
562 | p = data; \ | |
563 | } \ | |
564 | } while (0) | |
565 | ||
566 | #define ZYWRLE_TRANSFER_COEFF(buf, data, t, w, h, scanline, level, TRANS) \ | |
567 | do { \ | |
568 | ph = buf; \ | |
569 | s = 2 << level; \ | |
570 | if (t & 0x01) { \ | |
571 | ph += s >> 1; \ | |
572 | } \ | |
573 | if (t & 0x02) { \ | |
574 | ph += (s >> 1) * w; \ | |
575 | } \ | |
576 | end = ph + h * w; \ | |
577 | while (ph < end) { \ | |
578 | line = ph + w; \ | |
579 | while (ph < line) { \ | |
580 | TRANS \ | |
581 | ZYWRLE_INC_PTR(data); \ | |
582 | ph += s; \ | |
583 | } \ | |
584 | ph += (s - 1) * w; \ | |
585 | } \ | |
586 | } while (0) | |
587 | ||
588 | #define ZYWRLE_PACK_COEFF(buf, data, t, width, height, scanline, level) \ | |
589 | ZYWRLE_TRANSFER_COEFF(buf, data, t, width, height, scanline, level, \ | |
590 | ZYWRLE_LOAD_COEFF(ph, r, g, b); \ | |
591 | ZYWRLE_SAVE_PIXEL(data, r, g, b);) | |
592 | ||
593 | #define ZYWRLE_UNPACK_COEFF(buf, data, t, width, height, scanline, level) \ | |
594 | ZYWRLE_TRANSFER_COEFF(buf, data, t, width, height, scanline, level, \ | |
595 | ZYWRLE_LOAD_PIXEL(data, r, g, b); \ | |
596 | ZYWRLE_SAVE_COEFF(ph, r, g, b);) | |
597 | ||
598 | #define ZYWRLE_SAVE_UNALIGN(data, TRANS) \ | |
599 | do { \ | |
600 | top = buf + w * h; \ | |
601 | end = buf + (w + uw) * (h + uh); \ | |
602 | while (top < end) { \ | |
603 | TRANS \ | |
604 | ZYWRLE_INC_PTR(data); \ | |
605 | top++; \ | |
606 | } \ | |
607 | } while (0) | |
608 | ||
609 | #define ZYWRLE_LOAD_UNALIGN(data,TRANS) \ | |
610 | do { \ | |
611 | top = buf + w * h; \ | |
612 | if (uw) { \ | |
613 | p = data + w; \ | |
614 | end = (int*)(p + h * scanline); \ | |
615 | while (p < (ZRLE_PIXEL*)end) { \ | |
616 | line = (int*)(p + uw); \ | |
617 | while (p < (ZRLE_PIXEL*)line) { \ | |
618 | TRANS \ | |
619 | p++; \ | |
620 | top++; \ | |
621 | } \ | |
622 | p += scanline - uw; \ | |
623 | } \ | |
624 | } \ | |
625 | if (uh) { \ | |
626 | p = data + h * scanline; \ | |
627 | end = (int*)(p + uh * scanline); \ | |
628 | while (p < (ZRLE_PIXEL*)end) { \ | |
629 | line = (int*)(p + w); \ | |
630 | while (p < (ZRLE_PIXEL*)line) { \ | |
631 | TRANS \ | |
632 | p++; \ | |
633 | top++; \ | |
634 | } \ | |
635 | p += scanline - w; \ | |
636 | } \ | |
637 | } \ | |
638 | if (uw && uh) { \ | |
639 | p= data + w + h * scanline; \ | |
640 | end = (int*)(p + uh * scanline); \ | |
641 | while (p < (ZRLE_PIXEL*)end) { \ | |
642 | line = (int*)(p + uw); \ | |
643 | while (p < (ZRLE_PIXEL*)line) { \ | |
644 | TRANS \ | |
645 | p++; \ | |
646 | top++; \ | |
647 | } \ | |
648 | p += scanline-uw; \ | |
649 | } \ | |
650 | } \ | |
651 | } while (0) | |
652 | ||
653 | static inline void zywrle_calc_size(int *w, int *h, int level) | |
654 | { | |
655 | *w &= ~((1 << level) - 1); | |
656 | *h &= ~((1 << level) - 1); | |
657 | } | |
658 | ||
659 | #endif |