]> git.proxmox.com Git - qemu.git/blame - vl.c
added invlpg emulation
[qemu.git] / vl.c
CommitLineData
0824d6fc
FB
1/*
2 * QEMU based User Mode Linux
3 *
4 * This file is part of proprietary software - it is published here
5 * only for demonstration and information purposes.
6 *
7 * Copyright (c) 2003 Fabrice Bellard
8 */
9#include <stdlib.h>
10#include <stdio.h>
11#include <string.h>
12#include <getopt.h>
13#include <inttypes.h>
14#include <unistd.h>
15#include <sys/mman.h>
16#include <fcntl.h>
17#include <signal.h>
18#include <time.h>
19#include <sys/time.h>
20#include <malloc.h>
21#include <termios.h>
22#include <sys/poll.h>
23#include <errno.h>
f1510b2c
FB
24#include <sys/wait.h>
25
26#include <sys/ioctl.h>
27#include <sys/socket.h>
28#include <linux/if.h>
29#include <linux/if_tun.h>
0824d6fc
FB
30
31#include "cpu-i386.h"
32#include "disas.h"
33
34#define DEBUG_LOGFILE "/tmp/vl.log"
f1510b2c
FB
35#define DEFAULT_NETWORK_SCRIPT "/etc/vl-ifup"
36
0824d6fc
FB
37//#define DEBUG_UNUSED_IOPORT
38
39#define PHYS_RAM_BASE 0xa8000000
40#define KERNEL_LOAD_ADDR 0x00100000
41#define INITRD_LOAD_ADDR 0x00400000
42#define KERNEL_PARAMS_ADDR 0x00090000
43
44/* from plex86 (BSD license) */
45struct __attribute__ ((packed)) linux_params {
46 // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
47 // I just padded out the VESA parts, rather than define them.
48
49 /* 0x000 */ uint8_t orig_x;
50 /* 0x001 */ uint8_t orig_y;
51 /* 0x002 */ uint16_t ext_mem_k;
52 /* 0x004 */ uint16_t orig_video_page;
53 /* 0x006 */ uint8_t orig_video_mode;
54 /* 0x007 */ uint8_t orig_video_cols;
55 /* 0x008 */ uint16_t unused1;
56 /* 0x00a */ uint16_t orig_video_ega_bx;
57 /* 0x00c */ uint16_t unused2;
58 /* 0x00e */ uint8_t orig_video_lines;
59 /* 0x00f */ uint8_t orig_video_isVGA;
60 /* 0x010 */ uint16_t orig_video_points;
61 /* 0x012 */ uint8_t pad0[0x20 - 0x12]; // VESA info.
62 /* 0x020 */ uint16_t cl_magic; // Commandline magic number (0xA33F)
63 /* 0x022 */ uint16_t cl_offset; // Commandline offset. Address of commandline
64 // is calculated as 0x90000 + cl_offset, bu
65 // only if cl_magic == 0xA33F.
66 /* 0x024 */ uint8_t pad1[0x40 - 0x24]; // VESA info.
67
68 /* 0x040 */ uint8_t apm_bios_info[20]; // struct apm_bios_info
69 /* 0x054 */ uint8_t pad2[0x80 - 0x54];
70
71 // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
72 // Might be truncated?
73 /* 0x080 */ uint8_t hd0_info[16]; // hd0-disk-parameter from intvector 0x41
74 /* 0x090 */ uint8_t hd1_info[16]; // hd1-disk-parameter from intvector 0x46
75
76 // System description table truncated to 16 bytes
77 // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
78 /* 0x0a0 */ uint16_t sys_description_len;
79 /* 0x0a2 */ uint8_t sys_description_table[14];
80 // [0] machine id
81 // [1] machine submodel id
82 // [2] BIOS revision
83 // [3] bit1: MCA bus
84
85 /* 0x0b0 */ uint8_t pad3[0x1e0 - 0xb0];
86 /* 0x1e0 */ uint32_t alt_mem_k;
87 /* 0x1e4 */ uint8_t pad4[4];
88 /* 0x1e8 */ uint8_t e820map_entries;
89 /* 0x1e9 */ uint8_t eddbuf_entries; // EDD_NR
90 /* 0x1ea */ uint8_t pad5[0x1f1 - 0x1ea];
91 /* 0x1f1 */ uint8_t setup_sects; // size of setup.S, number of sectors
92 /* 0x1f2 */ uint16_t mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
93 /* 0x1f4 */ uint16_t sys_size; // size of compressed kernel-part in the
94 // (b)zImage-file (in 16 byte units, rounded up)
95 /* 0x1f6 */ uint16_t swap_dev; // (unused AFAIK)
96 /* 0x1f8 */ uint16_t ramdisk_flags;
97 /* 0x1fa */ uint16_t vga_mode; // (old one)
98 /* 0x1fc */ uint16_t orig_root_dev; // (high=Major, low=minor)
99 /* 0x1fe */ uint8_t pad6[1];
100 /* 0x1ff */ uint8_t aux_device_info;
101 /* 0x200 */ uint16_t jump_setup; // Jump to start of setup code,
102 // aka "reserved" field.
103 /* 0x202 */ uint8_t setup_signature[4]; // Signature for SETUP-header, ="HdrS"
104 /* 0x206 */ uint16_t header_format_version; // Version number of header format;
105 /* 0x208 */ uint8_t setup_S_temp0[8]; // Used by setup.S for communication with
106 // boot loaders, look there.
107 /* 0x210 */ uint8_t loader_type;
108 // 0 for old one.
109 // else 0xTV:
110 // T=0: LILO
111 // T=1: Loadlin
112 // T=2: bootsect-loader
113 // T=3: SYSLINUX
114 // T=4: ETHERBOOT
115 // V=version
116 /* 0x211 */ uint8_t loadflags;
117 // bit0 = 1: kernel is loaded high (bzImage)
118 // bit7 = 1: Heap and pointer (see below) set by boot
119 // loader.
120 /* 0x212 */ uint16_t setup_S_temp1;
121 /* 0x214 */ uint32_t kernel_start;
122 /* 0x218 */ uint32_t initrd_start;
123 /* 0x21c */ uint32_t initrd_size;
124 /* 0x220 */ uint8_t setup_S_temp2[4];
125 /* 0x224 */ uint16_t setup_S_heap_end_pointer;
126 /* 0x226 */ uint8_t pad7[0x2d0 - 0x226];
127
128 /* 0x2d0 : Int 15, ax=e820 memory map. */
129 // (linux/include/asm-i386/e820.h, 'struct e820entry')
130#define E820MAX 32
131#define E820_RAM 1
132#define E820_RESERVED 2
133#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
134#define E820_NVS 4
135 struct {
136 uint64_t addr;
137 uint64_t size;
138 uint32_t type;
139 } e820map[E820MAX];
140
141 /* 0x550 */ uint8_t pad8[0x600 - 0x550];
142
143 // BIOS Enhanced Disk Drive Services.
144 // (From linux/include/asm-i386/edd.h, 'struct edd_info')
145 // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
146 /* 0x600 */ uint8_t eddbuf[0x7d4 - 0x600];
147
148 /* 0x7d4 */ uint8_t pad9[0x800 - 0x7d4];
149 /* 0x800 */ uint8_t commandline[0x800];
150
151 /* 0x1000 */
152 uint64_t gdt_table[256];
153 uint64_t idt_table[48];
154};
155
156#define KERNEL_CS 0x10
157#define KERNEL_DS 0x18
158
159typedef void (IOPortWriteFunc)(CPUX86State *env, uint32_t address, uint32_t data);
160typedef uint32_t (IOPortReadFunc)(CPUX86State *env, uint32_t address);
161
162#define MAX_IOPORTS 1024
163
164char phys_ram_file[1024];
165CPUX86State *global_env;
166FILE *logfile = NULL;
167int loglevel;
168IOPortReadFunc *ioport_readb_table[MAX_IOPORTS];
169IOPortWriteFunc *ioport_writeb_table[MAX_IOPORTS];
170IOPortReadFunc *ioport_readw_table[MAX_IOPORTS];
171IOPortWriteFunc *ioport_writew_table[MAX_IOPORTS];
172
173/***********************************************************/
174/* x86 io ports */
175
176uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
177{
178#ifdef DEBUG_UNUSED_IOPORT
179 fprintf(stderr, "inb: port=0x%04x\n", address);
180#endif
181 return 0;
182}
183
184void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
185{
186#ifdef DEBUG_UNUSED_IOPORT
187 fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
188#endif
189}
190
191/* default is to make two byte accesses */
192uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
193{
194 uint32_t data;
195 data = ioport_readb_table[address](env, address);
196 data |= ioport_readb_table[address + 1](env, address + 1) << 8;
197 return data;
198}
199
200void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
201{
202 ioport_writeb_table[address](env, address, data & 0xff);
203 ioport_writeb_table[address + 1](env, address + 1, (data >> 8) & 0xff);
204}
205
206void init_ioports(void)
207{
208 int i;
209
210 for(i = 0; i < MAX_IOPORTS; i++) {
211 ioport_readb_table[i] = default_ioport_readb;
212 ioport_writeb_table[i] = default_ioport_writeb;
213 ioport_readw_table[i] = default_ioport_readw;
214 ioport_writew_table[i] = default_ioport_writew;
215 }
216}
217
218int register_ioport_readb(int start, int length, IOPortReadFunc *func)
219{
220 int i;
221
222 for(i = start; i < start + length; i++)
223 ioport_readb_table[i] = func;
224 return 0;
225}
226
227int register_ioport_writeb(int start, int length, IOPortWriteFunc *func)
228{
229 int i;
230
231 for(i = start; i < start + length; i++)
232 ioport_writeb_table[i] = func;
233 return 0;
234}
235
f1510b2c
FB
236int register_ioport_readw(int start, int length, IOPortReadFunc *func)
237{
238 int i;
239
240 for(i = start; i < start + length; i += 2)
241 ioport_readw_table[i] = func;
242 return 0;
243}
244
245int register_ioport_writew(int start, int length, IOPortWriteFunc *func)
246{
247 int i;
248
249 for(i = start; i < start + length; i += 2)
250 ioport_writew_table[i] = func;
251 return 0;
252}
253
0824d6fc
FB
254void pstrcpy(char *buf, int buf_size, const char *str)
255{
256 int c;
257 char *q = buf;
258
259 if (buf_size <= 0)
260 return;
261
262 for(;;) {
263 c = *str++;
264 if (c == 0 || q >= buf + buf_size - 1)
265 break;
266 *q++ = c;
267 }
268 *q = '\0';
269}
270
271/* strcat and truncate. */
272char *pstrcat(char *buf, int buf_size, const char *s)
273{
274 int len;
275 len = strlen(buf);
276 if (len < buf_size)
277 pstrcpy(buf + len, buf_size - len, s);
278 return buf;
279}
280
281int load_kernel(const char *filename, uint8_t *addr)
282{
283 int fd, size, setup_sects;
284 uint8_t bootsect[512];
285
286 fd = open(filename, O_RDONLY);
287 if (fd < 0)
288 return -1;
289 if (read(fd, bootsect, 512) != 512)
290 goto fail;
291 setup_sects = bootsect[0x1F1];
292 if (!setup_sects)
293 setup_sects = 4;
294 /* skip 16 bit setup code */
295 lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
296 size = read(fd, addr, 16 * 1024 * 1024);
297 if (size < 0)
298 goto fail;
299 close(fd);
300 return size;
301 fail:
302 close(fd);
303 return -1;
304}
305
306/* return the size or -1 if error */
307int load_image(const char *filename, uint8_t *addr)
308{
309 int fd, size;
310 fd = open(filename, O_RDONLY);
311 if (fd < 0)
312 return -1;
313 size = lseek(fd, 0, SEEK_END);
314 lseek(fd, 0, SEEK_SET);
315 if (read(fd, addr, size) != size) {
316 close(fd);
317 return -1;
318 }
319 close(fd);
320 return size;
321}
322
323void cpu_x86_outb(CPUX86State *env, int addr, int val)
324{
325 ioport_writeb_table[addr & (MAX_IOPORTS - 1)](env, addr, val);
326}
327
328void cpu_x86_outw(CPUX86State *env, int addr, int val)
329{
330 ioport_writew_table[addr & (MAX_IOPORTS - 1)](env, addr, val);
331}
332
333void cpu_x86_outl(CPUX86State *env, int addr, int val)
334{
335 fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val);
336}
337
338int cpu_x86_inb(CPUX86State *env, int addr)
339{
340 return ioport_readb_table[addr & (MAX_IOPORTS - 1)](env, addr);
341}
342
343int cpu_x86_inw(CPUX86State *env, int addr)
344{
345 return ioport_readw_table[addr & (MAX_IOPORTS - 1)](env, addr);
346}
347
348int cpu_x86_inl(CPUX86State *env, int addr)
349{
350 fprintf(stderr, "inl: port=0x%04x\n", addr);
351 return 0;
352}
353
354/***********************************************************/
355void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
356{
357}
358
359void hw_error(const char *fmt, ...)
360{
361 va_list ap;
362
363 va_start(ap, fmt);
364 fprintf(stderr, "qemu: hardware error: ");
365 vfprintf(stderr, fmt, ap);
366 fprintf(stderr, "\n");
367#ifdef TARGET_I386
368 cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
369#endif
370 va_end(ap);
371 abort();
372}
373
374/***********************************************************/
375/* vga emulation */
376static uint8_t vga_index;
377static uint8_t vga_regs[256];
378static int last_cursor_pos;
379
380void update_console_messages(void)
381{
382 int c, i, cursor_pos, eol;
383
384 cursor_pos = vga_regs[0x0f] | (vga_regs[0x0e] << 8);
385 eol = 0;
386 for(i = last_cursor_pos; i < cursor_pos; i++) {
387 c = phys_ram_base[0xb8000 + (i) * 2];
388 if (c >= ' ') {
389 putchar(c);
390 eol = 0;
391 } else {
392 if (!eol)
393 putchar('\n');
394 eol = 1;
395 }
396 }
397 fflush(stdout);
398 last_cursor_pos = cursor_pos;
399}
400
401/* just to see first Linux console messages, we intercept cursor position */
402void vga_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
403{
404 switch(addr) {
405 case 0x3d4:
406 vga_index = data;
407 break;
408 case 0x3d5:
409 vga_regs[vga_index] = data;
410 if (vga_index == 0x0f)
411 update_console_messages();
412 break;
413 }
414
415}
416
417/***********************************************************/
418/* cmos emulation */
419
420#define RTC_SECONDS 0
421#define RTC_SECONDS_ALARM 1
422#define RTC_MINUTES 2
423#define RTC_MINUTES_ALARM 3
424#define RTC_HOURS 4
425#define RTC_HOURS_ALARM 5
426#define RTC_ALARM_DONT_CARE 0xC0
427
428#define RTC_DAY_OF_WEEK 6
429#define RTC_DAY_OF_MONTH 7
430#define RTC_MONTH 8
431#define RTC_YEAR 9
432
433#define RTC_REG_A 10
434#define RTC_REG_B 11
435#define RTC_REG_C 12
436#define RTC_REG_D 13
437
438/* PC cmos mappings */
439#define REG_EQUIPMENT_BYTE 0x14
440
441uint8_t cmos_data[128];
442uint8_t cmos_index;
443
444void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
445{
446 if (addr == 0x70) {
447 cmos_index = data & 0x7f;
448 }
449}
450
451uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
452{
453 int ret;
454
455 if (addr == 0x70) {
456 return 0xff;
457 } else {
458 /* toggle update-in-progress bit for Linux (same hack as
459 plex86) */
460 ret = cmos_data[cmos_index];
461 if (cmos_index == RTC_REG_A)
462 cmos_data[RTC_REG_A] ^= 0x80;
463 else if (cmos_index == RTC_REG_C)
464 cmos_data[RTC_REG_C] = 0x00;
465 return ret;
466 }
467}
468
469
470static inline int to_bcd(int a)
471{
472 return ((a / 10) << 4) | (a % 10);
473}
474
475void cmos_init(void)
476{
477 struct tm *tm;
478 time_t ti;
479
480 ti = time(NULL);
481 tm = gmtime(&ti);
482 cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
483 cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
484 cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
485 cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
486 cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
487 cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon);
488 cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
489
490 cmos_data[RTC_REG_A] = 0x26;
491 cmos_data[RTC_REG_B] = 0x02;
492 cmos_data[RTC_REG_C] = 0x00;
493 cmos_data[RTC_REG_D] = 0x80;
494
495 cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
496
497 register_ioport_writeb(0x70, 2, cmos_ioport_write);
498 register_ioport_readb(0x70, 2, cmos_ioport_read);
499}
500
501/***********************************************************/
502/* 8259 pic emulation */
503
504typedef struct PicState {
505 uint8_t last_irr; /* edge detection */
506 uint8_t irr; /* interrupt request register */
507 uint8_t imr; /* interrupt mask register */
508 uint8_t isr; /* interrupt service register */
509 uint8_t priority_add; /* used to compute irq priority */
510 uint8_t irq_base;
511 uint8_t read_reg_select;
512 uint8_t special_mask;
513 uint8_t init_state;
514 uint8_t auto_eoi;
515 uint8_t rotate_on_autoeoi;
516 uint8_t init4; /* true if 4 byte init */
517} PicState;
518
519/* 0 is master pic, 1 is slave pic */
520PicState pics[2];
521int pic_irq_requested;
522
523/* set irq level. If an edge is detected, then the IRR is set to 1 */
524static inline void pic_set_irq1(PicState *s, int irq, int level)
525{
526 int mask;
527 mask = 1 << irq;
528 if (level) {
529 if ((s->last_irr & mask) == 0)
530 s->irr |= mask;
531 s->last_irr |= mask;
532 } else {
533 s->last_irr &= ~mask;
534 }
535}
536
537static inline int get_priority(PicState *s, int mask)
538{
539 int priority;
540 if (mask == 0)
541 return -1;
542 priority = 7;
543 while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
544 priority--;
545 return priority;
546}
547
548/* return the pic wanted interrupt. return -1 if none */
549static int pic_get_irq(PicState *s)
550{
551 int mask, cur_priority, priority;
552
553 mask = s->irr & ~s->imr;
554 priority = get_priority(s, mask);
555 if (priority < 0)
556 return -1;
557 /* compute current priority */
558 cur_priority = get_priority(s, s->isr);
559 if (priority > cur_priority) {
560 /* higher priority found: an irq should be generated */
561 return priority;
562 } else {
563 return -1;
564 }
565}
566
567void pic_set_irq(int irq, int level)
568{
569 pic_set_irq1(&pics[irq >> 3], irq & 7, level);
570}
571
572/* can be called at any time outside cpu_exec() to raise irqs if
573 necessary */
574void pic_handle_irq(void)
575{
576 int irq2, irq;
577
578 /* first look at slave pic */
579 irq2 = pic_get_irq(&pics[1]);
580 if (irq2 >= 0) {
581 /* if irq request by slave pic, signal master PIC */
582 pic_set_irq1(&pics[0], 2, 1);
583 pic_set_irq1(&pics[0], 2, 0);
584 }
585 /* look at requested irq */
586 irq = pic_get_irq(&pics[0]);
587 if (irq >= 0) {
588 if (irq == 2) {
589 /* from slave pic */
590 pic_irq_requested = 8 + irq2;
591 } else {
592 /* from master pic */
593 pic_irq_requested = irq;
594 }
595 global_env->hard_interrupt_request = 1;
596 }
597}
598
599int cpu_x86_get_pic_interrupt(CPUX86State *env)
600{
601 int irq, irq2, intno;
602
603 /* signal the pic that the irq was acked by the CPU */
604 irq = pic_irq_requested;
605 if (irq >= 8) {
606 irq2 = irq & 7;
607 pics[1].isr |= (1 << irq2);
608 pics[1].irr &= ~(1 << irq2);
609 irq = 2;
610 intno = pics[1].irq_base + irq2;
611 } else {
612 intno = pics[0].irq_base + irq;
613 }
614 pics[0].isr |= (1 << irq);
615 pics[0].irr &= ~(1 << irq);
616 return intno;
617}
618
619void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
620{
621 PicState *s;
622 int priority;
623
624 s = &pics[addr >> 7];
625 addr &= 1;
626 if (addr == 0) {
627 if (val & 0x10) {
628 /* init */
629 memset(s, 0, sizeof(PicState));
630 s->init_state = 1;
631 s->init4 = val & 1;
632 if (val & 0x02)
633 hw_error("single mode not supported");
634 if (val & 0x08)
635 hw_error("level sensitive irq not supported");
636 } else if (val & 0x08) {
637 if (val & 0x02)
638 s->read_reg_select = val & 1;
639 if (val & 0x40)
640 s->special_mask = (val >> 5) & 1;
641 } else {
642 switch(val) {
643 case 0x00:
644 case 0x80:
645 s->rotate_on_autoeoi = val >> 7;
646 break;
647 case 0x20: /* end of interrupt */
648 case 0xa0:
649 priority = get_priority(s, s->isr);
650 if (priority >= 0) {
651 s->isr &= ~(1 << ((priority + s->priority_add) & 7));
652 }
653 if (val == 0xa0)
654 s->priority_add = (s->priority_add + 1) & 7;
655 break;
656 case 0x60 ... 0x67:
657 priority = val & 7;
658 s->isr &= ~(1 << priority);
659 break;
660 case 0xc0 ... 0xc7:
661 s->priority_add = (val + 1) & 7;
662 break;
663 case 0xe0 ... 0xe7:
664 priority = val & 7;
665 s->isr &= ~(1 << priority);
666 s->priority_add = (priority + 1) & 7;
667 break;
668 }
669 }
670 } else {
671 switch(s->init_state) {
672 case 0:
673 /* normal mode */
674 s->imr = val;
675 break;
676 case 1:
677 s->irq_base = val & 0xf8;
678 s->init_state = 2;
679 break;
680 case 2:
681 if (s->init4) {
682 s->init_state = 3;
683 } else {
684 s->init_state = 0;
685 }
686 break;
687 case 3:
688 s->auto_eoi = (val >> 1) & 1;
689 s->init_state = 0;
690 break;
691 }
692 }
693}
694
695uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr)
696{
697 PicState *s;
698 s = &pics[addr >> 7];
699 addr &= 1;
700 if (addr == 0) {
701 if (s->read_reg_select)
702 return s->isr;
703 else
704 return s->irr;
705 } else {
706 return s->imr;
707 }
708}
709
710void pic_init(void)
711{
712 register_ioport_writeb(0x20, 2, pic_ioport_write);
713 register_ioport_readb(0x20, 2, pic_ioport_read);
714 register_ioport_writeb(0xa0, 2, pic_ioport_write);
715 register_ioport_readb(0xa0, 2, pic_ioport_read);
716}
717
718/***********************************************************/
719/* 8253 PIT emulation */
720
721#define PIT_FREQ 1193182
722
723#define RW_STATE_LSB 0
724#define RW_STATE_MSB 1
725#define RW_STATE_WORD0 2
726#define RW_STATE_WORD1 3
727#define RW_STATE_LATCHED_WORD0 4
728#define RW_STATE_LATCHED_WORD1 5
729
730typedef struct PITChannelState {
731 uint16_t count;
732 uint16_t latched_count;
733 uint8_t rw_state;
734 uint8_t mode;
735 uint8_t bcd; /* not supported */
736 uint8_t gate; /* timer start */
737 int64_t count_load_time;
738} PITChannelState;
739
740PITChannelState pit_channels[3];
741int speaker_data_on;
742
743int64_t ticks_per_sec;
744
745int64_t get_clock(void)
746{
747 struct timeval tv;
748 gettimeofday(&tv, NULL);
749 return tv.tv_sec * 1000000LL + tv.tv_usec;
750}
751
752int64_t cpu_get_ticks(void)
753{
754 int64_t val;
755 asm("rdtsc" : "=A" (val));
756 return val;
757}
758
759void cpu_calibrate_ticks(void)
760{
761 int64_t usec, ticks;
762
763 usec = get_clock();
764 ticks = cpu_get_ticks();
765 usleep(50 * 1000);
766 usec = get_clock() - usec;
767 ticks = cpu_get_ticks() - ticks;
768 ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
769}
770
771static int pit_get_count(PITChannelState *s)
772{
773 int64_t d;
774 int counter;
775
776 d = ((cpu_get_ticks() - s->count_load_time) * PIT_FREQ) /
777 ticks_per_sec;
778 switch(s->mode) {
779 case 0:
780 case 1:
781 case 4:
782 case 5:
783 counter = (s->count - d) & 0xffff;
784 break;
785 default:
786 counter = s->count - (d % s->count);
787 break;
788 }
789 return counter;
790}
791
792/* get pit output bit */
793static int pit_get_out(PITChannelState *s)
794{
795 int64_t d;
796 int out;
797
798 d = ((cpu_get_ticks() - s->count_load_time) * PIT_FREQ) /
799 ticks_per_sec;
800 switch(s->mode) {
801 default:
802 case 0:
803 out = (d >= s->count);
804 break;
805 case 1:
806 out = (d < s->count);
807 break;
808 case 2:
809 if ((d % s->count) == 0 && d != 0)
810 out = 1;
811 else
812 out = 0;
813 break;
814 case 3:
815 out = (d % s->count) < (s->count >> 1);
816 break;
817 case 4:
818 case 5:
819 out = (d == s->count);
820 break;
821 }
822 return out;
823}
824
825void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
826{
827 int channel, access;
828 PITChannelState *s;
829
830 addr &= 3;
831 if (addr == 3) {
832 channel = val >> 6;
833 if (channel == 3)
834 return;
835 s = &pit_channels[channel];
836 access = (val >> 4) & 3;
837 switch(access) {
838 case 0:
839 s->latched_count = pit_get_count(s);
840 s->rw_state = RW_STATE_LATCHED_WORD0;
841 break;
842 default:
843 s->rw_state = access - 1 + RW_STATE_LSB;
844 break;
845 }
846 s->mode = (val >> 1) & 7;
847 s->bcd = val & 1;
848 } else {
849 s = &pit_channels[addr];
850 switch(s->rw_state) {
851 case RW_STATE_LSB:
852 s->count_load_time = cpu_get_ticks();
853 s->count = val;
854 break;
855 case RW_STATE_MSB:
856 s->count_load_time = cpu_get_ticks();
857 s->count = (val << 8);
858 break;
859 case RW_STATE_WORD0:
860 case RW_STATE_WORD1:
861 if (s->rw_state & 1) {
862 s->count_load_time = cpu_get_ticks();
863 s->count = (s->latched_count & 0xff) | (val << 8);
864 } else {
865 s->latched_count = val;
866 }
867 s->rw_state ^= 1;
868 break;
869 }
870 }
871}
872
873uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
874{
875 int ret, count;
876 PITChannelState *s;
877
878 addr &= 3;
879 s = &pit_channels[addr];
880 switch(s->rw_state) {
881 case RW_STATE_LSB:
882 case RW_STATE_MSB:
883 case RW_STATE_WORD0:
884 case RW_STATE_WORD1:
885 count = pit_get_count(s);
886 if (s->rw_state & 1)
887 ret = (count >> 8) & 0xff;
888 else
889 ret = count & 0xff;
890 if (s->rw_state & 2)
891 s->rw_state ^= 1;
892 break;
893 default:
894 case RW_STATE_LATCHED_WORD0:
895 case RW_STATE_LATCHED_WORD1:
896 if (s->rw_state & 1)
897 ret = s->latched_count >> 8;
898 else
899 ret = s->latched_count & 0xff;
900 s->rw_state ^= 1;
901 break;
902 }
903 return ret;
904}
905
906void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
907{
908 speaker_data_on = (val >> 1) & 1;
909 pit_channels[2].gate = val & 1;
910}
911
912uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
913{
914 int out;
915 out = pit_get_out(&pit_channels[2]);
916 return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5);
917}
918
919void pit_init(void)
920{
921 pit_channels[0].gate = 1;
922 pit_channels[1].gate = 1;
923 pit_channels[2].gate = 0;
924
925 register_ioport_writeb(0x40, 4, pit_ioport_write);
926 register_ioport_readb(0x40, 3, pit_ioport_read);
927
928 register_ioport_readb(0x61, 1, speaker_ioport_read);
929 register_ioport_writeb(0x61, 1, speaker_ioport_write);
930 cpu_calibrate_ticks();
931}
932
933/***********************************************************/
934/* serial port emulation */
935
936#define UART_IRQ 4
937
938#define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
939
940#define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
941#define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
942#define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
943#define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
944
945#define UART_IIR_NO_INT 0x01 /* No interrupts pending */
946#define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
947
948#define UART_IIR_MSI 0x00 /* Modem status interrupt */
949#define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
950#define UART_IIR_RDI 0x04 /* Receiver data interrupt */
951#define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
952
953#define UART_LSR_TEMT 0x40 /* Transmitter empty */
954#define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
955#define UART_LSR_BI 0x10 /* Break interrupt indicator */
956#define UART_LSR_FE 0x08 /* Frame error indicator */
957#define UART_LSR_PE 0x04 /* Parity error indicator */
958#define UART_LSR_OE 0x02 /* Overrun error indicator */
959#define UART_LSR_DR 0x01 /* Receiver data ready */
960
961typedef struct SerialState {
962 uint8_t divider;
963 uint8_t rbr; /* receive register */
964 uint8_t ier;
965 uint8_t iir; /* read only */
966 uint8_t lcr;
967 uint8_t mcr;
968 uint8_t lsr; /* read only */
969 uint8_t msr;
970 uint8_t scr;
971} SerialState;
972
973SerialState serial_ports[1];
974
975void serial_update_irq(void)
976{
977 SerialState *s = &serial_ports[0];
978
979 if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
980 s->iir = UART_IIR_RDI;
981 } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
982 s->iir = UART_IIR_THRI;
983 } else {
984 s->iir = UART_IIR_NO_INT;
985 }
986 if (s->iir != UART_IIR_NO_INT) {
987 pic_set_irq(UART_IRQ, 1);
988 } else {
989 pic_set_irq(UART_IRQ, 0);
990 }
991}
992
993void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
994{
995 SerialState *s = &serial_ports[0];
996 unsigned char ch;
997 int ret;
998
999 addr &= 7;
1000 switch(addr) {
1001 default:
1002 case 0:
1003 if (s->lcr & UART_LCR_DLAB) {
1004 s->divider = (s->divider & 0xff00) | val;
1005 } else {
1006 s->lsr &= ~UART_LSR_THRE;
1007 serial_update_irq();
1008
1009 ch = val;
1010 do {
1011 ret = write(1, &ch, 1);
1012 } while (ret != 1);
1013 s->lsr |= UART_LSR_THRE;
1014 s->lsr |= UART_LSR_TEMT;
1015 serial_update_irq();
1016 }
1017 break;
1018 case 1:
1019 if (s->lcr & UART_LCR_DLAB) {
1020 s->divider = (s->divider & 0x00ff) | (val << 8);
1021 } else {
1022 s->ier = val;
1023 serial_update_irq();
1024 }
1025 break;
1026 case 2:
1027 break;
1028 case 3:
1029 s->lcr = val;
1030 break;
1031 case 4:
1032 s->mcr = val;
1033 break;
1034 case 5:
1035 break;
1036 case 6:
1037 s->msr = val;
1038 break;
1039 case 7:
1040 s->scr = val;
1041 break;
1042 }
1043}
1044
1045uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1046{
1047 SerialState *s = &serial_ports[0];
1048 uint32_t ret;
1049
1050 addr &= 7;
1051 switch(addr) {
1052 default:
1053 case 0:
1054 if (s->lcr & UART_LCR_DLAB) {
1055 ret = s->divider & 0xff;
1056 } else {
1057 ret = s->rbr;
1058 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1059 serial_update_irq();
1060 }
1061 break;
1062 case 1:
1063 if (s->lcr & UART_LCR_DLAB) {
1064 ret = (s->divider >> 8) & 0xff;
1065 } else {
1066 ret = s->ier;
1067 }
1068 break;
1069 case 2:
1070 ret = s->iir;
1071 break;
1072 case 3:
1073 ret = s->lcr;
1074 break;
1075 case 4:
1076 ret = s->mcr;
1077 break;
1078 case 5:
1079 ret = s->lsr;
1080 break;
1081 case 6:
1082 ret = s->msr;
1083 break;
1084 case 7:
1085 ret = s->scr;
1086 break;
1087 }
1088 return ret;
1089}
1090
1091#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1092static int term_got_escape;
1093
1094void term_print_help(void)
1095{
1096 printf("\n"
1097 "C-a h print this help\n"
1098 "C-a x exit emulatior\n"
1099 "C-a b send break (magic sysrq)\n"
1100 "C-a C-a send C-a\n"
1101 );
1102}
1103
1104/* called when a char is received */
1105void serial_received_byte(SerialState *s, int ch)
1106{
1107 if (term_got_escape) {
1108 term_got_escape = 0;
1109 switch(ch) {
1110 case 'h':
1111 term_print_help();
1112 break;
1113 case 'x':
1114 exit(0);
1115 break;
1116 case 'b':
1117 /* send break */
1118 s->rbr = 0;
1119 s->lsr |= UART_LSR_BI | UART_LSR_DR;
1120 serial_update_irq();
1121 break;
1122 case TERM_ESCAPE:
1123 goto send_char;
1124 }
1125 } else if (ch == TERM_ESCAPE) {
1126 term_got_escape = 1;
1127 } else {
1128 send_char:
1129 s->rbr = ch;
1130 s->lsr |= UART_LSR_DR;
1131 serial_update_irq();
1132 }
1133}
1134
1135/* init terminal so that we can grab keys */
1136static struct termios oldtty;
1137
1138static void term_exit(void)
1139{
1140 tcsetattr (0, TCSANOW, &oldtty);
1141}
1142
1143static void term_init(void)
1144{
1145 struct termios tty;
1146
1147 tcgetattr (0, &tty);
1148 oldtty = tty;
1149
1150 tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
1151 |INLCR|IGNCR|ICRNL|IXON);
1152 tty.c_oflag |= OPOST;
1153 tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
1154 tty.c_cflag &= ~(CSIZE|PARENB);
1155 tty.c_cflag |= CS8;
1156 tty.c_cc[VMIN] = 1;
1157 tty.c_cc[VTIME] = 0;
1158
1159 tcsetattr (0, TCSANOW, &tty);
1160
1161 atexit(term_exit);
1162
1163 fcntl(0, F_SETFL, O_NONBLOCK);
1164}
1165
1166void serial_init(void)
1167{
1168 SerialState *s = &serial_ports[0];
1169
1170 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1171
1172 register_ioport_writeb(0x3f8, 8, serial_ioport_write);
1173 register_ioport_readb(0x3f8, 8, serial_ioport_read);
1174
1175 term_init();
1176}
1177
f1510b2c
FB
1178/***********************************************************/
1179/* ne2000 emulation */
1180
1181//#define DEBUG_NE2000
1182
1183#define NE2000_IOPORT 0x300
1184#define NE2000_IRQ 9
1185
1186#define MAX_ETH_FRAME_SIZE 1514
1187
1188#define E8390_CMD 0x00 /* The command register (for all pages) */
1189/* Page 0 register offsets. */
1190#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
1191#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
1192#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
1193#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
1194#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
1195#define EN0_TSR 0x04 /* Transmit status reg RD */
1196#define EN0_TPSR 0x04 /* Transmit starting page WR */
1197#define EN0_NCR 0x05 /* Number of collision reg RD */
1198#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
1199#define EN0_FIFO 0x06 /* FIFO RD */
1200#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
1201#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
1202#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
1203#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
1204#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
1205#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
1206#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
1207#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
1208#define EN0_RSR 0x0c /* rx status reg RD */
1209#define EN0_RXCR 0x0c /* RX configuration reg WR */
1210#define EN0_TXCR 0x0d /* TX configuration reg WR */
1211#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
1212#define EN0_DCFG 0x0e /* Data configuration reg WR */
1213#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
1214#define EN0_IMR 0x0f /* Interrupt mask reg WR */
1215#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
1216
1217#define EN1_PHYS 0x11
1218#define EN1_CURPAG 0x17
1219#define EN1_MULT 0x18
1220
1221/* Register accessed at EN_CMD, the 8390 base addr. */
1222#define E8390_STOP 0x01 /* Stop and reset the chip */
1223#define E8390_START 0x02 /* Start the chip, clear reset */
1224#define E8390_TRANS 0x04 /* Transmit a frame */
1225#define E8390_RREAD 0x08 /* Remote read */
1226#define E8390_RWRITE 0x10 /* Remote write */
1227#define E8390_NODMA 0x20 /* Remote DMA */
1228#define E8390_PAGE0 0x00 /* Select page chip registers */
1229#define E8390_PAGE1 0x40 /* using the two high-order bits */
1230#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
1231
1232/* Bits in EN0_ISR - Interrupt status register */
1233#define ENISR_RX 0x01 /* Receiver, no error */
1234#define ENISR_TX 0x02 /* Transmitter, no error */
1235#define ENISR_RX_ERR 0x04 /* Receiver, with error */
1236#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
1237#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
1238#define ENISR_COUNTERS 0x20 /* Counters need emptying */
1239#define ENISR_RDC 0x40 /* remote dma complete */
1240#define ENISR_RESET 0x80 /* Reset completed */
1241#define ENISR_ALL 0x3f /* Interrupts we will enable */
1242
1243/* Bits in received packet status byte and EN0_RSR*/
1244#define ENRSR_RXOK 0x01 /* Received a good packet */
1245#define ENRSR_CRC 0x02 /* CRC error */
1246#define ENRSR_FAE 0x04 /* frame alignment error */
1247#define ENRSR_FO 0x08 /* FIFO overrun */
1248#define ENRSR_MPA 0x10 /* missed pkt */
1249#define ENRSR_PHY 0x20 /* physical/multicast address */
1250#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
1251#define ENRSR_DEF 0x80 /* deferring */
1252
1253/* Transmitted packet status, EN0_TSR. */
1254#define ENTSR_PTX 0x01 /* Packet transmitted without error */
1255#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
1256#define ENTSR_COL 0x04 /* The transmit collided at least once. */
1257#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
1258#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
1259#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
1260#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
1261#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
1262
1263#define NE2000_MEM_SIZE 32768
1264
1265typedef struct NE2000State {
1266 uint8_t cmd;
1267 uint32_t start;
1268 uint32_t stop;
1269 uint8_t boundary;
1270 uint8_t tsr;
1271 uint8_t tpsr;
1272 uint16_t tcnt;
1273 uint16_t rcnt;
1274 uint32_t rsar;
1275 uint8_t isr;
1276 uint8_t dcfg;
1277 uint8_t imr;
1278 uint8_t phys[6]; /* mac address */
1279 uint8_t curpag;
1280 uint8_t mult[8]; /* multicast mask array */
1281 uint8_t mem[NE2000_MEM_SIZE];
1282} NE2000State;
1283
1284NE2000State ne2000_state;
1285int net_fd = -1;
1286char network_script[1024];
1287
1288void ne2000_reset(void)
1289{
1290 NE2000State *s = &ne2000_state;
1291 int i;
1292
1293 s->isr = ENISR_RESET;
1294 s->mem[0] = 0x52;
1295 s->mem[1] = 0x54;
1296 s->mem[2] = 0x00;
1297 s->mem[3] = 0x12;
1298 s->mem[4] = 0x34;
1299 s->mem[5] = 0x56;
1300 s->mem[14] = 0x57;
1301 s->mem[15] = 0x57;
1302
1303 /* duplicate prom data */
1304 for(i = 15;i >= 0; i--) {
1305 s->mem[2 * i] = s->mem[i];
1306 s->mem[2 * i + 1] = s->mem[i];
1307 }
1308}
1309
1310void ne2000_update_irq(NE2000State *s)
1311{
1312 int isr;
1313 isr = s->isr & s->imr;
1314 if (isr)
1315 pic_set_irq(NE2000_IRQ, 1);
1316 else
1317 pic_set_irq(NE2000_IRQ, 0);
1318}
1319
1320int net_init(void)
1321{
1322 struct ifreq ifr;
1323 int fd, ret, pid, status;
1324
1325 fd = open("/dev/net/tun", O_RDWR);
1326 if (fd < 0) {
1327 fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1328 return -1;
1329 }
1330 memset(&ifr, 0, sizeof(ifr));
1331 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1332 pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1333 ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1334 if (ret != 0) {
1335 fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1336 close(fd);
1337 return -1;
1338 }
1339 printf("connected to host network interface: %s\n", ifr.ifr_name);
1340 fcntl(fd, F_SETFL, O_NONBLOCK);
1341 net_fd = fd;
1342
1343 /* try to launch network init script */
1344 pid = fork();
1345 if (pid >= 0) {
1346 if (pid == 0) {
1347 execl(network_script, network_script, ifr.ifr_name, NULL);
1348 exit(1);
1349 }
1350 while (waitpid(pid, &status, 0) != pid);
1351 if (!WIFEXITED(status) ||
1352 WEXITSTATUS(status) != 0) {
1353 fprintf(stderr, "%s: could not launch network script for '%s'\n",
1354 network_script, ifr.ifr_name);
1355 }
1356 }
1357 return 0;
1358}
1359
1360void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1361{
1362#ifdef DEBUG_NE2000
1363 printf("NE2000: sending packet size=%d\n", size);
1364#endif
1365 write(net_fd, buf, size);
1366}
1367
1368/* return true if the NE2000 can receive more data */
1369int ne2000_can_receive(NE2000State *s)
1370{
1371 int avail, index, boundary;
1372
1373 if (s->cmd & E8390_STOP)
1374 return 0;
1375 index = s->curpag << 8;
1376 boundary = s->boundary << 8;
1377 if (index < boundary)
1378 avail = boundary - index;
1379 else
1380 avail = (s->stop - s->start) - (index - boundary);
1381 if (avail < (MAX_ETH_FRAME_SIZE + 4))
1382 return 0;
1383 return 1;
1384}
1385
1386void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1387{
1388 uint8_t *p;
1389 int total_len, next, avail, len, index;
1390
1391#if defined(DEBUG_NE2000)
1392 printf("NE2000: received len=%d\n", size);
1393#endif
1394
1395 index = s->curpag << 8;
1396 /* 4 bytes for header */
1397 total_len = size + 4;
1398 /* address for next packet (4 bytes for CRC) */
1399 next = index + ((total_len + 4 + 255) & ~0xff);
1400 if (next >= s->stop)
1401 next -= (s->stop - s->start);
1402 /* prepare packet header */
1403 p = s->mem + index;
1404 p[0] = ENRSR_RXOK; /* receive status */
1405 p[1] = next >> 8;
1406 p[2] = total_len;
1407 p[3] = total_len >> 8;
1408 index += 4;
1409
1410 /* write packet data */
1411 while (size > 0) {
1412 avail = s->stop - index;
1413 len = size;
1414 if (len > avail)
1415 len = avail;
1416 memcpy(s->mem + index, buf, len);
1417 buf += len;
1418 index += len;
1419 if (index == s->stop)
1420 index = s->start;
1421 size -= len;
1422 }
1423 s->curpag = next >> 8;
1424
1425 /* now we can signal we have receive something */
1426 s->isr |= ENISR_RX;
1427 ne2000_update_irq(s);
1428}
1429
1430void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1431{
1432 NE2000State *s = &ne2000_state;
1433 int offset, page;
1434
1435 addr &= 0xf;
1436#ifdef DEBUG_NE2000
1437 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1438#endif
1439 if (addr == E8390_CMD) {
1440 /* control register */
1441 s->cmd = val;
1442 if (val & E8390_START) {
1443 /* test specific case: zero length transfert */
1444 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1445 s->rcnt == 0) {
1446 s->isr |= ENISR_RDC;
1447 ne2000_update_irq(s);
1448 }
1449 if (val & E8390_TRANS) {
1450 net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1451 /* signal end of transfert */
1452 s->tsr = ENTSR_PTX;
1453 s->isr |= ENISR_TX;
1454 ne2000_update_irq(s);
1455 }
1456 }
1457 } else {
1458 page = s->cmd >> 6;
1459 offset = addr | (page << 4);
1460 switch(offset) {
1461 case EN0_STARTPG:
1462 s->start = val << 8;
1463 break;
1464 case EN0_STOPPG:
1465 s->stop = val << 8;
1466 break;
1467 case EN0_BOUNDARY:
1468 s->boundary = val;
1469 break;
1470 case EN0_IMR:
1471 s->imr = val;
1472 ne2000_update_irq(s);
1473 break;
1474 case EN0_TPSR:
1475 s->tpsr = val;
1476 break;
1477 case EN0_TCNTLO:
1478 s->tcnt = (s->tcnt & 0xff00) | val;
1479 break;
1480 case EN0_TCNTHI:
1481 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1482 break;
1483 case EN0_RSARLO:
1484 s->rsar = (s->rsar & 0xff00) | val;
1485 break;
1486 case EN0_RSARHI:
1487 s->rsar = (s->rsar & 0x00ff) | (val << 8);
1488 break;
1489 case EN0_RCNTLO:
1490 s->rcnt = (s->rcnt & 0xff00) | val;
1491 break;
1492 case EN0_RCNTHI:
1493 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1494 break;
1495 case EN0_DCFG:
1496 s->dcfg = val;
1497 break;
1498 case EN0_ISR:
1499 s->isr &= ~val;
1500 ne2000_update_irq(s);
1501 break;
1502 case EN1_PHYS ... EN1_PHYS + 5:
1503 s->phys[offset - EN1_PHYS] = val;
1504 break;
1505 case EN1_CURPAG:
1506 s->curpag = val;
1507 break;
1508 case EN1_MULT ... EN1_MULT + 7:
1509 s->mult[offset - EN1_MULT] = val;
1510 break;
1511 }
1512 }
1513}
1514
1515uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1516{
1517 NE2000State *s = &ne2000_state;
1518 int offset, page, ret;
1519
1520 addr &= 0xf;
1521 if (addr == E8390_CMD) {
1522 ret = s->cmd;
1523 } else {
1524 page = s->cmd >> 6;
1525 offset = addr | (page << 4);
1526 switch(offset) {
1527 case EN0_TSR:
1528 ret = s->tsr;
1529 break;
1530 case EN0_BOUNDARY:
1531 ret = s->boundary;
1532 break;
1533 case EN0_ISR:
1534 ret = s->isr;
1535 break;
1536 case EN1_PHYS ... EN1_PHYS + 5:
1537 ret = s->phys[offset - EN1_PHYS];
1538 break;
1539 case EN1_CURPAG:
1540 ret = s->curpag;
1541 break;
1542 case EN1_MULT ... EN1_MULT + 7:
1543 ret = s->mult[offset - EN1_MULT];
1544 break;
1545 default:
1546 ret = 0x00;
1547 break;
1548 }
1549 }
1550#ifdef DEBUG_NE2000
1551 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1552#endif
1553 return ret;
1554}
1555
1556void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1557{
1558 NE2000State *s = &ne2000_state;
1559 uint8_t *p;
1560
1561#ifdef DEBUG_NE2000
1562 printf("NE2000: asic write val=0x%04x\n", val);
1563#endif
1564 p = s->mem + s->rsar;
1565 if (s->dcfg & 0x01) {
1566 /* 16 bit access */
1567 p[0] = val;
1568 p[1] = val >> 8;
1569 s->rsar += 2;
1570 s->rcnt -= 2;
1571 } else {
1572 /* 8 bit access */
1573 p[0] = val;
1574 s->rsar++;
1575 s->rcnt--;
1576 }
1577 /* wrap */
1578 if (s->rsar == s->stop)
1579 s->rsar = s->start;
1580 if (s->rcnt == 0) {
1581 /* signal end of transfert */
1582 s->isr |= ENISR_RDC;
1583 ne2000_update_irq(s);
1584 }
1585}
1586
1587uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1588{
1589 NE2000State *s = &ne2000_state;
1590 uint8_t *p;
1591 int ret;
1592
1593 p = s->mem + s->rsar;
1594 if (s->dcfg & 0x01) {
1595 /* 16 bit access */
1596 ret = p[0] | (p[1] << 8);
1597 s->rsar += 2;
1598 s->rcnt -= 2;
1599 } else {
1600 /* 8 bit access */
1601 ret = p[0];
1602 s->rsar++;
1603 s->rcnt--;
1604 }
1605 /* wrap */
1606 if (s->rsar == s->stop)
1607 s->rsar = s->start;
1608 if (s->rcnt == 0) {
1609 /* signal end of transfert */
1610 s->isr |= ENISR_RDC;
1611 ne2000_update_irq(s);
1612 }
1613#ifdef DEBUG_NE2000
1614 printf("NE2000: asic read val=0x%04x\n", ret);
1615#endif
1616 return ret;
1617}
1618
1619void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1620{
1621 /* nothing to do (end of reset pulse) */
1622}
1623
1624uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1625{
1626 ne2000_reset();
1627 return 0;
1628}
1629
1630void ne2000_init(void)
1631{
1632 register_ioport_writeb(NE2000_IOPORT, 16, ne2000_ioport_write);
1633 register_ioport_readb(NE2000_IOPORT, 16, ne2000_ioport_read);
1634
1635 register_ioport_writeb(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write);
1636 register_ioport_readb(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read);
1637 register_ioport_writew(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write);
1638 register_ioport_readw(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read);
1639
1640 register_ioport_writeb(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write);
1641 register_ioport_readb(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read);
1642 ne2000_reset();
1643}
1644
1645/***********************************************************/
0824d6fc
FB
1646/* cpu signal handler */
1647static void host_segv_handler(int host_signum, siginfo_t *info,
1648 void *puc)
1649{
1650 if (cpu_signal_handler(host_signum, info, puc))
1651 return;
1652 term_exit();
1653 abort();
1654}
1655
1656static int timer_irq_pending;
1657
1658static void host_alarm_handler(int host_signum, siginfo_t *info,
1659 void *puc)
1660{
1661 /* just exit from the cpu to have a change to handle timers */
1662 cpu_x86_interrupt(global_env);
1663 timer_irq_pending = 1;
1664}
1665
1666void help(void)
1667{
1668 printf("Virtual Linux version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
1669 "usage: vl [-h] bzImage initrd [kernel parameters...]\n"
1670 "\n"
1671 "'bzImage' is a Linux kernel image (PAGE_OFFSET must be defined\n"
1672 "to 0x90000000 in asm/page.h and arch/i386/vmlinux.lds)\n"
1673 "'initrd' is an initrd image\n"
1674 "-m megs set virtual RAM size to megs MB\n"
f1510b2c 1675 "-n script set network init script [default=%s]\n"
0824d6fc
FB
1676 "-d output log in /tmp/vl.log\n"
1677 "\n"
f1510b2c
FB
1678 "During emulation, use C-a h to get terminal commands:\n",
1679 DEFAULT_NETWORK_SCRIPT);
0824d6fc
FB
1680 term_print_help();
1681 exit(1);
1682}
1683
1684int main(int argc, char **argv)
1685{
1686 int c, ret, initrd_size, i;
1687 struct linux_params *params;
1688 struct sigaction act;
1689 struct itimerval itv;
1690 CPUX86State *env;
1691
1692 /* we never want that malloc() uses mmap() */
1693 mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
1694
1695 phys_ram_size = 32 * 1024 * 1024;
f1510b2c 1696 pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
0824d6fc 1697 for(;;) {
f1510b2c 1698 c = getopt(argc, argv, "hm:dn:");
0824d6fc
FB
1699 if (c == -1)
1700 break;
1701 switch(c) {
1702 case 'h':
1703 help();
1704 break;
1705 case 'm':
1706 phys_ram_size = atoi(optarg) * 1024 * 1024;
1707 if (phys_ram_size <= 0)
1708 help();
1709 break;
1710 case 'd':
1711 loglevel = 1;
1712 break;
f1510b2c
FB
1713 case 'n':
1714 pstrcpy(network_script, sizeof(network_script), optarg);
1715 break;
0824d6fc
FB
1716 }
1717 }
1718 if (optind + 1 >= argc)
1719 help();
1720
1721 /* init debug */
1722 if (loglevel) {
1723 logfile = fopen(DEBUG_LOGFILE, "w");
1724 if (!logfile) {
1725 perror(DEBUG_LOGFILE);
1726 _exit(1);
1727 }
1728 setvbuf(logfile, NULL, _IOLBF, 0);
1729 }
1730
f1510b2c
FB
1731 /* init network tun interface */
1732 net_init();
1733
0824d6fc
FB
1734 /* init the memory */
1735 strcpy(phys_ram_file, "/tmp/vlXXXXXX");
1736 if (mkstemp(phys_ram_file) < 0) {
1737 fprintf(stderr, "Could not create temporary memory file\n");
1738 exit(1);
1739 }
1740 phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
1741 if (phys_ram_fd < 0) {
1742 fprintf(stderr, "Could not open temporary memory file\n");
1743 exit(1);
1744 }
1745 ftruncate(phys_ram_fd, phys_ram_size);
1746 unlink(phys_ram_file);
1747 phys_ram_base = mmap((void *)PHYS_RAM_BASE, phys_ram_size,
1748 PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
1749 phys_ram_fd, 0);
1750 if (phys_ram_base == MAP_FAILED) {
1751 fprintf(stderr, "Could not map physical memory\n");
1752 exit(1);
1753 }
1754
1755 /* now we can load the kernel */
1756 ret = load_kernel(argv[optind], phys_ram_base + KERNEL_LOAD_ADDR);
1757 if (ret < 0) {
1758 fprintf(stderr, "%s: could not load kernel\n", argv[optind]);
1759 exit(1);
1760 }
1761
1762 /* load initrd */
1763 initrd_size = load_image(argv[optind + 1], phys_ram_base + INITRD_LOAD_ADDR);
1764 if (initrd_size < 0) {
1765 fprintf(stderr, "%s: could not load initrd\n", argv[optind + 1]);
1766 exit(1);
1767 }
1768
1769 /* init kernel params */
1770 params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
1771 memset(params, 0, sizeof(struct linux_params));
1772 params->mount_root_rdonly = 0;
1773 params->cl_magic = 0xA33F;
1774 params->cl_offset = params->commandline - (uint8_t *)params;
1775 params->ext_mem_k = (phys_ram_size / 1024) - 1024;
1776 for(i = optind + 2; i < argc; i++) {
1777 if (i != optind + 2)
1778 pstrcat(params->commandline, sizeof(params->commandline), " ");
1779 pstrcat(params->commandline, sizeof(params->commandline), argv[i]);
1780 }
1781 params->loader_type = 0x01;
1782 if (initrd_size > 0) {
1783 params->initrd_start = INITRD_LOAD_ADDR;
1784 params->initrd_size = initrd_size;
1785 }
1786 params->orig_video_lines = 25;
1787 params->orig_video_cols = 80;
1788
1789 /* init basic PC hardware */
1790 init_ioports();
1791 register_ioport_writeb(0x80, 1, ioport80_write);
1792
1793 register_ioport_writeb(0x3d4, 2, vga_ioport_write);
1794
1795 cmos_init();
1796 pic_init();
1797 pit_init();
1798 serial_init();
f1510b2c 1799 ne2000_init();
0824d6fc
FB
1800
1801 /* setup cpu signal handlers for MMU / self modifying code handling */
1802 sigfillset(&act.sa_mask);
1803 act.sa_flags = SA_SIGINFO;
1804 act.sa_sigaction = host_segv_handler;
1805 sigaction(SIGSEGV, &act, NULL);
1806 sigaction(SIGBUS, &act, NULL);
1807
1808 act.sa_sigaction = host_alarm_handler;
1809 sigaction(SIGALRM, &act, NULL);
1810
1811 /* init CPU state */
1812 env = cpu_init();
1813 global_env = env;
1814
1815 /* setup basic memory access */
1816 env->cr[0] = 0x00000033;
1817 cpu_x86_init_mmu(env);
1818
1819 memset(params->idt_table, 0, sizeof(params->idt_table));
1820
1821 params->gdt_table[2] = 0x00cf9a000000ffffLL; /* KERNEL_CS */
1822 params->gdt_table[3] = 0x00cf92000000ffffLL; /* KERNEL_DS */
1823
1824 env->idt.base = (void *)params->idt_table;
1825 env->idt.limit = sizeof(params->idt_table) - 1;
1826 env->gdt.base = (void *)params->gdt_table;
1827 env->gdt.limit = sizeof(params->gdt_table) - 1;
1828
1829 cpu_x86_load_seg(env, R_CS, KERNEL_CS);
1830 cpu_x86_load_seg(env, R_DS, KERNEL_DS);
1831 cpu_x86_load_seg(env, R_ES, KERNEL_DS);
1832 cpu_x86_load_seg(env, R_SS, KERNEL_DS);
1833 cpu_x86_load_seg(env, R_FS, KERNEL_DS);
1834 cpu_x86_load_seg(env, R_GS, KERNEL_DS);
1835
1836 env->eip = KERNEL_LOAD_ADDR;
1837 env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
1838 env->eflags = 0x2;
1839
1840 itv.it_interval.tv_sec = 0;
1841 itv.it_interval.tv_usec = 10 * 1000;
1842 itv.it_value.tv_sec = 0;
1843 itv.it_value.tv_usec = 10 * 1000;
1844 setitimer(ITIMER_REAL, &itv, NULL);
1845
1846 for(;;) {
f1510b2c 1847 struct pollfd ufds[2], *pf, *serial_ufd, *net_ufd;
0824d6fc
FB
1848 int ret, n, timeout;
1849 uint8_t ch;
1850
1851 ret = cpu_x86_exec(env);
1852
1853 /* if hlt instruction, we wait until the next IRQ */
1854 if (ret == EXCP_HLT)
1855 timeout = 10;
1856 else
1857 timeout = 0;
1858 /* poll any events */
f1510b2c
FB
1859 serial_ufd = NULL;
1860 net_ufd = NULL;
0824d6fc
FB
1861 pf = ufds;
1862 if (!(serial_ports[0].lsr & UART_LSR_DR)) {
f1510b2c 1863 serial_ufd = pf;
0824d6fc
FB
1864 pf->fd = 0;
1865 pf->events = POLLIN;
1866 pf++;
1867 }
f1510b2c
FB
1868 if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
1869 net_ufd = pf;
1870 pf->fd = net_fd;
1871 pf->events = POLLIN;
1872 pf++;
1873 }
0824d6fc
FB
1874 ret = poll(ufds, pf - ufds, timeout);
1875 if (ret > 0) {
f1510b2c 1876 if (serial_ufd && (serial_ufd->revents & POLLIN)) {
0824d6fc
FB
1877 n = read(0, &ch, 1);
1878 if (n == 1) {
1879 serial_received_byte(&serial_ports[0], ch);
1880 }
1881 }
f1510b2c
FB
1882 if (net_ufd && (net_ufd->revents & POLLIN)) {
1883 uint8_t buf[MAX_ETH_FRAME_SIZE];
1884
1885 n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
1886 if (n > 0) {
1887 if (n < 60) {
1888 memset(buf + n, 0, 60 - n);
1889 n = 60;
1890 }
1891 ne2000_receive(&ne2000_state, buf, n);
1892 }
1893 }
0824d6fc
FB
1894 }
1895
1896 /* just for testing */
1897 if (timer_irq_pending) {
1898 pic_set_irq(0, 1);
1899 pic_set_irq(0, 0);
1900 timer_irq_pending = 0;
1901 }
1902
1903 pic_handle_irq();
1904 }
1905
1906 return 0;
1907}