]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - EmulatorPkg/CpuRuntimeDxe/MpService.c
Update EFI_ACPI_5_0_PLATFORM_COMMUNICATION_CHANNEL_TABLE_HEADER to follow ACPI5.0...
[mirror_edk2.git] / EmulatorPkg / CpuRuntimeDxe / MpService.c
... / ...
CommitLineData
1/** @file\r
2 Construct MP Services Protocol on top of the EMU Thread protocol.\r
3 This code makes APs show up in the emulator. PcdEmuApCount is the\r
4 number of APs the emulator should produce.\r
5\r
6 The MP Services Protocol provides a generalized way of performing following tasks:\r
7 - Retrieving information of multi-processor environment and MP-related status of\r
8 specific processors.\r
9 - Dispatching user-provided function to APs.\r
10 - Maintain MP-related processor status.\r
11\r
12 The MP Services Protocol must be produced on any system with more than one logical\r
13 processor.\r
14\r
15 The Protocol is available only during boot time.\r
16\r
17 MP Services Protocol is hardware-independent. Most of the logic of this protocol\r
18 is architecturally neutral. It abstracts the multi-processor environment and\r
19 status of processors, and provides interfaces to retrieve information, maintain,\r
20 and dispatch.\r
21\r
22 MP Services Protocol may be consumed by ACPI module. The ACPI module may use this\r
23 protocol to retrieve data that are needed for an MP platform and report them to OS.\r
24 MP Services Protocol may also be used to program and configure processors, such\r
25 as MTRR synchronization for memory space attributes setting in DXE Services.\r
26 MP Services Protocol may be used by non-CPU DXE drivers to speed up platform boot\r
27 by taking advantage of the processing capabilities of the APs, for example, using\r
28 APs to help test system memory in parallel with other device initialization.\r
29 Diagnostics applications may also use this protocol for multi-processor.\r
30\r
31Copyright (c) 2006 - 2011, Intel Corporation. All rights reserved.<BR>\r
32Portitions Copyright (c) 2011, Apple Inc. All rights reserved.\r
33This program and the accompanying materials are licensed and made available under\r
34the terms and conditions of the BSD License that accompanies this distribution.\r
35The full text of the license may be found at\r
36http://opensource.org/licenses/bsd-license.php.\r
37\r
38THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
39WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
40\r
41\r
42**/\r
43\r
44#include "CpuDriver.h"\r
45\r
46\r
47MP_SYSTEM_DATA gMPSystem;\r
48EMU_THREAD_THUNK_PROTOCOL *gThread = NULL;\r
49EFI_EVENT gReadToBootEvent;\r
50BOOLEAN gReadToBoot = FALSE;\r
51UINTN gPollInterval;\r
52\r
53\r
54BOOLEAN\r
55IsBSP (\r
56 VOID\r
57 )\r
58{\r
59 EFI_STATUS Status;\r
60 UINTN ProcessorNumber;\r
61\r
62 Status = CpuMpServicesWhoAmI (&mMpSercicesTemplate, &ProcessorNumber);\r
63 if (EFI_ERROR (Status)) {\r
64 return FALSE;\r
65 }\r
66\r
67 return (gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0;\r
68}\r
69\r
70\r
71VOID\r
72SetApProcedure (\r
73 IN PROCESSOR_DATA_BLOCK *Processor,\r
74 IN EFI_AP_PROCEDURE Procedure,\r
75 IN VOID *ProcedureArgument\r
76 )\r
77{\r
78 gThread->MutexLock (Processor->ProcedureLock);\r
79 Processor->Parameter = ProcedureArgument;\r
80 Processor->Procedure = Procedure;\r
81 gThread->MutexUnlock (Processor->ProcedureLock);\r
82}\r
83\r
84\r
85EFI_STATUS\r
86GetNextBlockedNumber (\r
87 OUT UINTN *NextNumber\r
88 )\r
89{\r
90 UINTN Number;\r
91 PROCESSOR_STATE ProcessorState;\r
92 PROCESSOR_DATA_BLOCK *Data;\r
93\r
94 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {\r
95 Data = &gMPSystem.ProcessorData[Number];\r
96 if ((Data->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {\r
97 // Skip BSP\r
98 continue;\r
99 }\r
100\r
101 gThread->MutexLock (Data->StateLock);\r
102 ProcessorState = Data->State;\r
103 gThread->MutexUnlock (Data->StateLock);\r
104\r
105 if (ProcessorState == CPU_STATE_BLOCKED) {\r
106 *NextNumber = Number;\r
107 return EFI_SUCCESS;\r
108 }\r
109 }\r
110\r
111 return EFI_NOT_FOUND;\r
112}\r
113\r
114\r
115\r
116\r
117/**\r
118 This service retrieves the number of logical processor in the platform\r
119 and the number of those logical processors that are enabled on this boot.\r
120 This service may only be called from the BSP.\r
121\r
122 This function is used to retrieve the following information:\r
123 - The number of logical processors that are present in the system.\r
124 - The number of enabled logical processors in the system at the instant\r
125 this call is made.\r
126\r
127 Because MP Service Protocol provides services to enable and disable processors\r
128 dynamically, the number of enabled logical processors may vary during the\r
129 course of a boot session.\r
130\r
131 If this service is called from an AP, then EFI_DEVICE_ERROR is returned.\r
132 If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then\r
133 EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors\r
134 is returned in NumberOfProcessors, the number of currently enabled processor\r
135 is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned.\r
136\r
137 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL\r
138 instance.\r
139 @param[out] NumberOfProcessors Pointer to the total number of logical\r
140 processors in the system, including the BSP\r
141 and disabled APs.\r
142 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
143 processors that exist in system, including\r
144 the BSP.\r
145\r
146 @retval EFI_SUCCESS The number of logical processors and enabled\r
147 logical processors was retrieved.\r
148 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
149 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL.\r
150 @retval EFI_INVALID_PARAMETER NumberOfEnabledProcessors is NULL.\r
151\r
152**/\r
153EFI_STATUS\r
154EFIAPI\r
155CpuMpServicesGetNumberOfProcessors (\r
156 IN EFI_MP_SERVICES_PROTOCOL *This,\r
157 OUT UINTN *NumberOfProcessors,\r
158 OUT UINTN *NumberOfEnabledProcessors\r
159 )\r
160{\r
161 if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) {\r
162 return EFI_INVALID_PARAMETER;\r
163 }\r
164\r
165 if (!IsBSP ()) {\r
166 return EFI_DEVICE_ERROR;\r
167 }\r
168\r
169 *NumberOfProcessors = gMPSystem.NumberOfProcessors;\r
170 *NumberOfEnabledProcessors = gMPSystem.NumberOfEnabledProcessors;\r
171 return EFI_SUCCESS;\r
172}\r
173\r
174\r
175\r
176/**\r
177 Gets detailed MP-related information on the requested processor at the\r
178 instant this call is made. This service may only be called from the BSP.\r
179\r
180 This service retrieves detailed MP-related information about any processor\r
181 on the platform. Note the following:\r
182 - The processor information may change during the course of a boot session.\r
183 - The information presented here is entirely MP related.\r
184\r
185 Information regarding the number of caches and their sizes, frequency of operation,\r
186 slot numbers is all considered platform-related information and is not provided\r
187 by this service.\r
188\r
189 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL\r
190 instance.\r
191 @param[in] ProcessorNumber The handle number of processor.\r
192 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
193 the requested processor is deposited.\r
194\r
195 @retval EFI_SUCCESS Processor information was returned.\r
196 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
197 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
198 @retval EFI_NOT_FOUND The processor with the handle specified by\r
199 ProcessorNumber does not exist in the platform.\r
200\r
201**/\r
202EFI_STATUS\r
203EFIAPI\r
204CpuMpServicesGetProcessorInfo (\r
205 IN EFI_MP_SERVICES_PROTOCOL *This,\r
206 IN UINTN ProcessorNumber,\r
207 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer\r
208 )\r
209{\r
210 if (ProcessorInfoBuffer == NULL) {\r
211 return EFI_INVALID_PARAMETER;\r
212 }\r
213\r
214 if (!IsBSP ()) {\r
215 return EFI_DEVICE_ERROR;\r
216 }\r
217\r
218 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {\r
219 return EFI_NOT_FOUND;\r
220 }\r
221\r
222 CopyMem (ProcessorInfoBuffer, &gMPSystem.ProcessorData[ProcessorNumber], sizeof (EFI_PROCESSOR_INFORMATION));\r
223 return EFI_SUCCESS;\r
224}\r
225\r
226\r
227/**\r
228 This service executes a caller provided function on all enabled APs. APs can\r
229 run either simultaneously or one at a time in sequence. This service supports\r
230 both blocking and non-blocking requests. The non-blocking requests use EFI\r
231 events so the BSP can detect when the APs have finished. This service may only\r
232 be called from the BSP.\r
233\r
234 This function is used to dispatch all the enabled APs to the function specified\r
235 by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned\r
236 immediately and Procedure is not started on any AP.\r
237\r
238 If SingleThread is TRUE, all the enabled APs execute the function specified by\r
239 Procedure one by one, in ascending order of processor handle number. Otherwise,\r
240 all the enabled APs execute the function specified by Procedure simultaneously.\r
241\r
242 If WaitEvent is NULL, execution is in blocking mode. The BSP waits until all\r
243 APs finish or TimeoutInMicroseconds expires. Otherwise, execution is in non-blocking\r
244 mode, and the BSP returns from this service without waiting for APs. If a\r
245 non-blocking mode is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT\r
246 is signaled, then EFI_UNSUPPORTED must be returned.\r
247\r
248 If the timeout specified by TimeoutInMicroseconds expires before all APs return\r
249 from Procedure, then Procedure on the failed APs is terminated. All enabled APs\r
250 are always available for further calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()\r
251 and EFI_MP_SERVICES_PROTOCOL.StartupThisAP(). If FailedCpuList is not NULL, its\r
252 content points to the list of processor handle numbers in which Procedure was\r
253 terminated.\r
254\r
255 Note: It is the responsibility of the consumer of the EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()\r
256 to make sure that the nature of the code that is executed on the BSP and the\r
257 dispatched APs is well controlled. The MP Services Protocol does not guarantee\r
258 that the Procedure function is MP-safe. Hence, the tasks that can be run in\r
259 parallel are limited to certain independent tasks and well-controlled exclusive\r
260 code. EFI services and protocols may not be called by APs unless otherwise\r
261 specified.\r
262\r
263 In blocking execution mode, BSP waits until all APs finish or\r
264 TimeoutInMicroseconds expires.\r
265\r
266 In non-blocking execution mode, BSP is freed to return to the caller and then\r
267 proceed to the next task without having to wait for APs. The following\r
268 sequence needs to occur in a non-blocking execution mode:\r
269\r
270 -# The caller that intends to use this MP Services Protocol in non-blocking\r
271 mode creates WaitEvent by calling the EFI CreateEvent() service. The caller\r
272 invokes EFI_MP_SERVICES_PROTOCOL.StartupAllAPs(). If the parameter WaitEvent\r
273 is not NULL, then StartupAllAPs() executes in non-blocking mode. It requests\r
274 the function specified by Procedure to be started on all the enabled APs,\r
275 and releases the BSP to continue with other tasks.\r
276 -# The caller can use the CheckEvent() and WaitForEvent() services to check\r
277 the state of the WaitEvent created in step 1.\r
278 -# When the APs complete their task or TimeoutInMicroSecondss expires, the MP\r
279 Service signals WaitEvent by calling the EFI SignalEvent() function. If\r
280 FailedCpuList is not NULL, its content is available when WaitEvent is\r
281 signaled. If all APs returned from Procedure prior to the timeout, then\r
282 FailedCpuList is set to NULL. If not all APs return from Procedure before\r
283 the timeout, then FailedCpuList is filled in with the list of the failed\r
284 APs. The buffer is allocated by MP Service Protocol using AllocatePool().\r
285 It is the caller's responsibility to free the buffer with FreePool() service.\r
286 -# This invocation of SignalEvent() function informs the caller that invoked\r
287 EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() that either all the APs completed\r
288 the specified task or a timeout occurred. The contents of FailedCpuList\r
289 can be examined to determine which APs did not complete the specified task\r
290 prior to the timeout.\r
291\r
292 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL\r
293 instance.\r
294 @param[in] Procedure A pointer to the function to be run on\r
295 enabled APs of the system. See type\r
296 EFI_AP_PROCEDURE.\r
297 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
298 the function specified by Procedure one by\r
299 one, in ascending order of processor handle\r
300 number. If FALSE, then all the enabled APs\r
301 execute the function specified by Procedure\r
302 simultaneously.\r
303 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
304 service. If it is NULL, then execute in\r
305 blocking mode. BSP waits until all APs finish\r
306 or TimeoutInMicroseconds expires. If it's\r
307 not NULL, then execute in non-blocking mode.\r
308 BSP requests the function specified by\r
309 Procedure to be started on all the enabled\r
310 APs, and go on executing immediately. If\r
311 all return from Procedure, or TimeoutInMicroseconds\r
312 expires, this event is signaled. The BSP\r
313 can use the CheckEvent() or WaitForEvent()\r
314 services to check the state of event. Type\r
315 EFI_EVENT is defined in CreateEvent() in\r
316 the Unified Extensible Firmware Interface\r
317 Specification.\r
318 @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for\r
319 APs to return from Procedure, either for\r
320 blocking or non-blocking mode. Zero means\r
321 infinity. If the timeout expires before\r
322 all APs return from Procedure, then Procedure\r
323 on the failed APs is terminated. All enabled\r
324 APs are available for next function assigned\r
325 by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()\r
326 or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().\r
327 If the timeout expires in blocking mode,\r
328 BSP returns EFI_TIMEOUT. If the timeout\r
329 expires in non-blocking mode, WaitEvent\r
330 is signaled with SignalEvent().\r
331 @param[in] ProcedureArgument The parameter passed into Procedure for\r
332 all APs.\r
333 @param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,\r
334 if all APs finish successfully, then its\r
335 content is set to NULL. If not all APs\r
336 finish before timeout expires, then its\r
337 content is set to address of the buffer\r
338 holding handle numbers of the failed APs.\r
339 The buffer is allocated by MP Service Protocol,\r
340 and it's the caller's responsibility to\r
341 free the buffer with FreePool() service.\r
342 In blocking mode, it is ready for consumption\r
343 when the call returns. In non-blocking mode,\r
344 it is ready when WaitEvent is signaled. The\r
345 list of failed CPU is terminated by\r
346 END_OF_CPU_LIST.\r
347\r
348 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
349 the timeout expired.\r
350 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
351 to all enabled APs.\r
352 @retval EFI_UNSUPPORTED A non-blocking mode request was made after the\r
353 UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was\r
354 signaled.\r
355 @retval EFI_DEVICE_ERROR Caller processor is AP.\r
356 @retval EFI_NOT_STARTED No enabled APs exist in the system.\r
357 @retval EFI_NOT_READY Any enabled APs are busy.\r
358 @retval EFI_TIMEOUT In blocking mode, the timeout expired before\r
359 all enabled APs have finished.\r
360 @retval EFI_INVALID_PARAMETER Procedure is NULL.\r
361\r
362**/\r
363EFI_STATUS\r
364EFIAPI\r
365CpuMpServicesStartupAllAps (\r
366 IN EFI_MP_SERVICES_PROTOCOL *This,\r
367 IN EFI_AP_PROCEDURE Procedure,\r
368 IN BOOLEAN SingleThread,\r
369 IN EFI_EVENT WaitEvent OPTIONAL,\r
370 IN UINTN TimeoutInMicroseconds,\r
371 IN VOID *ProcedureArgument OPTIONAL,\r
372 OUT UINTN **FailedCpuList OPTIONAL\r
373 )\r
374{\r
375 EFI_STATUS Status;\r
376 PROCESSOR_DATA_BLOCK *ProcessorData;\r
377 UINTN Number;\r
378 UINTN NextNumber;\r
379 PROCESSOR_STATE APInitialState;\r
380 PROCESSOR_STATE ProcessorState;\r
381 INTN Timeout;\r
382\r
383\r
384 if (!IsBSP ()) {\r
385 return EFI_DEVICE_ERROR;\r
386 }\r
387\r
388 if (gMPSystem.NumberOfProcessors == 1) {\r
389 return EFI_NOT_STARTED;\r
390 }\r
391\r
392 if (Procedure == NULL) {\r
393 return EFI_INVALID_PARAMETER;\r
394 }\r
395\r
396 if ((WaitEvent != NULL) && gReadToBoot) {\r
397 return EFI_UNSUPPORTED;\r
398 }\r
399\r
400\r
401 if (FailedCpuList != NULL) {\r
402 gMPSystem.FailedList = AllocatePool ((gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN));\r
403 if (gMPSystem.FailedList == NULL) {\r
404 return EFI_OUT_OF_RESOURCES;\r
405 }\r
406 SetMemN (gMPSystem.FailedList, (gMPSystem.NumberOfProcessors + 1) * sizeof (UINTN), END_OF_CPU_LIST);\r
407 gMPSystem.FailedListIndex = 0;\r
408 *FailedCpuList = gMPSystem.FailedList;\r
409 }\r
410\r
411 Timeout = TimeoutInMicroseconds;\r
412\r
413 ProcessorData = NULL;\r
414\r
415 gMPSystem.FinishCount = 0;\r
416 gMPSystem.StartCount = 0;\r
417 gMPSystem.SingleThread = SingleThread;\r
418 APInitialState = CPU_STATE_READY;\r
419\r
420 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {\r
421 ProcessorData = &gMPSystem.ProcessorData[Number];\r
422\r
423 if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
424 // Skip BSP\r
425 continue;\r
426 }\r
427\r
428 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
429 // Skip Disabled processors\r
430 gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Number;\r
431 continue;\r
432 }\r
433\r
434 //\r
435 // Get APs prepared, and put failing APs into FailedCpuList\r
436 // if "SingleThread", only 1 AP will put to ready state, other AP will be put to ready\r
437 // state 1 by 1, until the previous 1 finished its task\r
438 // if not "SingleThread", all APs are put to ready state from the beginning\r
439 //\r
440 if (ProcessorData->State == CPU_STATE_IDLE) {\r
441 gMPSystem.StartCount++;\r
442\r
443 gThread->MutexLock (&ProcessorData->StateLock);\r
444 ProcessorData->State = APInitialState;\r
445 gThread->MutexUnlock (&ProcessorData->StateLock);\r
446\r
447 if (SingleThread) {\r
448 APInitialState = CPU_STATE_BLOCKED;\r
449 }\r
450 } else {\r
451 return EFI_NOT_READY;\r
452 }\r
453 }\r
454\r
455 if (WaitEvent != NULL) {\r
456 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {\r
457 ProcessorData = &gMPSystem.ProcessorData[Number];\r
458 if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
459 // Skip BSP\r
460 continue;\r
461 }\r
462\r
463 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
464 // Skip Disabled processors\r
465 continue;\r
466 }\r
467\r
468 SetApProcedure (ProcessorData, Procedure, ProcedureArgument);\r
469 }\r
470\r
471 //\r
472 // Save data into private data structure, and create timer to poll AP state before exiting\r
473 //\r
474 gMPSystem.Procedure = Procedure;\r
475 gMPSystem.ProcedureArgument = ProcedureArgument;\r
476 gMPSystem.WaitEvent = WaitEvent;\r
477 gMPSystem.Timeout = TimeoutInMicroseconds;\r
478 gMPSystem.TimeoutActive = (BOOLEAN)(TimeoutInMicroseconds != 0);\r
479 Status = gBS->SetTimer (\r
480 gMPSystem.CheckAllAPsEvent,\r
481 TimerPeriodic,\r
482 gPollInterval\r
483 );\r
484 return Status;\r
485\r
486 }\r
487\r
488 while (TRUE) {\r
489 for (Number = 0; Number < gMPSystem.NumberOfProcessors; Number++) {\r
490 ProcessorData = &gMPSystem.ProcessorData[Number];\r
491 if ((ProcessorData->Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
492 // Skip BSP\r
493 continue;\r
494 }\r
495\r
496 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
497 // Skip Disabled processors\r
498 continue;\r
499 }\r
500\r
501 gThread->MutexLock (ProcessorData->StateLock);\r
502 ProcessorState = ProcessorData->State;\r
503 gThread->MutexUnlock (ProcessorData->StateLock);\r
504\r
505 switch (ProcessorState) {\r
506 case CPU_STATE_READY:\r
507 SetApProcedure (ProcessorData, Procedure, ProcedureArgument);\r
508 break;\r
509\r
510 case CPU_STATE_FINISHED:\r
511 gMPSystem.FinishCount++;\r
512 if (SingleThread) {\r
513 Status = GetNextBlockedNumber (&NextNumber);\r
514 if (!EFI_ERROR (Status)) {\r
515 gMPSystem.ProcessorData[NextNumber].State = CPU_STATE_READY;\r
516 }\r
517 }\r
518\r
519 ProcessorData->State = CPU_STATE_IDLE;\r
520 break;\r
521\r
522 default:\r
523 break;\r
524 }\r
525 }\r
526\r
527 if (gMPSystem.FinishCount == gMPSystem.StartCount) {\r
528 Status = EFI_SUCCESS;\r
529 goto Done;\r
530 }\r
531\r
532 if ((TimeoutInMicroseconds != 0) && (Timeout < 0)) {\r
533 Status = EFI_TIMEOUT;\r
534 goto Done;\r
535 }\r
536\r
537 gBS->Stall (gPollInterval);\r
538 Timeout -= gPollInterval;\r
539 }\r
540\r
541Done:\r
542 if (FailedCpuList != NULL) {\r
543 if (gMPSystem.FailedListIndex == 0) {\r
544 FreePool (*FailedCpuList);\r
545 *FailedCpuList = NULL;\r
546 }\r
547 }\r
548\r
549 return EFI_SUCCESS;\r
550}\r
551\r
552\r
553/**\r
554 This service lets the caller get one enabled AP to execute a caller-provided\r
555 function. The caller can request the BSP to either wait for the completion\r
556 of the AP or just proceed with the next task by using the EFI event mechanism.\r
557 See EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() for more details on non-blocking\r
558 execution support. This service may only be called from the BSP.\r
559\r
560 This function is used to dispatch one enabled AP to the function specified by\r
561 Procedure passing in the argument specified by ProcedureArgument. If WaitEvent\r
562 is NULL, execution is in blocking mode. The BSP waits until the AP finishes or\r
563 TimeoutInMicroSecondss expires. Otherwise, execution is in non-blocking mode.\r
564 BSP proceeds to the next task without waiting for the AP. If a non-blocking mode\r
565 is requested after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled,\r
566 then EFI_UNSUPPORTED must be returned.\r
567\r
568 If the timeout specified by TimeoutInMicroseconds expires before the AP returns\r
569 from Procedure, then execution of Procedure by the AP is terminated. The AP is\r
570 available for subsequent calls to EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() and\r
571 EFI_MP_SERVICES_PROTOCOL.StartupThisAP().\r
572\r
573 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL\r
574 instance.\r
575 @param[in] Procedure A pointer to the function to be run on\r
576 enabled APs of the system. See type\r
577 EFI_AP_PROCEDURE.\r
578 @param[in] ProcessorNumber The handle number of the AP. The range is\r
579 from 0 to the total number of logical\r
580 processors minus 1. The total number of\r
581 logical processors can be retrieved by\r
582 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().\r
583 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
584 service. If it is NULL, then execute in\r
585 blocking mode. BSP waits until all APs finish\r
586 or TimeoutInMicroseconds expires. If it's\r
587 not NULL, then execute in non-blocking mode.\r
588 BSP requests the function specified by\r
589 Procedure to be started on all the enabled\r
590 APs, and go on executing immediately. If\r
591 all return from Procedure or TimeoutInMicroseconds\r
592 expires, this event is signaled. The BSP\r
593 can use the CheckEvent() or WaitForEvent()\r
594 services to check the state of event. Type\r
595 EFI_EVENT is defined in CreateEvent() in\r
596 the Unified Extensible Firmware Interface\r
597 Specification.\r
598 @param[in] TimeoutInMicrosecsond Indicates the time limit in microseconds for\r
599 APs to return from Procedure, either for\r
600 blocking or non-blocking mode. Zero means\r
601 infinity. If the timeout expires before\r
602 all APs return from Procedure, then Procedure\r
603 on the failed APs is terminated. All enabled\r
604 APs are available for next function assigned\r
605 by EFI_MP_SERVICES_PROTOCOL.StartupAllAPs()\r
606 or EFI_MP_SERVICES_PROTOCOL.StartupThisAP().\r
607 If the timeout expires in blocking mode,\r
608 BSP returns EFI_TIMEOUT. If the timeout\r
609 expires in non-blocking mode, WaitEvent\r
610 is signaled with SignalEvent().\r
611 @param[in] ProcedureArgument The parameter passed into Procedure for\r
612 all APs.\r
613 @param[out] Finished If NULL, this parameter is ignored. In\r
614 blocking mode, this parameter is ignored.\r
615 In non-blocking mode, if AP returns from\r
616 Procedure before the timeout expires, its\r
617 content is set to TRUE. Otherwise, the\r
618 value is set to FALSE. The caller can\r
619 determine if the AP returned from Procedure\r
620 by evaluating this value.\r
621\r
622 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
623 the timeout expires.\r
624 @retval EFI_SUCCESS In non-blocking mode, the function has been\r
625 dispatched to specified AP.\r
626 @retval EFI_UNSUPPORTED A non-blocking mode request was made after the\r
627 UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was\r
628 signaled.\r
629 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
630 @retval EFI_TIMEOUT In blocking mode, the timeout expired before\r
631 the specified AP has finished.\r
632 @retval EFI_NOT_READY The specified AP is busy.\r
633 @retval EFI_NOT_FOUND The processor with the handle specified by\r
634 ProcessorNumber does not exist.\r
635 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.\r
636 @retval EFI_INVALID_PARAMETER Procedure is NULL.\r
637\r
638**/\r
639EFI_STATUS\r
640EFIAPI\r
641CpuMpServicesStartupThisAP (\r
642 IN EFI_MP_SERVICES_PROTOCOL *This,\r
643 IN EFI_AP_PROCEDURE Procedure,\r
644 IN UINTN ProcessorNumber,\r
645 IN EFI_EVENT WaitEvent OPTIONAL,\r
646 IN UINTN TimeoutInMicroseconds,\r
647 IN VOID *ProcedureArgument OPTIONAL,\r
648 OUT BOOLEAN *Finished OPTIONAL\r
649 )\r
650{\r
651 INTN Timeout;\r
652\r
653 if (!IsBSP ()) {\r
654 return EFI_DEVICE_ERROR;\r
655 }\r
656\r
657 if (Procedure == NULL) {\r
658 return EFI_INVALID_PARAMETER;\r
659 }\r
660\r
661 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {\r
662 return EFI_NOT_FOUND;\r
663 }\r
664\r
665 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {\r
666 return EFI_INVALID_PARAMETER;\r
667 }\r
668\r
669 if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {\r
670 return EFI_NOT_READY;\r
671 }\r
672\r
673 if ((WaitEvent != NULL) && gReadToBoot) {\r
674 return EFI_UNSUPPORTED;\r
675 }\r
676\r
677 Timeout = TimeoutInMicroseconds;\r
678\r
679 gMPSystem.StartCount = 1;\r
680 gMPSystem.FinishCount = 0;\r
681\r
682 SetApProcedure (&gMPSystem.ProcessorData[ProcessorNumber], Procedure, ProcedureArgument);\r
683\r
684 if (WaitEvent != NULL) {\r
685 // Non Blocking\r
686 gMPSystem.WaitEvent = WaitEvent;\r
687 gBS->SetTimer (\r
688 gMPSystem.ProcessorData[ProcessorNumber].CheckThisAPEvent,\r
689 TimerPeriodic,\r
690 gPollInterval\r
691 );\r
692 return EFI_SUCCESS;\r
693 }\r
694\r
695 // Blocking\r
696 while (TRUE) {\r
697 gThread->MutexLock (&gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
698 if (gMPSystem.ProcessorData[ProcessorNumber].State == CPU_STATE_FINISHED) {\r
699 gMPSystem.ProcessorData[ProcessorNumber].State = CPU_STATE_IDLE;\r
700 gThread->MutexUnlock (&gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
701 break;\r
702 }\r
703\r
704 gThread->MutexUnlock (&gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
705\r
706 if ((TimeoutInMicroseconds != 0) && (Timeout < 0)) {\r
707 return EFI_TIMEOUT;\r
708 }\r
709\r
710 gBS->Stall (gPollInterval);\r
711 Timeout -= gPollInterval;\r
712 }\r
713\r
714 return EFI_SUCCESS;\r
715\r
716}\r
717\r
718\r
719/**\r
720 This service switches the requested AP to be the BSP from that point onward.\r
721 This service changes the BSP for all purposes. This call can only be performed\r
722 by the current BSP.\r
723\r
724 This service switches the requested AP to be the BSP from that point onward.\r
725 This service changes the BSP for all purposes. The new BSP can take over the\r
726 execution of the old BSP and continue seamlessly from where the old one left\r
727 off. This service may not be supported after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT\r
728 is signaled.\r
729\r
730 If the BSP cannot be switched prior to the return from this service, then\r
731 EFI_UNSUPPORTED must be returned.\r
732\r
733 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.\r
734 @param[in] ProcessorNumber The handle number of AP that is to become the new\r
735 BSP. The range is from 0 to the total number of\r
736 logical processors minus 1. The total number of\r
737 logical processors can be retrieved by\r
738 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().\r
739 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
740 enabled AP. Otherwise, it will be disabled.\r
741\r
742 @retval EFI_SUCCESS BSP successfully switched.\r
743 @retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to\r
744 this service returning.\r
745 @retval EFI_UNSUPPORTED Switching the BSP is not supported.\r
746 @retval EFI_SUCCESS The calling processor is an AP.\r
747 @retval EFI_NOT_FOUND The processor with the handle specified by\r
748 ProcessorNumber does not exist.\r
749 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or\r
750 a disabled AP.\r
751 @retval EFI_NOT_READY The specified AP is busy.\r
752\r
753**/\r
754EFI_STATUS\r
755EFIAPI\r
756CpuMpServicesSwitchBSP (\r
757 IN EFI_MP_SERVICES_PROTOCOL *This,\r
758 IN UINTN ProcessorNumber,\r
759 IN BOOLEAN EnableOldBSP\r
760 )\r
761{\r
762 UINTN Index;\r
763\r
764 if (!IsBSP ()) {\r
765 return EFI_DEVICE_ERROR;\r
766 }\r
767\r
768 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {\r
769 return EFI_NOT_FOUND;\r
770 }\r
771\r
772 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
773 return EFI_INVALID_PARAMETER;\r
774 }\r
775\r
776 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {\r
777 return EFI_INVALID_PARAMETER;\r
778 }\r
779\r
780 for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {\r
781 if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {\r
782 break;\r
783 }\r
784 }\r
785 ASSERT (Index != gMPSystem.NumberOfProcessors);\r
786\r
787 if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {\r
788 return EFI_NOT_READY;\r
789 }\r
790\r
791 // Skip for now as we need switch a bunch of stack stuff around and it's complex\r
792 // May not be worth it?\r
793 return EFI_NOT_READY;\r
794}\r
795\r
796\r
797/**\r
798 This service lets the caller enable or disable an AP from this point onward.\r
799 This service may only be called from the BSP.\r
800\r
801 This service allows the caller enable or disable an AP from this point onward.\r
802 The caller can optionally specify the health status of the AP by Health. If\r
803 an AP is being disabled, then the state of the disabled AP is implementation\r
804 dependent. If an AP is enabled, then the implementation must guarantee that a\r
805 complete initialization sequence is performed on the AP, so the AP is in a state\r
806 that is compatible with an MP operating system. This service may not be supported\r
807 after the UEFI Event EFI_EVENT_GROUP_READY_TO_BOOT is signaled.\r
808\r
809 If the enable or disable AP operation cannot be completed prior to the return\r
810 from this service, then EFI_UNSUPPORTED must be returned.\r
811\r
812 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.\r
813 @param[in] ProcessorNumber The handle number of AP that is to become the new\r
814 BSP. The range is from 0 to the total number of\r
815 logical processors minus 1. The total number of\r
816 logical processors can be retrieved by\r
817 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().\r
818 @param[in] EnableAP Specifies the new state for the processor for\r
819 enabled, FALSE for disabled.\r
820 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
821 the new health status of the AP. This flag\r
822 corresponds to StatusFlag defined in\r
823 EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only\r
824 the PROCESSOR_HEALTH_STATUS_BIT is used. All other\r
825 bits are ignored. If it is NULL, this parameter\r
826 is ignored.\r
827\r
828 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
829 @retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed\r
830 prior to this service returning.\r
831 @retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.\r
832 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
833 @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber\r
834 does not exist.\r
835 @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.\r
836\r
837**/\r
838EFI_STATUS\r
839EFIAPI\r
840CpuMpServicesEnableDisableAP (\r
841 IN EFI_MP_SERVICES_PROTOCOL *This,\r
842 IN UINTN ProcessorNumber,\r
843 IN BOOLEAN EnableAP,\r
844 IN UINT32 *HealthFlag OPTIONAL\r
845 )\r
846{\r
847 if (!IsBSP ()) {\r
848 return EFI_DEVICE_ERROR;\r
849 }\r
850\r
851 if (ProcessorNumber >= gMPSystem.NumberOfProcessors) {\r
852 return EFI_NOT_FOUND;\r
853 }\r
854\r
855 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) != 0) {\r
856 return EFI_INVALID_PARAMETER;\r
857 }\r
858\r
859 if (gMPSystem.ProcessorData[ProcessorNumber].State != CPU_STATE_IDLE) {\r
860 return EFI_UNSUPPORTED;\r
861 }\r
862\r
863 gThread->MutexLock (&gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
864\r
865 if (EnableAP) {\r
866 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0 ) {\r
867 gMPSystem.NumberOfEnabledProcessors++;\r
868 }\r
869 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_ENABLED_BIT;\r
870 } else {\r
871 if ((gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_ENABLED_BIT) == PROCESSOR_ENABLED_BIT ) {\r
872 gMPSystem.NumberOfEnabledProcessors--;\r
873 }\r
874 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
875 }\r
876\r
877 if (HealthFlag != NULL) {\r
878 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag &= ~PROCESSOR_HEALTH_STATUS_BIT;\r
879 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= (*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT);\r
880 }\r
881\r
882 gThread->MutexUnlock (&gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
883\r
884 return EFI_SUCCESS;\r
885}\r
886\r
887\r
888/**\r
889 This return the handle number for the calling processor. This service may be\r
890 called from the BSP and APs.\r
891\r
892 This service returns the processor handle number for the calling processor.\r
893 The returned value is in the range from 0 to the total number of logical\r
894 processors minus 1. The total number of logical processors can be retrieved\r
895 with EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors(). This service may be\r
896 called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER\r
897 is returned. Otherwise, the current processors handle number is returned in\r
898 ProcessorNumber, and EFI_SUCCESS is returned.\r
899\r
900 @param[in] This A pointer to the EFI_MP_SERVICES_PROTOCOL instance.\r
901 @param[in] ProcessorNumber The handle number of AP that is to become the new\r
902 BSP. The range is from 0 to the total number of\r
903 logical processors minus 1. The total number of\r
904 logical processors can be retrieved by\r
905 EFI_MP_SERVICES_PROTOCOL.GetNumberOfProcessors().\r
906\r
907 @retval EFI_SUCCESS The current processor handle number was returned\r
908 in ProcessorNumber.\r
909 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
910\r
911**/\r
912EFI_STATUS\r
913EFIAPI\r
914CpuMpServicesWhoAmI (\r
915 IN EFI_MP_SERVICES_PROTOCOL *This,\r
916 OUT UINTN *ProcessorNumber\r
917 )\r
918{\r
919 UINTN Index;\r
920 UINT64 ProcessorId;\r
921\r
922 if (ProcessorNumber == NULL) {\r
923 return EFI_INVALID_PARAMETER;\r
924 }\r
925\r
926 ProcessorId = gThread->Self ();\r
927 for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {\r
928 if (gMPSystem.ProcessorData[Index].Info.ProcessorId == ProcessorId) {\r
929 break;\r
930 }\r
931 }\r
932\r
933 *ProcessorNumber = Index;\r
934 return EFI_SUCCESS;\r
935}\r
936\r
937\r
938\r
939EFI_MP_SERVICES_PROTOCOL mMpSercicesTemplate = {\r
940 CpuMpServicesGetNumberOfProcessors,\r
941 CpuMpServicesGetProcessorInfo,\r
942 CpuMpServicesStartupAllAps,\r
943 CpuMpServicesStartupThisAP,\r
944 CpuMpServicesSwitchBSP,\r
945 CpuMpServicesEnableDisableAP,\r
946 CpuMpServicesWhoAmI\r
947};\r
948\r
949\r
950\r
951/*++\r
952 If timeout occurs in StartupAllAps(), a timer is set, which invokes this\r
953 procedure periodically to check whether all APs have finished.\r
954\r
955\r
956--*/\r
957VOID\r
958EFIAPI\r
959CpuCheckAllAPsStatus (\r
960 IN EFI_EVENT Event,\r
961 IN VOID *Context\r
962 )\r
963{\r
964 UINTN ProcessorNumber;\r
965 UINTN NextNumber;\r
966 PROCESSOR_DATA_BLOCK *ProcessorData;\r
967 PROCESSOR_DATA_BLOCK *NextData;\r
968 EFI_STATUS Status;\r
969 PROCESSOR_STATE ProcessorState;\r
970 UINTN Cpu;\r
971 BOOLEAN Found;\r
972\r
973 if (gMPSystem.TimeoutActive) {\r
974 gMPSystem.Timeout -= gPollInterval;\r
975 }\r
976\r
977 ProcessorData = (PROCESSOR_DATA_BLOCK *) Context;\r
978\r
979 for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) {\r
980 if ((ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
981 // Skip BSP\r
982 continue;\r
983 }\r
984\r
985 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
986 // Skip Disabled processors\r
987 continue;\r
988 }\r
989\r
990 // This is an Interrupt Service routine.\r
991 // This can grab a lock that is held in a non-interrupt\r
992 // context. Meaning deadlock. Which is a bad thing.\r
993 // So, try lock it. If we can get it, cool, do our thing.\r
994 // otherwise, just dump out & try again on the next iteration.\r
995 Status = gThread->MutexTryLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
996 if (EFI_ERROR(Status)) {\r
997 return;\r
998 }\r
999 ProcessorState = gMPSystem.ProcessorData[ProcessorNumber].State;\r
1000 gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
1001\r
1002 switch (ProcessorState) {\r
1003 case CPU_STATE_READY:\r
1004 SetApProcedure (ProcessorData, gMPSystem.Procedure, gMPSystem.ProcedureArgument);\r
1005 break;\r
1006\r
1007 case CPU_STATE_FINISHED:\r
1008 if (gMPSystem.SingleThread) {\r
1009 Status = GetNextBlockedNumber (&NextNumber);\r
1010 if (!EFI_ERROR (Status)) {\r
1011 NextData = &gMPSystem.ProcessorData[NextNumber];\r
1012\r
1013 gThread->MutexLock (&NextData->ProcedureLock);\r
1014 NextData->State = CPU_STATE_READY;\r
1015 gThread->MutexUnlock (&NextData->ProcedureLock);\r
1016\r
1017 SetApProcedure (NextData, gMPSystem.Procedure, gMPSystem.ProcedureArgument);\r
1018 }\r
1019 }\r
1020\r
1021 gMPSystem.ProcessorData[ProcessorNumber].State = CPU_STATE_IDLE;\r
1022 gMPSystem.FinishCount++;\r
1023 break;\r
1024\r
1025 default:\r
1026 break;\r
1027 }\r
1028 }\r
1029\r
1030 if (gMPSystem.TimeoutActive && gMPSystem.Timeout < 0) {\r
1031 //\r
1032 // Timeout\r
1033 //\r
1034 if (gMPSystem.FailedList != NULL) {\r
1035 for (ProcessorNumber = 0; ProcessorNumber < gMPSystem.NumberOfProcessors; ProcessorNumber++) {\r
1036 if ((ProcessorData[ProcessorNumber].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
1037 // Skip BSP\r
1038 continue;\r
1039 }\r
1040\r
1041 if ((ProcessorData->Info.StatusFlag & PROCESSOR_ENABLED_BIT) == 0) {\r
1042 // Skip Disabled processors\r
1043 continue;\r
1044 }\r
1045\r
1046 // Mark the\r
1047 Status = gThread->MutexTryLock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
1048 if (EFI_ERROR(Status)) {\r
1049 return;\r
1050 }\r
1051 ProcessorState = gMPSystem.ProcessorData[ProcessorNumber].State;\r
1052 gThread->MutexUnlock (gMPSystem.ProcessorData[ProcessorNumber].StateLock);\r
1053\r
1054 if (ProcessorState != CPU_STATE_IDLE) {\r
1055 // If we are retrying make sure we don't double count\r
1056 for (Cpu = 0, Found = FALSE; Cpu < gMPSystem.NumberOfProcessors; Cpu++) {\r
1057 if (gMPSystem.FailedList[Cpu] == END_OF_CPU_LIST) {\r
1058 break;\r
1059 }\r
1060 if (gMPSystem.FailedList[ProcessorNumber] == Cpu) {\r
1061 Found = TRUE;\r
1062 break;\r
1063 }\r
1064 }\r
1065 if (!Found) {\r
1066 gMPSystem.FailedList[gMPSystem.FailedListIndex++] = Cpu;\r
1067 }\r
1068 }\r
1069 }\r
1070 }\r
1071 // Force terminal exit\r
1072 gMPSystem.FinishCount = gMPSystem.StartCount;\r
1073 }\r
1074\r
1075 if (gMPSystem.FinishCount != gMPSystem.StartCount) {\r
1076 return;\r
1077 }\r
1078\r
1079 gBS->SetTimer (\r
1080 gMPSystem.CheckAllAPsEvent,\r
1081 TimerCancel,\r
1082 0\r
1083 );\r
1084\r
1085 if (gMPSystem.FailedListIndex == 0) {\r
1086 if (gMPSystem.FailedList != NULL) {\r
1087 FreePool (gMPSystem.FailedList);\r
1088 gMPSystem.FailedList = NULL;\r
1089 }\r
1090 }\r
1091\r
1092 Status = gBS->SignalEvent (gMPSystem.WaitEvent);\r
1093\r
1094 return ;\r
1095}\r
1096\r
1097VOID\r
1098EFIAPI\r
1099CpuCheckThisAPStatus (\r
1100 IN EFI_EVENT Event,\r
1101 IN VOID *Context\r
1102 )\r
1103{\r
1104 EFI_STATUS Status;\r
1105 PROCESSOR_DATA_BLOCK *ProcessorData;\r
1106 PROCESSOR_STATE ProcessorState;\r
1107\r
1108 ProcessorData = (PROCESSOR_DATA_BLOCK *) Context;\r
1109\r
1110 //\r
1111 // This is an Interrupt Service routine.\r
1112 // that can grab a lock that is held in a non-interrupt\r
1113 // context. Meaning deadlock. Which is a badddd thing.\r
1114 // So, try lock it. If we can get it, cool, do our thing.\r
1115 // otherwise, just dump out & try again on the next iteration.\r
1116 //\r
1117 Status = gThread->MutexTryLock (ProcessorData->StateLock);\r
1118 if (EFI_ERROR(Status)) {\r
1119 return;\r
1120 }\r
1121 ProcessorState = ProcessorData->State;\r
1122 gThread->MutexUnlock (ProcessorData->StateLock);\r
1123\r
1124 if (ProcessorState == CPU_STATE_FINISHED) {\r
1125 Status = gBS->SetTimer (ProcessorData->CheckThisAPEvent, TimerCancel, 0);\r
1126 ASSERT_EFI_ERROR (Status);\r
1127\r
1128 Status = gBS->SignalEvent (gMPSystem.WaitEvent);\r
1129 ASSERT_EFI_ERROR (Status);\r
1130\r
1131 gThread->MutexLock (ProcessorData->StateLock);\r
1132 ProcessorData->State = CPU_STATE_IDLE;\r
1133 gThread->MutexUnlock (ProcessorData->StateLock);\r
1134 }\r
1135\r
1136 return ;\r
1137}\r
1138\r
1139\r
1140/*++\r
1141 This function is called by all processors (both BSP and AP) once and collects MP related data\r
1142\r
1143 MPSystemData - Pointer to the data structure containing MP related data\r
1144 BSP - TRUE if the CPU is BSP\r
1145\r
1146 EFI_SUCCESS - Data for the processor collected and filled in\r
1147\r
1148--*/\r
1149EFI_STATUS\r
1150FillInProcessorInformation (\r
1151 IN BOOLEAN BSP,\r
1152 IN UINTN ProcessorNumber\r
1153 )\r
1154{\r
1155 gMPSystem.ProcessorData[ProcessorNumber].Info.ProcessorId = gThread->Self ();\r
1156 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag = PROCESSOR_ENABLED_BIT | PROCESSOR_HEALTH_STATUS_BIT;\r
1157 if (BSP) {\r
1158 gMPSystem.ProcessorData[ProcessorNumber].Info.StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1159 }\r
1160\r
1161 gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Package = ProcessorNumber;\r
1162 gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Core = 0;\r
1163 gMPSystem.ProcessorData[ProcessorNumber].Info.Location.Thread = 0;\r
1164 gMPSystem.ProcessorData[ProcessorNumber].State = BSP ? CPU_STATE_BUSY : CPU_STATE_IDLE;\r
1165\r
1166 gMPSystem.ProcessorData[ProcessorNumber].Procedure = NULL;\r
1167 gMPSystem.ProcessorData[ProcessorNumber].Parameter = NULL;\r
1168 gMPSystem.ProcessorData[ProcessorNumber].StateLock = gThread->MutexInit ();\r
1169 gMPSystem.ProcessorData[ProcessorNumber].ProcedureLock = gThread->MutexInit ();\r
1170\r
1171 return EFI_SUCCESS;\r
1172}\r
1173\r
1174VOID *\r
1175EFIAPI\r
1176CpuDriverApIdolLoop (\r
1177 VOID *Context\r
1178 )\r
1179{\r
1180 EFI_AP_PROCEDURE Procedure;\r
1181 VOID *Parameter;\r
1182 UINTN ProcessorNumber;\r
1183 PROCESSOR_DATA_BLOCK *ProcessorData;\r
1184\r
1185 ProcessorNumber = (UINTN)Context;\r
1186 ProcessorData = &gMPSystem.ProcessorData[ProcessorNumber];\r
1187\r
1188 ProcessorData->Info.ProcessorId = gThread->Self ();\r
1189\r
1190 while (TRUE) {\r
1191 //\r
1192 // Make a local copy on the stack to be extra safe\r
1193 //\r
1194 gThread->MutexLock (ProcessorData->ProcedureLock);\r
1195 Procedure = ProcessorData->Procedure;\r
1196 Parameter = ProcessorData->Parameter;\r
1197 gThread->MutexUnlock (ProcessorData->ProcedureLock);\r
1198\r
1199 if (Procedure != NULL) {\r
1200 gThread->MutexLock (ProcessorData->StateLock);\r
1201 ProcessorData->State = CPU_STATE_BUSY;\r
1202 gThread->MutexUnlock (ProcessorData->StateLock);\r
1203\r
1204 Procedure (Parameter);\r
1205\r
1206 gThread->MutexLock (ProcessorData->ProcedureLock);\r
1207 ProcessorData->Procedure = NULL;\r
1208 gThread->MutexUnlock (ProcessorData->ProcedureLock);\r
1209\r
1210 gThread->MutexLock (ProcessorData->StateLock);\r
1211 ProcessorData->State = CPU_STATE_FINISHED;\r
1212 gThread->MutexUnlock (ProcessorData->StateLock);\r
1213 }\r
1214\r
1215 // Poll 5 times a seconds, 200ms\r
1216 // Don't want to burn too many system resources doing nothing.\r
1217 gEmuThunk->Sleep (200 * 1000);\r
1218 }\r
1219\r
1220 return 0;\r
1221}\r
1222\r
1223\r
1224EFI_STATUS\r
1225InitializeMpSystemData (\r
1226 IN UINTN NumberOfProcessors\r
1227 )\r
1228{\r
1229 EFI_STATUS Status;\r
1230 UINTN Index;\r
1231\r
1232\r
1233 //\r
1234 // Clear the data structure area first.\r
1235 //\r
1236 ZeroMem (&gMPSystem, sizeof (MP_SYSTEM_DATA));\r
1237\r
1238 //\r
1239 // First BSP fills and inits all known values, including it's own records.\r
1240 //\r
1241 gMPSystem.NumberOfProcessors = NumberOfProcessors;\r
1242 gMPSystem.NumberOfEnabledProcessors = NumberOfProcessors;\r
1243\r
1244 gMPSystem.ProcessorData = AllocateZeroPool (gMPSystem.NumberOfProcessors * sizeof (PROCESSOR_DATA_BLOCK));\r
1245 ASSERT (gMPSystem.ProcessorData != NULL);\r
1246\r
1247 FillInProcessorInformation (TRUE, 0);\r
1248\r
1249 Status = gBS->CreateEvent (\r
1250 EVT_TIMER | EVT_NOTIFY_SIGNAL,\r
1251 TPL_CALLBACK,\r
1252 CpuCheckAllAPsStatus,\r
1253 NULL,\r
1254 &gMPSystem.CheckAllAPsEvent\r
1255 );\r
1256 ASSERT_EFI_ERROR (Status);\r
1257\r
1258\r
1259 for (Index = 0; Index < gMPSystem.NumberOfProcessors; Index++) {\r
1260 if ((gMPSystem.ProcessorData[Index].Info.StatusFlag & PROCESSOR_AS_BSP_BIT) == PROCESSOR_AS_BSP_BIT) {\r
1261 // Skip BSP\r
1262 continue;\r
1263 }\r
1264\r
1265 FillInProcessorInformation (FALSE, Index);\r
1266\r
1267 Status = gThread->CreateThread (\r
1268 (VOID *)&gMPSystem.ProcessorData[Index].Info.ProcessorId,\r
1269 NULL,\r
1270 CpuDriverApIdolLoop,\r
1271 (VOID *)Index\r
1272 );\r
1273\r
1274\r
1275 Status = gBS->CreateEvent (\r
1276 EVT_TIMER | EVT_NOTIFY_SIGNAL,\r
1277 TPL_CALLBACK,\r
1278 CpuCheckThisAPStatus,\r
1279 (VOID *) &gMPSystem.ProcessorData[Index],\r
1280 &gMPSystem.ProcessorData[Index].CheckThisAPEvent\r
1281 );\r
1282 }\r
1283\r
1284 return EFI_SUCCESS;\r
1285}\r
1286\r
1287\r
1288\r
1289/**\r
1290 Invoke a notification event\r
1291\r
1292 @param Event Event whose notification function is being invoked.\r
1293 @param Context The pointer to the notification function's context,\r
1294 which is implementation-dependent.\r
1295\r
1296**/\r
1297VOID\r
1298EFIAPI\r
1299CpuReadToBootFunction (\r
1300 IN EFI_EVENT Event,\r
1301 IN VOID *Context\r
1302 )\r
1303{\r
1304 gReadToBoot = TRUE;\r
1305}\r
1306\r
1307\r
1308\r
1309EFI_STATUS\r
1310CpuMpServicesInit (\r
1311 OUT UINTN *MaxCpus\r
1312 )\r
1313{\r
1314 EFI_STATUS Status;\r
1315 EFI_HANDLE Handle;\r
1316 EMU_IO_THUNK_PROTOCOL *IoThunk;\r
1317\r
1318 *MaxCpus = 1; // BSP\r
1319 IoThunk = GetIoThunkInstance (&gEmuThreadThunkProtocolGuid, 0);\r
1320 if (IoThunk != NULL) {\r
1321 Status = IoThunk->Open (IoThunk);\r
1322 if (!EFI_ERROR (Status)) {\r
1323 if (IoThunk->ConfigString != NULL) {\r
1324 *MaxCpus += StrDecimalToUintn (IoThunk->ConfigString);\r
1325 gThread = IoThunk->Interface;\r
1326 }\r
1327 }\r
1328 }\r
1329\r
1330 if (*MaxCpus == 1) {\r
1331 // We are not MP so nothing to do\r
1332 return EFI_SUCCESS;\r
1333 }\r
1334\r
1335 gPollInterval = PcdGet64 (PcdEmuMpServicesPollingInterval);\r
1336\r
1337 Status = InitializeMpSystemData (*MaxCpus);\r
1338 if (EFI_ERROR (Status)) {\r
1339 return Status;\r
1340 }\r
1341\r
1342 Status = EfiCreateEventReadyToBootEx (TPL_CALLBACK, CpuReadToBootFunction, NULL, &gReadToBootEvent);\r
1343 ASSERT_EFI_ERROR (Status);\r
1344\r
1345 //\r
1346 // Now install the MP services protocol.\r
1347 //\r
1348 Handle = NULL;\r
1349 Status = gBS->InstallMultipleProtocolInterfaces (\r
1350 &Handle,\r
1351 &gEfiMpServiceProtocolGuid, &mMpSercicesTemplate,\r
1352 NULL\r
1353 );\r
1354 return Status;\r
1355}\r
1356\r
1357\r