]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - ShellPkg/Library/UefiShellDebug1CommandsLib/Compress.c
ShellPkg/UefiShellDebug1CommandsLib: Remove unnecessary EFIAPI
[mirror_edk2.git] / ShellPkg / Library / UefiShellDebug1CommandsLib / Compress.c
... / ...
CommitLineData
1/** @file\r
2 Main file for compression routine.\r
3\r
4 Compression routine. The compression algorithm is a mixture of\r
5 LZ77 and Huffman coding. LZ77 transforms the source data into a\r
6 sequence of Original Characters and Pointers to repeated strings.\r
7 This sequence is further divided into Blocks and Huffman codings\r
8 are applied to each Block.\r
9\r
10 Copyright (c) 2007 - 2014, Intel Corporation. All rights reserved.<BR>\r
11 This program and the accompanying materials\r
12 are licensed and made available under the terms and conditions of the BSD License\r
13 which accompanies this distribution. The full text of the license may be found at\r
14 http://opensource.org/licenses/bsd-license.php\r
15\r
16 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
17 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
18\r
19**/\r
20\r
21#include <Library/MemoryAllocationLib.h>\r
22#include <Library/BaseMemoryLib.h>\r
23#include <Library/DebugLib.h>\r
24#include <ShellBase.h>\r
25#include <Uefi.h>\r
26\r
27//\r
28// Macro Definitions\r
29//\r
30typedef INT16 NODE;\r
31#define UINT8_MAX 0xff\r
32#define UINT8_BIT 8\r
33#define THRESHOLD 3\r
34#define INIT_CRC 0\r
35#define WNDBIT 13\r
36#define WNDSIZ (1U << WNDBIT)\r
37#define MAXMATCH 256\r
38#define BLKSIZ (1U << 14) // 16 * 1024U\r
39#define PERC_FLAG 0x8000U\r
40#define CODE_BIT 16\r
41#define NIL 0\r
42#define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX)\r
43#define HASH(LoopVar7, LoopVar5) ((LoopVar7) + ((LoopVar5) << (WNDBIT - 9)) + WNDSIZ * 2)\r
44#define CRCPOLY 0xA001\r
45#define UPDATE_CRC(LoopVar5) mCrc = mCrcTable[(mCrc ^ (LoopVar5)) & 0xFF] ^ (mCrc >> UINT8_BIT)\r
46\r
47//\r
48// C: the Char&Len Set; P: the Position Set; T: the exTra Set\r
49//\r
50#define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD)\r
51#define CBIT 9\r
52#define NP (WNDBIT + 1)\r
53#define PBIT 4\r
54#define NT (CODE_BIT + 3)\r
55#define TBIT 5\r
56#if NT > NP\r
57 #define NPT NT\r
58#else\r
59 #define NPT NP\r
60#endif\r
61//\r
62// Function Prototypes\r
63//\r
64\r
65/**\r
66 Put a dword to output stream\r
67\r
68 @param[in] Data The dword to put.\r
69**/\r
70VOID\r
71PutDword(\r
72 IN UINT32 Data\r
73 );\r
74\r
75//\r
76// Global Variables\r
77//\r
78STATIC UINT8 *mSrc;\r
79STATIC UINT8 *mDst;\r
80STATIC UINT8 *mSrcUpperLimit;\r
81STATIC UINT8 *mDstUpperLimit;\r
82\r
83STATIC UINT8 *mLevel;\r
84STATIC UINT8 *mText;\r
85STATIC UINT8 *mChildCount;\r
86STATIC UINT8 *mBuf;\r
87STATIC UINT8 mCLen[NC];\r
88STATIC UINT8 mPTLen[NPT];\r
89STATIC UINT8 *mLen;\r
90STATIC INT16 mHeap[NC + 1];\r
91STATIC INT32 mRemainder;\r
92STATIC INT32 mMatchLen;\r
93STATIC INT32 mBitCount;\r
94STATIC INT32 mHeapSize;\r
95STATIC INT32 mTempInt32;\r
96STATIC UINT32 mBufSiz = 0;\r
97STATIC UINT32 mOutputPos;\r
98STATIC UINT32 mOutputMask;\r
99STATIC UINT32 mSubBitBuf;\r
100STATIC UINT32 mCrc;\r
101STATIC UINT32 mCompSize;\r
102STATIC UINT32 mOrigSize;\r
103\r
104STATIC UINT16 *mFreq;\r
105STATIC UINT16 *mSortPtr;\r
106STATIC UINT16 mLenCnt[17];\r
107STATIC UINT16 mLeft[2 * NC - 1];\r
108STATIC UINT16 mRight[2 * NC - 1];\r
109STATIC UINT16 mCrcTable[UINT8_MAX + 1];\r
110STATIC UINT16 mCFreq[2 * NC - 1];\r
111STATIC UINT16 mCCode[NC];\r
112STATIC UINT16 mPFreq[2 * NP - 1];\r
113STATIC UINT16 mPTCode[NPT];\r
114STATIC UINT16 mTFreq[2 * NT - 1];\r
115\r
116STATIC NODE mPos;\r
117STATIC NODE mMatchPos;\r
118STATIC NODE mAvail;\r
119STATIC NODE *mPosition;\r
120STATIC NODE *mParent;\r
121STATIC NODE *mPrev;\r
122STATIC NODE *mNext = NULL;\r
123INT32 mHuffmanDepth = 0;\r
124\r
125/**\r
126 Make a CRC table.\r
127\r
128**/\r
129VOID\r
130MakeCrcTable (\r
131 VOID\r
132 )\r
133{\r
134 UINT32 LoopVar1;\r
135\r
136 UINT32 LoopVar2;\r
137\r
138 UINT32 LoopVar4;\r
139\r
140 for (LoopVar1 = 0; LoopVar1 <= UINT8_MAX; LoopVar1++) {\r
141 LoopVar4 = LoopVar1;\r
142 for (LoopVar2 = 0; LoopVar2 < UINT8_BIT; LoopVar2++) {\r
143 if ((LoopVar4 & 1) != 0) {\r
144 LoopVar4 = (LoopVar4 >> 1) ^ CRCPOLY;\r
145 } else {\r
146 LoopVar4 >>= 1;\r
147 }\r
148 }\r
149\r
150 mCrcTable[LoopVar1] = (UINT16) LoopVar4;\r
151 }\r
152}\r
153\r
154/**\r
155 Put a dword to output stream\r
156\r
157 @param[in] Data The dword to put.\r
158**/\r
159VOID\r
160PutDword (\r
161 IN UINT32 Data\r
162 )\r
163{\r
164 if (mDst < mDstUpperLimit) {\r
165 *mDst++ = (UINT8) (((UINT8) (Data)) & 0xff);\r
166 }\r
167\r
168 if (mDst < mDstUpperLimit) {\r
169 *mDst++ = (UINT8) (((UINT8) (Data >> 0x08)) & 0xff);\r
170 }\r
171\r
172 if (mDst < mDstUpperLimit) {\r
173 *mDst++ = (UINT8) (((UINT8) (Data >> 0x10)) & 0xff);\r
174 }\r
175\r
176 if (mDst < mDstUpperLimit) {\r
177 *mDst++ = (UINT8) (((UINT8) (Data >> 0x18)) & 0xff);\r
178 }\r
179}\r
180\r
181/**\r
182 Allocate memory spaces for data structures used in compression process.\r
183 \r
184 @retval EFI_SUCCESS Memory was allocated successfully.\r
185 @retval EFI_OUT_OF_RESOURCES A memory allocation failed.\r
186**/\r
187EFI_STATUS\r
188AllocateMemory (\r
189 VOID\r
190 )\r
191{\r
192 mText = AllocateZeroPool (WNDSIZ * 2 + MAXMATCH);\r
193 mLevel = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mLevel));\r
194 mChildCount = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mChildCount));\r
195 mPosition = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mPosition));\r
196 mParent = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mParent));\r
197 mPrev = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mPrev));\r
198 mNext = AllocateZeroPool ((MAX_HASH_VAL + 1) * sizeof (*mNext));\r
199\r
200 mBufSiz = BLKSIZ;\r
201 mBuf = AllocateZeroPool (mBufSiz);\r
202 while (mBuf == NULL) {\r
203 mBufSiz = (mBufSiz / 10U) * 9U;\r
204 if (mBufSiz < 4 * 1024U) {\r
205 return EFI_OUT_OF_RESOURCES;\r
206 }\r
207\r
208 mBuf = AllocateZeroPool (mBufSiz);\r
209 }\r
210\r
211 mBuf[0] = 0;\r
212\r
213 return EFI_SUCCESS;\r
214}\r
215\r
216/**\r
217 Called when compression is completed to free memory previously allocated.\r
218\r
219**/\r
220VOID\r
221FreeMemory (\r
222 VOID\r
223 )\r
224{\r
225 SHELL_FREE_NON_NULL (mText);\r
226 SHELL_FREE_NON_NULL (mLevel);\r
227 SHELL_FREE_NON_NULL (mChildCount);\r
228 SHELL_FREE_NON_NULL (mPosition);\r
229 SHELL_FREE_NON_NULL (mParent);\r
230 SHELL_FREE_NON_NULL (mPrev);\r
231 SHELL_FREE_NON_NULL (mNext);\r
232 SHELL_FREE_NON_NULL (mBuf);\r
233}\r
234\r
235/**\r
236 Initialize String Info Log data structures.\r
237**/\r
238VOID\r
239InitSlide (\r
240 VOID\r
241 )\r
242{\r
243 NODE LoopVar1;\r
244\r
245 SetMem (mLevel + WNDSIZ, (UINT8_MAX + 1) * sizeof (UINT8), 1);\r
246 SetMem (mPosition + WNDSIZ, (UINT8_MAX + 1) * sizeof (NODE), 0);\r
247\r
248 SetMem (mParent + WNDSIZ, WNDSIZ * sizeof (NODE), 0);\r
249\r
250 mAvail = 1;\r
251 for (LoopVar1 = 1; LoopVar1 < WNDSIZ - 1; LoopVar1++) {\r
252 mNext[LoopVar1] = (NODE) (LoopVar1 + 1);\r
253 }\r
254\r
255 mNext[WNDSIZ - 1] = NIL;\r
256 SetMem (mNext + WNDSIZ * 2, (MAX_HASH_VAL - WNDSIZ * 2 + 1) * sizeof (NODE), 0);\r
257}\r
258\r
259/**\r
260 Find child node given the parent node and the edge character\r
261\r
262 @param[in] LoopVar6 The parent node.\r
263 @param[in] LoopVar5 The edge character.\r
264\r
265 @return The child node.\r
266 @retval NIL(Zero) No child could be found.\r
267\r
268**/\r
269NODE\r
270Child (\r
271 IN NODE LoopVar6,\r
272 IN UINT8 LoopVar5\r
273 )\r
274{\r
275 NODE LoopVar4;\r
276\r
277 LoopVar4 = mNext[HASH (LoopVar6, LoopVar5)];\r
278 mParent[NIL] = LoopVar6; /* sentinel */\r
279 while (mParent[LoopVar4] != LoopVar6) {\r
280 LoopVar4 = mNext[LoopVar4];\r
281 }\r
282\r
283 return LoopVar4;\r
284}\r
285\r
286/**\r
287 Create a new child for a given parent node.\r
288\r
289 @param[in] LoopVar6 The parent node.\r
290 @param[in] LoopVar5 The edge character.\r
291 @param[in] LoopVar4 The child node.\r
292**/\r
293VOID\r
294MakeChild (\r
295 IN NODE LoopVar6,\r
296 IN UINT8 LoopVar5,\r
297 IN NODE LoopVar4\r
298 )\r
299{\r
300 NODE LoopVar12;\r
301\r
302 NODE LoopVar10;\r
303\r
304 LoopVar12 = (NODE) HASH (LoopVar6, LoopVar5);\r
305 LoopVar10 = mNext[LoopVar12];\r
306 mNext[LoopVar12] = LoopVar4;\r
307 mNext[LoopVar4] = LoopVar10;\r
308 mPrev[LoopVar10] = LoopVar4;\r
309 mPrev[LoopVar4] = LoopVar12;\r
310 mParent[LoopVar4] = LoopVar6;\r
311 mChildCount[LoopVar6]++;\r
312}\r
313\r
314/**\r
315 Split a node.\r
316\r
317 @param[in] Old The node to split.\r
318**/\r
319VOID\r
320Split (\r
321 IN NODE Old\r
322 )\r
323{\r
324 NODE New;\r
325\r
326 NODE LoopVar10;\r
327\r
328 New = mAvail;\r
329 mAvail = mNext[New];\r
330 mChildCount[New] = 0;\r
331 LoopVar10 = mPrev[Old];\r
332 mPrev[New] = LoopVar10;\r
333 mNext[LoopVar10] = New;\r
334 LoopVar10 = mNext[Old];\r
335 mNext[New] = LoopVar10;\r
336 mPrev[LoopVar10] = New;\r
337 mParent[New] = mParent[Old];\r
338 mLevel[New] = (UINT8) mMatchLen;\r
339 mPosition[New] = mPos;\r
340 MakeChild (New, mText[mMatchPos + mMatchLen], Old);\r
341 MakeChild (New, mText[mPos + mMatchLen], mPos);\r
342}\r
343\r
344/**\r
345 Insert string info for current position into the String Info Log.\r
346\r
347**/\r
348VOID\r
349InsertNode (\r
350 VOID\r
351 )\r
352{\r
353 NODE LoopVar6;\r
354\r
355 NODE LoopVar4;\r
356\r
357 NODE LoopVar2;\r
358\r
359 NODE LoopVar10;\r
360 UINT8 LoopVar5;\r
361 UINT8 *TempString3;\r
362 UINT8 *TempString2;\r
363\r
364 if (mMatchLen >= 4) {\r
365 //\r
366 // We have just got a long match, the target tree\r
367 // can be located by MatchPos + 1. Travese the tree\r
368 // from bottom up to get to a proper starting point.\r
369 // The usage of PERC_FLAG ensures proper node deletion\r
370 // in DeleteNode() later.\r
371 //\r
372 mMatchLen--;\r
373 LoopVar4 = (NODE) ((mMatchPos + 1) | WNDSIZ);\r
374 LoopVar6 = mParent[LoopVar4];\r
375 while (LoopVar6 == NIL) {\r
376 LoopVar4 = mNext[LoopVar4];\r
377 LoopVar6 = mParent[LoopVar4];\r
378 }\r
379\r
380 while (mLevel[LoopVar6] >= mMatchLen) {\r
381 LoopVar4 = LoopVar6;\r
382 LoopVar6 = mParent[LoopVar6];\r
383 }\r
384\r
385 LoopVar10 = LoopVar6;\r
386 while (mPosition[LoopVar10] < 0) {\r
387 mPosition[LoopVar10] = mPos;\r
388 LoopVar10 = mParent[LoopVar10];\r
389 }\r
390\r
391 if (LoopVar10 < WNDSIZ) {\r
392 mPosition[LoopVar10] = (NODE) (mPos | PERC_FLAG);\r
393 }\r
394 } else {\r
395 //\r
396 // Locate the target tree\r
397 //\r
398 LoopVar6 = (NODE) (mText[mPos] + WNDSIZ);\r
399 LoopVar5 = mText[mPos + 1];\r
400 LoopVar4 = Child (LoopVar6, LoopVar5);\r
401 if (LoopVar4 == NIL) {\r
402 MakeChild (LoopVar6, LoopVar5, mPos);\r
403 mMatchLen = 1;\r
404 return ;\r
405 }\r
406\r
407 mMatchLen = 2;\r
408 }\r
409 //\r
410 // Traverse down the tree to find a match.\r
411 // Update Position value along the route.\r
412 // Node split or creation is involved.\r
413 //\r
414 for (;;) {\r
415 if (LoopVar4 >= WNDSIZ) {\r
416 LoopVar2 = MAXMATCH;\r
417 mMatchPos = LoopVar4;\r
418 } else {\r
419 LoopVar2 = mLevel[LoopVar4];\r
420 mMatchPos = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG);\r
421 }\r
422\r
423 if (mMatchPos >= mPos) {\r
424 mMatchPos -= WNDSIZ;\r
425 }\r
426\r
427 TempString3 = &mText[mPos + mMatchLen];\r
428 TempString2 = &mText[mMatchPos + mMatchLen];\r
429 while (mMatchLen < LoopVar2) {\r
430 if (*TempString3 != *TempString2) {\r
431 Split (LoopVar4);\r
432 return ;\r
433 }\r
434\r
435 mMatchLen++;\r
436 TempString3++;\r
437 TempString2++;\r
438 }\r
439\r
440 if (mMatchLen >= MAXMATCH) {\r
441 break;\r
442 }\r
443\r
444 mPosition[LoopVar4] = mPos;\r
445 LoopVar6 = LoopVar4;\r
446 LoopVar4 = Child (LoopVar6, *TempString3);\r
447 if (LoopVar4 == NIL) {\r
448 MakeChild (LoopVar6, *TempString3, mPos);\r
449 return ;\r
450 }\r
451\r
452 mMatchLen++;\r
453 }\r
454\r
455 LoopVar10 = mPrev[LoopVar4];\r
456 mPrev[mPos] = LoopVar10;\r
457 mNext[LoopVar10] = mPos;\r
458 LoopVar10 = mNext[LoopVar4];\r
459 mNext[mPos] = LoopVar10;\r
460 mPrev[LoopVar10] = mPos;\r
461 mParent[mPos] = LoopVar6;\r
462 mParent[LoopVar4] = NIL;\r
463\r
464 //\r
465 // Special usage of 'next'\r
466 //\r
467 mNext[LoopVar4] = mPos;\r
468\r
469}\r
470\r
471/**\r
472 Delete outdated string info. (The Usage of PERC_FLAG\r
473 ensures a clean deletion).\r
474\r
475**/\r
476VOID\r
477DeleteNode (\r
478 VOID\r
479 )\r
480{\r
481 NODE LoopVar6;\r
482\r
483 NODE LoopVar4;\r
484\r
485 NODE LoopVar11;\r
486\r
487 NODE LoopVar10;\r
488\r
489 NODE LoopVar9;\r
490\r
491 if (mParent[mPos] == NIL) {\r
492 return ;\r
493 }\r
494\r
495 LoopVar4 = mPrev[mPos];\r
496 LoopVar11 = mNext[mPos];\r
497 mNext[LoopVar4] = LoopVar11;\r
498 mPrev[LoopVar11] = LoopVar4;\r
499 LoopVar4 = mParent[mPos];\r
500 mParent[mPos] = NIL;\r
501 if (LoopVar4 >= WNDSIZ) {\r
502 return ;\r
503 }\r
504\r
505 mChildCount[LoopVar4]--;\r
506 if (mChildCount[LoopVar4] > 1) {\r
507 return ;\r
508 }\r
509\r
510 LoopVar10 = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG);\r
511 if (LoopVar10 >= mPos) {\r
512 LoopVar10 -= WNDSIZ;\r
513 }\r
514\r
515 LoopVar11 = LoopVar10;\r
516 LoopVar6 = mParent[LoopVar4];\r
517 LoopVar9 = mPosition[LoopVar6];\r
518 while ((LoopVar9 & PERC_FLAG) != 0){\r
519 LoopVar9 &= ~PERC_FLAG;\r
520 if (LoopVar9 >= mPos) {\r
521 LoopVar9 -= WNDSIZ;\r
522 }\r
523\r
524 if (LoopVar9 > LoopVar11) {\r
525 LoopVar11 = LoopVar9;\r
526 }\r
527\r
528 mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ);\r
529 LoopVar6 = mParent[LoopVar6];\r
530 LoopVar9 = mPosition[LoopVar6];\r
531 }\r
532\r
533 if (LoopVar6 < WNDSIZ) {\r
534 if (LoopVar9 >= mPos) {\r
535 LoopVar9 -= WNDSIZ;\r
536 }\r
537\r
538 if (LoopVar9 > LoopVar11) {\r
539 LoopVar11 = LoopVar9;\r
540 }\r
541\r
542 mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ | PERC_FLAG);\r
543 }\r
544\r
545 LoopVar11 = Child (LoopVar4, mText[LoopVar10 + mLevel[LoopVar4]]);\r
546 LoopVar10 = mPrev[LoopVar11];\r
547 LoopVar9 = mNext[LoopVar11];\r
548 mNext[LoopVar10] = LoopVar9;\r
549 mPrev[LoopVar9] = LoopVar10;\r
550 LoopVar10 = mPrev[LoopVar4];\r
551 mNext[LoopVar10] = LoopVar11;\r
552 mPrev[LoopVar11] = LoopVar10;\r
553 LoopVar10 = mNext[LoopVar4];\r
554 mPrev[LoopVar10] = LoopVar11;\r
555 mNext[LoopVar11] = LoopVar10;\r
556 mParent[LoopVar11] = mParent[LoopVar4];\r
557 mParent[LoopVar4] = NIL;\r
558 mNext[LoopVar4] = mAvail;\r
559 mAvail = LoopVar4;\r
560}\r
561\r
562/**\r
563 Read in source data\r
564\r
565 @param[out] LoopVar7 The buffer to hold the data.\r
566 @param[in] LoopVar8 The number of bytes to read.\r
567\r
568 @return The number of bytes actually read.\r
569**/\r
570INT32\r
571FreadCrc (\r
572 OUT UINT8 *LoopVar7,\r
573 IN INT32 LoopVar8\r
574 )\r
575{\r
576 INT32 LoopVar1;\r
577\r
578 for (LoopVar1 = 0; mSrc < mSrcUpperLimit && LoopVar1 < LoopVar8; LoopVar1++) {\r
579 *LoopVar7++ = *mSrc++;\r
580 }\r
581\r
582 LoopVar8 = LoopVar1;\r
583\r
584 LoopVar7 -= LoopVar8;\r
585 mOrigSize += LoopVar8;\r
586 LoopVar1--;\r
587 while (LoopVar1 >= 0) {\r
588 UPDATE_CRC (*LoopVar7++);\r
589 LoopVar1--;\r
590 }\r
591\r
592 return LoopVar8;\r
593}\r
594\r
595/**\r
596 Advance the current position (read in new data if needed).\r
597 Delete outdated string info. Find a match string for current position.\r
598\r
599 @retval TRUE The operation was successful.\r
600 @retval FALSE The operation failed due to insufficient memory.\r
601**/\r
602BOOLEAN\r
603GetNextMatch (\r
604 VOID\r
605 )\r
606{\r
607 INT32 LoopVar8;\r
608 VOID *Temp;\r
609\r
610 mRemainder--;\r
611 mPos++;\r
612 if (mPos == WNDSIZ * 2) {\r
613 Temp = AllocateZeroPool (WNDSIZ + MAXMATCH);\r
614 if (Temp == NULL) {\r
615 return (FALSE);\r
616 }\r
617 CopyMem (Temp, &mText[WNDSIZ], WNDSIZ + MAXMATCH);\r
618 CopyMem (&mText[0], Temp, WNDSIZ + MAXMATCH);\r
619 FreePool (Temp);\r
620 LoopVar8 = FreadCrc (&mText[WNDSIZ + MAXMATCH], WNDSIZ);\r
621 mRemainder += LoopVar8;\r
622 mPos = WNDSIZ;\r
623 }\r
624\r
625 DeleteNode ();\r
626 InsertNode ();\r
627\r
628 return (TRUE);\r
629}\r
630\r
631/**\r
632 Send entry LoopVar1 down the queue.\r
633\r
634 @param[in] LoopVar1 The index of the item to move.\r
635**/\r
636VOID\r
637DownHeap (\r
638 IN INT32 i\r
639 )\r
640{\r
641 INT32 LoopVar1;\r
642\r
643 INT32 LoopVar2;\r
644\r
645 //\r
646 // priority queue: send i-th entry down heap\r
647 //\r
648 LoopVar2 = mHeap[i];\r
649 LoopVar1 = 2 * i;\r
650 while (LoopVar1 <= mHeapSize) {\r
651 if (LoopVar1 < mHeapSize && mFreq[mHeap[LoopVar1]] > mFreq[mHeap[LoopVar1 + 1]]) {\r
652 LoopVar1++;\r
653 }\r
654\r
655 if (mFreq[LoopVar2] <= mFreq[mHeap[LoopVar1]]) {\r
656 break;\r
657 }\r
658\r
659 mHeap[i] = mHeap[LoopVar1];\r
660 i = LoopVar1;\r
661 LoopVar1 = 2 * i;\r
662 }\r
663\r
664 mHeap[i] = (INT16) LoopVar2;\r
665}\r
666\r
667/**\r
668 Count the number of each code length for a Huffman tree.\r
669\r
670 @param[in] LoopVar1 The top node.\r
671**/\r
672VOID\r
673CountLen (\r
674 IN INT32 LoopVar1\r
675 )\r
676{\r
677 if (LoopVar1 < mTempInt32) {\r
678 mLenCnt[(mHuffmanDepth < 16) ? mHuffmanDepth : 16]++;\r
679 } else {\r
680 mHuffmanDepth++;\r
681 CountLen (mLeft[LoopVar1]);\r
682 CountLen (mRight[LoopVar1]);\r
683 mHuffmanDepth--;\r
684 }\r
685}\r
686\r
687/**\r
688 Create code length array for a Huffman tree.\r
689\r
690 @param[in] Root The root of the tree.\r
691**/\r
692VOID\r
693MakeLen (\r
694 IN INT32 Root\r
695 )\r
696{\r
697 INT32 LoopVar1;\r
698\r
699 INT32 LoopVar2;\r
700 UINT32 Cum;\r
701\r
702 for (LoopVar1 = 0; LoopVar1 <= 16; LoopVar1++) {\r
703 mLenCnt[LoopVar1] = 0;\r
704 }\r
705\r
706 CountLen (Root);\r
707\r
708 //\r
709 // Adjust the length count array so that\r
710 // no code will be generated longer than its designated length\r
711 //\r
712 Cum = 0;\r
713 for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) {\r
714 Cum += mLenCnt[LoopVar1] << (16 - LoopVar1);\r
715 }\r
716\r
717 while (Cum != (1U << 16)) {\r
718 mLenCnt[16]--;\r
719 for (LoopVar1 = 15; LoopVar1 > 0; LoopVar1--) {\r
720 if (mLenCnt[LoopVar1] != 0) {\r
721 mLenCnt[LoopVar1]--;\r
722 mLenCnt[LoopVar1 + 1] += 2;\r
723 break;\r
724 }\r
725 }\r
726\r
727 Cum--;\r
728 }\r
729\r
730 for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) {\r
731 LoopVar2 = mLenCnt[LoopVar1];\r
732 LoopVar2--;\r
733 while (LoopVar2 >= 0) {\r
734 mLen[*mSortPtr++] = (UINT8) LoopVar1;\r
735 LoopVar2--;\r
736 }\r
737 }\r
738}\r
739\r
740/**\r
741 Assign code to each symbol based on the code length array.\r
742 \r
743 @param[in] LoopVar8 The number of symbols.\r
744 @param[in] Len The code length array.\r
745 @param[out] Code The stores codes for each symbol.\r
746**/\r
747VOID\r
748MakeCode (\r
749 IN INT32 LoopVar8,\r
750 IN UINT8 Len[ ],\r
751 OUT UINT16 Code[ ]\r
752 )\r
753{\r
754 INT32 LoopVar1;\r
755 UINT16 Start[18];\r
756\r
757 Start[1] = 0;\r
758 for (LoopVar1 = 1; LoopVar1 <= 16; LoopVar1++) {\r
759 Start[LoopVar1 + 1] = (UINT16) ((Start[LoopVar1] + mLenCnt[LoopVar1]) << 1);\r
760 }\r
761\r
762 for (LoopVar1 = 0; LoopVar1 < LoopVar8; LoopVar1++) {\r
763 Code[LoopVar1] = Start[Len[LoopVar1]]++;\r
764 }\r
765}\r
766 \r
767/**\r
768 Generates Huffman codes given a frequency distribution of symbols.\r
769\r
770 @param[in] NParm The number of symbols.\r
771 @param[in] FreqParm The frequency of each symbol.\r
772 @param[out] LenParm The code length for each symbol.\r
773 @param[out] CodeParm The code for each symbol.\r
774\r
775 @return The root of the Huffman tree.\r
776**/\r
777INT32\r
778MakeTree (\r
779 IN INT32 NParm,\r
780 IN UINT16 FreqParm[ ],\r
781 OUT UINT8 LenParm[ ],\r
782 OUT UINT16 CodeParm[ ]\r
783 )\r
784{\r
785 INT32 LoopVar1;\r
786\r
787 INT32 LoopVar2;\r
788\r
789 INT32 LoopVar3;\r
790\r
791 INT32 Avail;\r
792\r
793 //\r
794 // make tree, calculate len[], return root\r
795 //\r
796 mTempInt32 = NParm;\r
797 mFreq = FreqParm;\r
798 mLen = LenParm;\r
799 Avail = mTempInt32;\r
800 mHeapSize = 0;\r
801 mHeap[1] = 0;\r
802 for (LoopVar1 = 0; LoopVar1 < mTempInt32; LoopVar1++) {\r
803 mLen[LoopVar1] = 0;\r
804 if ((mFreq[LoopVar1]) != 0) {\r
805 mHeapSize++;\r
806 mHeap[mHeapSize] = (INT16) LoopVar1;\r
807 }\r
808 }\r
809\r
810 if (mHeapSize < 2) {\r
811 CodeParm[mHeap[1]] = 0;\r
812 return mHeap[1];\r
813 }\r
814\r
815 for (LoopVar1 = mHeapSize / 2; LoopVar1 >= 1; LoopVar1--) {\r
816 //\r
817 // make priority queue\r
818 //\r
819 DownHeap (LoopVar1);\r
820 }\r
821\r
822 mSortPtr = CodeParm;\r
823 do {\r
824 LoopVar1 = mHeap[1];\r
825 if (LoopVar1 < mTempInt32) {\r
826 *mSortPtr++ = (UINT16) LoopVar1;\r
827 }\r
828\r
829 mHeap[1] = mHeap[mHeapSize--];\r
830 DownHeap (1);\r
831 LoopVar2 = mHeap[1];\r
832 if (LoopVar2 < mTempInt32) {\r
833 *mSortPtr++ = (UINT16) LoopVar2;\r
834 }\r
835\r
836 LoopVar3 = Avail++;\r
837 mFreq[LoopVar3] = (UINT16) (mFreq[LoopVar1] + mFreq[LoopVar2]);\r
838 mHeap[1] = (INT16) LoopVar3;\r
839 DownHeap (1);\r
840 mLeft[LoopVar3] = (UINT16) LoopVar1;\r
841 mRight[LoopVar3] = (UINT16) LoopVar2;\r
842 } while (mHeapSize > 1);\r
843\r
844 mSortPtr = CodeParm;\r
845 MakeLen (LoopVar3);\r
846 MakeCode (NParm, LenParm, CodeParm);\r
847\r
848 //\r
849 // return root\r
850 //\r
851 return LoopVar3;\r
852}\r
853\r
854/**\r
855 Outputs rightmost LoopVar8 bits of x\r
856\r
857 @param[in] LoopVar8 The rightmost LoopVar8 bits of the data is used.\r
858 @param[in] x The data.\r
859**/\r
860VOID\r
861PutBits (\r
862 IN INT32 LoopVar8,\r
863 IN UINT32 x\r
864 )\r
865{\r
866 UINT8 Temp;\r
867\r
868 if (LoopVar8 < mBitCount) {\r
869 mSubBitBuf |= x << (mBitCount -= LoopVar8);\r
870 } else {\r
871\r
872 Temp = (UINT8)(mSubBitBuf | (x >> (LoopVar8 -= mBitCount)));\r
873 if (mDst < mDstUpperLimit) {\r
874 *mDst++ = Temp;\r
875 }\r
876 mCompSize++;\r
877\r
878 if (LoopVar8 < UINT8_BIT) {\r
879 mSubBitBuf = x << (mBitCount = UINT8_BIT - LoopVar8);\r
880 } else {\r
881\r
882 Temp = (UINT8)(x >> (LoopVar8 - UINT8_BIT));\r
883 if (mDst < mDstUpperLimit) {\r
884 *mDst++ = Temp;\r
885 }\r
886 mCompSize++;\r
887\r
888 mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - LoopVar8);\r
889 }\r
890 }\r
891}\r
892\r
893/**\r
894 Encode a signed 32 bit number.\r
895\r
896 @param[in] LoopVar5 The number to encode.\r
897**/\r
898VOID\r
899EncodeC (\r
900 IN INT32 LoopVar5\r
901 )\r
902{\r
903 PutBits (mCLen[LoopVar5], mCCode[LoopVar5]);\r
904}\r
905\r
906/**\r
907 Encode a unsigned 32 bit number.\r
908\r
909 @param[in] LoopVar7 The number to encode.\r
910**/\r
911VOID\r
912EncodeP (\r
913 IN UINT32 LoopVar7\r
914 )\r
915{\r
916 UINT32 LoopVar5;\r
917\r
918 UINT32 LoopVar6;\r
919\r
920 LoopVar5 = 0;\r
921 LoopVar6 = LoopVar7;\r
922 while (LoopVar6 != 0) {\r
923 LoopVar6 >>= 1;\r
924 LoopVar5++;\r
925 }\r
926\r
927 PutBits (mPTLen[LoopVar5], mPTCode[LoopVar5]);\r
928 if (LoopVar5 > 1) {\r
929 PutBits(LoopVar5 - 1, LoopVar7 & (0xFFFFU >> (17 - LoopVar5)));\r
930 }\r
931}\r
932\r
933/**\r
934 Count the frequencies for the Extra Set.\r
935\r
936**/\r
937VOID\r
938CountTFreq (\r
939 VOID\r
940 )\r
941{\r
942 INT32 LoopVar1;\r
943\r
944 INT32 LoopVar3;\r
945\r
946 INT32 LoopVar8;\r
947\r
948 INT32 Count;\r
949\r
950 for (LoopVar1 = 0; LoopVar1 < NT; LoopVar1++) {\r
951 mTFreq[LoopVar1] = 0;\r
952 }\r
953\r
954 LoopVar8 = NC;\r
955 while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) {\r
956 LoopVar8--;\r
957 }\r
958\r
959 LoopVar1 = 0;\r
960 while (LoopVar1 < LoopVar8) {\r
961 LoopVar3 = mCLen[LoopVar1++];\r
962 if (LoopVar3 == 0) {\r
963 Count = 1;\r
964 while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) {\r
965 LoopVar1++;\r
966 Count++;\r
967 }\r
968\r
969 if (Count <= 2) {\r
970 mTFreq[0] = (UINT16) (mTFreq[0] + Count);\r
971 } else if (Count <= 18) {\r
972 mTFreq[1]++;\r
973 } else if (Count == 19) {\r
974 mTFreq[0]++;\r
975 mTFreq[1]++;\r
976 } else {\r
977 mTFreq[2]++;\r
978 }\r
979 } else {\r
980 ASSERT((LoopVar3+2)<(2 * NT - 1));\r
981 mTFreq[LoopVar3 + 2]++;\r
982 }\r
983 }\r
984}\r
985\r
986/**\r
987 Outputs the code length array for the Extra Set or the Position Set.\r
988\r
989 @param[in] LoopVar8 The number of symbols.\r
990 @param[in] nbit The number of bits needed to represent 'LoopVar8'.\r
991 @param[in] Special The special symbol that needs to be take care of.\r
992\r
993**/\r
994VOID\r
995WritePTLen (\r
996 IN INT32 LoopVar8,\r
997 IN INT32 nbit,\r
998 IN INT32 Special\r
999 )\r
1000{\r
1001 INT32 LoopVar1;\r
1002\r
1003 INT32 LoopVar3;\r
1004\r
1005 while (LoopVar8 > 0 && mPTLen[LoopVar8 - 1] == 0) {\r
1006 LoopVar8--;\r
1007 }\r
1008\r
1009 PutBits (nbit, LoopVar8);\r
1010 LoopVar1 = 0;\r
1011 while (LoopVar1 < LoopVar8) {\r
1012 LoopVar3 = mPTLen[LoopVar1++];\r
1013 if (LoopVar3 <= 6) {\r
1014 PutBits (3, LoopVar3);\r
1015 } else {\r
1016 PutBits (LoopVar3 - 3, (1U << (LoopVar3 - 3)) - 2);\r
1017 }\r
1018\r
1019 if (LoopVar1 == Special) {\r
1020 while (LoopVar1 < 6 && mPTLen[LoopVar1] == 0) {\r
1021 LoopVar1++;\r
1022 }\r
1023\r
1024 PutBits (2, (LoopVar1 - 3) & 3);\r
1025 }\r
1026 }\r
1027}\r
1028\r
1029/**\r
1030 Outputs the code length array for Char&Length Set.\r
1031**/\r
1032VOID\r
1033WriteCLen (\r
1034 VOID\r
1035 )\r
1036{\r
1037 INT32 LoopVar1;\r
1038\r
1039 INT32 LoopVar3;\r
1040\r
1041 INT32 LoopVar8;\r
1042\r
1043 INT32 Count;\r
1044\r
1045 LoopVar8 = NC;\r
1046 while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) {\r
1047 LoopVar8--;\r
1048 }\r
1049\r
1050 PutBits (CBIT, LoopVar8);\r
1051 LoopVar1 = 0;\r
1052 while (LoopVar1 < LoopVar8) {\r
1053 LoopVar3 = mCLen[LoopVar1++];\r
1054 if (LoopVar3 == 0) {\r
1055 Count = 1;\r
1056 while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) {\r
1057 LoopVar1++;\r
1058 Count++;\r
1059 }\r
1060\r
1061 if (Count <= 2) {\r
1062 for (LoopVar3 = 0; LoopVar3 < Count; LoopVar3++) {\r
1063 PutBits (mPTLen[0], mPTCode[0]);\r
1064 }\r
1065 } else if (Count <= 18) {\r
1066 PutBits (mPTLen[1], mPTCode[1]);\r
1067 PutBits (4, Count - 3);\r
1068 } else if (Count == 19) {\r
1069 PutBits (mPTLen[0], mPTCode[0]);\r
1070 PutBits (mPTLen[1], mPTCode[1]);\r
1071 PutBits (4, 15);\r
1072 } else {\r
1073 PutBits (mPTLen[2], mPTCode[2]);\r
1074 PutBits (CBIT, Count - 20);\r
1075 }\r
1076 } else {\r
1077 ASSERT((LoopVar3+2)<NPT);\r
1078 PutBits (mPTLen[LoopVar3 + 2], mPTCode[LoopVar3 + 2]);\r
1079 }\r
1080 }\r
1081}\r
1082\r
1083/**\r
1084 Huffman code the block and output it.\r
1085\r
1086**/\r
1087VOID\r
1088SendBlock (\r
1089 VOID\r
1090 )\r
1091{\r
1092 UINT32 LoopVar1;\r
1093\r
1094 UINT32 LoopVar3;\r
1095\r
1096 UINT32 Flags;\r
1097\r
1098 UINT32 Root;\r
1099\r
1100 UINT32 Pos;\r
1101\r
1102 UINT32 Size;\r
1103 Flags = 0;\r
1104\r
1105 Root = MakeTree (NC, mCFreq, mCLen, mCCode);\r
1106 Size = mCFreq[Root];\r
1107 PutBits (16, Size);\r
1108 if (Root >= NC) {\r
1109 CountTFreq ();\r
1110 Root = MakeTree (NT, mTFreq, mPTLen, mPTCode);\r
1111 if (Root >= NT) {\r
1112 WritePTLen (NT, TBIT, 3);\r
1113 } else {\r
1114 PutBits (TBIT, 0);\r
1115 PutBits (TBIT, Root);\r
1116 }\r
1117\r
1118 WriteCLen ();\r
1119 } else {\r
1120 PutBits (TBIT, 0);\r
1121 PutBits (TBIT, 0);\r
1122 PutBits (CBIT, 0);\r
1123 PutBits (CBIT, Root);\r
1124 }\r
1125\r
1126 Root = MakeTree (NP, mPFreq, mPTLen, mPTCode);\r
1127 if (Root >= NP) {\r
1128 WritePTLen (NP, PBIT, -1);\r
1129 } else {\r
1130 PutBits (PBIT, 0);\r
1131 PutBits (PBIT, Root);\r
1132 }\r
1133\r
1134 Pos = 0;\r
1135 for (LoopVar1 = 0; LoopVar1 < Size; LoopVar1++) {\r
1136 if (LoopVar1 % UINT8_BIT == 0) {\r
1137 Flags = mBuf[Pos++];\r
1138 } else {\r
1139 Flags <<= 1;\r
1140 }\r
1141 if ((Flags & (1U << (UINT8_BIT - 1))) != 0){\r
1142 EncodeC(mBuf[Pos++] + (1U << UINT8_BIT));\r
1143 LoopVar3 = mBuf[Pos++] << UINT8_BIT;\r
1144 LoopVar3 += mBuf[Pos++];\r
1145\r
1146 EncodeP (LoopVar3);\r
1147 } else {\r
1148 EncodeC (mBuf[Pos++]);\r
1149 }\r
1150 }\r
1151\r
1152 SetMem (mCFreq, NC * sizeof (UINT16), 0);\r
1153 SetMem (mPFreq, NP * sizeof (UINT16), 0);\r
1154}\r
1155\r
1156/**\r
1157 Start the huffman encoding.\r
1158\r
1159**/\r
1160VOID\r
1161HufEncodeStart (\r
1162 VOID\r
1163 )\r
1164{\r
1165 SetMem (mCFreq, NC * sizeof (UINT16), 0);\r
1166 SetMem (mPFreq, NP * sizeof (UINT16), 0);\r
1167\r
1168 mOutputPos = mOutputMask = 0;\r
1169\r
1170 mBitCount = UINT8_BIT;\r
1171 mSubBitBuf = 0;\r
1172}\r
1173\r
1174/**\r
1175 Outputs an Original Character or a Pointer.\r
1176\r
1177 @param[in] LoopVar5 The original character or the 'String Length' element of \r
1178 a Pointer.\r
1179 @param[in] LoopVar7 The 'Position' field of a Pointer.\r
1180**/\r
1181VOID\r
1182CompressOutput (\r
1183 IN UINT32 LoopVar5,\r
1184 IN UINT32 LoopVar7\r
1185 )\r
1186{\r
1187 STATIC UINT32 CPos;\r
1188\r
1189 if ((mOutputMask >>= 1) == 0) {\r
1190 mOutputMask = 1U << (UINT8_BIT - 1);\r
1191 if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) {\r
1192 SendBlock ();\r
1193 mOutputPos = 0;\r
1194 }\r
1195\r
1196 CPos = mOutputPos++;\r
1197 mBuf[CPos] = 0;\r
1198 }\r
1199 mBuf[mOutputPos++] = (UINT8) LoopVar5;\r
1200 mCFreq[LoopVar5]++;\r
1201 if (LoopVar5 >= (1U << UINT8_BIT)) {\r
1202 mBuf[CPos] = (UINT8)(mBuf[CPos]|mOutputMask);\r
1203 mBuf[mOutputPos++] = (UINT8)(LoopVar7 >> UINT8_BIT);\r
1204 mBuf[mOutputPos++] = (UINT8) LoopVar7;\r
1205 LoopVar5 = 0;\r
1206 while (LoopVar7!=0) {\r
1207 LoopVar7 >>= 1;\r
1208 LoopVar5++;\r
1209 }\r
1210 mPFreq[LoopVar5]++;\r
1211 }\r
1212}\r
1213\r
1214/**\r
1215 End the huffman encoding.\r
1216\r
1217**/\r
1218VOID\r
1219HufEncodeEnd (\r
1220 VOID\r
1221 )\r
1222{\r
1223 SendBlock ();\r
1224\r
1225 //\r
1226 // Flush remaining bits\r
1227 //\r
1228 PutBits (UINT8_BIT - 1, 0);\r
1229}\r
1230\r
1231/**\r
1232 The main controlling routine for compression process.\r
1233\r
1234 @retval EFI_SUCCESS The compression is successful.\r
1235 @retval EFI_OUT_0F_RESOURCES Not enough memory for compression process.\r
1236**/\r
1237EFI_STATUS\r
1238Encode (\r
1239 VOID\r
1240 )\r
1241{\r
1242 EFI_STATUS Status;\r
1243 INT32 LastMatchLen;\r
1244 NODE LastMatchPos;\r
1245\r
1246 Status = AllocateMemory ();\r
1247 if (EFI_ERROR (Status)) {\r
1248 FreeMemory ();\r
1249 return Status;\r
1250 }\r
1251\r
1252 InitSlide ();\r
1253\r
1254 HufEncodeStart ();\r
1255\r
1256 mRemainder = FreadCrc (&mText[WNDSIZ], WNDSIZ + MAXMATCH);\r
1257\r
1258 mMatchLen = 0;\r
1259 mPos = WNDSIZ;\r
1260 InsertNode ();\r
1261 if (mMatchLen > mRemainder) {\r
1262 mMatchLen = mRemainder;\r
1263 }\r
1264\r
1265 while (mRemainder > 0) {\r
1266 LastMatchLen = mMatchLen;\r
1267 LastMatchPos = mMatchPos;\r
1268 if (!GetNextMatch ()) {\r
1269 Status = EFI_OUT_OF_RESOURCES;\r
1270 }\r
1271 if (mMatchLen > mRemainder) {\r
1272 mMatchLen = mRemainder;\r
1273 }\r
1274\r
1275 if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) {\r
1276 //\r
1277 // Not enough benefits are gained by outputting a pointer,\r
1278 // so just output the original character\r
1279 //\r
1280 CompressOutput(mText[mPos - 1], 0);\r
1281 } else {\r
1282 //\r
1283 // Outputting a pointer is beneficial enough, do it.\r
1284 //\r
1285\r
1286 CompressOutput(LastMatchLen + (UINT8_MAX + 1 - THRESHOLD),\r
1287 (mPos - LastMatchPos - 2) & (WNDSIZ - 1));\r
1288 LastMatchLen--;\r
1289 while (LastMatchLen > 0) {\r
1290 if (!GetNextMatch ()) {\r
1291 Status = EFI_OUT_OF_RESOURCES;\r
1292 }\r
1293 LastMatchLen--;\r
1294 }\r
1295\r
1296 if (mMatchLen > mRemainder) {\r
1297 mMatchLen = mRemainder;\r
1298 }\r
1299 }\r
1300 }\r
1301\r
1302 HufEncodeEnd ();\r
1303 FreeMemory ();\r
1304 return (Status);\r
1305}\r
1306\r
1307/**\r
1308 The compression routine.\r
1309\r
1310 @param[in] SrcBuffer The buffer containing the source data.\r
1311 @param[in] SrcSize The number of bytes in SrcBuffer.\r
1312 @param[in] DstBuffer The buffer to put the compressed image in.\r
1313 @param[in, out] DstSize On input the size (in bytes) of DstBuffer, on\r
1314 return the number of bytes placed in DstBuffer.\r
1315\r
1316 @retval EFI_SUCCESS The compression was sucessful.\r
1317 @retval EFI_BUFFER_TOO_SMALL The buffer was too small. DstSize is required.\r
1318**/\r
1319EFI_STATUS\r
1320Compress (\r
1321 IN VOID *SrcBuffer,\r
1322 IN UINT64 SrcSize,\r
1323 IN VOID *DstBuffer,\r
1324 IN OUT UINT64 *DstSize\r
1325 )\r
1326{\r
1327 EFI_STATUS Status;\r
1328\r
1329 //\r
1330 // Initializations\r
1331 //\r
1332 mBufSiz = 0;\r
1333 mBuf = NULL;\r
1334 mText = NULL;\r
1335 mLevel = NULL;\r
1336 mChildCount = NULL;\r
1337 mPosition = NULL;\r
1338 mParent = NULL;\r
1339 mPrev = NULL;\r
1340 mNext = NULL;\r
1341\r
1342 mSrc = SrcBuffer;\r
1343 mSrcUpperLimit = mSrc + SrcSize;\r
1344 mDst = DstBuffer;\r
1345 mDstUpperLimit = mDst +*DstSize;\r
1346\r
1347 PutDword (0L);\r
1348 PutDword (0L);\r
1349\r
1350 MakeCrcTable ();\r
1351\r
1352 mOrigSize = mCompSize = 0;\r
1353 mCrc = INIT_CRC;\r
1354\r
1355 //\r
1356 // Compress it\r
1357 //\r
1358 Status = Encode ();\r
1359 if (EFI_ERROR (Status)) {\r
1360 return EFI_OUT_OF_RESOURCES;\r
1361 }\r
1362 //\r
1363 // Null terminate the compressed data\r
1364 //\r
1365 if (mDst < mDstUpperLimit) {\r
1366 *mDst++ = 0;\r
1367 }\r
1368 //\r
1369 // Fill in compressed size and original size\r
1370 //\r
1371 mDst = DstBuffer;\r
1372 PutDword (mCompSize + 1);\r
1373 PutDword (mOrigSize);\r
1374\r
1375 //\r
1376 // Return\r
1377 //\r
1378 if (mCompSize + 1 + 8 > *DstSize) {\r
1379 *DstSize = mCompSize + 1 + 8;\r
1380 return EFI_BUFFER_TOO_SMALL;\r
1381 } else {\r
1382 *DstSize = mCompSize + 1 + 8;\r
1383 return EFI_SUCCESS;\r
1384 }\r
1385\r
1386}\r
1387\r