]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - UefiCpuPkg/Library/MpInitLib/MpLib.c
Maintainers.txt: Change package maintainer of UefiCpuPkg
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
... / ...
CommitLineData
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>\r
5 This program and the accompanying materials\r
6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.php\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "MpLib.h"\r
16\r
17EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
18\r
19/**\r
20 The function will check if BSP Execute Disable is enabled.\r
21\r
22 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
23 get the status and sync up the settings.\r
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
25 not working actually.\r
26\r
27 @retval TRUE BSP Execute Disable is enabled.\r
28 @retval FALSE BSP Execute Disable is not enabled.\r
29**/\r
30BOOLEAN\r
31IsBspExecuteDisableEnabled (\r
32 VOID\r
33 )\r
34{\r
35 UINT32 Eax;\r
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
37 MSR_IA32_EFER_REGISTER EferMsr;\r
38 BOOLEAN Enabled;\r
39 IA32_CR0 Cr0;\r
40\r
41 Enabled = FALSE;\r
42 Cr0.UintN = AsmReadCr0 ();\r
43 if (Cr0.Bits.PG != 0) {\r
44 //\r
45 // If CR0 Paging bit is set\r
46 //\r
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
50 //\r
51 // CPUID 0x80000001\r
52 // Bit 20: Execute Disable Bit available.\r
53 //\r
54 if (Edx.Bits.NX != 0) {\r
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
56 //\r
57 // MSR 0xC0000080\r
58 // Bit 11: Execute Disable Bit enable.\r
59 //\r
60 if (EferMsr.Bits.NXE != 0) {\r
61 Enabled = TRUE;\r
62 }\r
63 }\r
64 }\r
65 }\r
66\r
67 return Enabled;\r
68}\r
69\r
70/**\r
71 Worker function for SwitchBSP().\r
72\r
73 Worker function for SwitchBSP(), assigned to the AP which is intended\r
74 to become BSP.\r
75\r
76 @param[in] Buffer Pointer to CPU MP Data\r
77**/\r
78VOID\r
79EFIAPI\r
80FutureBSPProc (\r
81 IN VOID *Buffer\r
82 )\r
83{\r
84 CPU_MP_DATA *DataInHob;\r
85\r
86 DataInHob = (CPU_MP_DATA *) Buffer;\r
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
88}\r
89\r
90/**\r
91 Get the Application Processors state.\r
92\r
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
94\r
95 @return The AP status\r
96**/\r
97CPU_STATE\r
98GetApState (\r
99 IN CPU_AP_DATA *CpuData\r
100 )\r
101{\r
102 return CpuData->State;\r
103}\r
104\r
105/**\r
106 Set the Application Processors state.\r
107\r
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
109 @param[in] State The AP status\r
110**/\r
111VOID\r
112SetApState (\r
113 IN CPU_AP_DATA *CpuData,\r
114 IN CPU_STATE State\r
115 )\r
116{\r
117 AcquireSpinLock (&CpuData->ApLock);\r
118 CpuData->State = State;\r
119 ReleaseSpinLock (&CpuData->ApLock);\r
120}\r
121\r
122/**\r
123 Save BSP's local APIC timer setting.\r
124\r
125 @param[in] CpuMpData Pointer to CPU MP Data\r
126**/\r
127VOID\r
128SaveLocalApicTimerSetting (\r
129 IN CPU_MP_DATA *CpuMpData\r
130 )\r
131{\r
132 //\r
133 // Record the current local APIC timer setting of BSP\r
134 //\r
135 GetApicTimerState (\r
136 &CpuMpData->DivideValue,\r
137 &CpuMpData->PeriodicMode,\r
138 &CpuMpData->Vector\r
139 );\r
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
142}\r
143\r
144/**\r
145 Sync local APIC timer setting from BSP to AP.\r
146\r
147 @param[in] CpuMpData Pointer to CPU MP Data\r
148**/\r
149VOID\r
150SyncLocalApicTimerSetting (\r
151 IN CPU_MP_DATA *CpuMpData\r
152 )\r
153{\r
154 //\r
155 // Sync local APIC timer setting from BSP to AP\r
156 //\r
157 InitializeApicTimer (\r
158 CpuMpData->DivideValue,\r
159 CpuMpData->CurrentTimerCount,\r
160 CpuMpData->PeriodicMode,\r
161 CpuMpData->Vector\r
162 );\r
163 //\r
164 // Disable AP's local APIC timer interrupt\r
165 //\r
166 DisableApicTimerInterrupt ();\r
167}\r
168\r
169/**\r
170 Save the volatile registers required to be restored following INIT IPI.\r
171\r
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
173**/\r
174VOID\r
175SaveVolatileRegisters (\r
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
177 )\r
178{\r
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
180\r
181 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
182 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
183 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
184\r
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
186 if (VersionInfoEdx.Bits.DE != 0) {\r
187 //\r
188 // If processor supports Debugging Extensions feature\r
189 // by CPUID.[EAX=01H]:EDX.BIT2\r
190 //\r
191 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
192 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
193 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
194 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
195 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
196 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
197 }\r
198\r
199 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
200 AsmReadIdtr (&VolatileRegisters->Idtr);\r
201 VolatileRegisters->Tr = AsmReadTr ();\r
202}\r
203\r
204/**\r
205 Restore the volatile registers following INIT IPI.\r
206\r
207 @param[in] VolatileRegisters Pointer to volatile resisters\r
208 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
209 FALSE: Do not restore DRx\r
210**/\r
211VOID\r
212RestoreVolatileRegisters (\r
213 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
214 IN BOOLEAN IsRestoreDr\r
215 )\r
216{\r
217 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
218 IA32_TSS_DESCRIPTOR *Tss;\r
219\r
220 AsmWriteCr3 (VolatileRegisters->Cr3);\r
221 AsmWriteCr4 (VolatileRegisters->Cr4);\r
222 AsmWriteCr0 (VolatileRegisters->Cr0);\r
223\r
224 if (IsRestoreDr) {\r
225 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
226 if (VersionInfoEdx.Bits.DE != 0) {\r
227 //\r
228 // If processor supports Debugging Extensions feature\r
229 // by CPUID.[EAX=01H]:EDX.BIT2\r
230 //\r
231 AsmWriteDr0 (VolatileRegisters->Dr0);\r
232 AsmWriteDr1 (VolatileRegisters->Dr1);\r
233 AsmWriteDr2 (VolatileRegisters->Dr2);\r
234 AsmWriteDr3 (VolatileRegisters->Dr3);\r
235 AsmWriteDr6 (VolatileRegisters->Dr6);\r
236 AsmWriteDr7 (VolatileRegisters->Dr7);\r
237 }\r
238 }\r
239\r
240 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
241 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
242 if (VolatileRegisters->Tr != 0 &&\r
243 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
244 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
245 VolatileRegisters->Tr);\r
246 if (Tss->Bits.P == 1) {\r
247 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
248 AsmWriteTr (VolatileRegisters->Tr);\r
249 }\r
250 }\r
251}\r
252\r
253/**\r
254 Detect whether Mwait-monitor feature is supported.\r
255\r
256 @retval TRUE Mwait-monitor feature is supported.\r
257 @retval FALSE Mwait-monitor feature is not supported.\r
258**/\r
259BOOLEAN\r
260IsMwaitSupport (\r
261 VOID\r
262 )\r
263{\r
264 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
265\r
266 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
267 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
268}\r
269\r
270/**\r
271 Get AP loop mode.\r
272\r
273 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
274\r
275 @return The AP loop mode.\r
276**/\r
277UINT8\r
278GetApLoopMode (\r
279 OUT UINT32 *MonitorFilterSize\r
280 )\r
281{\r
282 UINT8 ApLoopMode;\r
283 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
284\r
285 ASSERT (MonitorFilterSize != NULL);\r
286\r
287 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
288 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
289 if (ApLoopMode == ApInMwaitLoop) {\r
290 if (!IsMwaitSupport ()) {\r
291 //\r
292 // If processor does not support MONITOR/MWAIT feature,\r
293 // force AP in Hlt-loop mode\r
294 //\r
295 ApLoopMode = ApInHltLoop;\r
296 }\r
297 }\r
298\r
299 if (ApLoopMode != ApInMwaitLoop) {\r
300 *MonitorFilterSize = sizeof (UINT32);\r
301 } else {\r
302 //\r
303 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
304 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
305 //\r
306 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
307 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
308 }\r
309\r
310 return ApLoopMode;\r
311}\r
312\r
313/**\r
314 Sort the APIC ID of all processors.\r
315\r
316 This function sorts the APIC ID of all processors so that processor number is\r
317 assigned in the ascending order of APIC ID which eases MP debugging.\r
318\r
319 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
320**/\r
321VOID\r
322SortApicId (\r
323 IN CPU_MP_DATA *CpuMpData\r
324 )\r
325{\r
326 UINTN Index1;\r
327 UINTN Index2;\r
328 UINTN Index3;\r
329 UINT32 ApicId;\r
330 CPU_INFO_IN_HOB CpuInfo;\r
331 UINT32 ApCount;\r
332 CPU_INFO_IN_HOB *CpuInfoInHob;\r
333 volatile UINT32 *StartupApSignal;\r
334\r
335 ApCount = CpuMpData->CpuCount - 1;\r
336 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
337 if (ApCount != 0) {\r
338 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
339 Index3 = Index1;\r
340 //\r
341 // Sort key is the hardware default APIC ID\r
342 //\r
343 ApicId = CpuInfoInHob[Index1].ApicId;\r
344 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
345 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
346 Index3 = Index2;\r
347 ApicId = CpuInfoInHob[Index2].ApicId;\r
348 }\r
349 }\r
350 if (Index3 != Index1) {\r
351 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
352 CopyMem (\r
353 &CpuInfoInHob[Index3],\r
354 &CpuInfoInHob[Index1],\r
355 sizeof (CPU_INFO_IN_HOB)\r
356 );\r
357 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
358\r
359 //\r
360 // Also exchange the StartupApSignal.\r
361 //\r
362 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;\r
363 CpuMpData->CpuData[Index3].StartupApSignal =\r
364 CpuMpData->CpuData[Index1].StartupApSignal;\r
365 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;\r
366 }\r
367 }\r
368\r
369 //\r
370 // Get the processor number for the BSP\r
371 //\r
372 ApicId = GetInitialApicId ();\r
373 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
374 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
375 CpuMpData->BspNumber = (UINT32) Index1;\r
376 break;\r
377 }\r
378 }\r
379 }\r
380}\r
381\r
382/**\r
383 Enable x2APIC mode on APs.\r
384\r
385 @param[in, out] Buffer Pointer to private data buffer.\r
386**/\r
387VOID\r
388EFIAPI\r
389ApFuncEnableX2Apic (\r
390 IN OUT VOID *Buffer\r
391 )\r
392{\r
393 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
394}\r
395\r
396/**\r
397 Do sync on APs.\r
398\r
399 @param[in, out] Buffer Pointer to private data buffer.\r
400**/\r
401VOID\r
402EFIAPI\r
403ApInitializeSync (\r
404 IN OUT VOID *Buffer\r
405 )\r
406{\r
407 CPU_MP_DATA *CpuMpData;\r
408\r
409 CpuMpData = (CPU_MP_DATA *) Buffer;\r
410 //\r
411 // Load microcode on AP\r
412 //\r
413 MicrocodeDetect (CpuMpData, FALSE);\r
414 //\r
415 // Sync BSP's MTRR table to AP\r
416 //\r
417 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
418}\r
419\r
420/**\r
421 Find the current Processor number by APIC ID.\r
422\r
423 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
424 @param[out] ProcessorNumber Return the pocessor number found\r
425\r
426 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
427 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
428**/\r
429EFI_STATUS\r
430GetProcessorNumber (\r
431 IN CPU_MP_DATA *CpuMpData,\r
432 OUT UINTN *ProcessorNumber\r
433 )\r
434{\r
435 UINTN TotalProcessorNumber;\r
436 UINTN Index;\r
437 CPU_INFO_IN_HOB *CpuInfoInHob;\r
438 UINT32 CurrentApicId;\r
439\r
440 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
441\r
442 TotalProcessorNumber = CpuMpData->CpuCount;\r
443 CurrentApicId = GetApicId ();\r
444 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
445 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {\r
446 *ProcessorNumber = Index;\r
447 return EFI_SUCCESS;\r
448 }\r
449 }\r
450\r
451 return EFI_NOT_FOUND;\r
452}\r
453\r
454/**\r
455 This function will get CPU count in the system.\r
456\r
457 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
458\r
459 @return CPU count detected\r
460**/\r
461UINTN\r
462CollectProcessorCount (\r
463 IN CPU_MP_DATA *CpuMpData\r
464 )\r
465{\r
466 UINTN Index;\r
467\r
468 //\r
469 // Send 1st broadcast IPI to APs to wakeup APs\r
470 //\r
471 CpuMpData->InitFlag = ApInitConfig;\r
472 CpuMpData->X2ApicEnable = FALSE;\r
473 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);\r
474 CpuMpData->InitFlag = ApInitDone;\r
475 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
476 //\r
477 // Wait for all APs finished the initialization\r
478 //\r
479 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
480 CpuPause ();\r
481 }\r
482\r
483 if (CpuMpData->CpuCount > 255) {\r
484 //\r
485 // If there are more than 255 processor found, force to enable X2APIC\r
486 //\r
487 CpuMpData->X2ApicEnable = TRUE;\r
488 }\r
489 if (CpuMpData->X2ApicEnable) {\r
490 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
491 //\r
492 // Wakeup all APs to enable x2APIC mode\r
493 //\r
494 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);\r
495 //\r
496 // Wait for all known APs finished\r
497 //\r
498 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
499 CpuPause ();\r
500 }\r
501 //\r
502 // Enable x2APIC on BSP\r
503 //\r
504 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
505 //\r
506 // Set BSP/Aps state to IDLE\r
507 //\r
508 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
509 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
510 }\r
511 }\r
512 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
513 //\r
514 // Sort BSP/Aps by CPU APIC ID in ascending order\r
515 //\r
516 SortApicId (CpuMpData);\r
517\r
518 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
519\r
520 return CpuMpData->CpuCount;\r
521}\r
522\r
523/**\r
524 Initialize CPU AP Data when AP is wakeup at the first time.\r
525\r
526 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
527 @param[in] ProcessorNumber The handle number of processor\r
528 @param[in] BistData Processor BIST data\r
529 @param[in] ApTopOfStack Top of AP stack\r
530\r
531**/\r
532VOID\r
533InitializeApData (\r
534 IN OUT CPU_MP_DATA *CpuMpData,\r
535 IN UINTN ProcessorNumber,\r
536 IN UINT32 BistData,\r
537 IN UINT64 ApTopOfStack\r
538 )\r
539{\r
540 CPU_INFO_IN_HOB *CpuInfoInHob;\r
541\r
542 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
543 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
544 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
545 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
546 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
547\r
548 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
549 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
550 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {\r
551 //\r
552 // Set x2APIC mode if there are any logical processor reporting\r
553 // an Initial APIC ID of 255 or greater.\r
554 //\r
555 AcquireSpinLock(&CpuMpData->MpLock);\r
556 CpuMpData->X2ApicEnable = TRUE;\r
557 ReleaseSpinLock(&CpuMpData->MpLock);\r
558 }\r
559\r
560 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
561 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
562}\r
563\r
564/**\r
565 This function will be called from AP reset code if BSP uses WakeUpAP.\r
566\r
567 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
568 @param[in] ApIndex Number of current executing AP\r
569**/\r
570VOID\r
571EFIAPI\r
572ApWakeupFunction (\r
573 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
574 IN UINTN ApIndex\r
575 )\r
576{\r
577 CPU_MP_DATA *CpuMpData;\r
578 UINTN ProcessorNumber;\r
579 EFI_AP_PROCEDURE Procedure;\r
580 VOID *Parameter;\r
581 UINT32 BistData;\r
582 volatile UINT32 *ApStartupSignalBuffer;\r
583 CPU_INFO_IN_HOB *CpuInfoInHob;\r
584 UINT64 ApTopOfStack;\r
585 UINTN CurrentApicMode;\r
586\r
587 //\r
588 // AP finished assembly code and begin to execute C code\r
589 //\r
590 CpuMpData = ExchangeInfo->CpuMpData;\r
591\r
592 //\r
593 // AP's local APIC settings will be lost after received INIT IPI\r
594 // We need to re-initialize them at here\r
595 //\r
596 ProgramVirtualWireMode ();\r
597 //\r
598 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
599 //\r
600 DisableLvtInterrupts ();\r
601 SyncLocalApicTimerSetting (CpuMpData);\r
602\r
603 CurrentApicMode = GetApicMode ();\r
604 while (TRUE) {\r
605 if (CpuMpData->InitFlag == ApInitConfig) {\r
606 //\r
607 // Add CPU number\r
608 //\r
609 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
610 ProcessorNumber = ApIndex;\r
611 //\r
612 // This is first time AP wakeup, get BIST information from AP stack\r
613 //\r
614 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
615 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
616 //\r
617 // Do some AP initialize sync\r
618 //\r
619 ApInitializeSync (CpuMpData);\r
620 //\r
621 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,\r
622 // to initialize AP in InitConfig path.\r
623 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.\r
624 //\r
625 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
626 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
627 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
628 } else {\r
629 //\r
630 // Execute AP function if AP is ready\r
631 //\r
632 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
633 //\r
634 // Clear AP start-up signal when AP waken up\r
635 //\r
636 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
637 InterlockedCompareExchange32 (\r
638 (UINT32 *) ApStartupSignalBuffer,\r
639 WAKEUP_AP_SIGNAL,\r
640 0\r
641 );\r
642 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
643 //\r
644 // Restore AP's volatile registers saved\r
645 //\r
646 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
647 } else {\r
648 //\r
649 // The CPU driver might not flush TLB for APs on spot after updating\r
650 // page attributes. AP in mwait loop mode needs to take care of it when\r
651 // woken up.\r
652 //\r
653 CpuFlushTlb ();\r
654 }\r
655\r
656 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
657 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
658 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
659 if (Procedure != NULL) {\r
660 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
661 //\r
662 // Enable source debugging on AP function\r
663 //\r
664 EnableDebugAgent ();\r
665 //\r
666 // Invoke AP function here\r
667 //\r
668 Procedure (Parameter);\r
669 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
670 if (CpuMpData->SwitchBspFlag) {\r
671 //\r
672 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
673 //\r
674 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
675 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
676 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
677 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
678 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
679 } else {\r
680 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
681 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
682 if (CurrentApicMode != GetApicMode ()) {\r
683 //\r
684 // If APIC mode change happened during AP function execution,\r
685 // we do not support APIC ID value changed.\r
686 //\r
687 ASSERT (FALSE);\r
688 CpuDeadLoop ();\r
689 } else {\r
690 //\r
691 // Re-get the CPU APICID and Initial APICID if they are changed\r
692 //\r
693 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
694 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
695 }\r
696 }\r
697 }\r
698 }\r
699 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
700 }\r
701 }\r
702\r
703 //\r
704 // AP finished executing C code\r
705 //\r
706 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
707 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
708\r
709 //\r
710 // Place AP is specified loop mode\r
711 //\r
712 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
713 //\r
714 // Save AP volatile registers\r
715 //\r
716 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
717 //\r
718 // Place AP in HLT-loop\r
719 //\r
720 while (TRUE) {\r
721 DisableInterrupts ();\r
722 CpuSleep ();\r
723 CpuPause ();\r
724 }\r
725 }\r
726 while (TRUE) {\r
727 DisableInterrupts ();\r
728 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
729 //\r
730 // Place AP in MWAIT-loop\r
731 //\r
732 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
733 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
734 //\r
735 // Check AP start-up signal again.\r
736 // If AP start-up signal is not set, place AP into\r
737 // the specified C-state\r
738 //\r
739 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
740 }\r
741 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
742 //\r
743 // Place AP in Run-loop\r
744 //\r
745 CpuPause ();\r
746 } else {\r
747 ASSERT (FALSE);\r
748 }\r
749\r
750 //\r
751 // If AP start-up signal is written, AP is waken up\r
752 // otherwise place AP in loop again\r
753 //\r
754 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
755 break;\r
756 }\r
757 }\r
758 }\r
759}\r
760\r
761/**\r
762 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
763\r
764 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
765**/\r
766VOID\r
767WaitApWakeup (\r
768 IN volatile UINT32 *ApStartupSignalBuffer\r
769 )\r
770{\r
771 //\r
772 // If AP is waken up, StartupApSignal should be cleared.\r
773 // Otherwise, write StartupApSignal again till AP waken up.\r
774 //\r
775 while (InterlockedCompareExchange32 (\r
776 (UINT32 *) ApStartupSignalBuffer,\r
777 WAKEUP_AP_SIGNAL,\r
778 WAKEUP_AP_SIGNAL\r
779 ) != 0) {\r
780 CpuPause ();\r
781 }\r
782}\r
783\r
784/**\r
785 This function will fill the exchange info structure.\r
786\r
787 @param[in] CpuMpData Pointer to CPU MP Data\r
788\r
789**/\r
790VOID\r
791FillExchangeInfoData (\r
792 IN CPU_MP_DATA *CpuMpData\r
793 )\r
794{\r
795 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
796 UINTN Size;\r
797 IA32_SEGMENT_DESCRIPTOR *Selector;\r
798\r
799 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
800 ExchangeInfo->Lock = 0;\r
801 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
802 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
803 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
804 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
805\r
806 ExchangeInfo->CodeSegment = AsmReadCs ();\r
807 ExchangeInfo->DataSegment = AsmReadDs ();\r
808\r
809 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
810\r
811 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
812 ExchangeInfo->ApIndex = 0;\r
813 ExchangeInfo->NumApsExecuting = 0;\r
814 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
815 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
816 ExchangeInfo->CpuMpData = CpuMpData;\r
817\r
818 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
819\r
820 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
821\r
822 //\r
823 // Get the BSP's data of GDT and IDT\r
824 //\r
825 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
826 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
827\r
828 //\r
829 // Find a 32-bit code segment\r
830 //\r
831 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;\r
832 Size = ExchangeInfo->GdtrProfile.Limit + 1;\r
833 while (Size > 0) {\r
834 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {\r
835 ExchangeInfo->ModeTransitionSegment =\r
836 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);\r
837 break;\r
838 }\r
839 Selector += 1;\r
840 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);\r
841 }\r
842\r
843 //\r
844 // Copy all 32-bit code and 64-bit code into memory with type of\r
845 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.\r
846 //\r
847 if (CpuMpData->WakeupBufferHigh != 0) {\r
848 Size = CpuMpData->AddressMap.RendezvousFunnelSize -\r
849 CpuMpData->AddressMap.ModeTransitionOffset;\r
850 CopyMem (\r
851 (VOID *)CpuMpData->WakeupBufferHigh,\r
852 CpuMpData->AddressMap.RendezvousFunnelAddress +\r
853 CpuMpData->AddressMap.ModeTransitionOffset,\r
854 Size\r
855 );\r
856\r
857 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;\r
858 } else {\r
859 ExchangeInfo->ModeTransitionMemory = (UINT32)\r
860 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);\r
861 }\r
862\r
863 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +\r
864 (UINT32)ExchangeInfo->ModeOffset -\r
865 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;\r
866 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;\r
867}\r
868\r
869/**\r
870 Helper function that waits until the finished AP count reaches the specified\r
871 limit, or the specified timeout elapses (whichever comes first).\r
872\r
873 @param[in] CpuMpData Pointer to CPU MP Data.\r
874 @param[in] FinishedApLimit The number of finished APs to wait for.\r
875 @param[in] TimeLimit The number of microseconds to wait for.\r
876**/\r
877VOID\r
878TimedWaitForApFinish (\r
879 IN CPU_MP_DATA *CpuMpData,\r
880 IN UINT32 FinishedApLimit,\r
881 IN UINT32 TimeLimit\r
882 );\r
883\r
884/**\r
885 Get available system memory below 1MB by specified size.\r
886\r
887 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
888**/\r
889VOID\r
890BackupAndPrepareWakeupBuffer(\r
891 IN CPU_MP_DATA *CpuMpData\r
892 )\r
893{\r
894 CopyMem (\r
895 (VOID *) CpuMpData->BackupBuffer,\r
896 (VOID *) CpuMpData->WakeupBuffer,\r
897 CpuMpData->BackupBufferSize\r
898 );\r
899 CopyMem (\r
900 (VOID *) CpuMpData->WakeupBuffer,\r
901 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
902 CpuMpData->AddressMap.RendezvousFunnelSize\r
903 );\r
904}\r
905\r
906/**\r
907 Restore wakeup buffer data.\r
908\r
909 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
910**/\r
911VOID\r
912RestoreWakeupBuffer(\r
913 IN CPU_MP_DATA *CpuMpData\r
914 )\r
915{\r
916 CopyMem (\r
917 (VOID *) CpuMpData->WakeupBuffer,\r
918 (VOID *) CpuMpData->BackupBuffer,\r
919 CpuMpData->BackupBufferSize\r
920 );\r
921}\r
922\r
923/**\r
924 Allocate reset vector buffer.\r
925\r
926 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
927**/\r
928VOID\r
929AllocateResetVector (\r
930 IN OUT CPU_MP_DATA *CpuMpData\r
931 )\r
932{\r
933 UINTN ApResetVectorSize;\r
934\r
935 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
936 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
937 sizeof (MP_CPU_EXCHANGE_INFO);\r
938\r
939 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
940 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
941 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
942 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (\r
943 CpuMpData->AddressMap.RendezvousFunnelSize -\r
944 CpuMpData->AddressMap.ModeTransitionOffset\r
945 );\r
946 }\r
947 BackupAndPrepareWakeupBuffer (CpuMpData);\r
948}\r
949\r
950/**\r
951 Free AP reset vector buffer.\r
952\r
953 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
954**/\r
955VOID\r
956FreeResetVector (\r
957 IN CPU_MP_DATA *CpuMpData\r
958 )\r
959{\r
960 RestoreWakeupBuffer (CpuMpData);\r
961}\r
962\r
963/**\r
964 This function will be called by BSP to wakeup AP.\r
965\r
966 @param[in] CpuMpData Pointer to CPU MP Data\r
967 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
968 FALSE: Send IPI to AP by ApicId\r
969 @param[in] ProcessorNumber The handle number of specified processor\r
970 @param[in] Procedure The function to be invoked by AP\r
971 @param[in] ProcedureArgument The argument to be passed into AP function\r
972 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.\r
973**/\r
974VOID\r
975WakeUpAP (\r
976 IN CPU_MP_DATA *CpuMpData,\r
977 IN BOOLEAN Broadcast,\r
978 IN UINTN ProcessorNumber,\r
979 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
980 IN VOID *ProcedureArgument, OPTIONAL\r
981 IN BOOLEAN WakeUpDisabledAps\r
982 )\r
983{\r
984 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
985 UINTN Index;\r
986 CPU_AP_DATA *CpuData;\r
987 BOOLEAN ResetVectorRequired;\r
988 CPU_INFO_IN_HOB *CpuInfoInHob;\r
989\r
990 CpuMpData->FinishedCount = 0;\r
991 ResetVectorRequired = FALSE;\r
992\r
993 if (CpuMpData->WakeUpByInitSipiSipi ||\r
994 CpuMpData->InitFlag != ApInitDone) {\r
995 ResetVectorRequired = TRUE;\r
996 AllocateResetVector (CpuMpData);\r
997 FillExchangeInfoData (CpuMpData);\r
998 SaveLocalApicTimerSetting (CpuMpData);\r
999 }\r
1000\r
1001 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
1002 //\r
1003 // Get AP target C-state each time when waking up AP,\r
1004 // for it maybe updated by platform again\r
1005 //\r
1006 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
1007 }\r
1008\r
1009 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
1010\r
1011 if (Broadcast) {\r
1012 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1013 if (Index != CpuMpData->BspNumber) {\r
1014 CpuData = &CpuMpData->CpuData[Index];\r
1015 //\r
1016 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but\r
1017 // the AP procedure will be skipped for disabled AP because AP state\r
1018 // is not CpuStateReady.\r
1019 //\r
1020 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {\r
1021 continue;\r
1022 }\r
1023\r
1024 CpuData->ApFunction = (UINTN) Procedure;\r
1025 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1026 SetApState (CpuData, CpuStateReady);\r
1027 if (CpuMpData->InitFlag != ApInitConfig) {\r
1028 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1029 }\r
1030 }\r
1031 }\r
1032 if (ResetVectorRequired) {\r
1033 //\r
1034 // Wakeup all APs\r
1035 //\r
1036 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
1037 }\r
1038 if (CpuMpData->InitFlag == ApInitConfig) {\r
1039 //\r
1040 // Here support two methods to collect AP count through adjust\r
1041 // PcdCpuApInitTimeOutInMicroSeconds values.\r
1042 //\r
1043 // one way is set a value to just let the first AP to start the\r
1044 // initialization, then through the later while loop to wait all Aps\r
1045 // finsh the initialization.\r
1046 // The other way is set a value to let all APs finished the initialzation.\r
1047 // In this case, the later while loop is useless.\r
1048 //\r
1049 TimedWaitForApFinish (\r
1050 CpuMpData,\r
1051 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
1052 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
1053 );\r
1054\r
1055 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
1056 CpuPause();\r
1057 }\r
1058 } else {\r
1059 //\r
1060 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
1061 //\r
1062 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1063 CpuData = &CpuMpData->CpuData[Index];\r
1064 if (Index != CpuMpData->BspNumber) {\r
1065 WaitApWakeup (CpuData->StartupApSignal);\r
1066 }\r
1067 }\r
1068 }\r
1069 } else {\r
1070 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1071 CpuData->ApFunction = (UINTN) Procedure;\r
1072 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1073 SetApState (CpuData, CpuStateReady);\r
1074 //\r
1075 // Wakeup specified AP\r
1076 //\r
1077 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
1078 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1079 if (ResetVectorRequired) {\r
1080 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
1081 SendInitSipiSipi (\r
1082 CpuInfoInHob[ProcessorNumber].ApicId,\r
1083 (UINT32) ExchangeInfo->BufferStart\r
1084 );\r
1085 }\r
1086 //\r
1087 // Wait specified AP waken up\r
1088 //\r
1089 WaitApWakeup (CpuData->StartupApSignal);\r
1090 }\r
1091\r
1092 if (ResetVectorRequired) {\r
1093 FreeResetVector (CpuMpData);\r
1094 }\r
1095\r
1096 //\r
1097 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with\r
1098 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by\r
1099 // S3SmmInitDone Ppi.\r
1100 //\r
1101 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1102}\r
1103\r
1104/**\r
1105 Calculate timeout value and return the current performance counter value.\r
1106\r
1107 Calculate the number of performance counter ticks required for a timeout.\r
1108 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1109 as infinity.\r
1110\r
1111 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1112 @param[out] CurrentTime Returns the current value of the performance counter.\r
1113\r
1114 @return Expected time stamp counter for timeout.\r
1115 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1116 as infinity.\r
1117\r
1118**/\r
1119UINT64\r
1120CalculateTimeout (\r
1121 IN UINTN TimeoutInMicroseconds,\r
1122 OUT UINT64 *CurrentTime\r
1123 )\r
1124{\r
1125 UINT64 TimeoutInSeconds;\r
1126 UINT64 TimestampCounterFreq;\r
1127\r
1128 //\r
1129 // Read the current value of the performance counter\r
1130 //\r
1131 *CurrentTime = GetPerformanceCounter ();\r
1132\r
1133 //\r
1134 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1135 // as infinity.\r
1136 //\r
1137 if (TimeoutInMicroseconds == 0) {\r
1138 return 0;\r
1139 }\r
1140\r
1141 //\r
1142 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
1143 // in Hz.\r
1144 //\r
1145 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1146\r
1147 //\r
1148 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1149 //\r
1150 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1151 //\r
1152 // Convert microseconds into seconds if direct multiplication overflows\r
1153 //\r
1154 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1155 //\r
1156 // Assertion if the final tick count exceeds MAX_UINT64\r
1157 //\r
1158 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1159 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1160 } else {\r
1161 //\r
1162 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1163 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1164 //\r
1165 return DivU64x32 (\r
1166 MultU64x64 (\r
1167 TimestampCounterFreq,\r
1168 TimeoutInMicroseconds\r
1169 ),\r
1170 1000000\r
1171 );\r
1172 }\r
1173}\r
1174\r
1175/**\r
1176 Checks whether timeout expires.\r
1177\r
1178 Check whether the number of elapsed performance counter ticks required for\r
1179 a timeout condition has been reached.\r
1180 If Timeout is zero, which means infinity, return value is always FALSE.\r
1181\r
1182 @param[in, out] PreviousTime On input, the value of the performance counter\r
1183 when it was last read.\r
1184 On output, the current value of the performance\r
1185 counter\r
1186 @param[in] TotalTime The total amount of elapsed time in performance\r
1187 counter ticks.\r
1188 @param[in] Timeout The number of performance counter ticks required\r
1189 to reach a timeout condition.\r
1190\r
1191 @retval TRUE A timeout condition has been reached.\r
1192 @retval FALSE A timeout condition has not been reached.\r
1193\r
1194**/\r
1195BOOLEAN\r
1196CheckTimeout (\r
1197 IN OUT UINT64 *PreviousTime,\r
1198 IN UINT64 *TotalTime,\r
1199 IN UINT64 Timeout\r
1200 )\r
1201{\r
1202 UINT64 Start;\r
1203 UINT64 End;\r
1204 UINT64 CurrentTime;\r
1205 INT64 Delta;\r
1206 INT64 Cycle;\r
1207\r
1208 if (Timeout == 0) {\r
1209 return FALSE;\r
1210 }\r
1211 GetPerformanceCounterProperties (&Start, &End);\r
1212 Cycle = End - Start;\r
1213 if (Cycle < 0) {\r
1214 Cycle = -Cycle;\r
1215 }\r
1216 Cycle++;\r
1217 CurrentTime = GetPerformanceCounter();\r
1218 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1219 if (Start > End) {\r
1220 Delta = -Delta;\r
1221 }\r
1222 if (Delta < 0) {\r
1223 Delta += Cycle;\r
1224 }\r
1225 *TotalTime += Delta;\r
1226 *PreviousTime = CurrentTime;\r
1227 if (*TotalTime > Timeout) {\r
1228 return TRUE;\r
1229 }\r
1230 return FALSE;\r
1231}\r
1232\r
1233/**\r
1234 Helper function that waits until the finished AP count reaches the specified\r
1235 limit, or the specified timeout elapses (whichever comes first).\r
1236\r
1237 @param[in] CpuMpData Pointer to CPU MP Data.\r
1238 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1239 @param[in] TimeLimit The number of microseconds to wait for.\r
1240**/\r
1241VOID\r
1242TimedWaitForApFinish (\r
1243 IN CPU_MP_DATA *CpuMpData,\r
1244 IN UINT32 FinishedApLimit,\r
1245 IN UINT32 TimeLimit\r
1246 )\r
1247{\r
1248 //\r
1249 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1250 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1251 //\r
1252 if (TimeLimit == 0) {\r
1253 return;\r
1254 }\r
1255\r
1256 CpuMpData->TotalTime = 0;\r
1257 CpuMpData->ExpectedTime = CalculateTimeout (\r
1258 TimeLimit,\r
1259 &CpuMpData->CurrentTime\r
1260 );\r
1261 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1262 !CheckTimeout (\r
1263 &CpuMpData->CurrentTime,\r
1264 &CpuMpData->TotalTime,\r
1265 CpuMpData->ExpectedTime\r
1266 )) {\r
1267 CpuPause ();\r
1268 }\r
1269\r
1270 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1271 DEBUG ((\r
1272 DEBUG_VERBOSE,\r
1273 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1274 __FUNCTION__,\r
1275 FinishedApLimit,\r
1276 DivU64x64Remainder (\r
1277 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1278 GetPerformanceCounterProperties (NULL, NULL),\r
1279 NULL\r
1280 )\r
1281 ));\r
1282 }\r
1283}\r
1284\r
1285/**\r
1286 Reset an AP to Idle state.\r
1287\r
1288 Any task being executed by the AP will be aborted and the AP\r
1289 will be waiting for a new task in Wait-For-SIPI state.\r
1290\r
1291 @param[in] ProcessorNumber The handle number of processor.\r
1292**/\r
1293VOID\r
1294ResetProcessorToIdleState (\r
1295 IN UINTN ProcessorNumber\r
1296 )\r
1297{\r
1298 CPU_MP_DATA *CpuMpData;\r
1299\r
1300 CpuMpData = GetCpuMpData ();\r
1301\r
1302 CpuMpData->InitFlag = ApInitReconfig;\r
1303 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);\r
1304 while (CpuMpData->FinishedCount < 1) {\r
1305 CpuPause ();\r
1306 }\r
1307 CpuMpData->InitFlag = ApInitDone;\r
1308\r
1309 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1310}\r
1311\r
1312/**\r
1313 Searches for the next waiting AP.\r
1314\r
1315 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1316\r
1317 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1318\r
1319 @retval EFI_SUCCESS The next waiting AP has been found.\r
1320 @retval EFI_NOT_FOUND No waiting AP exists.\r
1321\r
1322**/\r
1323EFI_STATUS\r
1324GetNextWaitingProcessorNumber (\r
1325 OUT UINTN *NextProcessorNumber\r
1326 )\r
1327{\r
1328 UINTN ProcessorNumber;\r
1329 CPU_MP_DATA *CpuMpData;\r
1330\r
1331 CpuMpData = GetCpuMpData ();\r
1332\r
1333 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1334 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1335 *NextProcessorNumber = ProcessorNumber;\r
1336 return EFI_SUCCESS;\r
1337 }\r
1338 }\r
1339\r
1340 return EFI_NOT_FOUND;\r
1341}\r
1342\r
1343/** Checks status of specified AP.\r
1344\r
1345 This function checks whether the specified AP has finished the task assigned\r
1346 by StartupThisAP(), and whether timeout expires.\r
1347\r
1348 @param[in] ProcessorNumber The handle number of processor.\r
1349\r
1350 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1351 @retval EFI_TIMEOUT The timeout expires.\r
1352 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1353**/\r
1354EFI_STATUS\r
1355CheckThisAP (\r
1356 IN UINTN ProcessorNumber\r
1357 )\r
1358{\r
1359 CPU_MP_DATA *CpuMpData;\r
1360 CPU_AP_DATA *CpuData;\r
1361\r
1362 CpuMpData = GetCpuMpData ();\r
1363 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1364\r
1365 //\r
1366 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
1367 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1368 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
1369 //\r
1370 //\r
1371 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1372 //\r
1373 if (GetApState(CpuData) == CpuStateIdle) {\r
1374 if (CpuData->Finished != NULL) {\r
1375 *(CpuData->Finished) = TRUE;\r
1376 }\r
1377 return EFI_SUCCESS;\r
1378 } else {\r
1379 //\r
1380 // If timeout expires for StartupThisAP(), report timeout.\r
1381 //\r
1382 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1383 if (CpuData->Finished != NULL) {\r
1384 *(CpuData->Finished) = FALSE;\r
1385 }\r
1386 //\r
1387 // Reset failed AP to idle state\r
1388 //\r
1389 ResetProcessorToIdleState (ProcessorNumber);\r
1390\r
1391 return EFI_TIMEOUT;\r
1392 }\r
1393 }\r
1394 return EFI_NOT_READY;\r
1395}\r
1396\r
1397/**\r
1398 Checks status of all APs.\r
1399\r
1400 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1401 and whether timeout expires.\r
1402\r
1403 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1404 @retval EFI_TIMEOUT The timeout expires.\r
1405 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1406**/\r
1407EFI_STATUS\r
1408CheckAllAPs (\r
1409 VOID\r
1410 )\r
1411{\r
1412 UINTN ProcessorNumber;\r
1413 UINTN NextProcessorNumber;\r
1414 UINTN ListIndex;\r
1415 EFI_STATUS Status;\r
1416 CPU_MP_DATA *CpuMpData;\r
1417 CPU_AP_DATA *CpuData;\r
1418\r
1419 CpuMpData = GetCpuMpData ();\r
1420\r
1421 NextProcessorNumber = 0;\r
1422\r
1423 //\r
1424 // Go through all APs that are responsible for the StartupAllAPs().\r
1425 //\r
1426 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1427 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1428 continue;\r
1429 }\r
1430\r
1431 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1432 //\r
1433 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
1434 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
1435 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
1436 //\r
1437 if (GetApState(CpuData) == CpuStateIdle) {\r
1438 CpuMpData->RunningCount --;\r
1439 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1440\r
1441 //\r
1442 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1443 //\r
1444 if (CpuMpData->SingleThread) {\r
1445 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1446\r
1447 if (!EFI_ERROR (Status)) {\r
1448 WakeUpAP (\r
1449 CpuMpData,\r
1450 FALSE,\r
1451 (UINT32) NextProcessorNumber,\r
1452 CpuMpData->Procedure,\r
1453 CpuMpData->ProcArguments,\r
1454 TRUE\r
1455 );\r
1456 }\r
1457 }\r
1458 }\r
1459 }\r
1460\r
1461 //\r
1462 // If all APs finish, return EFI_SUCCESS.\r
1463 //\r
1464 if (CpuMpData->RunningCount == 0) {\r
1465 return EFI_SUCCESS;\r
1466 }\r
1467\r
1468 //\r
1469 // If timeout expires, report timeout.\r
1470 //\r
1471 if (CheckTimeout (\r
1472 &CpuMpData->CurrentTime,\r
1473 &CpuMpData->TotalTime,\r
1474 CpuMpData->ExpectedTime)\r
1475 ) {\r
1476 //\r
1477 // If FailedCpuList is not NULL, record all failed APs in it.\r
1478 //\r
1479 if (CpuMpData->FailedCpuList != NULL) {\r
1480 *CpuMpData->FailedCpuList =\r
1481 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));\r
1482 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1483 }\r
1484 ListIndex = 0;\r
1485\r
1486 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1487 //\r
1488 // Check whether this processor is responsible for StartupAllAPs().\r
1489 //\r
1490 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1491 //\r
1492 // Reset failed APs to idle state\r
1493 //\r
1494 ResetProcessorToIdleState (ProcessorNumber);\r
1495 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1496 if (CpuMpData->FailedCpuList != NULL) {\r
1497 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1498 }\r
1499 }\r
1500 }\r
1501 if (CpuMpData->FailedCpuList != NULL) {\r
1502 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1503 }\r
1504 return EFI_TIMEOUT;\r
1505 }\r
1506 return EFI_NOT_READY;\r
1507}\r
1508\r
1509/**\r
1510 MP Initialize Library initialization.\r
1511\r
1512 This service will allocate AP reset vector and wakeup all APs to do APs\r
1513 initialization.\r
1514\r
1515 This service must be invoked before all other MP Initialize Library\r
1516 service are invoked.\r
1517\r
1518 @retval EFI_SUCCESS MP initialization succeeds.\r
1519 @retval Others MP initialization fails.\r
1520\r
1521**/\r
1522EFI_STATUS\r
1523EFIAPI\r
1524MpInitLibInitialize (\r
1525 VOID\r
1526 )\r
1527{\r
1528 CPU_MP_DATA *OldCpuMpData;\r
1529 CPU_INFO_IN_HOB *CpuInfoInHob;\r
1530 UINT32 MaxLogicalProcessorNumber;\r
1531 UINT32 ApStackSize;\r
1532 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
1533 CPU_VOLATILE_REGISTERS VolatileRegisters;\r
1534 UINTN BufferSize;\r
1535 UINT32 MonitorFilterSize;\r
1536 VOID *MpBuffer;\r
1537 UINTN Buffer;\r
1538 CPU_MP_DATA *CpuMpData;\r
1539 UINT8 ApLoopMode;\r
1540 UINT8 *MonitorBuffer;\r
1541 UINTN Index;\r
1542 UINTN ApResetVectorSize;\r
1543 UINTN BackupBufferAddr;\r
1544 UINTN ApIdtBase;\r
1545 VOID *MicrocodePatchInRam;\r
1546\r
1547 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1548 if (OldCpuMpData == NULL) {\r
1549 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1550 } else {\r
1551 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1552 }\r
1553 ASSERT (MaxLogicalProcessorNumber != 0);\r
1554\r
1555 AsmGetAddressMap (&AddressMap);\r
1556 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
1557 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
1558 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1559\r
1560 //\r
1561 // Save BSP's Control registers for APs.\r
1562 //\r
1563 SaveVolatileRegisters (&VolatileRegisters);\r
1564\r
1565 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1566 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
1567 BufferSize += ApResetVectorSize;\r
1568 BufferSize = ALIGN_VALUE (BufferSize, 8);\r
1569 BufferSize += VolatileRegisters.Idtr.Limit + 1;\r
1570 BufferSize += sizeof (CPU_MP_DATA);\r
1571 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1572 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1573 ASSERT (MpBuffer != NULL);\r
1574 ZeroMem (MpBuffer, BufferSize);\r
1575 Buffer = (UINTN) MpBuffer;\r
1576\r
1577 //\r
1578 // The layout of the Buffer is as below:\r
1579 //\r
1580 // +--------------------+ <-- Buffer\r
1581 // AP Stacks (N)\r
1582 // +--------------------+ <-- MonitorBuffer\r
1583 // AP Monitor Filters (N)\r
1584 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)\r
1585 // Backup Buffer\r
1586 // +--------------------+\r
1587 // Padding\r
1588 // +--------------------+ <-- ApIdtBase (8-byte boundary)\r
1589 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.\r
1590 // +--------------------+ <-- CpuMpData\r
1591 // CPU_MP_DATA\r
1592 // +--------------------+ <-- CpuMpData->CpuData\r
1593 // CPU_AP_DATA (N)\r
1594 // +--------------------+ <-- CpuMpData->CpuInfoInHob\r
1595 // CPU_INFO_IN_HOB (N)\r
1596 // +--------------------+\r
1597 //\r
1598 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1599 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
1600 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);\r
1601 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);\r
1602 CpuMpData->Buffer = Buffer;\r
1603 CpuMpData->CpuApStackSize = ApStackSize;\r
1604 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1605 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
1606 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1607 CpuMpData->CpuCount = 1;\r
1608 CpuMpData->BspNumber = 0;\r
1609 CpuMpData->WaitEvent = NULL;\r
1610 CpuMpData->SwitchBspFlag = FALSE;\r
1611 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1612 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
1613 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
1614 //\r
1615 // If platform has more than one CPU, relocate microcode to memory to reduce\r
1616 // loading microcode time.\r
1617 //\r
1618 MicrocodePatchInRam = NULL;\r
1619 if (MaxLogicalProcessorNumber > 1) {\r
1620 MicrocodePatchInRam = AllocatePages (\r
1621 EFI_SIZE_TO_PAGES (\r
1622 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1623 )\r
1624 );\r
1625 }\r
1626 if (MicrocodePatchInRam == NULL) {\r
1627 //\r
1628 // there is only one processor, or no microcode patch is available, or\r
1629 // memory allocation failed\r
1630 //\r
1631 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
1632 } else {\r
1633 //\r
1634 // there are multiple processors, and a microcode patch is available, and\r
1635 // memory allocation succeeded\r
1636 //\r
1637 CopyMem (\r
1638 MicrocodePatchInRam,\r
1639 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),\r
1640 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1641 );\r
1642 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;\r
1643 }\r
1644\r
1645 InitializeSpinLock(&CpuMpData->MpLock);\r
1646\r
1647 //\r
1648 // Make sure no memory usage outside of the allocated buffer.\r
1649 //\r
1650 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==\r
1651 Buffer + BufferSize);\r
1652\r
1653 //\r
1654 // Duplicate BSP's IDT to APs.\r
1655 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1\r
1656 //\r
1657 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);\r
1658 VolatileRegisters.Idtr.Base = ApIdtBase;\r
1659 //\r
1660 // Don't pass BSP's TR to APs to avoid AP init failure.\r
1661 //\r
1662 VolatileRegisters.Tr = 0;\r
1663 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));\r
1664 //\r
1665 // Set BSP basic information\r
1666 //\r
1667 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
1668 //\r
1669 // Save assembly code information\r
1670 //\r
1671 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1672 //\r
1673 // Finally set AP loop mode\r
1674 //\r
1675 CpuMpData->ApLoopMode = ApLoopMode;\r
1676 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
1677\r
1678 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1679\r
1680 //\r
1681 // Set up APs wakeup signal buffer\r
1682 //\r
1683 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1684 CpuMpData->CpuData[Index].StartupApSignal =\r
1685 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1686 }\r
1687 //\r
1688 // Load Microcode on BSP\r
1689 //\r
1690 MicrocodeDetect (CpuMpData, TRUE);\r
1691 //\r
1692 // Store BSP's MTRR setting\r
1693 //\r
1694 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
1695 //\r
1696 // Enable the local APIC for Virtual Wire Mode.\r
1697 //\r
1698 ProgramVirtualWireMode ();\r
1699\r
1700 if (OldCpuMpData == NULL) {\r
1701 if (MaxLogicalProcessorNumber > 1) {\r
1702 //\r
1703 // Wakeup all APs and calculate the processor count in system\r
1704 //\r
1705 CollectProcessorCount (CpuMpData);\r
1706 }\r
1707 } else {\r
1708 //\r
1709 // APs have been wakeup before, just get the CPU Information\r
1710 // from HOB\r
1711 //\r
1712 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1713 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1714 CpuMpData->InitFlag = ApInitReconfig;\r
1715 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1716 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
1717 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1718 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
1719 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {\r
1720 CpuMpData->X2ApicEnable = TRUE;\r
1721 }\r
1722 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
1723 CpuMpData->CpuData[Index].ApFunction = 0;\r
1724 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));\r
1725 }\r
1726 if (MaxLogicalProcessorNumber > 1) {\r
1727 //\r
1728 // Wakeup APs to do some AP initialize sync\r
1729 //\r
1730 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);\r
1731 //\r
1732 // Wait for all APs finished initialization\r
1733 //\r
1734 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1735 CpuPause ();\r
1736 }\r
1737 CpuMpData->InitFlag = ApInitDone;\r
1738 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1739 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1740 }\r
1741 }\r
1742 }\r
1743\r
1744 //\r
1745 // Initialize global data for MP support\r
1746 //\r
1747 InitMpGlobalData (CpuMpData);\r
1748\r
1749 return EFI_SUCCESS;\r
1750}\r
1751\r
1752/**\r
1753 Gets detailed MP-related information on the requested processor at the\r
1754 instant this call is made. This service may only be called from the BSP.\r
1755\r
1756 @param[in] ProcessorNumber The handle number of processor.\r
1757 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1758 the requested processor is deposited.\r
1759 @param[out] HealthData Return processor health data.\r
1760\r
1761 @retval EFI_SUCCESS Processor information was returned.\r
1762 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1763 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1764 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1765 ProcessorNumber does not exist in the platform.\r
1766 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1767\r
1768**/\r
1769EFI_STATUS\r
1770EFIAPI\r
1771MpInitLibGetProcessorInfo (\r
1772 IN UINTN ProcessorNumber,\r
1773 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1774 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1775 )\r
1776{\r
1777 CPU_MP_DATA *CpuMpData;\r
1778 UINTN CallerNumber;\r
1779 CPU_INFO_IN_HOB *CpuInfoInHob;\r
1780\r
1781 CpuMpData = GetCpuMpData ();\r
1782 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
1783\r
1784 //\r
1785 // Check whether caller processor is BSP\r
1786 //\r
1787 MpInitLibWhoAmI (&CallerNumber);\r
1788 if (CallerNumber != CpuMpData->BspNumber) {\r
1789 return EFI_DEVICE_ERROR;\r
1790 }\r
1791\r
1792 if (ProcessorInfoBuffer == NULL) {\r
1793 return EFI_INVALID_PARAMETER;\r
1794 }\r
1795\r
1796 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1797 return EFI_NOT_FOUND;\r
1798 }\r
1799\r
1800 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
1801 ProcessorInfoBuffer->StatusFlag = 0;\r
1802 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1803 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1804 }\r
1805 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1806 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1807 }\r
1808 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1809 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1810 } else {\r
1811 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1812 }\r
1813\r
1814 //\r
1815 // Get processor location information\r
1816 //\r
1817 GetProcessorLocationByApicId (\r
1818 CpuInfoInHob[ProcessorNumber].ApicId,\r
1819 &ProcessorInfoBuffer->Location.Package,\r
1820 &ProcessorInfoBuffer->Location.Core,\r
1821 &ProcessorInfoBuffer->Location.Thread\r
1822 );\r
1823\r
1824 if (HealthData != NULL) {\r
1825 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
1826 }\r
1827\r
1828 return EFI_SUCCESS;\r
1829}\r
1830\r
1831/**\r
1832 Worker function to switch the requested AP to be the BSP from that point onward.\r
1833\r
1834 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1835 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1836 enabled AP. Otherwise, it will be disabled.\r
1837\r
1838 @retval EFI_SUCCESS BSP successfully switched.\r
1839 @retval others Failed to switch BSP.\r
1840\r
1841**/\r
1842EFI_STATUS\r
1843SwitchBSPWorker (\r
1844 IN UINTN ProcessorNumber,\r
1845 IN BOOLEAN EnableOldBSP\r
1846 )\r
1847{\r
1848 CPU_MP_DATA *CpuMpData;\r
1849 UINTN CallerNumber;\r
1850 CPU_STATE State;\r
1851 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
1852 BOOLEAN OldInterruptState;\r
1853 BOOLEAN OldTimerInterruptState;\r
1854\r
1855 //\r
1856 // Save and Disable Local APIC timer interrupt\r
1857 //\r
1858 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1859 DisableApicTimerInterrupt ();\r
1860 //\r
1861 // Before send both BSP and AP to a procedure to exchange their roles,\r
1862 // interrupt must be disabled. This is because during the exchange role\r
1863 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1864 // be corrupted, since interrupt return address will be pushed to stack\r
1865 // by hardware.\r
1866 //\r
1867 OldInterruptState = SaveAndDisableInterrupts ();\r
1868\r
1869 //\r
1870 // Mask LINT0 & LINT1 for the old BSP\r
1871 //\r
1872 DisableLvtInterrupts ();\r
1873\r
1874 CpuMpData = GetCpuMpData ();\r
1875\r
1876 //\r
1877 // Check whether caller processor is BSP\r
1878 //\r
1879 MpInitLibWhoAmI (&CallerNumber);\r
1880 if (CallerNumber != CpuMpData->BspNumber) {\r
1881 return EFI_DEVICE_ERROR;\r
1882 }\r
1883\r
1884 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1885 return EFI_NOT_FOUND;\r
1886 }\r
1887\r
1888 //\r
1889 // Check whether specified AP is disabled\r
1890 //\r
1891 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1892 if (State == CpuStateDisabled) {\r
1893 return EFI_INVALID_PARAMETER;\r
1894 }\r
1895\r
1896 //\r
1897 // Check whether ProcessorNumber specifies the current BSP\r
1898 //\r
1899 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1900 return EFI_INVALID_PARAMETER;\r
1901 }\r
1902\r
1903 //\r
1904 // Check whether specified AP is busy\r
1905 //\r
1906 if (State == CpuStateBusy) {\r
1907 return EFI_NOT_READY;\r
1908 }\r
1909\r
1910 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1911 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1912 CpuMpData->SwitchBspFlag = TRUE;\r
1913 CpuMpData->NewBspNumber = ProcessorNumber;\r
1914\r
1915 //\r
1916 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1917 //\r
1918 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1919 ApicBaseMsr.Bits.BSP = 0;\r
1920 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1921\r
1922 //\r
1923 // Need to wakeUp AP (future BSP).\r
1924 //\r
1925 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);\r
1926\r
1927 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1928\r
1929 //\r
1930 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1931 //\r
1932 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1933 ApicBaseMsr.Bits.BSP = 1;\r
1934 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1935 ProgramVirtualWireMode ();\r
1936\r
1937 //\r
1938 // Wait for old BSP finished AP task\r
1939 //\r
1940 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateIdle) {\r
1941 CpuPause ();\r
1942 }\r
1943\r
1944 CpuMpData->SwitchBspFlag = FALSE;\r
1945 //\r
1946 // Set old BSP enable state\r
1947 //\r
1948 if (!EnableOldBSP) {\r
1949 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
1950 } else {\r
1951 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
1952 }\r
1953 //\r
1954 // Save new BSP number\r
1955 //\r
1956 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
1957\r
1958 //\r
1959 // Restore interrupt state.\r
1960 //\r
1961 SetInterruptState (OldInterruptState);\r
1962\r
1963 if (OldTimerInterruptState) {\r
1964 EnableApicTimerInterrupt ();\r
1965 }\r
1966\r
1967 return EFI_SUCCESS;\r
1968}\r
1969\r
1970/**\r
1971 Worker function to let the caller enable or disable an AP from this point onward.\r
1972 This service may only be called from the BSP.\r
1973\r
1974 @param[in] ProcessorNumber The handle number of AP.\r
1975 @param[in] EnableAP Specifies the new state for the processor for\r
1976 enabled, FALSE for disabled.\r
1977 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
1978 the new health status of the AP.\r
1979\r
1980 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
1981 @retval others Failed to Enable/Disable AP.\r
1982\r
1983**/\r
1984EFI_STATUS\r
1985EnableDisableApWorker (\r
1986 IN UINTN ProcessorNumber,\r
1987 IN BOOLEAN EnableAP,\r
1988 IN UINT32 *HealthFlag OPTIONAL\r
1989 )\r
1990{\r
1991 CPU_MP_DATA *CpuMpData;\r
1992 UINTN CallerNumber;\r
1993\r
1994 CpuMpData = GetCpuMpData ();\r
1995\r
1996 //\r
1997 // Check whether caller processor is BSP\r
1998 //\r
1999 MpInitLibWhoAmI (&CallerNumber);\r
2000 if (CallerNumber != CpuMpData->BspNumber) {\r
2001 return EFI_DEVICE_ERROR;\r
2002 }\r
2003\r
2004 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2005 return EFI_INVALID_PARAMETER;\r
2006 }\r
2007\r
2008 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2009 return EFI_NOT_FOUND;\r
2010 }\r
2011\r
2012 if (!EnableAP) {\r
2013 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
2014 } else {\r
2015 ResetProcessorToIdleState (ProcessorNumber);\r
2016 }\r
2017\r
2018 if (HealthFlag != NULL) {\r
2019 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
2020 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
2021 }\r
2022\r
2023 return EFI_SUCCESS;\r
2024}\r
2025\r
2026/**\r
2027 This return the handle number for the calling processor. This service may be\r
2028 called from the BSP and APs.\r
2029\r
2030 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
2031 The range is from 0 to the total number of\r
2032 logical processors minus 1. The total number of\r
2033 logical processors can be retrieved by\r
2034 MpInitLibGetNumberOfProcessors().\r
2035\r
2036 @retval EFI_SUCCESS The current processor handle number was returned\r
2037 in ProcessorNumber.\r
2038 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
2039 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2040\r
2041**/\r
2042EFI_STATUS\r
2043EFIAPI\r
2044MpInitLibWhoAmI (\r
2045 OUT UINTN *ProcessorNumber\r
2046 )\r
2047{\r
2048 CPU_MP_DATA *CpuMpData;\r
2049\r
2050 if (ProcessorNumber == NULL) {\r
2051 return EFI_INVALID_PARAMETER;\r
2052 }\r
2053\r
2054 CpuMpData = GetCpuMpData ();\r
2055\r
2056 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
2057}\r
2058\r
2059/**\r
2060 Retrieves the number of logical processor in the platform and the number of\r
2061 those logical processors that are enabled on this boot. This service may only\r
2062 be called from the BSP.\r
2063\r
2064 @param[out] NumberOfProcessors Pointer to the total number of logical\r
2065 processors in the system, including the BSP\r
2066 and disabled APs.\r
2067 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
2068 processors that exist in system, including\r
2069 the BSP.\r
2070\r
2071 @retval EFI_SUCCESS The number of logical processors and enabled\r
2072 logical processors was retrieved.\r
2073 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
2074 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
2075 is NULL.\r
2076 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2077\r
2078**/\r
2079EFI_STATUS\r
2080EFIAPI\r
2081MpInitLibGetNumberOfProcessors (\r
2082 OUT UINTN *NumberOfProcessors, OPTIONAL\r
2083 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
2084 )\r
2085{\r
2086 CPU_MP_DATA *CpuMpData;\r
2087 UINTN CallerNumber;\r
2088 UINTN ProcessorNumber;\r
2089 UINTN EnabledProcessorNumber;\r
2090 UINTN Index;\r
2091\r
2092 CpuMpData = GetCpuMpData ();\r
2093\r
2094 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
2095 return EFI_INVALID_PARAMETER;\r
2096 }\r
2097\r
2098 //\r
2099 // Check whether caller processor is BSP\r
2100 //\r
2101 MpInitLibWhoAmI (&CallerNumber);\r
2102 if (CallerNumber != CpuMpData->BspNumber) {\r
2103 return EFI_DEVICE_ERROR;\r
2104 }\r
2105\r
2106 ProcessorNumber = CpuMpData->CpuCount;\r
2107 EnabledProcessorNumber = 0;\r
2108 for (Index = 0; Index < ProcessorNumber; Index++) {\r
2109 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
2110 EnabledProcessorNumber ++;\r
2111 }\r
2112 }\r
2113\r
2114 if (NumberOfProcessors != NULL) {\r
2115 *NumberOfProcessors = ProcessorNumber;\r
2116 }\r
2117 if (NumberOfEnabledProcessors != NULL) {\r
2118 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
2119 }\r
2120\r
2121 return EFI_SUCCESS;\r
2122}\r
2123\r
2124\r
2125/**\r
2126 Worker function to execute a caller provided function on all enabled APs.\r
2127\r
2128 @param[in] Procedure A pointer to the function to be run on\r
2129 enabled APs of the system.\r
2130 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
2131 the function specified by Procedure one by\r
2132 one, in ascending order of processor handle\r
2133 number. If FALSE, then all the enabled APs\r
2134 execute the function specified by Procedure\r
2135 simultaneously.\r
2136 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2137 service.\r
2138 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
2139 APs to return from Procedure, either for\r
2140 blocking or non-blocking mode.\r
2141 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2142 all APs.\r
2143 @param[out] FailedCpuList If all APs finish successfully, then its\r
2144 content is set to NULL. If not all APs\r
2145 finish before timeout expires, then its\r
2146 content is set to address of the buffer\r
2147 holding handle numbers of the failed APs.\r
2148\r
2149 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
2150 the timeout expired.\r
2151 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2152 to all enabled APs.\r
2153 @retval others Failed to Startup all APs.\r
2154\r
2155**/\r
2156EFI_STATUS\r
2157StartupAllAPsWorker (\r
2158 IN EFI_AP_PROCEDURE Procedure,\r
2159 IN BOOLEAN SingleThread,\r
2160 IN EFI_EVENT WaitEvent OPTIONAL,\r
2161 IN UINTN TimeoutInMicroseconds,\r
2162 IN VOID *ProcedureArgument OPTIONAL,\r
2163 OUT UINTN **FailedCpuList OPTIONAL\r
2164 )\r
2165{\r
2166 EFI_STATUS Status;\r
2167 CPU_MP_DATA *CpuMpData;\r
2168 UINTN ProcessorCount;\r
2169 UINTN ProcessorNumber;\r
2170 UINTN CallerNumber;\r
2171 CPU_AP_DATA *CpuData;\r
2172 BOOLEAN HasEnabledAp;\r
2173 CPU_STATE ApState;\r
2174\r
2175 CpuMpData = GetCpuMpData ();\r
2176\r
2177 if (FailedCpuList != NULL) {\r
2178 *FailedCpuList = NULL;\r
2179 }\r
2180\r
2181 if (CpuMpData->CpuCount == 1) {\r
2182 return EFI_NOT_STARTED;\r
2183 }\r
2184\r
2185 if (Procedure == NULL) {\r
2186 return EFI_INVALID_PARAMETER;\r
2187 }\r
2188\r
2189 //\r
2190 // Check whether caller processor is BSP\r
2191 //\r
2192 MpInitLibWhoAmI (&CallerNumber);\r
2193 if (CallerNumber != CpuMpData->BspNumber) {\r
2194 return EFI_DEVICE_ERROR;\r
2195 }\r
2196\r
2197 //\r
2198 // Update AP state\r
2199 //\r
2200 CheckAndUpdateApsStatus ();\r
2201\r
2202 ProcessorCount = CpuMpData->CpuCount;\r
2203 HasEnabledAp = FALSE;\r
2204 //\r
2205 // Check whether all enabled APs are idle.\r
2206 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2207 //\r
2208 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2209 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2210 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2211 ApState = GetApState (CpuData);\r
2212 if (ApState != CpuStateDisabled) {\r
2213 HasEnabledAp = TRUE;\r
2214 if (ApState != CpuStateIdle) {\r
2215 //\r
2216 // If any enabled APs are busy, return EFI_NOT_READY.\r
2217 //\r
2218 return EFI_NOT_READY;\r
2219 }\r
2220 }\r
2221 }\r
2222 }\r
2223\r
2224 if (!HasEnabledAp) {\r
2225 //\r
2226 // If no enabled AP exists, return EFI_NOT_STARTED.\r
2227 //\r
2228 return EFI_NOT_STARTED;\r
2229 }\r
2230\r
2231 CpuMpData->RunningCount = 0;\r
2232 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2233 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2234 CpuData->Waiting = FALSE;\r
2235 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2236 if (CpuData->State == CpuStateIdle) {\r
2237 //\r
2238 // Mark this processor as responsible for current calling.\r
2239 //\r
2240 CpuData->Waiting = TRUE;\r
2241 CpuMpData->RunningCount++;\r
2242 }\r
2243 }\r
2244 }\r
2245\r
2246 CpuMpData->Procedure = Procedure;\r
2247 CpuMpData->ProcArguments = ProcedureArgument;\r
2248 CpuMpData->SingleThread = SingleThread;\r
2249 CpuMpData->FinishedCount = 0;\r
2250 CpuMpData->FailedCpuList = FailedCpuList;\r
2251 CpuMpData->ExpectedTime = CalculateTimeout (\r
2252 TimeoutInMicroseconds,\r
2253 &CpuMpData->CurrentTime\r
2254 );\r
2255 CpuMpData->TotalTime = 0;\r
2256 CpuMpData->WaitEvent = WaitEvent;\r
2257\r
2258 if (!SingleThread) {\r
2259 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);\r
2260 } else {\r
2261 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2262 if (ProcessorNumber == CallerNumber) {\r
2263 continue;\r
2264 }\r
2265 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
2266 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
2267 break;\r
2268 }\r
2269 }\r
2270 }\r
2271\r
2272 Status = EFI_SUCCESS;\r
2273 if (WaitEvent == NULL) {\r
2274 do {\r
2275 Status = CheckAllAPs ();\r
2276 } while (Status == EFI_NOT_READY);\r
2277 }\r
2278\r
2279 return Status;\r
2280}\r
2281\r
2282/**\r
2283 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2284 function.\r
2285\r
2286 @param[in] Procedure A pointer to the function to be run on\r
2287 enabled APs of the system.\r
2288 @param[in] ProcessorNumber The handle number of the AP.\r
2289 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2290 service.\r
2291 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
2292 APs to return from Procedure, either for\r
2293 blocking or non-blocking mode.\r
2294 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2295 all APs.\r
2296 @param[out] Finished If AP returns from Procedure before the\r
2297 timeout expires, its content is set to TRUE.\r
2298 Otherwise, the value is set to FALSE.\r
2299\r
2300 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2301 the timeout expires.\r
2302 @retval others Failed to Startup AP.\r
2303\r
2304**/\r
2305EFI_STATUS\r
2306StartupThisAPWorker (\r
2307 IN EFI_AP_PROCEDURE Procedure,\r
2308 IN UINTN ProcessorNumber,\r
2309 IN EFI_EVENT WaitEvent OPTIONAL,\r
2310 IN UINTN TimeoutInMicroseconds,\r
2311 IN VOID *ProcedureArgument OPTIONAL,\r
2312 OUT BOOLEAN *Finished OPTIONAL\r
2313 )\r
2314{\r
2315 EFI_STATUS Status;\r
2316 CPU_MP_DATA *CpuMpData;\r
2317 CPU_AP_DATA *CpuData;\r
2318 UINTN CallerNumber;\r
2319\r
2320 CpuMpData = GetCpuMpData ();\r
2321\r
2322 if (Finished != NULL) {\r
2323 *Finished = FALSE;\r
2324 }\r
2325\r
2326 //\r
2327 // Check whether caller processor is BSP\r
2328 //\r
2329 MpInitLibWhoAmI (&CallerNumber);\r
2330 if (CallerNumber != CpuMpData->BspNumber) {\r
2331 return EFI_DEVICE_ERROR;\r
2332 }\r
2333\r
2334 //\r
2335 // Check whether processor with the handle specified by ProcessorNumber exists\r
2336 //\r
2337 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2338 return EFI_NOT_FOUND;\r
2339 }\r
2340\r
2341 //\r
2342 // Check whether specified processor is BSP\r
2343 //\r
2344 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2345 return EFI_INVALID_PARAMETER;\r
2346 }\r
2347\r
2348 //\r
2349 // Check parameter Procedure\r
2350 //\r
2351 if (Procedure == NULL) {\r
2352 return EFI_INVALID_PARAMETER;\r
2353 }\r
2354\r
2355 //\r
2356 // Update AP state\r
2357 //\r
2358 CheckAndUpdateApsStatus ();\r
2359\r
2360 //\r
2361 // Check whether specified AP is disabled\r
2362 //\r
2363 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2364 return EFI_INVALID_PARAMETER;\r
2365 }\r
2366\r
2367 //\r
2368 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2369 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2370 // CheckAPsStatus() will check completion and timeout periodically.\r
2371 //\r
2372 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2373 CpuData->WaitEvent = WaitEvent;\r
2374 CpuData->Finished = Finished;\r
2375 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2376 CpuData->TotalTime = 0;\r
2377\r
2378 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
2379\r
2380 //\r
2381 // If WaitEvent is NULL, execute in blocking mode.\r
2382 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2383 //\r
2384 Status = EFI_SUCCESS;\r
2385 if (WaitEvent == NULL) {\r
2386 do {\r
2387 Status = CheckThisAP (ProcessorNumber);\r
2388 } while (Status == EFI_NOT_READY);\r
2389 }\r
2390\r
2391 return Status;\r
2392}\r
2393\r
2394/**\r
2395 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2396\r
2397 @return The pointer to CPU MP Data structure.\r
2398**/\r
2399CPU_MP_DATA *\r
2400GetCpuMpDataFromGuidedHob (\r
2401 VOID\r
2402 )\r
2403{\r
2404 EFI_HOB_GUID_TYPE *GuidHob;\r
2405 VOID *DataInHob;\r
2406 CPU_MP_DATA *CpuMpData;\r
2407\r
2408 CpuMpData = NULL;\r
2409 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2410 if (GuidHob != NULL) {\r
2411 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2412 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2413 }\r
2414 return CpuMpData;\r
2415}\r
2416\r