]> git.proxmox.com Git - qemu.git/blame_incremental - cpu-all.h
target-arm: Set Invalid flag for NaN in float-to-int conversions
[qemu.git] / cpu-all.h
... / ...
CommitLineData
1/*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19#ifndef CPU_ALL_H
20#define CPU_ALL_H
21
22#include "qemu-common.h"
23#include "cpu-common.h"
24
25/* some important defines:
26 *
27 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28 * memory accesses.
29 *
30 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31 * otherwise little endian.
32 *
33 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34 *
35 * TARGET_WORDS_BIGENDIAN : same for target cpu
36 */
37
38#include "softfloat.h"
39
40#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41#define BSWAP_NEEDED
42#endif
43
44#ifdef BSWAP_NEEDED
45
46static inline uint16_t tswap16(uint16_t s)
47{
48 return bswap16(s);
49}
50
51static inline uint32_t tswap32(uint32_t s)
52{
53 return bswap32(s);
54}
55
56static inline uint64_t tswap64(uint64_t s)
57{
58 return bswap64(s);
59}
60
61static inline void tswap16s(uint16_t *s)
62{
63 *s = bswap16(*s);
64}
65
66static inline void tswap32s(uint32_t *s)
67{
68 *s = bswap32(*s);
69}
70
71static inline void tswap64s(uint64_t *s)
72{
73 *s = bswap64(*s);
74}
75
76#else
77
78static inline uint16_t tswap16(uint16_t s)
79{
80 return s;
81}
82
83static inline uint32_t tswap32(uint32_t s)
84{
85 return s;
86}
87
88static inline uint64_t tswap64(uint64_t s)
89{
90 return s;
91}
92
93static inline void tswap16s(uint16_t *s)
94{
95}
96
97static inline void tswap32s(uint32_t *s)
98{
99}
100
101static inline void tswap64s(uint64_t *s)
102{
103}
104
105#endif
106
107#if TARGET_LONG_SIZE == 4
108#define tswapl(s) tswap32(s)
109#define tswapls(s) tswap32s((uint32_t *)(s))
110#define bswaptls(s) bswap32s(s)
111#else
112#define tswapl(s) tswap64(s)
113#define tswapls(s) tswap64s((uint64_t *)(s))
114#define bswaptls(s) bswap64s(s)
115#endif
116
117typedef union {
118 float32 f;
119 uint32_t l;
120} CPU_FloatU;
121
122/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123 endian ! */
124typedef union {
125 float64 d;
126#if defined(HOST_WORDS_BIGENDIAN) \
127 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
128 struct {
129 uint32_t upper;
130 uint32_t lower;
131 } l;
132#else
133 struct {
134 uint32_t lower;
135 uint32_t upper;
136 } l;
137#endif
138 uint64_t ll;
139} CPU_DoubleU;
140
141#if defined(FLOATX80)
142typedef union {
143 floatx80 d;
144 struct {
145 uint64_t lower;
146 uint16_t upper;
147 } l;
148} CPU_LDoubleU;
149#endif
150
151#if defined(CONFIG_SOFTFLOAT)
152typedef union {
153 float128 q;
154#if defined(HOST_WORDS_BIGENDIAN)
155 struct {
156 uint32_t upmost;
157 uint32_t upper;
158 uint32_t lower;
159 uint32_t lowest;
160 } l;
161 struct {
162 uint64_t upper;
163 uint64_t lower;
164 } ll;
165#else
166 struct {
167 uint32_t lowest;
168 uint32_t lower;
169 uint32_t upper;
170 uint32_t upmost;
171 } l;
172 struct {
173 uint64_t lower;
174 uint64_t upper;
175 } ll;
176#endif
177} CPU_QuadU;
178#endif
179
180/* CPU memory access without any memory or io remapping */
181
182/*
183 * the generic syntax for the memory accesses is:
184 *
185 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
186 *
187 * store: st{type}{size}{endian}_{access_type}(ptr, val)
188 *
189 * type is:
190 * (empty): integer access
191 * f : float access
192 *
193 * sign is:
194 * (empty): for floats or 32 bit size
195 * u : unsigned
196 * s : signed
197 *
198 * size is:
199 * b: 8 bits
200 * w: 16 bits
201 * l: 32 bits
202 * q: 64 bits
203 *
204 * endian is:
205 * (empty): target cpu endianness or 8 bit access
206 * r : reversed target cpu endianness (not implemented yet)
207 * be : big endian (not implemented yet)
208 * le : little endian (not implemented yet)
209 *
210 * access_type is:
211 * raw : host memory access
212 * user : user mode access using soft MMU
213 * kernel : kernel mode access using soft MMU
214 */
215static inline int ldub_p(const void *ptr)
216{
217 return *(uint8_t *)ptr;
218}
219
220static inline int ldsb_p(const void *ptr)
221{
222 return *(int8_t *)ptr;
223}
224
225static inline void stb_p(void *ptr, int v)
226{
227 *(uint8_t *)ptr = v;
228}
229
230/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
231 kernel handles unaligned load/stores may give better results, but
232 it is a system wide setting : bad */
233#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
234
235/* conservative code for little endian unaligned accesses */
236static inline int lduw_le_p(const void *ptr)
237{
238#ifdef _ARCH_PPC
239 int val;
240 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
241 return val;
242#else
243 const uint8_t *p = ptr;
244 return p[0] | (p[1] << 8);
245#endif
246}
247
248static inline int ldsw_le_p(const void *ptr)
249{
250#ifdef _ARCH_PPC
251 int val;
252 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
253 return (int16_t)val;
254#else
255 const uint8_t *p = ptr;
256 return (int16_t)(p[0] | (p[1] << 8));
257#endif
258}
259
260static inline int ldl_le_p(const void *ptr)
261{
262#ifdef _ARCH_PPC
263 int val;
264 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
265 return val;
266#else
267 const uint8_t *p = ptr;
268 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
269#endif
270}
271
272static inline uint64_t ldq_le_p(const void *ptr)
273{
274 const uint8_t *p = ptr;
275 uint32_t v1, v2;
276 v1 = ldl_le_p(p);
277 v2 = ldl_le_p(p + 4);
278 return v1 | ((uint64_t)v2 << 32);
279}
280
281static inline void stw_le_p(void *ptr, int v)
282{
283#ifdef _ARCH_PPC
284 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
285#else
286 uint8_t *p = ptr;
287 p[0] = v;
288 p[1] = v >> 8;
289#endif
290}
291
292static inline void stl_le_p(void *ptr, int v)
293{
294#ifdef _ARCH_PPC
295 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
296#else
297 uint8_t *p = ptr;
298 p[0] = v;
299 p[1] = v >> 8;
300 p[2] = v >> 16;
301 p[3] = v >> 24;
302#endif
303}
304
305static inline void stq_le_p(void *ptr, uint64_t v)
306{
307 uint8_t *p = ptr;
308 stl_le_p(p, (uint32_t)v);
309 stl_le_p(p + 4, v >> 32);
310}
311
312/* float access */
313
314static inline float32 ldfl_le_p(const void *ptr)
315{
316 union {
317 float32 f;
318 uint32_t i;
319 } u;
320 u.i = ldl_le_p(ptr);
321 return u.f;
322}
323
324static inline void stfl_le_p(void *ptr, float32 v)
325{
326 union {
327 float32 f;
328 uint32_t i;
329 } u;
330 u.f = v;
331 stl_le_p(ptr, u.i);
332}
333
334static inline float64 ldfq_le_p(const void *ptr)
335{
336 CPU_DoubleU u;
337 u.l.lower = ldl_le_p(ptr);
338 u.l.upper = ldl_le_p(ptr + 4);
339 return u.d;
340}
341
342static inline void stfq_le_p(void *ptr, float64 v)
343{
344 CPU_DoubleU u;
345 u.d = v;
346 stl_le_p(ptr, u.l.lower);
347 stl_le_p(ptr + 4, u.l.upper);
348}
349
350#else
351
352static inline int lduw_le_p(const void *ptr)
353{
354 return *(uint16_t *)ptr;
355}
356
357static inline int ldsw_le_p(const void *ptr)
358{
359 return *(int16_t *)ptr;
360}
361
362static inline int ldl_le_p(const void *ptr)
363{
364 return *(uint32_t *)ptr;
365}
366
367static inline uint64_t ldq_le_p(const void *ptr)
368{
369 return *(uint64_t *)ptr;
370}
371
372static inline void stw_le_p(void *ptr, int v)
373{
374 *(uint16_t *)ptr = v;
375}
376
377static inline void stl_le_p(void *ptr, int v)
378{
379 *(uint32_t *)ptr = v;
380}
381
382static inline void stq_le_p(void *ptr, uint64_t v)
383{
384 *(uint64_t *)ptr = v;
385}
386
387/* float access */
388
389static inline float32 ldfl_le_p(const void *ptr)
390{
391 return *(float32 *)ptr;
392}
393
394static inline float64 ldfq_le_p(const void *ptr)
395{
396 return *(float64 *)ptr;
397}
398
399static inline void stfl_le_p(void *ptr, float32 v)
400{
401 *(float32 *)ptr = v;
402}
403
404static inline void stfq_le_p(void *ptr, float64 v)
405{
406 *(float64 *)ptr = v;
407}
408#endif
409
410#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
411
412static inline int lduw_be_p(const void *ptr)
413{
414#if defined(__i386__)
415 int val;
416 asm volatile ("movzwl %1, %0\n"
417 "xchgb %b0, %h0\n"
418 : "=q" (val)
419 : "m" (*(uint16_t *)ptr));
420 return val;
421#else
422 const uint8_t *b = ptr;
423 return ((b[0] << 8) | b[1]);
424#endif
425}
426
427static inline int ldsw_be_p(const void *ptr)
428{
429#if defined(__i386__)
430 int val;
431 asm volatile ("movzwl %1, %0\n"
432 "xchgb %b0, %h0\n"
433 : "=q" (val)
434 : "m" (*(uint16_t *)ptr));
435 return (int16_t)val;
436#else
437 const uint8_t *b = ptr;
438 return (int16_t)((b[0] << 8) | b[1]);
439#endif
440}
441
442static inline int ldl_be_p(const void *ptr)
443{
444#if defined(__i386__) || defined(__x86_64__)
445 int val;
446 asm volatile ("movl %1, %0\n"
447 "bswap %0\n"
448 : "=r" (val)
449 : "m" (*(uint32_t *)ptr));
450 return val;
451#else
452 const uint8_t *b = ptr;
453 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
454#endif
455}
456
457static inline uint64_t ldq_be_p(const void *ptr)
458{
459 uint32_t a,b;
460 a = ldl_be_p(ptr);
461 b = ldl_be_p((uint8_t *)ptr + 4);
462 return (((uint64_t)a<<32)|b);
463}
464
465static inline void stw_be_p(void *ptr, int v)
466{
467#if defined(__i386__)
468 asm volatile ("xchgb %b0, %h0\n"
469 "movw %w0, %1\n"
470 : "=q" (v)
471 : "m" (*(uint16_t *)ptr), "0" (v));
472#else
473 uint8_t *d = (uint8_t *) ptr;
474 d[0] = v >> 8;
475 d[1] = v;
476#endif
477}
478
479static inline void stl_be_p(void *ptr, int v)
480{
481#if defined(__i386__) || defined(__x86_64__)
482 asm volatile ("bswap %0\n"
483 "movl %0, %1\n"
484 : "=r" (v)
485 : "m" (*(uint32_t *)ptr), "0" (v));
486#else
487 uint8_t *d = (uint8_t *) ptr;
488 d[0] = v >> 24;
489 d[1] = v >> 16;
490 d[2] = v >> 8;
491 d[3] = v;
492#endif
493}
494
495static inline void stq_be_p(void *ptr, uint64_t v)
496{
497 stl_be_p(ptr, v >> 32);
498 stl_be_p((uint8_t *)ptr + 4, v);
499}
500
501/* float access */
502
503static inline float32 ldfl_be_p(const void *ptr)
504{
505 union {
506 float32 f;
507 uint32_t i;
508 } u;
509 u.i = ldl_be_p(ptr);
510 return u.f;
511}
512
513static inline void stfl_be_p(void *ptr, float32 v)
514{
515 union {
516 float32 f;
517 uint32_t i;
518 } u;
519 u.f = v;
520 stl_be_p(ptr, u.i);
521}
522
523static inline float64 ldfq_be_p(const void *ptr)
524{
525 CPU_DoubleU u;
526 u.l.upper = ldl_be_p(ptr);
527 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
528 return u.d;
529}
530
531static inline void stfq_be_p(void *ptr, float64 v)
532{
533 CPU_DoubleU u;
534 u.d = v;
535 stl_be_p(ptr, u.l.upper);
536 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
537}
538
539#else
540
541static inline int lduw_be_p(const void *ptr)
542{
543 return *(uint16_t *)ptr;
544}
545
546static inline int ldsw_be_p(const void *ptr)
547{
548 return *(int16_t *)ptr;
549}
550
551static inline int ldl_be_p(const void *ptr)
552{
553 return *(uint32_t *)ptr;
554}
555
556static inline uint64_t ldq_be_p(const void *ptr)
557{
558 return *(uint64_t *)ptr;
559}
560
561static inline void stw_be_p(void *ptr, int v)
562{
563 *(uint16_t *)ptr = v;
564}
565
566static inline void stl_be_p(void *ptr, int v)
567{
568 *(uint32_t *)ptr = v;
569}
570
571static inline void stq_be_p(void *ptr, uint64_t v)
572{
573 *(uint64_t *)ptr = v;
574}
575
576/* float access */
577
578static inline float32 ldfl_be_p(const void *ptr)
579{
580 return *(float32 *)ptr;
581}
582
583static inline float64 ldfq_be_p(const void *ptr)
584{
585 return *(float64 *)ptr;
586}
587
588static inline void stfl_be_p(void *ptr, float32 v)
589{
590 *(float32 *)ptr = v;
591}
592
593static inline void stfq_be_p(void *ptr, float64 v)
594{
595 *(float64 *)ptr = v;
596}
597
598#endif
599
600/* target CPU memory access functions */
601#if defined(TARGET_WORDS_BIGENDIAN)
602#define lduw_p(p) lduw_be_p(p)
603#define ldsw_p(p) ldsw_be_p(p)
604#define ldl_p(p) ldl_be_p(p)
605#define ldq_p(p) ldq_be_p(p)
606#define ldfl_p(p) ldfl_be_p(p)
607#define ldfq_p(p) ldfq_be_p(p)
608#define stw_p(p, v) stw_be_p(p, v)
609#define stl_p(p, v) stl_be_p(p, v)
610#define stq_p(p, v) stq_be_p(p, v)
611#define stfl_p(p, v) stfl_be_p(p, v)
612#define stfq_p(p, v) stfq_be_p(p, v)
613#else
614#define lduw_p(p) lduw_le_p(p)
615#define ldsw_p(p) ldsw_le_p(p)
616#define ldl_p(p) ldl_le_p(p)
617#define ldq_p(p) ldq_le_p(p)
618#define ldfl_p(p) ldfl_le_p(p)
619#define ldfq_p(p) ldfq_le_p(p)
620#define stw_p(p, v) stw_le_p(p, v)
621#define stl_p(p, v) stl_le_p(p, v)
622#define stq_p(p, v) stq_le_p(p, v)
623#define stfl_p(p, v) stfl_le_p(p, v)
624#define stfq_p(p, v) stfq_le_p(p, v)
625#endif
626
627/* MMU memory access macros */
628
629#if defined(CONFIG_USER_ONLY)
630#include <assert.h>
631#include "qemu-types.h"
632
633/* On some host systems the guest address space is reserved on the host.
634 * This allows the guest address space to be offset to a convenient location.
635 */
636#if defined(CONFIG_USE_GUEST_BASE)
637extern unsigned long guest_base;
638extern int have_guest_base;
639extern unsigned long reserved_va;
640#define GUEST_BASE guest_base
641#define RESERVED_VA reserved_va
642#else
643#define GUEST_BASE 0ul
644#define RESERVED_VA 0ul
645#endif
646
647/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
648#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
649
650#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
651#define h2g_valid(x) 1
652#else
653#define h2g_valid(x) ({ \
654 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
655 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
656})
657#endif
658
659#define h2g(x) ({ \
660 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
661 /* Check if given address fits target address space */ \
662 assert(h2g_valid(x)); \
663 (abi_ulong)__ret; \
664})
665
666#define saddr(x) g2h(x)
667#define laddr(x) g2h(x)
668
669#else /* !CONFIG_USER_ONLY */
670/* NOTE: we use double casts if pointers and target_ulong have
671 different sizes */
672#define saddr(x) (uint8_t *)(long)(x)
673#define laddr(x) (uint8_t *)(long)(x)
674#endif
675
676#define ldub_raw(p) ldub_p(laddr((p)))
677#define ldsb_raw(p) ldsb_p(laddr((p)))
678#define lduw_raw(p) lduw_p(laddr((p)))
679#define ldsw_raw(p) ldsw_p(laddr((p)))
680#define ldl_raw(p) ldl_p(laddr((p)))
681#define ldq_raw(p) ldq_p(laddr((p)))
682#define ldfl_raw(p) ldfl_p(laddr((p)))
683#define ldfq_raw(p) ldfq_p(laddr((p)))
684#define stb_raw(p, v) stb_p(saddr((p)), v)
685#define stw_raw(p, v) stw_p(saddr((p)), v)
686#define stl_raw(p, v) stl_p(saddr((p)), v)
687#define stq_raw(p, v) stq_p(saddr((p)), v)
688#define stfl_raw(p, v) stfl_p(saddr((p)), v)
689#define stfq_raw(p, v) stfq_p(saddr((p)), v)
690
691
692#if defined(CONFIG_USER_ONLY)
693
694/* if user mode, no other memory access functions */
695#define ldub(p) ldub_raw(p)
696#define ldsb(p) ldsb_raw(p)
697#define lduw(p) lduw_raw(p)
698#define ldsw(p) ldsw_raw(p)
699#define ldl(p) ldl_raw(p)
700#define ldq(p) ldq_raw(p)
701#define ldfl(p) ldfl_raw(p)
702#define ldfq(p) ldfq_raw(p)
703#define stb(p, v) stb_raw(p, v)
704#define stw(p, v) stw_raw(p, v)
705#define stl(p, v) stl_raw(p, v)
706#define stq(p, v) stq_raw(p, v)
707#define stfl(p, v) stfl_raw(p, v)
708#define stfq(p, v) stfq_raw(p, v)
709
710#define ldub_code(p) ldub_raw(p)
711#define ldsb_code(p) ldsb_raw(p)
712#define lduw_code(p) lduw_raw(p)
713#define ldsw_code(p) ldsw_raw(p)
714#define ldl_code(p) ldl_raw(p)
715#define ldq_code(p) ldq_raw(p)
716
717#define ldub_kernel(p) ldub_raw(p)
718#define ldsb_kernel(p) ldsb_raw(p)
719#define lduw_kernel(p) lduw_raw(p)
720#define ldsw_kernel(p) ldsw_raw(p)
721#define ldl_kernel(p) ldl_raw(p)
722#define ldq_kernel(p) ldq_raw(p)
723#define ldfl_kernel(p) ldfl_raw(p)
724#define ldfq_kernel(p) ldfq_raw(p)
725#define stb_kernel(p, v) stb_raw(p, v)
726#define stw_kernel(p, v) stw_raw(p, v)
727#define stl_kernel(p, v) stl_raw(p, v)
728#define stq_kernel(p, v) stq_raw(p, v)
729#define stfl_kernel(p, v) stfl_raw(p, v)
730#define stfq_kernel(p, vt) stfq_raw(p, v)
731
732#endif /* defined(CONFIG_USER_ONLY) */
733
734/* page related stuff */
735
736#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
737#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
738#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
739
740/* ??? These should be the larger of unsigned long and target_ulong. */
741extern unsigned long qemu_real_host_page_size;
742extern unsigned long qemu_host_page_bits;
743extern unsigned long qemu_host_page_size;
744extern unsigned long qemu_host_page_mask;
745
746#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
747
748/* same as PROT_xxx */
749#define PAGE_READ 0x0001
750#define PAGE_WRITE 0x0002
751#define PAGE_EXEC 0x0004
752#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
753#define PAGE_VALID 0x0008
754/* original state of the write flag (used when tracking self-modifying
755 code */
756#define PAGE_WRITE_ORG 0x0010
757#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
758/* FIXME: Code that sets/uses this is broken and needs to go away. */
759#define PAGE_RESERVED 0x0020
760#endif
761
762#if defined(CONFIG_USER_ONLY)
763void page_dump(FILE *f);
764
765typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
766 abi_ulong, unsigned long);
767int walk_memory_regions(void *, walk_memory_regions_fn);
768
769int page_get_flags(target_ulong address);
770void page_set_flags(target_ulong start, target_ulong end, int flags);
771int page_check_range(target_ulong start, target_ulong len, int flags);
772#endif
773
774CPUState *cpu_copy(CPUState *env);
775CPUState *qemu_get_cpu(int cpu);
776
777#define CPU_DUMP_CODE 0x00010000
778
779void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
780 int flags);
781void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
782 int flags);
783
784void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
785 GCC_FMT_ATTR(2, 3);
786extern CPUState *first_cpu;
787extern CPUState *cpu_single_env;
788
789#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
790#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
791#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
792#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
793#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
794#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
795#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
796#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
797#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
798#define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */
799#define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */
800#define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */
801
802void cpu_interrupt(CPUState *s, int mask);
803void cpu_reset_interrupt(CPUState *env, int mask);
804
805void cpu_exit(CPUState *s);
806
807int qemu_cpu_has_work(CPUState *env);
808
809/* Breakpoint/watchpoint flags */
810#define BP_MEM_READ 0x01
811#define BP_MEM_WRITE 0x02
812#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
813#define BP_STOP_BEFORE_ACCESS 0x04
814#define BP_WATCHPOINT_HIT 0x08
815#define BP_GDB 0x10
816#define BP_CPU 0x20
817
818int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
819 CPUBreakpoint **breakpoint);
820int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
821void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
822void cpu_breakpoint_remove_all(CPUState *env, int mask);
823int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
824 int flags, CPUWatchpoint **watchpoint);
825int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
826 target_ulong len, int flags);
827void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
828void cpu_watchpoint_remove_all(CPUState *env, int mask);
829
830#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
831#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
832#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
833
834void cpu_single_step(CPUState *env, int enabled);
835void cpu_reset(CPUState *s);
836int cpu_is_stopped(CPUState *env);
837void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
838
839#define CPU_LOG_TB_OUT_ASM (1 << 0)
840#define CPU_LOG_TB_IN_ASM (1 << 1)
841#define CPU_LOG_TB_OP (1 << 2)
842#define CPU_LOG_TB_OP_OPT (1 << 3)
843#define CPU_LOG_INT (1 << 4)
844#define CPU_LOG_EXEC (1 << 5)
845#define CPU_LOG_PCALL (1 << 6)
846#define CPU_LOG_IOPORT (1 << 7)
847#define CPU_LOG_TB_CPU (1 << 8)
848#define CPU_LOG_RESET (1 << 9)
849
850/* define log items */
851typedef struct CPULogItem {
852 int mask;
853 const char *name;
854 const char *help;
855} CPULogItem;
856
857extern const CPULogItem cpu_log_items[];
858
859void cpu_set_log(int log_flags);
860void cpu_set_log_filename(const char *filename);
861int cpu_str_to_log_mask(const char *str);
862
863#if !defined(CONFIG_USER_ONLY)
864
865/* Return the physical page corresponding to a virtual one. Use it
866 only for debugging because no protection checks are done. Return -1
867 if no page found. */
868target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
869
870/* memory API */
871
872extern int phys_ram_fd;
873extern ram_addr_t ram_size;
874
875/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
876#define RAM_PREALLOC_MASK (1 << 0)
877
878typedef struct RAMBlock {
879 uint8_t *host;
880 ram_addr_t offset;
881 ram_addr_t length;
882 uint32_t flags;
883 char idstr[256];
884 QLIST_ENTRY(RAMBlock) next;
885#if defined(__linux__) && !defined(TARGET_S390X)
886 int fd;
887#endif
888} RAMBlock;
889
890typedef struct RAMList {
891 uint8_t *phys_dirty;
892 QLIST_HEAD(ram, RAMBlock) blocks;
893} RAMList;
894extern RAMList ram_list;
895
896extern const char *mem_path;
897extern int mem_prealloc;
898
899/* physical memory access */
900
901/* MMIO pages are identified by a combination of an IO device index and
902 3 flags. The ROMD code stores the page ram offset in iotlb entry,
903 so only a limited number of ids are avaiable. */
904
905#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
906
907/* Flags stored in the low bits of the TLB virtual address. These are
908 defined so that fast path ram access is all zeros. */
909/* Zero if TLB entry is valid. */
910#define TLB_INVALID_MASK (1 << 3)
911/* Set if TLB entry references a clean RAM page. The iotlb entry will
912 contain the page physical address. */
913#define TLB_NOTDIRTY (1 << 4)
914/* Set if TLB entry is an IO callback. */
915#define TLB_MMIO (1 << 5)
916
917#define VGA_DIRTY_FLAG 0x01
918#define CODE_DIRTY_FLAG 0x02
919#define MIGRATION_DIRTY_FLAG 0x08
920
921/* read dirty bit (return 0 or 1) */
922static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
923{
924 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
925}
926
927static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
928{
929 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
930}
931
932static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
933 int dirty_flags)
934{
935 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
936}
937
938static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
939{
940 ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
941}
942
943static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
944 int dirty_flags)
945{
946 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
947}
948
949static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
950 int length,
951 int dirty_flags)
952{
953 int i, mask, len;
954 uint8_t *p;
955
956 len = length >> TARGET_PAGE_BITS;
957 mask = ~dirty_flags;
958 p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
959 for (i = 0; i < len; i++) {
960 p[i] &= mask;
961 }
962}
963
964void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
965 int dirty_flags);
966void cpu_tlb_update_dirty(CPUState *env);
967
968int cpu_physical_memory_set_dirty_tracking(int enable);
969
970int cpu_physical_memory_get_dirty_tracking(void);
971
972int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
973 target_phys_addr_t end_addr);
974
975int cpu_physical_log_start(target_phys_addr_t start_addr,
976 ram_addr_t size);
977
978int cpu_physical_log_stop(target_phys_addr_t start_addr,
979 ram_addr_t size);
980
981void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
982#endif /* !CONFIG_USER_ONLY */
983
984int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
985 uint8_t *buf, int len, int is_write);
986
987#endif /* CPU_ALL_H */