]> git.proxmox.com Git - qemu.git/blame_incremental - cpu-all.h
target-i386: add API to get dump info
[qemu.git] / cpu-all.h
... / ...
CommitLineData
1/*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19#ifndef CPU_ALL_H
20#define CPU_ALL_H
21
22#include "qemu-common.h"
23#include "qemu-tls.h"
24#include "cpu-common.h"
25#include "memory_mapping.h"
26#include "dump.h"
27
28/* some important defines:
29 *
30 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
31 * memory accesses.
32 *
33 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
34 * otherwise little endian.
35 *
36 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
37 *
38 * TARGET_WORDS_BIGENDIAN : same for target cpu
39 */
40
41#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
42#define BSWAP_NEEDED
43#endif
44
45#ifdef BSWAP_NEEDED
46
47static inline uint16_t tswap16(uint16_t s)
48{
49 return bswap16(s);
50}
51
52static inline uint32_t tswap32(uint32_t s)
53{
54 return bswap32(s);
55}
56
57static inline uint64_t tswap64(uint64_t s)
58{
59 return bswap64(s);
60}
61
62static inline void tswap16s(uint16_t *s)
63{
64 *s = bswap16(*s);
65}
66
67static inline void tswap32s(uint32_t *s)
68{
69 *s = bswap32(*s);
70}
71
72static inline void tswap64s(uint64_t *s)
73{
74 *s = bswap64(*s);
75}
76
77#else
78
79static inline uint16_t tswap16(uint16_t s)
80{
81 return s;
82}
83
84static inline uint32_t tswap32(uint32_t s)
85{
86 return s;
87}
88
89static inline uint64_t tswap64(uint64_t s)
90{
91 return s;
92}
93
94static inline void tswap16s(uint16_t *s)
95{
96}
97
98static inline void tswap32s(uint32_t *s)
99{
100}
101
102static inline void tswap64s(uint64_t *s)
103{
104}
105
106#endif
107
108#if TARGET_LONG_SIZE == 4
109#define tswapl(s) tswap32(s)
110#define tswapls(s) tswap32s((uint32_t *)(s))
111#define bswaptls(s) bswap32s(s)
112#else
113#define tswapl(s) tswap64(s)
114#define tswapls(s) tswap64s((uint64_t *)(s))
115#define bswaptls(s) bswap64s(s)
116#endif
117
118/* CPU memory access without any memory or io remapping */
119
120/*
121 * the generic syntax for the memory accesses is:
122 *
123 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
124 *
125 * store: st{type}{size}{endian}_{access_type}(ptr, val)
126 *
127 * type is:
128 * (empty): integer access
129 * f : float access
130 *
131 * sign is:
132 * (empty): for floats or 32 bit size
133 * u : unsigned
134 * s : signed
135 *
136 * size is:
137 * b: 8 bits
138 * w: 16 bits
139 * l: 32 bits
140 * q: 64 bits
141 *
142 * endian is:
143 * (empty): target cpu endianness or 8 bit access
144 * r : reversed target cpu endianness (not implemented yet)
145 * be : big endian (not implemented yet)
146 * le : little endian (not implemented yet)
147 *
148 * access_type is:
149 * raw : host memory access
150 * user : user mode access using soft MMU
151 * kernel : kernel mode access using soft MMU
152 */
153
154/* target-endianness CPU memory access functions */
155#if defined(TARGET_WORDS_BIGENDIAN)
156#define lduw_p(p) lduw_be_p(p)
157#define ldsw_p(p) ldsw_be_p(p)
158#define ldl_p(p) ldl_be_p(p)
159#define ldq_p(p) ldq_be_p(p)
160#define ldfl_p(p) ldfl_be_p(p)
161#define ldfq_p(p) ldfq_be_p(p)
162#define stw_p(p, v) stw_be_p(p, v)
163#define stl_p(p, v) stl_be_p(p, v)
164#define stq_p(p, v) stq_be_p(p, v)
165#define stfl_p(p, v) stfl_be_p(p, v)
166#define stfq_p(p, v) stfq_be_p(p, v)
167#else
168#define lduw_p(p) lduw_le_p(p)
169#define ldsw_p(p) ldsw_le_p(p)
170#define ldl_p(p) ldl_le_p(p)
171#define ldq_p(p) ldq_le_p(p)
172#define ldfl_p(p) ldfl_le_p(p)
173#define ldfq_p(p) ldfq_le_p(p)
174#define stw_p(p, v) stw_le_p(p, v)
175#define stl_p(p, v) stl_le_p(p, v)
176#define stq_p(p, v) stq_le_p(p, v)
177#define stfl_p(p, v) stfl_le_p(p, v)
178#define stfq_p(p, v) stfq_le_p(p, v)
179#endif
180
181/* MMU memory access macros */
182
183#if defined(CONFIG_USER_ONLY)
184#include <assert.h>
185#include "qemu-types.h"
186
187/* On some host systems the guest address space is reserved on the host.
188 * This allows the guest address space to be offset to a convenient location.
189 */
190#if defined(CONFIG_USE_GUEST_BASE)
191extern unsigned long guest_base;
192extern int have_guest_base;
193extern unsigned long reserved_va;
194#define GUEST_BASE guest_base
195#define RESERVED_VA reserved_va
196#else
197#define GUEST_BASE 0ul
198#define RESERVED_VA 0ul
199#endif
200
201/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
202#define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
203
204#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
205#define h2g_valid(x) 1
206#else
207#define h2g_valid(x) ({ \
208 unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
209 (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
210 (!RESERVED_VA || (__guest < RESERVED_VA)); \
211})
212#endif
213
214#define h2g(x) ({ \
215 unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
216 /* Check if given address fits target address space */ \
217 assert(h2g_valid(x)); \
218 (abi_ulong)__ret; \
219})
220
221#define saddr(x) g2h(x)
222#define laddr(x) g2h(x)
223
224#else /* !CONFIG_USER_ONLY */
225/* NOTE: we use double casts if pointers and target_ulong have
226 different sizes */
227#define saddr(x) (uint8_t *)(intptr_t)(x)
228#define laddr(x) (uint8_t *)(intptr_t)(x)
229#endif
230
231#define ldub_raw(p) ldub_p(laddr((p)))
232#define ldsb_raw(p) ldsb_p(laddr((p)))
233#define lduw_raw(p) lduw_p(laddr((p)))
234#define ldsw_raw(p) ldsw_p(laddr((p)))
235#define ldl_raw(p) ldl_p(laddr((p)))
236#define ldq_raw(p) ldq_p(laddr((p)))
237#define ldfl_raw(p) ldfl_p(laddr((p)))
238#define ldfq_raw(p) ldfq_p(laddr((p)))
239#define stb_raw(p, v) stb_p(saddr((p)), v)
240#define stw_raw(p, v) stw_p(saddr((p)), v)
241#define stl_raw(p, v) stl_p(saddr((p)), v)
242#define stq_raw(p, v) stq_p(saddr((p)), v)
243#define stfl_raw(p, v) stfl_p(saddr((p)), v)
244#define stfq_raw(p, v) stfq_p(saddr((p)), v)
245
246
247#if defined(CONFIG_USER_ONLY)
248
249/* if user mode, no other memory access functions */
250#define ldub(p) ldub_raw(p)
251#define ldsb(p) ldsb_raw(p)
252#define lduw(p) lduw_raw(p)
253#define ldsw(p) ldsw_raw(p)
254#define ldl(p) ldl_raw(p)
255#define ldq(p) ldq_raw(p)
256#define ldfl(p) ldfl_raw(p)
257#define ldfq(p) ldfq_raw(p)
258#define stb(p, v) stb_raw(p, v)
259#define stw(p, v) stw_raw(p, v)
260#define stl(p, v) stl_raw(p, v)
261#define stq(p, v) stq_raw(p, v)
262#define stfl(p, v) stfl_raw(p, v)
263#define stfq(p, v) stfq_raw(p, v)
264
265#ifndef CONFIG_TCG_PASS_AREG0
266#define ldub_code(p) ldub_raw(p)
267#define ldsb_code(p) ldsb_raw(p)
268#define lduw_code(p) lduw_raw(p)
269#define ldsw_code(p) ldsw_raw(p)
270#define ldl_code(p) ldl_raw(p)
271#define ldq_code(p) ldq_raw(p)
272#else
273#define cpu_ldub_code(env1, p) ldub_raw(p)
274#define cpu_ldsb_code(env1, p) ldsb_raw(p)
275#define cpu_lduw_code(env1, p) lduw_raw(p)
276#define cpu_ldsw_code(env1, p) ldsw_raw(p)
277#define cpu_ldl_code(env1, p) ldl_raw(p)
278#define cpu_ldq_code(env1, p) ldq_raw(p)
279#endif
280
281#define ldub_kernel(p) ldub_raw(p)
282#define ldsb_kernel(p) ldsb_raw(p)
283#define lduw_kernel(p) lduw_raw(p)
284#define ldsw_kernel(p) ldsw_raw(p)
285#define ldl_kernel(p) ldl_raw(p)
286#define ldq_kernel(p) ldq_raw(p)
287#define ldfl_kernel(p) ldfl_raw(p)
288#define ldfq_kernel(p) ldfq_raw(p)
289#define stb_kernel(p, v) stb_raw(p, v)
290#define stw_kernel(p, v) stw_raw(p, v)
291#define stl_kernel(p, v) stl_raw(p, v)
292#define stq_kernel(p, v) stq_raw(p, v)
293#define stfl_kernel(p, v) stfl_raw(p, v)
294#define stfq_kernel(p, vt) stfq_raw(p, v)
295
296#endif /* defined(CONFIG_USER_ONLY) */
297
298/* page related stuff */
299
300#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
301#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
302#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
303
304/* ??? These should be the larger of uintptr_t and target_ulong. */
305extern uintptr_t qemu_real_host_page_size;
306extern uintptr_t qemu_host_page_size;
307extern uintptr_t qemu_host_page_mask;
308
309#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
310
311/* same as PROT_xxx */
312#define PAGE_READ 0x0001
313#define PAGE_WRITE 0x0002
314#define PAGE_EXEC 0x0004
315#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
316#define PAGE_VALID 0x0008
317/* original state of the write flag (used when tracking self-modifying
318 code */
319#define PAGE_WRITE_ORG 0x0010
320#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
321/* FIXME: Code that sets/uses this is broken and needs to go away. */
322#define PAGE_RESERVED 0x0020
323#endif
324
325#if defined(CONFIG_USER_ONLY)
326void page_dump(FILE *f);
327
328typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
329 abi_ulong, unsigned long);
330int walk_memory_regions(void *, walk_memory_regions_fn);
331
332int page_get_flags(target_ulong address);
333void page_set_flags(target_ulong start, target_ulong end, int flags);
334int page_check_range(target_ulong start, target_ulong len, int flags);
335#endif
336
337CPUArchState *cpu_copy(CPUArchState *env);
338CPUArchState *qemu_get_cpu(int cpu);
339
340#define CPU_DUMP_CODE 0x00010000
341
342void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
343 int flags);
344void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
345 int flags);
346
347void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
348 GCC_FMT_ATTR(2, 3);
349extern CPUArchState *first_cpu;
350DECLARE_TLS(CPUArchState *,cpu_single_env);
351#define cpu_single_env tls_var(cpu_single_env)
352
353/* Flags for use in ENV->INTERRUPT_PENDING.
354
355 The numbers assigned here are non-sequential in order to preserve
356 binary compatibility with the vmstate dump. Bit 0 (0x0001) was
357 previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
358 the vmstate dump. */
359
360/* External hardware interrupt pending. This is typically used for
361 interrupts from devices. */
362#define CPU_INTERRUPT_HARD 0x0002
363
364/* Exit the current TB. This is typically used when some system-level device
365 makes some change to the memory mapping. E.g. the a20 line change. */
366#define CPU_INTERRUPT_EXITTB 0x0004
367
368/* Halt the CPU. */
369#define CPU_INTERRUPT_HALT 0x0020
370
371/* Debug event pending. */
372#define CPU_INTERRUPT_DEBUG 0x0080
373
374/* Several target-specific external hardware interrupts. Each target/cpu.h
375 should define proper names based on these defines. */
376#define CPU_INTERRUPT_TGT_EXT_0 0x0008
377#define CPU_INTERRUPT_TGT_EXT_1 0x0010
378#define CPU_INTERRUPT_TGT_EXT_2 0x0040
379#define CPU_INTERRUPT_TGT_EXT_3 0x0200
380#define CPU_INTERRUPT_TGT_EXT_4 0x1000
381
382/* Several target-specific internal interrupts. These differ from the
383 preceding target-specific interrupts in that they are intended to
384 originate from within the cpu itself, typically in response to some
385 instruction being executed. These, therefore, are not masked while
386 single-stepping within the debugger. */
387#define CPU_INTERRUPT_TGT_INT_0 0x0100
388#define CPU_INTERRUPT_TGT_INT_1 0x0400
389#define CPU_INTERRUPT_TGT_INT_2 0x0800
390#define CPU_INTERRUPT_TGT_INT_3 0x2000
391
392/* First unused bit: 0x4000. */
393
394/* The set of all bits that should be masked when single-stepping. */
395#define CPU_INTERRUPT_SSTEP_MASK \
396 (CPU_INTERRUPT_HARD \
397 | CPU_INTERRUPT_TGT_EXT_0 \
398 | CPU_INTERRUPT_TGT_EXT_1 \
399 | CPU_INTERRUPT_TGT_EXT_2 \
400 | CPU_INTERRUPT_TGT_EXT_3 \
401 | CPU_INTERRUPT_TGT_EXT_4)
402
403#ifndef CONFIG_USER_ONLY
404typedef void (*CPUInterruptHandler)(CPUArchState *, int);
405
406extern CPUInterruptHandler cpu_interrupt_handler;
407
408static inline void cpu_interrupt(CPUArchState *s, int mask)
409{
410 cpu_interrupt_handler(s, mask);
411}
412#else /* USER_ONLY */
413void cpu_interrupt(CPUArchState *env, int mask);
414#endif /* USER_ONLY */
415
416void cpu_reset_interrupt(CPUArchState *env, int mask);
417
418void cpu_exit(CPUArchState *s);
419
420bool qemu_cpu_has_work(CPUArchState *env);
421
422/* Breakpoint/watchpoint flags */
423#define BP_MEM_READ 0x01
424#define BP_MEM_WRITE 0x02
425#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
426#define BP_STOP_BEFORE_ACCESS 0x04
427#define BP_WATCHPOINT_HIT 0x08
428#define BP_GDB 0x10
429#define BP_CPU 0x20
430
431int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
432 CPUBreakpoint **breakpoint);
433int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
434void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
435void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
436int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
437 int flags, CPUWatchpoint **watchpoint);
438int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
439 target_ulong len, int flags);
440void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
441void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
442
443#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
444#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
445#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
446
447void cpu_single_step(CPUArchState *env, int enabled);
448void cpu_state_reset(CPUArchState *s);
449int cpu_is_stopped(CPUArchState *env);
450void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data);
451
452#define CPU_LOG_TB_OUT_ASM (1 << 0)
453#define CPU_LOG_TB_IN_ASM (1 << 1)
454#define CPU_LOG_TB_OP (1 << 2)
455#define CPU_LOG_TB_OP_OPT (1 << 3)
456#define CPU_LOG_INT (1 << 4)
457#define CPU_LOG_EXEC (1 << 5)
458#define CPU_LOG_PCALL (1 << 6)
459#define CPU_LOG_IOPORT (1 << 7)
460#define CPU_LOG_TB_CPU (1 << 8)
461#define CPU_LOG_RESET (1 << 9)
462
463/* define log items */
464typedef struct CPULogItem {
465 int mask;
466 const char *name;
467 const char *help;
468} CPULogItem;
469
470extern const CPULogItem cpu_log_items[];
471
472void cpu_set_log(int log_flags);
473void cpu_set_log_filename(const char *filename);
474int cpu_str_to_log_mask(const char *str);
475
476#if !defined(CONFIG_USER_ONLY)
477
478/* Return the physical page corresponding to a virtual one. Use it
479 only for debugging because no protection checks are done. Return -1
480 if no page found. */
481target_phys_addr_t cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
482
483/* memory API */
484
485extern int phys_ram_fd;
486extern ram_addr_t ram_size;
487
488/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
489#define RAM_PREALLOC_MASK (1 << 0)
490
491typedef struct RAMBlock {
492 struct MemoryRegion *mr;
493 uint8_t *host;
494 ram_addr_t offset;
495 ram_addr_t length;
496 uint32_t flags;
497 char idstr[256];
498 QLIST_ENTRY(RAMBlock) next;
499#if defined(__linux__) && !defined(TARGET_S390X)
500 int fd;
501#endif
502} RAMBlock;
503
504typedef struct RAMList {
505 uint8_t *phys_dirty;
506 QLIST_HEAD(, RAMBlock) blocks;
507} RAMList;
508extern RAMList ram_list;
509
510extern const char *mem_path;
511extern int mem_prealloc;
512
513/* Flags stored in the low bits of the TLB virtual address. These are
514 defined so that fast path ram access is all zeros. */
515/* Zero if TLB entry is valid. */
516#define TLB_INVALID_MASK (1 << 3)
517/* Set if TLB entry references a clean RAM page. The iotlb entry will
518 contain the page physical address. */
519#define TLB_NOTDIRTY (1 << 4)
520/* Set if TLB entry is an IO callback. */
521#define TLB_MMIO (1 << 5)
522
523void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
524#endif /* !CONFIG_USER_ONLY */
525
526int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
527 uint8_t *buf, int len, int is_write);
528
529#if defined(CONFIG_HAVE_GET_MEMORY_MAPPING)
530int cpu_get_memory_mapping(MemoryMappingList *list, CPUArchState *env);
531bool cpu_paging_enabled(CPUArchState *env);
532#else
533static inline int cpu_get_memory_mapping(MemoryMappingList *list,
534 CPUArchState *env)
535{
536 return -1;
537}
538
539static inline bool cpu_paging_enabled(CPUArchState *env)
540{
541 return true;
542}
543#endif
544
545typedef int (*write_core_dump_function)(void *buf, size_t size, void *opaque);
546#if defined(CONFIG_HAVE_CORE_DUMP)
547int cpu_write_elf64_note(write_core_dump_function f, CPUArchState *env,
548 int cpuid, void *opaque);
549int cpu_write_elf32_note(write_core_dump_function f, CPUArchState *env,
550 int cpuid, void *opaque);
551int cpu_write_elf64_qemunote(write_core_dump_function f, CPUArchState *env,
552 void *opaque);
553int cpu_write_elf32_qemunote(write_core_dump_function f, CPUArchState *env,
554 void *opaque);
555int cpu_get_dump_info(ArchDumpInfo *info);
556#else
557static inline int cpu_write_elf64_note(write_core_dump_function f,
558 CPUArchState *env, int cpuid,
559 void *opaque)
560{
561 return -1;
562}
563
564static inline int cpu_write_elf32_note(write_core_dump_function f,
565 CPUArchState *env, int cpuid,
566 void *opaque)
567{
568 return -1;
569}
570
571static inline int cpu_write_elf64_qemunote(write_core_dump_function f,
572 CPUArchState *env,
573 void *opaque)
574{
575 return -1;
576}
577
578static inline int cpu_write_elf32_qemunote(write_core_dump_function f,
579 CPUArchState *env,
580 void *opaque)
581{
582 return -1;
583}
584
585static inline int cpu_get_dump_info(ArchDumpInfo *info)
586{
587 return -1;
588}
589#endif
590
591#endif /* CPU_ALL_H */