]> git.proxmox.com Git - qemu.git/blame_incremental - cpu-all.h
USB reset typo (Lonnie Mendez)
[qemu.git] / cpu-all.h
... / ...
CommitLineData
1/*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20#ifndef CPU_ALL_H
21#define CPU_ALL_H
22
23#if defined(__arm__) || defined(__sparc__)
24#define WORDS_ALIGNED
25#endif
26
27/* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
40#include "bswap.h"
41
42#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43#define BSWAP_NEEDED
44#endif
45
46#ifdef BSWAP_NEEDED
47
48static inline uint16_t tswap16(uint16_t s)
49{
50 return bswap16(s);
51}
52
53static inline uint32_t tswap32(uint32_t s)
54{
55 return bswap32(s);
56}
57
58static inline uint64_t tswap64(uint64_t s)
59{
60 return bswap64(s);
61}
62
63static inline void tswap16s(uint16_t *s)
64{
65 *s = bswap16(*s);
66}
67
68static inline void tswap32s(uint32_t *s)
69{
70 *s = bswap32(*s);
71}
72
73static inline void tswap64s(uint64_t *s)
74{
75 *s = bswap64(*s);
76}
77
78#else
79
80static inline uint16_t tswap16(uint16_t s)
81{
82 return s;
83}
84
85static inline uint32_t tswap32(uint32_t s)
86{
87 return s;
88}
89
90static inline uint64_t tswap64(uint64_t s)
91{
92 return s;
93}
94
95static inline void tswap16s(uint16_t *s)
96{
97}
98
99static inline void tswap32s(uint32_t *s)
100{
101}
102
103static inline void tswap64s(uint64_t *s)
104{
105}
106
107#endif
108
109#if TARGET_LONG_SIZE == 4
110#define tswapl(s) tswap32(s)
111#define tswapls(s) tswap32s((uint32_t *)(s))
112#define bswaptls(s) bswap32s(s)
113#else
114#define tswapl(s) tswap64(s)
115#define tswapls(s) tswap64s((uint64_t *)(s))
116#define bswaptls(s) bswap64s(s)
117#endif
118
119/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
120 endian ! */
121typedef union {
122 float64 d;
123#if defined(WORDS_BIGENDIAN) \
124 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
125 struct {
126 uint32_t upper;
127 uint32_t lower;
128 } l;
129#else
130 struct {
131 uint32_t lower;
132 uint32_t upper;
133 } l;
134#endif
135 uint64_t ll;
136} CPU_DoubleU;
137
138/* CPU memory access without any memory or io remapping */
139
140/*
141 * the generic syntax for the memory accesses is:
142 *
143 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
144 *
145 * store: st{type}{size}{endian}_{access_type}(ptr, val)
146 *
147 * type is:
148 * (empty): integer access
149 * f : float access
150 *
151 * sign is:
152 * (empty): for floats or 32 bit size
153 * u : unsigned
154 * s : signed
155 *
156 * size is:
157 * b: 8 bits
158 * w: 16 bits
159 * l: 32 bits
160 * q: 64 bits
161 *
162 * endian is:
163 * (empty): target cpu endianness or 8 bit access
164 * r : reversed target cpu endianness (not implemented yet)
165 * be : big endian (not implemented yet)
166 * le : little endian (not implemented yet)
167 *
168 * access_type is:
169 * raw : host memory access
170 * user : user mode access using soft MMU
171 * kernel : kernel mode access using soft MMU
172 */
173static inline int ldub_p(void *ptr)
174{
175 return *(uint8_t *)ptr;
176}
177
178static inline int ldsb_p(void *ptr)
179{
180 return *(int8_t *)ptr;
181}
182
183static inline void stb_p(void *ptr, int v)
184{
185 *(uint8_t *)ptr = v;
186}
187
188/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
189 kernel handles unaligned load/stores may give better results, but
190 it is a system wide setting : bad */
191#if !defined(TARGET_WORDS_BIGENDIAN) && (defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
192
193/* conservative code for little endian unaligned accesses */
194static inline int lduw_p(void *ptr)
195{
196#ifdef __powerpc__
197 int val;
198 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
199 return val;
200#else
201 uint8_t *p = ptr;
202 return p[0] | (p[1] << 8);
203#endif
204}
205
206static inline int ldsw_p(void *ptr)
207{
208#ifdef __powerpc__
209 int val;
210 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
211 return (int16_t)val;
212#else
213 uint8_t *p = ptr;
214 return (int16_t)(p[0] | (p[1] << 8));
215#endif
216}
217
218static inline int ldl_p(void *ptr)
219{
220#ifdef __powerpc__
221 int val;
222 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
223 return val;
224#else
225 uint8_t *p = ptr;
226 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
227#endif
228}
229
230static inline uint64_t ldq_p(void *ptr)
231{
232 uint8_t *p = ptr;
233 uint32_t v1, v2;
234 v1 = ldl_p(p);
235 v2 = ldl_p(p + 4);
236 return v1 | ((uint64_t)v2 << 32);
237}
238
239static inline void stw_p(void *ptr, int v)
240{
241#ifdef __powerpc__
242 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
243#else
244 uint8_t *p = ptr;
245 p[0] = v;
246 p[1] = v >> 8;
247#endif
248}
249
250static inline void stl_p(void *ptr, int v)
251{
252#ifdef __powerpc__
253 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
254#else
255 uint8_t *p = ptr;
256 p[0] = v;
257 p[1] = v >> 8;
258 p[2] = v >> 16;
259 p[3] = v >> 24;
260#endif
261}
262
263static inline void stq_p(void *ptr, uint64_t v)
264{
265 uint8_t *p = ptr;
266 stl_p(p, (uint32_t)v);
267 stl_p(p + 4, v >> 32);
268}
269
270/* float access */
271
272static inline float32 ldfl_p(void *ptr)
273{
274 union {
275 float32 f;
276 uint32_t i;
277 } u;
278 u.i = ldl_p(ptr);
279 return u.f;
280}
281
282static inline void stfl_p(void *ptr, float32 v)
283{
284 union {
285 float32 f;
286 uint32_t i;
287 } u;
288 u.f = v;
289 stl_p(ptr, u.i);
290}
291
292static inline float64 ldfq_p(void *ptr)
293{
294 CPU_DoubleU u;
295 u.l.lower = ldl_p(ptr);
296 u.l.upper = ldl_p(ptr + 4);
297 return u.d;
298}
299
300static inline void stfq_p(void *ptr, float64 v)
301{
302 CPU_DoubleU u;
303 u.d = v;
304 stl_p(ptr, u.l.lower);
305 stl_p(ptr + 4, u.l.upper);
306}
307
308#elif defined(TARGET_WORDS_BIGENDIAN) && (!defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
309
310static inline int lduw_p(void *ptr)
311{
312#if defined(__i386__)
313 int val;
314 asm volatile ("movzwl %1, %0\n"
315 "xchgb %b0, %h0\n"
316 : "=q" (val)
317 : "m" (*(uint16_t *)ptr));
318 return val;
319#else
320 uint8_t *b = (uint8_t *) ptr;
321 return ((b[0] << 8) | b[1]);
322#endif
323}
324
325static inline int ldsw_p(void *ptr)
326{
327#if defined(__i386__)
328 int val;
329 asm volatile ("movzwl %1, %0\n"
330 "xchgb %b0, %h0\n"
331 : "=q" (val)
332 : "m" (*(uint16_t *)ptr));
333 return (int16_t)val;
334#else
335 uint8_t *b = (uint8_t *) ptr;
336 return (int16_t)((b[0] << 8) | b[1]);
337#endif
338}
339
340static inline int ldl_p(void *ptr)
341{
342#if defined(__i386__) || defined(__x86_64__)
343 int val;
344 asm volatile ("movl %1, %0\n"
345 "bswap %0\n"
346 : "=r" (val)
347 : "m" (*(uint32_t *)ptr));
348 return val;
349#else
350 uint8_t *b = (uint8_t *) ptr;
351 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
352#endif
353}
354
355static inline uint64_t ldq_p(void *ptr)
356{
357 uint32_t a,b;
358 a = ldl_p(ptr);
359 b = ldl_p(ptr+4);
360 return (((uint64_t)a<<32)|b);
361}
362
363static inline void stw_p(void *ptr, int v)
364{
365#if defined(__i386__)
366 asm volatile ("xchgb %b0, %h0\n"
367 "movw %w0, %1\n"
368 : "=q" (v)
369 : "m" (*(uint16_t *)ptr), "0" (v));
370#else
371 uint8_t *d = (uint8_t *) ptr;
372 d[0] = v >> 8;
373 d[1] = v;
374#endif
375}
376
377static inline void stl_p(void *ptr, int v)
378{
379#if defined(__i386__) || defined(__x86_64__)
380 asm volatile ("bswap %0\n"
381 "movl %0, %1\n"
382 : "=r" (v)
383 : "m" (*(uint32_t *)ptr), "0" (v));
384#else
385 uint8_t *d = (uint8_t *) ptr;
386 d[0] = v >> 24;
387 d[1] = v >> 16;
388 d[2] = v >> 8;
389 d[3] = v;
390#endif
391}
392
393static inline void stq_p(void *ptr, uint64_t v)
394{
395 stl_p(ptr, v >> 32);
396 stl_p(ptr + 4, v);
397}
398
399/* float access */
400
401static inline float32 ldfl_p(void *ptr)
402{
403 union {
404 float32 f;
405 uint32_t i;
406 } u;
407 u.i = ldl_p(ptr);
408 return u.f;
409}
410
411static inline void stfl_p(void *ptr, float32 v)
412{
413 union {
414 float32 f;
415 uint32_t i;
416 } u;
417 u.f = v;
418 stl_p(ptr, u.i);
419}
420
421static inline float64 ldfq_p(void *ptr)
422{
423 CPU_DoubleU u;
424 u.l.upper = ldl_p(ptr);
425 u.l.lower = ldl_p(ptr + 4);
426 return u.d;
427}
428
429static inline void stfq_p(void *ptr, float64 v)
430{
431 CPU_DoubleU u;
432 u.d = v;
433 stl_p(ptr, u.l.upper);
434 stl_p(ptr + 4, u.l.lower);
435}
436
437#else
438
439static inline int lduw_p(void *ptr)
440{
441 return *(uint16_t *)ptr;
442}
443
444static inline int ldsw_p(void *ptr)
445{
446 return *(int16_t *)ptr;
447}
448
449static inline int ldl_p(void *ptr)
450{
451 return *(uint32_t *)ptr;
452}
453
454static inline uint64_t ldq_p(void *ptr)
455{
456 return *(uint64_t *)ptr;
457}
458
459static inline void stw_p(void *ptr, int v)
460{
461 *(uint16_t *)ptr = v;
462}
463
464static inline void stl_p(void *ptr, int v)
465{
466 *(uint32_t *)ptr = v;
467}
468
469static inline void stq_p(void *ptr, uint64_t v)
470{
471 *(uint64_t *)ptr = v;
472}
473
474/* float access */
475
476static inline float32 ldfl_p(void *ptr)
477{
478 return *(float32 *)ptr;
479}
480
481static inline float64 ldfq_p(void *ptr)
482{
483 return *(float64 *)ptr;
484}
485
486static inline void stfl_p(void *ptr, float32 v)
487{
488 *(float32 *)ptr = v;
489}
490
491static inline void stfq_p(void *ptr, float64 v)
492{
493 *(float64 *)ptr = v;
494}
495#endif
496
497/* MMU memory access macros */
498
499/* NOTE: we use double casts if pointers and target_ulong have
500 different sizes */
501#define ldub_raw(p) ldub_p((uint8_t *)(long)(p))
502#define ldsb_raw(p) ldsb_p((uint8_t *)(long)(p))
503#define lduw_raw(p) lduw_p((uint8_t *)(long)(p))
504#define ldsw_raw(p) ldsw_p((uint8_t *)(long)(p))
505#define ldl_raw(p) ldl_p((uint8_t *)(long)(p))
506#define ldq_raw(p) ldq_p((uint8_t *)(long)(p))
507#define ldfl_raw(p) ldfl_p((uint8_t *)(long)(p))
508#define ldfq_raw(p) ldfq_p((uint8_t *)(long)(p))
509#define stb_raw(p, v) stb_p((uint8_t *)(long)(p), v)
510#define stw_raw(p, v) stw_p((uint8_t *)(long)(p), v)
511#define stl_raw(p, v) stl_p((uint8_t *)(long)(p), v)
512#define stq_raw(p, v) stq_p((uint8_t *)(long)(p), v)
513#define stfl_raw(p, v) stfl_p((uint8_t *)(long)(p), v)
514#define stfq_raw(p, v) stfq_p((uint8_t *)(long)(p), v)
515
516
517#if defined(CONFIG_USER_ONLY)
518
519/* if user mode, no other memory access functions */
520#define ldub(p) ldub_raw(p)
521#define ldsb(p) ldsb_raw(p)
522#define lduw(p) lduw_raw(p)
523#define ldsw(p) ldsw_raw(p)
524#define ldl(p) ldl_raw(p)
525#define ldq(p) ldq_raw(p)
526#define ldfl(p) ldfl_raw(p)
527#define ldfq(p) ldfq_raw(p)
528#define stb(p, v) stb_raw(p, v)
529#define stw(p, v) stw_raw(p, v)
530#define stl(p, v) stl_raw(p, v)
531#define stq(p, v) stq_raw(p, v)
532#define stfl(p, v) stfl_raw(p, v)
533#define stfq(p, v) stfq_raw(p, v)
534
535#define ldub_code(p) ldub_raw(p)
536#define ldsb_code(p) ldsb_raw(p)
537#define lduw_code(p) lduw_raw(p)
538#define ldsw_code(p) ldsw_raw(p)
539#define ldl_code(p) ldl_raw(p)
540
541#define ldub_kernel(p) ldub_raw(p)
542#define ldsb_kernel(p) ldsb_raw(p)
543#define lduw_kernel(p) lduw_raw(p)
544#define ldsw_kernel(p) ldsw_raw(p)
545#define ldl_kernel(p) ldl_raw(p)
546#define ldfl_kernel(p) ldfl_raw(p)
547#define ldfq_kernel(p) ldfq_raw(p)
548#define stb_kernel(p, v) stb_raw(p, v)
549#define stw_kernel(p, v) stw_raw(p, v)
550#define stl_kernel(p, v) stl_raw(p, v)
551#define stq_kernel(p, v) stq_raw(p, v)
552#define stfl_kernel(p, v) stfl_raw(p, v)
553#define stfq_kernel(p, vt) stfq_raw(p, v)
554
555#endif /* defined(CONFIG_USER_ONLY) */
556
557/* page related stuff */
558
559#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
560#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
561#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
562
563extern unsigned long qemu_real_host_page_size;
564extern unsigned long qemu_host_page_bits;
565extern unsigned long qemu_host_page_size;
566extern unsigned long qemu_host_page_mask;
567
568#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
569
570/* same as PROT_xxx */
571#define PAGE_READ 0x0001
572#define PAGE_WRITE 0x0002
573#define PAGE_EXEC 0x0004
574#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
575#define PAGE_VALID 0x0008
576/* original state of the write flag (used when tracking self-modifying
577 code */
578#define PAGE_WRITE_ORG 0x0010
579
580void page_dump(FILE *f);
581int page_get_flags(unsigned long address);
582void page_set_flags(unsigned long start, unsigned long end, int flags);
583void page_unprotect_range(uint8_t *data, unsigned long data_size);
584
585#define SINGLE_CPU_DEFINES
586#ifdef SINGLE_CPU_DEFINES
587
588#if defined(TARGET_I386)
589
590#define CPUState CPUX86State
591#define cpu_init cpu_x86_init
592#define cpu_exec cpu_x86_exec
593#define cpu_gen_code cpu_x86_gen_code
594#define cpu_signal_handler cpu_x86_signal_handler
595
596#elif defined(TARGET_ARM)
597
598#define CPUState CPUARMState
599#define cpu_init cpu_arm_init
600#define cpu_exec cpu_arm_exec
601#define cpu_gen_code cpu_arm_gen_code
602#define cpu_signal_handler cpu_arm_signal_handler
603
604#elif defined(TARGET_SPARC)
605
606#define CPUState CPUSPARCState
607#define cpu_init cpu_sparc_init
608#define cpu_exec cpu_sparc_exec
609#define cpu_gen_code cpu_sparc_gen_code
610#define cpu_signal_handler cpu_sparc_signal_handler
611
612#elif defined(TARGET_PPC)
613
614#define CPUState CPUPPCState
615#define cpu_init cpu_ppc_init
616#define cpu_exec cpu_ppc_exec
617#define cpu_gen_code cpu_ppc_gen_code
618#define cpu_signal_handler cpu_ppc_signal_handler
619
620#elif defined(TARGET_MIPS)
621#define CPUState CPUMIPSState
622#define cpu_init cpu_mips_init
623#define cpu_exec cpu_mips_exec
624#define cpu_gen_code cpu_mips_gen_code
625#define cpu_signal_handler cpu_mips_signal_handler
626
627#else
628
629#error unsupported target CPU
630
631#endif
632
633#endif /* SINGLE_CPU_DEFINES */
634
635void cpu_dump_state(CPUState *env, FILE *f,
636 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
637 int flags);
638
639void cpu_abort(CPUState *env, const char *fmt, ...);
640extern CPUState *cpu_single_env;
641extern int code_copy_enabled;
642
643#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
644#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
645#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
646#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
647void cpu_interrupt(CPUState *s, int mask);
648void cpu_reset_interrupt(CPUState *env, int mask);
649
650int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
651int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
652void cpu_single_step(CPUState *env, int enabled);
653void cpu_reset(CPUState *s);
654
655/* Return the physical page corresponding to a virtual one. Use it
656 only for debugging because no protection checks are done. Return -1
657 if no page found. */
658target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
659
660#define CPU_LOG_TB_OUT_ASM (1 << 0)
661#define CPU_LOG_TB_IN_ASM (1 << 1)
662#define CPU_LOG_TB_OP (1 << 2)
663#define CPU_LOG_TB_OP_OPT (1 << 3)
664#define CPU_LOG_INT (1 << 4)
665#define CPU_LOG_EXEC (1 << 5)
666#define CPU_LOG_PCALL (1 << 6)
667#define CPU_LOG_IOPORT (1 << 7)
668#define CPU_LOG_TB_CPU (1 << 8)
669
670/* define log items */
671typedef struct CPULogItem {
672 int mask;
673 const char *name;
674 const char *help;
675} CPULogItem;
676
677extern CPULogItem cpu_log_items[];
678
679void cpu_set_log(int log_flags);
680void cpu_set_log_filename(const char *filename);
681int cpu_str_to_log_mask(const char *str);
682
683/* IO ports API */
684
685/* NOTE: as these functions may be even used when there is an isa
686 brige on non x86 targets, we always defined them */
687#ifndef NO_CPU_IO_DEFS
688void cpu_outb(CPUState *env, int addr, int val);
689void cpu_outw(CPUState *env, int addr, int val);
690void cpu_outl(CPUState *env, int addr, int val);
691int cpu_inb(CPUState *env, int addr);
692int cpu_inw(CPUState *env, int addr);
693int cpu_inl(CPUState *env, int addr);
694#endif
695
696/* memory API */
697
698extern int phys_ram_size;
699extern int phys_ram_fd;
700extern uint8_t *phys_ram_base;
701extern uint8_t *phys_ram_dirty;
702
703/* physical memory access */
704#define IO_MEM_NB_ENTRIES 256
705#define TLB_INVALID_MASK (1 << 3)
706#define IO_MEM_SHIFT 4
707
708#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
709#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
710#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
711#define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
712
713typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
714typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
715
716void cpu_register_physical_memory(target_phys_addr_t start_addr,
717 unsigned long size,
718 unsigned long phys_offset);
719int cpu_register_io_memory(int io_index,
720 CPUReadMemoryFunc **mem_read,
721 CPUWriteMemoryFunc **mem_write,
722 void *opaque);
723CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
724CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
725
726void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
727 int len, int is_write);
728static inline void cpu_physical_memory_read(target_phys_addr_t addr,
729 uint8_t *buf, int len)
730{
731 cpu_physical_memory_rw(addr, buf, len, 0);
732}
733static inline void cpu_physical_memory_write(target_phys_addr_t addr,
734 const uint8_t *buf, int len)
735{
736 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
737}
738uint32_t ldub_phys(target_phys_addr_t addr);
739uint32_t lduw_phys(target_phys_addr_t addr);
740uint32_t ldl_phys(target_phys_addr_t addr);
741uint64_t ldq_phys(target_phys_addr_t addr);
742void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
743void stb_phys(target_phys_addr_t addr, uint32_t val);
744void stw_phys(target_phys_addr_t addr, uint32_t val);
745void stl_phys(target_phys_addr_t addr, uint32_t val);
746void stq_phys(target_phys_addr_t addr, uint64_t val);
747
748int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
749 uint8_t *buf, int len, int is_write);
750
751#define VGA_DIRTY_FLAG 0x01
752#define CODE_DIRTY_FLAG 0x02
753
754/* read dirty bit (return 0 or 1) */
755static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
756{
757 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
758}
759
760static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
761 int dirty_flags)
762{
763 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
764}
765
766static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
767{
768 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
769}
770
771void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
772 int dirty_flags);
773void cpu_tlb_update_dirty(CPUState *env);
774
775void dump_exec_info(FILE *f,
776 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
777
778#endif /* CPU_ALL_H */