]> git.proxmox.com Git - qemu.git/blame_incremental - cpu-all.h
Add bdrv_flush_all()
[qemu.git] / cpu-all.h
... / ...
CommitLineData
1/*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20#ifndef CPU_ALL_H
21#define CPU_ALL_H
22
23#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24#define WORDS_ALIGNED
25#endif
26
27/* some important defines:
28 *
29 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30 * memory accesses.
31 *
32 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33 * otherwise little endian.
34 *
35 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36 *
37 * TARGET_WORDS_BIGENDIAN : same for target cpu
38 */
39
40#include "bswap.h"
41#include "softfloat.h"
42
43#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44#define BSWAP_NEEDED
45#endif
46
47#ifdef BSWAP_NEEDED
48
49static inline uint16_t tswap16(uint16_t s)
50{
51 return bswap16(s);
52}
53
54static inline uint32_t tswap32(uint32_t s)
55{
56 return bswap32(s);
57}
58
59static inline uint64_t tswap64(uint64_t s)
60{
61 return bswap64(s);
62}
63
64static inline void tswap16s(uint16_t *s)
65{
66 *s = bswap16(*s);
67}
68
69static inline void tswap32s(uint32_t *s)
70{
71 *s = bswap32(*s);
72}
73
74static inline void tswap64s(uint64_t *s)
75{
76 *s = bswap64(*s);
77}
78
79#else
80
81static inline uint16_t tswap16(uint16_t s)
82{
83 return s;
84}
85
86static inline uint32_t tswap32(uint32_t s)
87{
88 return s;
89}
90
91static inline uint64_t tswap64(uint64_t s)
92{
93 return s;
94}
95
96static inline void tswap16s(uint16_t *s)
97{
98}
99
100static inline void tswap32s(uint32_t *s)
101{
102}
103
104static inline void tswap64s(uint64_t *s)
105{
106}
107
108#endif
109
110#if TARGET_LONG_SIZE == 4
111#define tswapl(s) tswap32(s)
112#define tswapls(s) tswap32s((uint32_t *)(s))
113#define bswaptls(s) bswap32s(s)
114#else
115#define tswapl(s) tswap64(s)
116#define tswapls(s) tswap64s((uint64_t *)(s))
117#define bswaptls(s) bswap64s(s)
118#endif
119
120typedef union {
121 float32 f;
122 uint32_t l;
123} CPU_FloatU;
124
125/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
126 endian ! */
127typedef union {
128 float64 d;
129#if defined(WORDS_BIGENDIAN) \
130 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
131 struct {
132 uint32_t upper;
133 uint32_t lower;
134 } l;
135#else
136 struct {
137 uint32_t lower;
138 uint32_t upper;
139 } l;
140#endif
141 uint64_t ll;
142} CPU_DoubleU;
143
144#ifdef TARGET_SPARC
145typedef union {
146 float128 q;
147#if defined(WORDS_BIGENDIAN) \
148 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149 struct {
150 uint32_t upmost;
151 uint32_t upper;
152 uint32_t lower;
153 uint32_t lowest;
154 } l;
155 struct {
156 uint64_t upper;
157 uint64_t lower;
158 } ll;
159#else
160 struct {
161 uint32_t lowest;
162 uint32_t lower;
163 uint32_t upper;
164 uint32_t upmost;
165 } l;
166 struct {
167 uint64_t lower;
168 uint64_t upper;
169 } ll;
170#endif
171} CPU_QuadU;
172#endif
173
174/* CPU memory access without any memory or io remapping */
175
176/*
177 * the generic syntax for the memory accesses is:
178 *
179 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
180 *
181 * store: st{type}{size}{endian}_{access_type}(ptr, val)
182 *
183 * type is:
184 * (empty): integer access
185 * f : float access
186 *
187 * sign is:
188 * (empty): for floats or 32 bit size
189 * u : unsigned
190 * s : signed
191 *
192 * size is:
193 * b: 8 bits
194 * w: 16 bits
195 * l: 32 bits
196 * q: 64 bits
197 *
198 * endian is:
199 * (empty): target cpu endianness or 8 bit access
200 * r : reversed target cpu endianness (not implemented yet)
201 * be : big endian (not implemented yet)
202 * le : little endian (not implemented yet)
203 *
204 * access_type is:
205 * raw : host memory access
206 * user : user mode access using soft MMU
207 * kernel : kernel mode access using soft MMU
208 */
209static inline int ldub_p(void *ptr)
210{
211 return *(uint8_t *)ptr;
212}
213
214static inline int ldsb_p(void *ptr)
215{
216 return *(int8_t *)ptr;
217}
218
219static inline void stb_p(void *ptr, int v)
220{
221 *(uint8_t *)ptr = v;
222}
223
224/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225 kernel handles unaligned load/stores may give better results, but
226 it is a system wide setting : bad */
227#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
228
229/* conservative code for little endian unaligned accesses */
230static inline int lduw_le_p(void *ptr)
231{
232#ifdef __powerpc__
233 int val;
234 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
235 return val;
236#else
237 uint8_t *p = ptr;
238 return p[0] | (p[1] << 8);
239#endif
240}
241
242static inline int ldsw_le_p(void *ptr)
243{
244#ifdef __powerpc__
245 int val;
246 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
247 return (int16_t)val;
248#else
249 uint8_t *p = ptr;
250 return (int16_t)(p[0] | (p[1] << 8));
251#endif
252}
253
254static inline int ldl_le_p(void *ptr)
255{
256#ifdef __powerpc__
257 int val;
258 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
259 return val;
260#else
261 uint8_t *p = ptr;
262 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
263#endif
264}
265
266static inline uint64_t ldq_le_p(void *ptr)
267{
268 uint8_t *p = ptr;
269 uint32_t v1, v2;
270 v1 = ldl_le_p(p);
271 v2 = ldl_le_p(p + 4);
272 return v1 | ((uint64_t)v2 << 32);
273}
274
275static inline void stw_le_p(void *ptr, int v)
276{
277#ifdef __powerpc__
278 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
279#else
280 uint8_t *p = ptr;
281 p[0] = v;
282 p[1] = v >> 8;
283#endif
284}
285
286static inline void stl_le_p(void *ptr, int v)
287{
288#ifdef __powerpc__
289 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
290#else
291 uint8_t *p = ptr;
292 p[0] = v;
293 p[1] = v >> 8;
294 p[2] = v >> 16;
295 p[3] = v >> 24;
296#endif
297}
298
299static inline void stq_le_p(void *ptr, uint64_t v)
300{
301 uint8_t *p = ptr;
302 stl_le_p(p, (uint32_t)v);
303 stl_le_p(p + 4, v >> 32);
304}
305
306/* float access */
307
308static inline float32 ldfl_le_p(void *ptr)
309{
310 union {
311 float32 f;
312 uint32_t i;
313 } u;
314 u.i = ldl_le_p(ptr);
315 return u.f;
316}
317
318static inline void stfl_le_p(void *ptr, float32 v)
319{
320 union {
321 float32 f;
322 uint32_t i;
323 } u;
324 u.f = v;
325 stl_le_p(ptr, u.i);
326}
327
328static inline float64 ldfq_le_p(void *ptr)
329{
330 CPU_DoubleU u;
331 u.l.lower = ldl_le_p(ptr);
332 u.l.upper = ldl_le_p(ptr + 4);
333 return u.d;
334}
335
336static inline void stfq_le_p(void *ptr, float64 v)
337{
338 CPU_DoubleU u;
339 u.d = v;
340 stl_le_p(ptr, u.l.lower);
341 stl_le_p(ptr + 4, u.l.upper);
342}
343
344#else
345
346static inline int lduw_le_p(void *ptr)
347{
348 return *(uint16_t *)ptr;
349}
350
351static inline int ldsw_le_p(void *ptr)
352{
353 return *(int16_t *)ptr;
354}
355
356static inline int ldl_le_p(void *ptr)
357{
358 return *(uint32_t *)ptr;
359}
360
361static inline uint64_t ldq_le_p(void *ptr)
362{
363 return *(uint64_t *)ptr;
364}
365
366static inline void stw_le_p(void *ptr, int v)
367{
368 *(uint16_t *)ptr = v;
369}
370
371static inline void stl_le_p(void *ptr, int v)
372{
373 *(uint32_t *)ptr = v;
374}
375
376static inline void stq_le_p(void *ptr, uint64_t v)
377{
378 *(uint64_t *)ptr = v;
379}
380
381/* float access */
382
383static inline float32 ldfl_le_p(void *ptr)
384{
385 return *(float32 *)ptr;
386}
387
388static inline float64 ldfq_le_p(void *ptr)
389{
390 return *(float64 *)ptr;
391}
392
393static inline void stfl_le_p(void *ptr, float32 v)
394{
395 *(float32 *)ptr = v;
396}
397
398static inline void stfq_le_p(void *ptr, float64 v)
399{
400 *(float64 *)ptr = v;
401}
402#endif
403
404#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
405
406static inline int lduw_be_p(void *ptr)
407{
408#if defined(__i386__)
409 int val;
410 asm volatile ("movzwl %1, %0\n"
411 "xchgb %b0, %h0\n"
412 : "=q" (val)
413 : "m" (*(uint16_t *)ptr));
414 return val;
415#else
416 uint8_t *b = (uint8_t *) ptr;
417 return ((b[0] << 8) | b[1]);
418#endif
419}
420
421static inline int ldsw_be_p(void *ptr)
422{
423#if defined(__i386__)
424 int val;
425 asm volatile ("movzwl %1, %0\n"
426 "xchgb %b0, %h0\n"
427 : "=q" (val)
428 : "m" (*(uint16_t *)ptr));
429 return (int16_t)val;
430#else
431 uint8_t *b = (uint8_t *) ptr;
432 return (int16_t)((b[0] << 8) | b[1]);
433#endif
434}
435
436static inline int ldl_be_p(void *ptr)
437{
438#if defined(__i386__) || defined(__x86_64__)
439 int val;
440 asm volatile ("movl %1, %0\n"
441 "bswap %0\n"
442 : "=r" (val)
443 : "m" (*(uint32_t *)ptr));
444 return val;
445#else
446 uint8_t *b = (uint8_t *) ptr;
447 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
448#endif
449}
450
451static inline uint64_t ldq_be_p(void *ptr)
452{
453 uint32_t a,b;
454 a = ldl_be_p(ptr);
455 b = ldl_be_p((uint8_t *)ptr + 4);
456 return (((uint64_t)a<<32)|b);
457}
458
459static inline void stw_be_p(void *ptr, int v)
460{
461#if defined(__i386__)
462 asm volatile ("xchgb %b0, %h0\n"
463 "movw %w0, %1\n"
464 : "=q" (v)
465 : "m" (*(uint16_t *)ptr), "0" (v));
466#else
467 uint8_t *d = (uint8_t *) ptr;
468 d[0] = v >> 8;
469 d[1] = v;
470#endif
471}
472
473static inline void stl_be_p(void *ptr, int v)
474{
475#if defined(__i386__) || defined(__x86_64__)
476 asm volatile ("bswap %0\n"
477 "movl %0, %1\n"
478 : "=r" (v)
479 : "m" (*(uint32_t *)ptr), "0" (v));
480#else
481 uint8_t *d = (uint8_t *) ptr;
482 d[0] = v >> 24;
483 d[1] = v >> 16;
484 d[2] = v >> 8;
485 d[3] = v;
486#endif
487}
488
489static inline void stq_be_p(void *ptr, uint64_t v)
490{
491 stl_be_p(ptr, v >> 32);
492 stl_be_p((uint8_t *)ptr + 4, v);
493}
494
495/* float access */
496
497static inline float32 ldfl_be_p(void *ptr)
498{
499 union {
500 float32 f;
501 uint32_t i;
502 } u;
503 u.i = ldl_be_p(ptr);
504 return u.f;
505}
506
507static inline void stfl_be_p(void *ptr, float32 v)
508{
509 union {
510 float32 f;
511 uint32_t i;
512 } u;
513 u.f = v;
514 stl_be_p(ptr, u.i);
515}
516
517static inline float64 ldfq_be_p(void *ptr)
518{
519 CPU_DoubleU u;
520 u.l.upper = ldl_be_p(ptr);
521 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
522 return u.d;
523}
524
525static inline void stfq_be_p(void *ptr, float64 v)
526{
527 CPU_DoubleU u;
528 u.d = v;
529 stl_be_p(ptr, u.l.upper);
530 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
531}
532
533#else
534
535static inline int lduw_be_p(void *ptr)
536{
537 return *(uint16_t *)ptr;
538}
539
540static inline int ldsw_be_p(void *ptr)
541{
542 return *(int16_t *)ptr;
543}
544
545static inline int ldl_be_p(void *ptr)
546{
547 return *(uint32_t *)ptr;
548}
549
550static inline uint64_t ldq_be_p(void *ptr)
551{
552 return *(uint64_t *)ptr;
553}
554
555static inline void stw_be_p(void *ptr, int v)
556{
557 *(uint16_t *)ptr = v;
558}
559
560static inline void stl_be_p(void *ptr, int v)
561{
562 *(uint32_t *)ptr = v;
563}
564
565static inline void stq_be_p(void *ptr, uint64_t v)
566{
567 *(uint64_t *)ptr = v;
568}
569
570/* float access */
571
572static inline float32 ldfl_be_p(void *ptr)
573{
574 return *(float32 *)ptr;
575}
576
577static inline float64 ldfq_be_p(void *ptr)
578{
579 return *(float64 *)ptr;
580}
581
582static inline void stfl_be_p(void *ptr, float32 v)
583{
584 *(float32 *)ptr = v;
585}
586
587static inline void stfq_be_p(void *ptr, float64 v)
588{
589 *(float64 *)ptr = v;
590}
591
592#endif
593
594/* target CPU memory access functions */
595#if defined(TARGET_WORDS_BIGENDIAN)
596#define lduw_p(p) lduw_be_p(p)
597#define ldsw_p(p) ldsw_be_p(p)
598#define ldl_p(p) ldl_be_p(p)
599#define ldq_p(p) ldq_be_p(p)
600#define ldfl_p(p) ldfl_be_p(p)
601#define ldfq_p(p) ldfq_be_p(p)
602#define stw_p(p, v) stw_be_p(p, v)
603#define stl_p(p, v) stl_be_p(p, v)
604#define stq_p(p, v) stq_be_p(p, v)
605#define stfl_p(p, v) stfl_be_p(p, v)
606#define stfq_p(p, v) stfq_be_p(p, v)
607#else
608#define lduw_p(p) lduw_le_p(p)
609#define ldsw_p(p) ldsw_le_p(p)
610#define ldl_p(p) ldl_le_p(p)
611#define ldq_p(p) ldq_le_p(p)
612#define ldfl_p(p) ldfl_le_p(p)
613#define ldfq_p(p) ldfq_le_p(p)
614#define stw_p(p, v) stw_le_p(p, v)
615#define stl_p(p, v) stl_le_p(p, v)
616#define stq_p(p, v) stq_le_p(p, v)
617#define stfl_p(p, v) stfl_le_p(p, v)
618#define stfq_p(p, v) stfq_le_p(p, v)
619#endif
620
621/* MMU memory access macros */
622
623#if defined(CONFIG_USER_ONLY)
624/* On some host systems the guest address space is reserved on the host.
625 * This allows the guest address space to be offset to a convenient location.
626 */
627//#define GUEST_BASE 0x20000000
628#define GUEST_BASE 0
629
630/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
631#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
632#define h2g(x) ((target_ulong)((unsigned long)(x) - GUEST_BASE))
633
634#define saddr(x) g2h(x)
635#define laddr(x) g2h(x)
636
637#else /* !CONFIG_USER_ONLY */
638/* NOTE: we use double casts if pointers and target_ulong have
639 different sizes */
640#define saddr(x) (uint8_t *)(long)(x)
641#define laddr(x) (uint8_t *)(long)(x)
642#endif
643
644#define ldub_raw(p) ldub_p(laddr((p)))
645#define ldsb_raw(p) ldsb_p(laddr((p)))
646#define lduw_raw(p) lduw_p(laddr((p)))
647#define ldsw_raw(p) ldsw_p(laddr((p)))
648#define ldl_raw(p) ldl_p(laddr((p)))
649#define ldq_raw(p) ldq_p(laddr((p)))
650#define ldfl_raw(p) ldfl_p(laddr((p)))
651#define ldfq_raw(p) ldfq_p(laddr((p)))
652#define stb_raw(p, v) stb_p(saddr((p)), v)
653#define stw_raw(p, v) stw_p(saddr((p)), v)
654#define stl_raw(p, v) stl_p(saddr((p)), v)
655#define stq_raw(p, v) stq_p(saddr((p)), v)
656#define stfl_raw(p, v) stfl_p(saddr((p)), v)
657#define stfq_raw(p, v) stfq_p(saddr((p)), v)
658
659
660#if defined(CONFIG_USER_ONLY)
661
662/* if user mode, no other memory access functions */
663#define ldub(p) ldub_raw(p)
664#define ldsb(p) ldsb_raw(p)
665#define lduw(p) lduw_raw(p)
666#define ldsw(p) ldsw_raw(p)
667#define ldl(p) ldl_raw(p)
668#define ldq(p) ldq_raw(p)
669#define ldfl(p) ldfl_raw(p)
670#define ldfq(p) ldfq_raw(p)
671#define stb(p, v) stb_raw(p, v)
672#define stw(p, v) stw_raw(p, v)
673#define stl(p, v) stl_raw(p, v)
674#define stq(p, v) stq_raw(p, v)
675#define stfl(p, v) stfl_raw(p, v)
676#define stfq(p, v) stfq_raw(p, v)
677
678#define ldub_code(p) ldub_raw(p)
679#define ldsb_code(p) ldsb_raw(p)
680#define lduw_code(p) lduw_raw(p)
681#define ldsw_code(p) ldsw_raw(p)
682#define ldl_code(p) ldl_raw(p)
683#define ldq_code(p) ldq_raw(p)
684
685#define ldub_kernel(p) ldub_raw(p)
686#define ldsb_kernel(p) ldsb_raw(p)
687#define lduw_kernel(p) lduw_raw(p)
688#define ldsw_kernel(p) ldsw_raw(p)
689#define ldl_kernel(p) ldl_raw(p)
690#define ldq_kernel(p) ldq_raw(p)
691#define ldfl_kernel(p) ldfl_raw(p)
692#define ldfq_kernel(p) ldfq_raw(p)
693#define stb_kernel(p, v) stb_raw(p, v)
694#define stw_kernel(p, v) stw_raw(p, v)
695#define stl_kernel(p, v) stl_raw(p, v)
696#define stq_kernel(p, v) stq_raw(p, v)
697#define stfl_kernel(p, v) stfl_raw(p, v)
698#define stfq_kernel(p, vt) stfq_raw(p, v)
699
700#endif /* defined(CONFIG_USER_ONLY) */
701
702/* page related stuff */
703
704#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
705#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
706#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
707
708/* ??? These should be the larger of unsigned long and target_ulong. */
709extern unsigned long qemu_real_host_page_size;
710extern unsigned long qemu_host_page_bits;
711extern unsigned long qemu_host_page_size;
712extern unsigned long qemu_host_page_mask;
713
714#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
715
716/* same as PROT_xxx */
717#define PAGE_READ 0x0001
718#define PAGE_WRITE 0x0002
719#define PAGE_EXEC 0x0004
720#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
721#define PAGE_VALID 0x0008
722/* original state of the write flag (used when tracking self-modifying
723 code */
724#define PAGE_WRITE_ORG 0x0010
725#define PAGE_RESERVED 0x0020
726
727void page_dump(FILE *f);
728int page_get_flags(target_ulong address);
729void page_set_flags(target_ulong start, target_ulong end, int flags);
730int page_check_range(target_ulong start, target_ulong len, int flags);
731
732void cpu_exec_init_all(unsigned long tb_size);
733CPUState *cpu_copy(CPUState *env);
734
735void cpu_dump_state(CPUState *env, FILE *f,
736 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
737 int flags);
738void cpu_dump_statistics (CPUState *env, FILE *f,
739 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
740 int flags);
741
742void cpu_abort(CPUState *env, const char *fmt, ...)
743 __attribute__ ((__format__ (__printf__, 2, 3)))
744 __attribute__ ((__noreturn__));
745extern CPUState *first_cpu;
746extern CPUState *cpu_single_env;
747extern int64_t qemu_icount;
748extern int use_icount;
749
750#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
751#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
752#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
753#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
754#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
755#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
756#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
757#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
758#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
759#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
760
761void cpu_interrupt(CPUState *s, int mask);
762void cpu_reset_interrupt(CPUState *env, int mask);
763
764int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type);
765int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
766void cpu_watchpoint_remove_all(CPUState *env);
767int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
768int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
769void cpu_breakpoint_remove_all(CPUState *env);
770
771#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
772#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
773#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
774
775void cpu_single_step(CPUState *env, int enabled);
776void cpu_reset(CPUState *s);
777
778/* Return the physical page corresponding to a virtual one. Use it
779 only for debugging because no protection checks are done. Return -1
780 if no page found. */
781target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
782
783#define CPU_LOG_TB_OUT_ASM (1 << 0)
784#define CPU_LOG_TB_IN_ASM (1 << 1)
785#define CPU_LOG_TB_OP (1 << 2)
786#define CPU_LOG_TB_OP_OPT (1 << 3)
787#define CPU_LOG_INT (1 << 4)
788#define CPU_LOG_EXEC (1 << 5)
789#define CPU_LOG_PCALL (1 << 6)
790#define CPU_LOG_IOPORT (1 << 7)
791#define CPU_LOG_TB_CPU (1 << 8)
792
793/* define log items */
794typedef struct CPULogItem {
795 int mask;
796 const char *name;
797 const char *help;
798} CPULogItem;
799
800extern const CPULogItem cpu_log_items[];
801
802void cpu_set_log(int log_flags);
803void cpu_set_log_filename(const char *filename);
804int cpu_str_to_log_mask(const char *str);
805
806/* IO ports API */
807
808/* NOTE: as these functions may be even used when there is an isa
809 brige on non x86 targets, we always defined them */
810#ifndef NO_CPU_IO_DEFS
811void cpu_outb(CPUState *env, int addr, int val);
812void cpu_outw(CPUState *env, int addr, int val);
813void cpu_outl(CPUState *env, int addr, int val);
814int cpu_inb(CPUState *env, int addr);
815int cpu_inw(CPUState *env, int addr);
816int cpu_inl(CPUState *env, int addr);
817#endif
818
819/* address in the RAM (different from a physical address) */
820#ifdef USE_KQEMU
821typedef uint32_t ram_addr_t;
822#else
823typedef unsigned long ram_addr_t;
824#endif
825
826/* memory API */
827
828extern ram_addr_t phys_ram_size;
829extern int phys_ram_fd;
830extern uint8_t *phys_ram_base;
831extern uint8_t *phys_ram_dirty;
832extern ram_addr_t ram_size;
833
834/* physical memory access */
835
836/* MMIO pages are identified by a combination of an IO device index and
837 3 flags. The ROMD code stores the page ram offset in iotlb entry,
838 so only a limited number of ids are avaiable. */
839
840#define IO_MEM_SHIFT 3
841#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
842
843#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
844#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
845#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
846#define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
847
848/* Acts like a ROM when read and like a device when written. */
849#define IO_MEM_ROMD (1)
850#define IO_MEM_SUBPAGE (2)
851#define IO_MEM_SUBWIDTH (4)
852
853/* Flags stored in the low bits of the TLB virtual address. These are
854 defined so that fast path ram access is all zeros. */
855/* Zero if TLB entry is valid. */
856#define TLB_INVALID_MASK (1 << 3)
857/* Set if TLB entry references a clean RAM page. The iotlb entry will
858 contain the page physical address. */
859#define TLB_NOTDIRTY (1 << 4)
860/* Set if TLB entry is an IO callback. */
861#define TLB_MMIO (1 << 5)
862
863typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
864typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
865
866void cpu_register_physical_memory(target_phys_addr_t start_addr,
867 ram_addr_t size,
868 ram_addr_t phys_offset);
869ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
870ram_addr_t qemu_ram_alloc(ram_addr_t);
871void qemu_ram_free(ram_addr_t addr);
872int cpu_register_io_memory(int io_index,
873 CPUReadMemoryFunc **mem_read,
874 CPUWriteMemoryFunc **mem_write,
875 void *opaque);
876CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
877CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
878
879void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
880 int len, int is_write);
881static inline void cpu_physical_memory_read(target_phys_addr_t addr,
882 uint8_t *buf, int len)
883{
884 cpu_physical_memory_rw(addr, buf, len, 0);
885}
886static inline void cpu_physical_memory_write(target_phys_addr_t addr,
887 const uint8_t *buf, int len)
888{
889 cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
890}
891uint32_t ldub_phys(target_phys_addr_t addr);
892uint32_t lduw_phys(target_phys_addr_t addr);
893uint32_t ldl_phys(target_phys_addr_t addr);
894uint64_t ldq_phys(target_phys_addr_t addr);
895void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
896void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
897void stb_phys(target_phys_addr_t addr, uint32_t val);
898void stw_phys(target_phys_addr_t addr, uint32_t val);
899void stl_phys(target_phys_addr_t addr, uint32_t val);
900void stq_phys(target_phys_addr_t addr, uint64_t val);
901
902void cpu_physical_memory_write_rom(target_phys_addr_t addr,
903 const uint8_t *buf, int len);
904int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
905 uint8_t *buf, int len, int is_write);
906
907#define VGA_DIRTY_FLAG 0x01
908#define CODE_DIRTY_FLAG 0x02
909
910/* read dirty bit (return 0 or 1) */
911static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
912{
913 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
914}
915
916static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
917 int dirty_flags)
918{
919 return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
920}
921
922static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
923{
924 phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
925}
926
927void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
928 int dirty_flags);
929void cpu_tlb_update_dirty(CPUState *env);
930
931void dump_exec_info(FILE *f,
932 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
933
934/*******************************************/
935/* host CPU ticks (if available) */
936
937#if defined(__powerpc__)
938
939static inline uint32_t get_tbl(void)
940{
941 uint32_t tbl;
942 asm volatile("mftb %0" : "=r" (tbl));
943 return tbl;
944}
945
946static inline uint32_t get_tbu(void)
947{
948 uint32_t tbl;
949 asm volatile("mftbu %0" : "=r" (tbl));
950 return tbl;
951}
952
953static inline int64_t cpu_get_real_ticks(void)
954{
955 uint32_t l, h, h1;
956 /* NOTE: we test if wrapping has occurred */
957 do {
958 h = get_tbu();
959 l = get_tbl();
960 h1 = get_tbu();
961 } while (h != h1);
962 return ((int64_t)h << 32) | l;
963}
964
965#elif defined(__i386__)
966
967static inline int64_t cpu_get_real_ticks(void)
968{
969 int64_t val;
970 asm volatile ("rdtsc" : "=A" (val));
971 return val;
972}
973
974#elif defined(__x86_64__)
975
976static inline int64_t cpu_get_real_ticks(void)
977{
978 uint32_t low,high;
979 int64_t val;
980 asm volatile("rdtsc" : "=a" (low), "=d" (high));
981 val = high;
982 val <<= 32;
983 val |= low;
984 return val;
985}
986
987#elif defined(__hppa__)
988
989static inline int64_t cpu_get_real_ticks(void)
990{
991 int val;
992 asm volatile ("mfctl %%cr16, %0" : "=r"(val));
993 return val;
994}
995
996#elif defined(__ia64)
997
998static inline int64_t cpu_get_real_ticks(void)
999{
1000 int64_t val;
1001 asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1002 return val;
1003}
1004
1005#elif defined(__s390__)
1006
1007static inline int64_t cpu_get_real_ticks(void)
1008{
1009 int64_t val;
1010 asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1011 return val;
1012}
1013
1014#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1015
1016static inline int64_t cpu_get_real_ticks (void)
1017{
1018#if defined(_LP64)
1019 uint64_t rval;
1020 asm volatile("rd %%tick,%0" : "=r"(rval));
1021 return rval;
1022#else
1023 union {
1024 uint64_t i64;
1025 struct {
1026 uint32_t high;
1027 uint32_t low;
1028 } i32;
1029 } rval;
1030 asm volatile("rd %%tick,%1; srlx %1,32,%0"
1031 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1032 return rval.i64;
1033#endif
1034}
1035
1036#elif defined(__mips__)
1037
1038static inline int64_t cpu_get_real_ticks(void)
1039{
1040#if __mips_isa_rev >= 2
1041 uint32_t count;
1042 static uint32_t cyc_per_count = 0;
1043
1044 if (!cyc_per_count)
1045 __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1046
1047 __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1048 return (int64_t)(count * cyc_per_count);
1049#else
1050 /* FIXME */
1051 static int64_t ticks = 0;
1052 return ticks++;
1053#endif
1054}
1055
1056#else
1057/* The host CPU doesn't have an easily accessible cycle counter.
1058 Just return a monotonically increasing value. This will be
1059 totally wrong, but hopefully better than nothing. */
1060static inline int64_t cpu_get_real_ticks (void)
1061{
1062 static int64_t ticks = 0;
1063 return ticks++;
1064}
1065#endif
1066
1067/* profiling */
1068#ifdef CONFIG_PROFILER
1069static inline int64_t profile_getclock(void)
1070{
1071 return cpu_get_real_ticks();
1072}
1073
1074extern int64_t kqemu_time, kqemu_time_start;
1075extern int64_t qemu_time, qemu_time_start;
1076extern int64_t tlb_flush_time;
1077extern int64_t kqemu_exec_count;
1078extern int64_t dev_time;
1079extern int64_t kqemu_ret_int_count;
1080extern int64_t kqemu_ret_excp_count;
1081extern int64_t kqemu_ret_intr_count;
1082#endif
1083
1084#endif /* CPU_ALL_H */