]> git.proxmox.com Git - qemu.git/blame_incremental - cpu-exec.c
Allow selection of PowerPC CPU giving a PVR.
[qemu.git] / cpu-exec.c
... / ...
CommitLineData
1/*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20#include "config.h"
21#include "exec.h"
22#include "disas.h"
23
24#if !defined(CONFIG_SOFTMMU)
25#undef EAX
26#undef ECX
27#undef EDX
28#undef EBX
29#undef ESP
30#undef EBP
31#undef ESI
32#undef EDI
33#undef EIP
34#include <signal.h>
35#include <sys/ucontext.h>
36#endif
37
38int tb_invalidated_flag;
39
40//#define DEBUG_EXEC
41//#define DEBUG_SIGNAL
42
43void cpu_loop_exit(void)
44{
45 /* NOTE: the register at this point must be saved by hand because
46 longjmp restore them */
47 regs_to_env();
48 longjmp(env->jmp_env, 1);
49}
50
51#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52#define reg_T2
53#endif
54
55/* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
57 */
58void cpu_resume_from_signal(CPUState *env1, void *puc)
59{
60#if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
62#endif
63
64 env = env1;
65
66 /* XXX: restore cpu registers saved in host registers */
67
68#if !defined(CONFIG_SOFTMMU)
69 if (puc) {
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72 }
73#endif
74 longjmp(env->jmp_env, 1);
75}
76
77
78static TranslationBlock *tb_find_slow(target_ulong pc,
79 target_ulong cs_base,
80 uint64_t flags)
81{
82 TranslationBlock *tb, **ptb1;
83 int code_gen_size;
84 unsigned int h;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86 uint8_t *tc_ptr;
87
88 spin_lock(&tb_lock);
89
90 tb_invalidated_flag = 0;
91
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 phys_page2 = -1;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
111 TARGET_PAGE_SIZE;
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
114 goto found;
115 } else {
116 goto found;
117 }
118 }
119 ptb1 = &tb->phys_hash_next;
120 }
121 not_found:
122 /* if no translated code available, then translate it now */
123 tb = tb_alloc(pc);
124 if (!tb) {
125 /* flush must be done */
126 tb_flush(env);
127 /* cannot fail at this point */
128 tb = tb_alloc(pc);
129 /* don't forget to invalidate previous TB info */
130 tb_invalidated_flag = 1;
131 }
132 tc_ptr = code_gen_ptr;
133 tb->tc_ptr = tc_ptr;
134 tb->cs_base = cs_base;
135 tb->flags = flags;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141 phys_page2 = -1;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
144 }
145 tb_link_phys(tb, phys_pc, phys_page2);
146
147 found:
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
151 return tb;
152}
153
154static inline TranslationBlock *tb_find_fast(void)
155{
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
158 uint64_t flags;
159
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
162 is executed. */
163#if defined(TARGET_I386)
164 flags = env->hflags;
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166 flags |= env->intercept;
167 cs_base = env->segs[R_CS].base;
168 pc = cs_base + env->eip;
169#elif defined(TARGET_ARM)
170 flags = env->thumb | (env->vfp.vec_len << 1)
171 | (env->vfp.vec_stride << 4);
172 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
173 flags |= (1 << 6);
174 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
175 flags |= (1 << 7);
176 cs_base = 0;
177 pc = env->regs[15];
178#elif defined(TARGET_SPARC)
179#ifdef TARGET_SPARC64
180 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
181 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
182 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
183#else
184 // FPU enable . Supervisor
185 flags = (env->psref << 4) | env->psrs;
186#endif
187 cs_base = env->npc;
188 pc = env->pc;
189#elif defined(TARGET_PPC)
190 flags = env->hflags;
191 cs_base = 0;
192 pc = env->nip;
193#elif defined(TARGET_MIPS)
194 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
195 cs_base = 0;
196 pc = env->PC[env->current_tc];
197#elif defined(TARGET_M68K)
198 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
199 | (env->sr & SR_S) /* Bit 13 */
200 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
201 cs_base = 0;
202 pc = env->pc;
203#elif defined(TARGET_SH4)
204 flags = env->sr & (SR_MD | SR_RB);
205 cs_base = 0; /* XXXXX */
206 pc = env->pc;
207#elif defined(TARGET_ALPHA)
208 flags = env->ps;
209 cs_base = 0;
210 pc = env->pc;
211#elif defined(TARGET_CRIS)
212 flags = 0;
213 cs_base = 0;
214 pc = env->pc;
215#else
216#error unsupported CPU
217#endif
218 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
219 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
220 tb->flags != flags, 0)) {
221 tb = tb_find_slow(pc, cs_base, flags);
222 /* Note: we do it here to avoid a gcc bug on Mac OS X when
223 doing it in tb_find_slow */
224 if (tb_invalidated_flag) {
225 /* as some TB could have been invalidated because
226 of memory exceptions while generating the code, we
227 must recompute the hash index here */
228 T0 = 0;
229 }
230 }
231 return tb;
232}
233
234
235/* main execution loop */
236
237int cpu_exec(CPUState *env1)
238{
239#define DECLARE_HOST_REGS 1
240#include "hostregs_helper.h"
241#if defined(TARGET_SPARC)
242#if defined(reg_REGWPTR)
243 uint32_t *saved_regwptr;
244#endif
245#endif
246#if defined(__sparc__) && !defined(HOST_SOLARIS)
247 int saved_i7;
248 target_ulong tmp_T0;
249#endif
250 int ret, interrupt_request;
251 void (*gen_func)(void);
252 TranslationBlock *tb;
253 uint8_t *tc_ptr;
254
255 if (cpu_halted(env1) == EXCP_HALTED)
256 return EXCP_HALTED;
257
258 cpu_single_env = env1;
259
260 /* first we save global registers */
261#define SAVE_HOST_REGS 1
262#include "hostregs_helper.h"
263 env = env1;
264#if defined(__sparc__) && !defined(HOST_SOLARIS)
265 /* we also save i7 because longjmp may not restore it */
266 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
267#endif
268
269 env_to_regs();
270#if defined(TARGET_I386)
271 /* put eflags in CPU temporary format */
272 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
273 DF = 1 - (2 * ((env->eflags >> 10) & 1));
274 CC_OP = CC_OP_EFLAGS;
275 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
276#elif defined(TARGET_SPARC)
277#if defined(reg_REGWPTR)
278 saved_regwptr = REGWPTR;
279#endif
280#elif defined(TARGET_M68K)
281 env->cc_op = CC_OP_FLAGS;
282 env->cc_dest = env->sr & 0xf;
283 env->cc_x = (env->sr >> 4) & 1;
284#elif defined(TARGET_ALPHA)
285#elif defined(TARGET_ARM)
286#elif defined(TARGET_PPC)
287#elif defined(TARGET_MIPS)
288#elif defined(TARGET_SH4)
289#elif defined(TARGET_CRIS)
290 /* XXXXX */
291#else
292#error unsupported target CPU
293#endif
294 env->exception_index = -1;
295
296 /* prepare setjmp context for exception handling */
297 for(;;) {
298 if (setjmp(env->jmp_env) == 0) {
299 env->current_tb = NULL;
300 /* if an exception is pending, we execute it here */
301 if (env->exception_index >= 0) {
302 if (env->exception_index >= EXCP_INTERRUPT) {
303 /* exit request from the cpu execution loop */
304 ret = env->exception_index;
305 break;
306 } else if (env->user_mode_only) {
307 /* if user mode only, we simulate a fake exception
308 which will be handled outside the cpu execution
309 loop */
310#if defined(TARGET_I386)
311 do_interrupt_user(env->exception_index,
312 env->exception_is_int,
313 env->error_code,
314 env->exception_next_eip);
315#endif
316 ret = env->exception_index;
317 break;
318 } else {
319#if defined(TARGET_I386)
320 /* simulate a real cpu exception. On i386, it can
321 trigger new exceptions, but we do not handle
322 double or triple faults yet. */
323 do_interrupt(env->exception_index,
324 env->exception_is_int,
325 env->error_code,
326 env->exception_next_eip, 0);
327 /* successfully delivered */
328 env->old_exception = -1;
329#elif defined(TARGET_PPC)
330 do_interrupt(env);
331#elif defined(TARGET_MIPS)
332 do_interrupt(env);
333#elif defined(TARGET_SPARC)
334 do_interrupt(env->exception_index);
335#elif defined(TARGET_ARM)
336 do_interrupt(env);
337#elif defined(TARGET_SH4)
338 do_interrupt(env);
339#elif defined(TARGET_ALPHA)
340 do_interrupt(env);
341#elif defined(TARGET_CRIS)
342 do_interrupt(env);
343#elif defined(TARGET_M68K)
344 do_interrupt(0);
345#endif
346 }
347 env->exception_index = -1;
348 }
349#ifdef USE_KQEMU
350 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
351 int ret;
352 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
353 ret = kqemu_cpu_exec(env);
354 /* put eflags in CPU temporary format */
355 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
356 DF = 1 - (2 * ((env->eflags >> 10) & 1));
357 CC_OP = CC_OP_EFLAGS;
358 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
359 if (ret == 1) {
360 /* exception */
361 longjmp(env->jmp_env, 1);
362 } else if (ret == 2) {
363 /* softmmu execution needed */
364 } else {
365 if (env->interrupt_request != 0) {
366 /* hardware interrupt will be executed just after */
367 } else {
368 /* otherwise, we restart */
369 longjmp(env->jmp_env, 1);
370 }
371 }
372 }
373#endif
374
375 T0 = 0; /* force lookup of first TB */
376 for(;;) {
377#if defined(__sparc__) && !defined(HOST_SOLARIS)
378 /* g1 can be modified by some libc? functions */
379 tmp_T0 = T0;
380#endif
381 interrupt_request = env->interrupt_request;
382 if (__builtin_expect(interrupt_request, 0)
383#if defined(TARGET_I386)
384 && env->hflags & HF_GIF_MASK
385#endif
386 ) {
387 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
388 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
389 env->exception_index = EXCP_DEBUG;
390 cpu_loop_exit();
391 }
392#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
393 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
394 if (interrupt_request & CPU_INTERRUPT_HALT) {
395 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
396 env->halted = 1;
397 env->exception_index = EXCP_HLT;
398 cpu_loop_exit();
399 }
400#endif
401#if defined(TARGET_I386)
402 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
403 !(env->hflags & HF_SMM_MASK)) {
404 svm_check_intercept(SVM_EXIT_SMI);
405 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
406 do_smm_enter();
407#if defined(__sparc__) && !defined(HOST_SOLARIS)
408 tmp_T0 = 0;
409#else
410 T0 = 0;
411#endif
412 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
413 (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
414 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
415 int intno;
416 svm_check_intercept(SVM_EXIT_INTR);
417 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
418 intno = cpu_get_pic_interrupt(env);
419 if (loglevel & CPU_LOG_TB_IN_ASM) {
420 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
421 }
422 do_interrupt(intno, 0, 0, 0, 1);
423 /* ensure that no TB jump will be modified as
424 the program flow was changed */
425#if defined(__sparc__) && !defined(HOST_SOLARIS)
426 tmp_T0 = 0;
427#else
428 T0 = 0;
429#endif
430#if !defined(CONFIG_USER_ONLY)
431 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
432 (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
433 int intno;
434 /* FIXME: this should respect TPR */
435 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
436 svm_check_intercept(SVM_EXIT_VINTR);
437 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
438 if (loglevel & CPU_LOG_TB_IN_ASM)
439 fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
440 do_interrupt(intno, 0, 0, -1, 1);
441 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
442 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
443#if defined(__sparc__) && !defined(HOST_SOLARIS)
444 tmp_T0 = 0;
445#else
446 T0 = 0;
447#endif
448#endif
449 }
450#elif defined(TARGET_PPC)
451#if 0
452 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
453 cpu_ppc_reset(env);
454 }
455#endif
456 if (interrupt_request & CPU_INTERRUPT_HARD) {
457 ppc_hw_interrupt(env);
458 if (env->pending_interrupts == 0)
459 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
460#if defined(__sparc__) && !defined(HOST_SOLARIS)
461 tmp_T0 = 0;
462#else
463 T0 = 0;
464#endif
465 }
466#elif defined(TARGET_MIPS)
467 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
468 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
469 (env->CP0_Status & (1 << CP0St_IE)) &&
470 !(env->CP0_Status & (1 << CP0St_EXL)) &&
471 !(env->CP0_Status & (1 << CP0St_ERL)) &&
472 !(env->hflags & MIPS_HFLAG_DM)) {
473 /* Raise it */
474 env->exception_index = EXCP_EXT_INTERRUPT;
475 env->error_code = 0;
476 do_interrupt(env);
477#if defined(__sparc__) && !defined(HOST_SOLARIS)
478 tmp_T0 = 0;
479#else
480 T0 = 0;
481#endif
482 }
483#elif defined(TARGET_SPARC)
484 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
485 (env->psret != 0)) {
486 int pil = env->interrupt_index & 15;
487 int type = env->interrupt_index & 0xf0;
488
489 if (((type == TT_EXTINT) &&
490 (pil == 15 || pil > env->psrpil)) ||
491 type != TT_EXTINT) {
492 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
493 do_interrupt(env->interrupt_index);
494 env->interrupt_index = 0;
495#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
496 cpu_check_irqs(env);
497#endif
498#if defined(__sparc__) && !defined(HOST_SOLARIS)
499 tmp_T0 = 0;
500#else
501 T0 = 0;
502#endif
503 }
504 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
505 //do_interrupt(0, 0, 0, 0, 0);
506 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
507 }
508#elif defined(TARGET_ARM)
509 if (interrupt_request & CPU_INTERRUPT_FIQ
510 && !(env->uncached_cpsr & CPSR_F)) {
511 env->exception_index = EXCP_FIQ;
512 do_interrupt(env);
513 }
514 if (interrupt_request & CPU_INTERRUPT_HARD
515 && !(env->uncached_cpsr & CPSR_I)) {
516 env->exception_index = EXCP_IRQ;
517 do_interrupt(env);
518 }
519#elif defined(TARGET_SH4)
520 /* XXXXX */
521#elif defined(TARGET_ALPHA)
522 if (interrupt_request & CPU_INTERRUPT_HARD) {
523 do_interrupt(env);
524 }
525#elif defined(TARGET_CRIS)
526 if (interrupt_request & CPU_INTERRUPT_HARD) {
527 do_interrupt(env);
528 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
529 }
530#elif defined(TARGET_M68K)
531 if (interrupt_request & CPU_INTERRUPT_HARD
532 && ((env->sr & SR_I) >> SR_I_SHIFT)
533 < env->pending_level) {
534 /* Real hardware gets the interrupt vector via an
535 IACK cycle at this point. Current emulated
536 hardware doesn't rely on this, so we
537 provide/save the vector when the interrupt is
538 first signalled. */
539 env->exception_index = env->pending_vector;
540 do_interrupt(1);
541 }
542#endif
543 /* Don't use the cached interupt_request value,
544 do_interrupt may have updated the EXITTB flag. */
545 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
546 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
547 /* ensure that no TB jump will be modified as
548 the program flow was changed */
549#if defined(__sparc__) && !defined(HOST_SOLARIS)
550 tmp_T0 = 0;
551#else
552 T0 = 0;
553#endif
554 }
555 if (interrupt_request & CPU_INTERRUPT_EXIT) {
556 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
557 env->exception_index = EXCP_INTERRUPT;
558 cpu_loop_exit();
559 }
560 }
561#ifdef DEBUG_EXEC
562 if ((loglevel & CPU_LOG_TB_CPU)) {
563 /* restore flags in standard format */
564 regs_to_env();
565#if defined(TARGET_I386)
566 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
567 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
568 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
569#elif defined(TARGET_ARM)
570 cpu_dump_state(env, logfile, fprintf, 0);
571#elif defined(TARGET_SPARC)
572 REGWPTR = env->regbase + (env->cwp * 16);
573 env->regwptr = REGWPTR;
574 cpu_dump_state(env, logfile, fprintf, 0);
575#elif defined(TARGET_PPC)
576 cpu_dump_state(env, logfile, fprintf, 0);
577#elif defined(TARGET_M68K)
578 cpu_m68k_flush_flags(env, env->cc_op);
579 env->cc_op = CC_OP_FLAGS;
580 env->sr = (env->sr & 0xffe0)
581 | env->cc_dest | (env->cc_x << 4);
582 cpu_dump_state(env, logfile, fprintf, 0);
583#elif defined(TARGET_MIPS)
584 cpu_dump_state(env, logfile, fprintf, 0);
585#elif defined(TARGET_SH4)
586 cpu_dump_state(env, logfile, fprintf, 0);
587#elif defined(TARGET_ALPHA)
588 cpu_dump_state(env, logfile, fprintf, 0);
589#elif defined(TARGET_CRIS)
590 cpu_dump_state(env, logfile, fprintf, 0);
591#else
592#error unsupported target CPU
593#endif
594 }
595#endif
596 tb = tb_find_fast();
597#ifdef DEBUG_EXEC
598 if ((loglevel & CPU_LOG_EXEC)) {
599 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
600 (long)tb->tc_ptr, tb->pc,
601 lookup_symbol(tb->pc));
602 }
603#endif
604#if defined(__sparc__) && !defined(HOST_SOLARIS)
605 T0 = tmp_T0;
606#endif
607 /* see if we can patch the calling TB. When the TB
608 spans two pages, we cannot safely do a direct
609 jump. */
610 {
611 if (T0 != 0 &&
612#if USE_KQEMU
613 (env->kqemu_enabled != 2) &&
614#endif
615 tb->page_addr[1] == -1) {
616 spin_lock(&tb_lock);
617 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
618 spin_unlock(&tb_lock);
619 }
620 }
621 tc_ptr = tb->tc_ptr;
622 env->current_tb = tb;
623 /* execute the generated code */
624 gen_func = (void *)tc_ptr;
625#if defined(__sparc__)
626 __asm__ __volatile__("call %0\n\t"
627 "mov %%o7,%%i0"
628 : /* no outputs */
629 : "r" (gen_func)
630 : "i0", "i1", "i2", "i3", "i4", "i5",
631 "o0", "o1", "o2", "o3", "o4", "o5",
632 "l0", "l1", "l2", "l3", "l4", "l5",
633 "l6", "l7");
634#elif defined(__arm__)
635 asm volatile ("mov pc, %0\n\t"
636 ".global exec_loop\n\t"
637 "exec_loop:\n\t"
638 : /* no outputs */
639 : "r" (gen_func)
640 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
641#elif defined(__ia64)
642 struct fptr {
643 void *ip;
644 void *gp;
645 } fp;
646
647 fp.ip = tc_ptr;
648 fp.gp = code_gen_buffer + 2 * (1 << 20);
649 (*(void (*)(void)) &fp)();
650#else
651 gen_func();
652#endif
653 env->current_tb = NULL;
654 /* reset soft MMU for next block (it can currently
655 only be set by a memory fault) */
656#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
657 if (env->hflags & HF_SOFTMMU_MASK) {
658 env->hflags &= ~HF_SOFTMMU_MASK;
659 /* do not allow linking to another block */
660 T0 = 0;
661 }
662#endif
663#if defined(USE_KQEMU)
664#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
665 if (kqemu_is_ok(env) &&
666 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
667 cpu_loop_exit();
668 }
669#endif
670 } /* for(;;) */
671 } else {
672 env_to_regs();
673 }
674 } /* for(;;) */
675
676
677#if defined(TARGET_I386)
678 /* restore flags in standard format */
679 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
680#elif defined(TARGET_ARM)
681 /* XXX: Save/restore host fpu exception state?. */
682#elif defined(TARGET_SPARC)
683#if defined(reg_REGWPTR)
684 REGWPTR = saved_regwptr;
685#endif
686#elif defined(TARGET_PPC)
687#elif defined(TARGET_M68K)
688 cpu_m68k_flush_flags(env, env->cc_op);
689 env->cc_op = CC_OP_FLAGS;
690 env->sr = (env->sr & 0xffe0)
691 | env->cc_dest | (env->cc_x << 4);
692#elif defined(TARGET_MIPS)
693#elif defined(TARGET_SH4)
694#elif defined(TARGET_ALPHA)
695#elif defined(TARGET_CRIS)
696 /* XXXXX */
697#else
698#error unsupported target CPU
699#endif
700
701 /* restore global registers */
702#if defined(__sparc__) && !defined(HOST_SOLARIS)
703 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
704#endif
705#include "hostregs_helper.h"
706
707 /* fail safe : never use cpu_single_env outside cpu_exec() */
708 cpu_single_env = NULL;
709 return ret;
710}
711
712/* must only be called from the generated code as an exception can be
713 generated */
714void tb_invalidate_page_range(target_ulong start, target_ulong end)
715{
716 /* XXX: cannot enable it yet because it yields to MMU exception
717 where NIP != read address on PowerPC */
718#if 0
719 target_ulong phys_addr;
720 phys_addr = get_phys_addr_code(env, start);
721 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
722#endif
723}
724
725#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
726
727void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
728{
729 CPUX86State *saved_env;
730
731 saved_env = env;
732 env = s;
733 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
734 selector &= 0xffff;
735 cpu_x86_load_seg_cache(env, seg_reg, selector,
736 (selector << 4), 0xffff, 0);
737 } else {
738 load_seg(seg_reg, selector);
739 }
740 env = saved_env;
741}
742
743void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
744{
745 CPUX86State *saved_env;
746
747 saved_env = env;
748 env = s;
749
750 helper_fsave((target_ulong)ptr, data32);
751
752 env = saved_env;
753}
754
755void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
756{
757 CPUX86State *saved_env;
758
759 saved_env = env;
760 env = s;
761
762 helper_frstor((target_ulong)ptr, data32);
763
764 env = saved_env;
765}
766
767#endif /* TARGET_I386 */
768
769#if !defined(CONFIG_SOFTMMU)
770
771#if defined(TARGET_I386)
772
773/* 'pc' is the host PC at which the exception was raised. 'address' is
774 the effective address of the memory exception. 'is_write' is 1 if a
775 write caused the exception and otherwise 0'. 'old_set' is the
776 signal set which should be restored */
777static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
778 int is_write, sigset_t *old_set,
779 void *puc)
780{
781 TranslationBlock *tb;
782 int ret;
783
784 if (cpu_single_env)
785 env = cpu_single_env; /* XXX: find a correct solution for multithread */
786#if defined(DEBUG_SIGNAL)
787 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
788 pc, address, is_write, *(unsigned long *)old_set);
789#endif
790 /* XXX: locking issue */
791 if (is_write && page_unprotect(h2g(address), pc, puc)) {
792 return 1;
793 }
794
795 /* see if it is an MMU fault */
796 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
797 if (ret < 0)
798 return 0; /* not an MMU fault */
799 if (ret == 0)
800 return 1; /* the MMU fault was handled without causing real CPU fault */
801 /* now we have a real cpu fault */
802 tb = tb_find_pc(pc);
803 if (tb) {
804 /* the PC is inside the translated code. It means that we have
805 a virtual CPU fault */
806 cpu_restore_state(tb, env, pc, puc);
807 }
808 if (ret == 1) {
809#if 0
810 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
811 env->eip, env->cr[2], env->error_code);
812#endif
813 /* we restore the process signal mask as the sigreturn should
814 do it (XXX: use sigsetjmp) */
815 sigprocmask(SIG_SETMASK, old_set, NULL);
816 raise_exception_err(env->exception_index, env->error_code);
817 } else {
818 /* activate soft MMU for this block */
819 env->hflags |= HF_SOFTMMU_MASK;
820 cpu_resume_from_signal(env, puc);
821 }
822 /* never comes here */
823 return 1;
824}
825
826#elif defined(TARGET_ARM)
827static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
828 int is_write, sigset_t *old_set,
829 void *puc)
830{
831 TranslationBlock *tb;
832 int ret;
833
834 if (cpu_single_env)
835 env = cpu_single_env; /* XXX: find a correct solution for multithread */
836#if defined(DEBUG_SIGNAL)
837 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
838 pc, address, is_write, *(unsigned long *)old_set);
839#endif
840 /* XXX: locking issue */
841 if (is_write && page_unprotect(h2g(address), pc, puc)) {
842 return 1;
843 }
844 /* see if it is an MMU fault */
845 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
846 if (ret < 0)
847 return 0; /* not an MMU fault */
848 if (ret == 0)
849 return 1; /* the MMU fault was handled without causing real CPU fault */
850 /* now we have a real cpu fault */
851 tb = tb_find_pc(pc);
852 if (tb) {
853 /* the PC is inside the translated code. It means that we have
854 a virtual CPU fault */
855 cpu_restore_state(tb, env, pc, puc);
856 }
857 /* we restore the process signal mask as the sigreturn should
858 do it (XXX: use sigsetjmp) */
859 sigprocmask(SIG_SETMASK, old_set, NULL);
860 cpu_loop_exit();
861}
862#elif defined(TARGET_SPARC)
863static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
864 int is_write, sigset_t *old_set,
865 void *puc)
866{
867 TranslationBlock *tb;
868 int ret;
869
870 if (cpu_single_env)
871 env = cpu_single_env; /* XXX: find a correct solution for multithread */
872#if defined(DEBUG_SIGNAL)
873 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
874 pc, address, is_write, *(unsigned long *)old_set);
875#endif
876 /* XXX: locking issue */
877 if (is_write && page_unprotect(h2g(address), pc, puc)) {
878 return 1;
879 }
880 /* see if it is an MMU fault */
881 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
882 if (ret < 0)
883 return 0; /* not an MMU fault */
884 if (ret == 0)
885 return 1; /* the MMU fault was handled without causing real CPU fault */
886 /* now we have a real cpu fault */
887 tb = tb_find_pc(pc);
888 if (tb) {
889 /* the PC is inside the translated code. It means that we have
890 a virtual CPU fault */
891 cpu_restore_state(tb, env, pc, puc);
892 }
893 /* we restore the process signal mask as the sigreturn should
894 do it (XXX: use sigsetjmp) */
895 sigprocmask(SIG_SETMASK, old_set, NULL);
896 cpu_loop_exit();
897}
898#elif defined (TARGET_PPC)
899static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
900 int is_write, sigset_t *old_set,
901 void *puc)
902{
903 TranslationBlock *tb;
904 int ret;
905
906 if (cpu_single_env)
907 env = cpu_single_env; /* XXX: find a correct solution for multithread */
908#if defined(DEBUG_SIGNAL)
909 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
910 pc, address, is_write, *(unsigned long *)old_set);
911#endif
912 /* XXX: locking issue */
913 if (is_write && page_unprotect(h2g(address), pc, puc)) {
914 return 1;
915 }
916
917 /* see if it is an MMU fault */
918 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
919 if (ret < 0)
920 return 0; /* not an MMU fault */
921 if (ret == 0)
922 return 1; /* the MMU fault was handled without causing real CPU fault */
923
924 /* now we have a real cpu fault */
925 tb = tb_find_pc(pc);
926 if (tb) {
927 /* the PC is inside the translated code. It means that we have
928 a virtual CPU fault */
929 cpu_restore_state(tb, env, pc, puc);
930 }
931 if (ret == 1) {
932#if 0
933 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
934 env->nip, env->error_code, tb);
935#endif
936 /* we restore the process signal mask as the sigreturn should
937 do it (XXX: use sigsetjmp) */
938 sigprocmask(SIG_SETMASK, old_set, NULL);
939 do_raise_exception_err(env->exception_index, env->error_code);
940 } else {
941 /* activate soft MMU for this block */
942 cpu_resume_from_signal(env, puc);
943 }
944 /* never comes here */
945 return 1;
946}
947
948#elif defined(TARGET_M68K)
949static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
950 int is_write, sigset_t *old_set,
951 void *puc)
952{
953 TranslationBlock *tb;
954 int ret;
955
956 if (cpu_single_env)
957 env = cpu_single_env; /* XXX: find a correct solution for multithread */
958#if defined(DEBUG_SIGNAL)
959 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
960 pc, address, is_write, *(unsigned long *)old_set);
961#endif
962 /* XXX: locking issue */
963 if (is_write && page_unprotect(address, pc, puc)) {
964 return 1;
965 }
966 /* see if it is an MMU fault */
967 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
968 if (ret < 0)
969 return 0; /* not an MMU fault */
970 if (ret == 0)
971 return 1; /* the MMU fault was handled without causing real CPU fault */
972 /* now we have a real cpu fault */
973 tb = tb_find_pc(pc);
974 if (tb) {
975 /* the PC is inside the translated code. It means that we have
976 a virtual CPU fault */
977 cpu_restore_state(tb, env, pc, puc);
978 }
979 /* we restore the process signal mask as the sigreturn should
980 do it (XXX: use sigsetjmp) */
981 sigprocmask(SIG_SETMASK, old_set, NULL);
982 cpu_loop_exit();
983 /* never comes here */
984 return 1;
985}
986
987#elif defined (TARGET_MIPS)
988static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
989 int is_write, sigset_t *old_set,
990 void *puc)
991{
992 TranslationBlock *tb;
993 int ret;
994
995 if (cpu_single_env)
996 env = cpu_single_env; /* XXX: find a correct solution for multithread */
997#if defined(DEBUG_SIGNAL)
998 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
999 pc, address, is_write, *(unsigned long *)old_set);
1000#endif
1001 /* XXX: locking issue */
1002 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1003 return 1;
1004 }
1005
1006 /* see if it is an MMU fault */
1007 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1008 if (ret < 0)
1009 return 0; /* not an MMU fault */
1010 if (ret == 0)
1011 return 1; /* the MMU fault was handled without causing real CPU fault */
1012
1013 /* now we have a real cpu fault */
1014 tb = tb_find_pc(pc);
1015 if (tb) {
1016 /* the PC is inside the translated code. It means that we have
1017 a virtual CPU fault */
1018 cpu_restore_state(tb, env, pc, puc);
1019 }
1020 if (ret == 1) {
1021#if 0
1022 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1023 env->PC, env->error_code, tb);
1024#endif
1025 /* we restore the process signal mask as the sigreturn should
1026 do it (XXX: use sigsetjmp) */
1027 sigprocmask(SIG_SETMASK, old_set, NULL);
1028 do_raise_exception_err(env->exception_index, env->error_code);
1029 } else {
1030 /* activate soft MMU for this block */
1031 cpu_resume_from_signal(env, puc);
1032 }
1033 /* never comes here */
1034 return 1;
1035}
1036
1037#elif defined (TARGET_SH4)
1038static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1039 int is_write, sigset_t *old_set,
1040 void *puc)
1041{
1042 TranslationBlock *tb;
1043 int ret;
1044
1045 if (cpu_single_env)
1046 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1047#if defined(DEBUG_SIGNAL)
1048 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1049 pc, address, is_write, *(unsigned long *)old_set);
1050#endif
1051 /* XXX: locking issue */
1052 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1053 return 1;
1054 }
1055
1056 /* see if it is an MMU fault */
1057 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1058 if (ret < 0)
1059 return 0; /* not an MMU fault */
1060 if (ret == 0)
1061 return 1; /* the MMU fault was handled without causing real CPU fault */
1062
1063 /* now we have a real cpu fault */
1064 tb = tb_find_pc(pc);
1065 if (tb) {
1066 /* the PC is inside the translated code. It means that we have
1067 a virtual CPU fault */
1068 cpu_restore_state(tb, env, pc, puc);
1069 }
1070#if 0
1071 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1072 env->nip, env->error_code, tb);
1073#endif
1074 /* we restore the process signal mask as the sigreturn should
1075 do it (XXX: use sigsetjmp) */
1076 sigprocmask(SIG_SETMASK, old_set, NULL);
1077 cpu_loop_exit();
1078 /* never comes here */
1079 return 1;
1080}
1081
1082#elif defined (TARGET_ALPHA)
1083static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1084 int is_write, sigset_t *old_set,
1085 void *puc)
1086{
1087 TranslationBlock *tb;
1088 int ret;
1089
1090 if (cpu_single_env)
1091 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1092#if defined(DEBUG_SIGNAL)
1093 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1094 pc, address, is_write, *(unsigned long *)old_set);
1095#endif
1096 /* XXX: locking issue */
1097 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1098 return 1;
1099 }
1100
1101 /* see if it is an MMU fault */
1102 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1103 if (ret < 0)
1104 return 0; /* not an MMU fault */
1105 if (ret == 0)
1106 return 1; /* the MMU fault was handled without causing real CPU fault */
1107
1108 /* now we have a real cpu fault */
1109 tb = tb_find_pc(pc);
1110 if (tb) {
1111 /* the PC is inside the translated code. It means that we have
1112 a virtual CPU fault */
1113 cpu_restore_state(tb, env, pc, puc);
1114 }
1115#if 0
1116 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1117 env->nip, env->error_code, tb);
1118#endif
1119 /* we restore the process signal mask as the sigreturn should
1120 do it (XXX: use sigsetjmp) */
1121 sigprocmask(SIG_SETMASK, old_set, NULL);
1122 cpu_loop_exit();
1123 /* never comes here */
1124 return 1;
1125}
1126#elif defined (TARGET_CRIS)
1127static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1128 int is_write, sigset_t *old_set,
1129 void *puc)
1130{
1131 TranslationBlock *tb;
1132 int ret;
1133
1134 if (cpu_single_env)
1135 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1136#if defined(DEBUG_SIGNAL)
1137 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1138 pc, address, is_write, *(unsigned long *)old_set);
1139#endif
1140 /* XXX: locking issue */
1141 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1142 return 1;
1143 }
1144
1145 /* see if it is an MMU fault */
1146 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1147 if (ret < 0)
1148 return 0; /* not an MMU fault */
1149 if (ret == 0)
1150 return 1; /* the MMU fault was handled without causing real CPU fault */
1151
1152 /* now we have a real cpu fault */
1153 tb = tb_find_pc(pc);
1154 if (tb) {
1155 /* the PC is inside the translated code. It means that we have
1156 a virtual CPU fault */
1157 cpu_restore_state(tb, env, pc, puc);
1158 }
1159#if 0
1160 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1161 env->nip, env->error_code, tb);
1162#endif
1163 /* we restore the process signal mask as the sigreturn should
1164 do it (XXX: use sigsetjmp) */
1165 sigprocmask(SIG_SETMASK, old_set, NULL);
1166 cpu_loop_exit();
1167 /* never comes here */
1168 return 1;
1169}
1170
1171#else
1172#error unsupported target CPU
1173#endif
1174
1175#if defined(__i386__)
1176
1177#if defined(__APPLE__)
1178# include <sys/ucontext.h>
1179
1180# define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1181# define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1182# define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1183#else
1184# define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1185# define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1186# define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1187#endif
1188
1189int cpu_signal_handler(int host_signum, void *pinfo,
1190 void *puc)
1191{
1192 siginfo_t *info = pinfo;
1193 struct ucontext *uc = puc;
1194 unsigned long pc;
1195 int trapno;
1196
1197#ifndef REG_EIP
1198/* for glibc 2.1 */
1199#define REG_EIP EIP
1200#define REG_ERR ERR
1201#define REG_TRAPNO TRAPNO
1202#endif
1203 pc = EIP_sig(uc);
1204 trapno = TRAP_sig(uc);
1205 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1206 trapno == 0xe ?
1207 (ERROR_sig(uc) >> 1) & 1 : 0,
1208 &uc->uc_sigmask, puc);
1209}
1210
1211#elif defined(__x86_64__)
1212
1213int cpu_signal_handler(int host_signum, void *pinfo,
1214 void *puc)
1215{
1216 siginfo_t *info = pinfo;
1217 struct ucontext *uc = puc;
1218 unsigned long pc;
1219
1220 pc = uc->uc_mcontext.gregs[REG_RIP];
1221 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1222 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1223 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1224 &uc->uc_sigmask, puc);
1225}
1226
1227#elif defined(__powerpc__)
1228
1229/***********************************************************************
1230 * signal context platform-specific definitions
1231 * From Wine
1232 */
1233#ifdef linux
1234/* All Registers access - only for local access */
1235# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1236/* Gpr Registers access */
1237# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1238# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1239# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1240# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1241# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1242# define LR_sig(context) REG_sig(link, context) /* Link register */
1243# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1244/* Float Registers access */
1245# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1246# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1247/* Exception Registers access */
1248# define DAR_sig(context) REG_sig(dar, context)
1249# define DSISR_sig(context) REG_sig(dsisr, context)
1250# define TRAP_sig(context) REG_sig(trap, context)
1251#endif /* linux */
1252
1253#ifdef __APPLE__
1254# include <sys/ucontext.h>
1255typedef struct ucontext SIGCONTEXT;
1256/* All Registers access - only for local access */
1257# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1258# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1259# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1260# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1261/* Gpr Registers access */
1262# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1263# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1264# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1265# define CTR_sig(context) REG_sig(ctr, context)
1266# define XER_sig(context) REG_sig(xer, context) /* Link register */
1267# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1268# define CR_sig(context) REG_sig(cr, context) /* Condition register */
1269/* Float Registers access */
1270# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1271# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1272/* Exception Registers access */
1273# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1274# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1275# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1276#endif /* __APPLE__ */
1277
1278int cpu_signal_handler(int host_signum, void *pinfo,
1279 void *puc)
1280{
1281 siginfo_t *info = pinfo;
1282 struct ucontext *uc = puc;
1283 unsigned long pc;
1284 int is_write;
1285
1286 pc = IAR_sig(uc);
1287 is_write = 0;
1288#if 0
1289 /* ppc 4xx case */
1290 if (DSISR_sig(uc) & 0x00800000)
1291 is_write = 1;
1292#else
1293 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1294 is_write = 1;
1295#endif
1296 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1297 is_write, &uc->uc_sigmask, puc);
1298}
1299
1300#elif defined(__alpha__)
1301
1302int cpu_signal_handler(int host_signum, void *pinfo,
1303 void *puc)
1304{
1305 siginfo_t *info = pinfo;
1306 struct ucontext *uc = puc;
1307 uint32_t *pc = uc->uc_mcontext.sc_pc;
1308 uint32_t insn = *pc;
1309 int is_write = 0;
1310
1311 /* XXX: need kernel patch to get write flag faster */
1312 switch (insn >> 26) {
1313 case 0x0d: // stw
1314 case 0x0e: // stb
1315 case 0x0f: // stq_u
1316 case 0x24: // stf
1317 case 0x25: // stg
1318 case 0x26: // sts
1319 case 0x27: // stt
1320 case 0x2c: // stl
1321 case 0x2d: // stq
1322 case 0x2e: // stl_c
1323 case 0x2f: // stq_c
1324 is_write = 1;
1325 }
1326
1327 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1328 is_write, &uc->uc_sigmask, puc);
1329}
1330#elif defined(__sparc__)
1331
1332int cpu_signal_handler(int host_signum, void *pinfo,
1333 void *puc)
1334{
1335 siginfo_t *info = pinfo;
1336 uint32_t *regs = (uint32_t *)(info + 1);
1337 void *sigmask = (regs + 20);
1338 unsigned long pc;
1339 int is_write;
1340 uint32_t insn;
1341
1342 /* XXX: is there a standard glibc define ? */
1343 pc = regs[1];
1344 /* XXX: need kernel patch to get write flag faster */
1345 is_write = 0;
1346 insn = *(uint32_t *)pc;
1347 if ((insn >> 30) == 3) {
1348 switch((insn >> 19) & 0x3f) {
1349 case 0x05: // stb
1350 case 0x06: // sth
1351 case 0x04: // st
1352 case 0x07: // std
1353 case 0x24: // stf
1354 case 0x27: // stdf
1355 case 0x25: // stfsr
1356 is_write = 1;
1357 break;
1358 }
1359 }
1360 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1361 is_write, sigmask, NULL);
1362}
1363
1364#elif defined(__arm__)
1365
1366int cpu_signal_handler(int host_signum, void *pinfo,
1367 void *puc)
1368{
1369 siginfo_t *info = pinfo;
1370 struct ucontext *uc = puc;
1371 unsigned long pc;
1372 int is_write;
1373
1374 pc = uc->uc_mcontext.gregs[R15];
1375 /* XXX: compute is_write */
1376 is_write = 0;
1377 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1378 is_write,
1379 &uc->uc_sigmask, puc);
1380}
1381
1382#elif defined(__mc68000)
1383
1384int cpu_signal_handler(int host_signum, void *pinfo,
1385 void *puc)
1386{
1387 siginfo_t *info = pinfo;
1388 struct ucontext *uc = puc;
1389 unsigned long pc;
1390 int is_write;
1391
1392 pc = uc->uc_mcontext.gregs[16];
1393 /* XXX: compute is_write */
1394 is_write = 0;
1395 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1396 is_write,
1397 &uc->uc_sigmask, puc);
1398}
1399
1400#elif defined(__ia64)
1401
1402#ifndef __ISR_VALID
1403 /* This ought to be in <bits/siginfo.h>... */
1404# define __ISR_VALID 1
1405#endif
1406
1407int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1408{
1409 siginfo_t *info = pinfo;
1410 struct ucontext *uc = puc;
1411 unsigned long ip;
1412 int is_write = 0;
1413
1414 ip = uc->uc_mcontext.sc_ip;
1415 switch (host_signum) {
1416 case SIGILL:
1417 case SIGFPE:
1418 case SIGSEGV:
1419 case SIGBUS:
1420 case SIGTRAP:
1421 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1422 /* ISR.W (write-access) is bit 33: */
1423 is_write = (info->si_isr >> 33) & 1;
1424 break;
1425
1426 default:
1427 break;
1428 }
1429 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1430 is_write,
1431 &uc->uc_sigmask, puc);
1432}
1433
1434#elif defined(__s390__)
1435
1436int cpu_signal_handler(int host_signum, void *pinfo,
1437 void *puc)
1438{
1439 siginfo_t *info = pinfo;
1440 struct ucontext *uc = puc;
1441 unsigned long pc;
1442 int is_write;
1443
1444 pc = uc->uc_mcontext.psw.addr;
1445 /* XXX: compute is_write */
1446 is_write = 0;
1447 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1448 is_write, &uc->uc_sigmask, puc);
1449}
1450
1451#elif defined(__mips__)
1452
1453int cpu_signal_handler(int host_signum, void *pinfo,
1454 void *puc)
1455{
1456 siginfo_t *info = pinfo;
1457 struct ucontext *uc = puc;
1458 greg_t pc = uc->uc_mcontext.pc;
1459 int is_write;
1460
1461 /* XXX: compute is_write */
1462 is_write = 0;
1463 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1464 is_write, &uc->uc_sigmask, puc);
1465}
1466
1467#else
1468
1469#error host CPU specific signal handler needed
1470
1471#endif
1472
1473#endif /* !defined(CONFIG_SOFTMMU) */