]> git.proxmox.com Git - qemu.git/blame_incremental - hw/eepro100.c
Sparc32: Update OpenBIOS image to r666
[qemu.git] / hw / eepro100.c
... / ...
CommitLineData
1/*
2 * QEMU i8255x (PRO100) emulation
3 *
4 * Copyright (c) 2006-2007 Stefan Weil
5 *
6 * Portions of the code are copies from grub / etherboot eepro100.c
7 * and linux e100.c.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 *
22 * Tested features (i82559):
23 * PXE boot (i386) no valid link
24 * Linux networking (i386) ok
25 *
26 * Untested:
27 * non-i386 platforms
28 * Windows networking
29 *
30 * References:
31 *
32 * Intel 8255x 10/100 Mbps Ethernet Controller Family
33 * Open Source Software Developer Manual
34 */
35
36#if defined(TARGET_I386)
37# warning "PXE boot still not working!"
38#endif
39
40#include <stddef.h> /* offsetof */
41#include <stdbool.h>
42#include "hw.h"
43#include "pci.h"
44#include "net.h"
45#include "eeprom93xx.h"
46
47/* Common declarations for all PCI devices. */
48
49#define PCI_CONFIG_8(offset, value) \
50 (pci_conf[offset] = (value))
51#define PCI_CONFIG_16(offset, value) \
52 (*(uint16_t *)&pci_conf[offset] = cpu_to_le16(value))
53#define PCI_CONFIG_32(offset, value) \
54 (*(uint32_t *)&pci_conf[offset] = cpu_to_le32(value))
55
56#define KiB 1024
57
58/* Debug EEPRO100 card. */
59//~ #define DEBUG_EEPRO100
60
61#ifdef DEBUG_EEPRO100
62#define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
63#else
64#define logout(fmt, ...) ((void)0)
65#endif
66
67/* Set flags to 0 to disable debug output. */
68#define INT 1 /* interrupt related actions */
69#define MDI 1 /* mdi related actions */
70#define OTHER 1
71#define RXTX 1
72#define EEPROM 1 /* eeprom related actions */
73
74#define TRACE(flag, command) ((flag) ? (command) : (void)0)
75
76#define missing(text) fprintf(stderr, "eepro100: feature is missing in this emulation: " text "\n")
77
78#define MAX_ETH_FRAME_SIZE 1514
79
80/* This driver supports several different devices which are declared here. */
81#define i82550 0x82550
82#define i82551 0x82551
83#define i82557A 0x82557a
84#define i82557B 0x82557b
85#define i82557C 0x82557c
86#define i82558A 0x82558a
87#define i82558B 0x82558b
88#define i82559A 0x82559a
89#define i82559B 0x82559b
90#define i82559C 0x82559c
91#define i82559ER 0x82559e
92#define i82562 0x82562
93
94/* Use 64 word EEPROM. TODO: could be a runtime option. */
95#define EEPROM_SIZE 64
96
97#define PCI_MEM_SIZE (4 * KiB)
98#define PCI_IO_SIZE 64
99#define PCI_FLASH_SIZE (128 * KiB)
100
101#define BIT(n) (1 << (n))
102#define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
103
104/* The SCB accepts the following controls for the Tx and Rx units: */
105#define CU_NOP 0x0000 /* No operation. */
106#define CU_START 0x0010 /* CU start. */
107#define CU_RESUME 0x0020 /* CU resume. */
108#define CU_STATSADDR 0x0040 /* Load dump counters address. */
109#define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
110#define CU_CMD_BASE 0x0060 /* Load CU base address. */
111#define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
112#define CU_SRESUME 0x00a0 /* CU static resume. */
113
114#define RU_NOP 0x0000
115#define RX_START 0x0001
116#define RX_RESUME 0x0002
117#define RX_ABORT 0x0004
118#define RX_ADDR_LOAD 0x0006
119#define RX_RESUMENR 0x0007
120#define INT_MASK 0x0100
121#define DRVR_INT 0x0200 /* Driver generated interrupt. */
122
123/* Offsets to the various registers.
124 All accesses need not be longword aligned. */
125enum speedo_offsets {
126 SCBStatus = 0,
127 SCBAck = 1,
128 SCBCmd = 2, /* Rx/Command Unit command and status. */
129 SCBIntmask = 3,
130 SCBPointer = 4, /* General purpose pointer. */
131 SCBPort = 8, /* Misc. commands and operands. */
132 SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
133 SCBCtrlMDI = 16, /* MDI interface control. */
134 SCBEarlyRx = 20, /* Early receive byte count. */
135 SCBFlow = 24,
136};
137
138/* A speedo3 transmit buffer descriptor with two buffers... */
139typedef struct {
140 uint16_t status;
141 uint16_t command;
142 uint32_t link; /* void * */
143 uint32_t tx_desc_addr; /* transmit buffer decsriptor array address. */
144 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
145 uint8_t tx_threshold; /* transmit threshold */
146 uint8_t tbd_count; /* TBD number */
147 //~ /* This constitutes two "TBD" entries: hdr and data */
148 //~ uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
149 //~ int32_t tx_buf_size0; /* Length of Tx hdr. */
150 //~ uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
151 //~ int32_t tx_buf_size1; /* Length of Tx data. */
152} eepro100_tx_t;
153
154/* Receive frame descriptor. */
155typedef struct {
156 int16_t status;
157 uint16_t command;
158 uint32_t link; /* struct RxFD * */
159 uint32_t rx_buf_addr; /* void * */
160 uint16_t count;
161 uint16_t size;
162 char packet[MAX_ETH_FRAME_SIZE + 4];
163} eepro100_rx_t;
164
165typedef struct {
166 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
167 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
168 tx_multiple_collisions, tx_total_collisions;
169 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
170 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
171 rx_short_frame_errors;
172 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
173 uint16_t xmt_tco_frames, rcv_tco_frames;
174 /* TODO: i82559 has six reserved statistics but a total of 24 dwords. */
175 uint32_t reserved[4];
176} eepro100_stats_t;
177
178typedef enum {
179 cu_idle = 0,
180 cu_suspended = 1,
181 cu_active = 2,
182 cu_lpq_active = 2,
183 cu_hqp_active = 3
184} cu_state_t;
185
186typedef enum {
187 ru_idle = 0,
188 ru_suspended = 1,
189 ru_no_resources = 2,
190 ru_ready = 4
191} ru_state_t;
192
193typedef struct {
194 PCIDevice dev;
195 uint8_t mult[8]; /* multicast mask array */
196 int mmio_index;
197 NICState *nic;
198 NICConf conf;
199 uint8_t scb_stat; /* SCB stat/ack byte */
200 uint8_t int_stat; /* PCI interrupt status */
201 /* region must not be saved by nic_save. */
202 uint32_t region[3]; /* PCI region addresses */
203 uint16_t mdimem[32];
204 eeprom_t *eeprom;
205 uint32_t device; /* device variant */
206 uint32_t pointer;
207 /* (cu_base + cu_offset) address the next command block in the command block list. */
208 uint32_t cu_base; /* CU base address */
209 uint32_t cu_offset; /* CU address offset */
210 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
211 uint32_t ru_base; /* RU base address */
212 uint32_t ru_offset; /* RU address offset */
213 uint32_t statsaddr; /* pointer to eepro100_stats_t */
214
215 /* Statistical counters. Also used for wake-up packet (i82559). */
216 eepro100_stats_t statistics;
217
218#if 0
219 uint16_t status;
220#endif
221
222 /* Configuration bytes. */
223 uint8_t configuration[22];
224
225 /* Data in mem is always in the byte order of the controller (le). */
226 uint8_t mem[PCI_MEM_SIZE];
227 /* vmstate for each particular nic */
228 VMStateDescription *vmstate;
229
230 /* Quasi static device properties (no need to save them). */
231 uint16_t stats_size;
232 bool has_extended_tcb_support;
233} EEPRO100State;
234
235/* Default values for MDI (PHY) registers */
236static const uint16_t eepro100_mdi_default[] = {
237 /* MDI Registers 0 - 6, 7 */
238 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
239 /* MDI Registers 8 - 15 */
240 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
241 /* MDI Registers 16 - 31 */
242 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
243 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
244};
245
246/* Readonly mask for MDI (PHY) registers */
247static const uint16_t eepro100_mdi_mask[] = {
248 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
249 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
250 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
251 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
252};
253
254/* XXX: optimize */
255static void stl_le_phys(target_phys_addr_t addr, uint32_t val)
256{
257 val = cpu_to_le32(val);
258 cpu_physical_memory_write(addr, (const uint8_t *)&val, sizeof(val));
259}
260
261#define POLYNOMIAL 0x04c11db6
262
263/* From FreeBSD */
264/* XXX: optimize */
265static int compute_mcast_idx(const uint8_t * ep)
266{
267 uint32_t crc;
268 int carry, i, j;
269 uint8_t b;
270
271 crc = 0xffffffff;
272 for (i = 0; i < 6; i++) {
273 b = *ep++;
274 for (j = 0; j < 8; j++) {
275 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
276 crc <<= 1;
277 b >>= 1;
278 if (carry) {
279 crc = ((crc ^ POLYNOMIAL) | carry);
280 }
281 }
282 }
283 return (crc >> 26);
284}
285
286#if defined(DEBUG_EEPRO100)
287static const char *nic_dump(const uint8_t * buf, unsigned size)
288{
289 static char dump[3 * 16 + 1];
290 char *p = &dump[0];
291 if (size > 16) {
292 size = 16;
293 }
294 while (size-- > 0) {
295 p += sprintf(p, " %02x", *buf++);
296 }
297 return dump;
298}
299#endif /* DEBUG_EEPRO100 */
300
301enum scb_stat_ack {
302 stat_ack_not_ours = 0x00,
303 stat_ack_sw_gen = 0x04,
304 stat_ack_rnr = 0x10,
305 stat_ack_cu_idle = 0x20,
306 stat_ack_frame_rx = 0x40,
307 stat_ack_cu_cmd_done = 0x80,
308 stat_ack_not_present = 0xFF,
309 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
310 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
311};
312
313static void disable_interrupt(EEPRO100State * s)
314{
315 if (s->int_stat) {
316 TRACE(INT, logout("interrupt disabled\n"));
317 qemu_irq_lower(s->dev.irq[0]);
318 s->int_stat = 0;
319 }
320}
321
322static void enable_interrupt(EEPRO100State * s)
323{
324 if (!s->int_stat) {
325 TRACE(INT, logout("interrupt enabled\n"));
326 qemu_irq_raise(s->dev.irq[0]);
327 s->int_stat = 1;
328 }
329}
330
331static void eepro100_acknowledge(EEPRO100State * s)
332{
333 s->scb_stat &= ~s->mem[SCBAck];
334 s->mem[SCBAck] = s->scb_stat;
335 if (s->scb_stat == 0) {
336 disable_interrupt(s);
337 }
338}
339
340static void eepro100_interrupt(EEPRO100State * s, uint8_t stat)
341{
342 uint8_t mask = ~s->mem[SCBIntmask];
343 s->mem[SCBAck] |= stat;
344 stat = s->scb_stat = s->mem[SCBAck];
345 stat &= (mask | 0x0f);
346 //~ stat &= (~s->mem[SCBIntmask] | 0x0xf);
347 if (stat && (mask & 0x01)) {
348 /* SCB mask and SCB Bit M do not disable interrupt. */
349 enable_interrupt(s);
350 } else if (s->int_stat) {
351 disable_interrupt(s);
352 }
353}
354
355static void eepro100_cx_interrupt(EEPRO100State * s)
356{
357 /* CU completed action command. */
358 /* Transmit not ok (82557 only, not in emulation). */
359 eepro100_interrupt(s, 0x80);
360}
361
362static void eepro100_cna_interrupt(EEPRO100State * s)
363{
364 /* CU left the active state. */
365 eepro100_interrupt(s, 0x20);
366}
367
368static void eepro100_fr_interrupt(EEPRO100State * s)
369{
370 /* RU received a complete frame. */
371 eepro100_interrupt(s, 0x40);
372}
373
374#if 0
375static void eepro100_rnr_interrupt(EEPRO100State * s)
376{
377 /* RU is not ready. */
378 eepro100_interrupt(s, 0x10);
379}
380#endif
381
382static void eepro100_mdi_interrupt(EEPRO100State * s)
383{
384 /* MDI completed read or write cycle. */
385 eepro100_interrupt(s, 0x08);
386}
387
388static void eepro100_swi_interrupt(EEPRO100State * s)
389{
390 /* Software has requested an interrupt. */
391 eepro100_interrupt(s, 0x04);
392}
393
394#if 0
395static void eepro100_fcp_interrupt(EEPRO100State * s)
396{
397 /* Flow control pause interrupt (82558 and later). */
398 eepro100_interrupt(s, 0x01);
399}
400#endif
401
402static void pci_reset(EEPRO100State * s)
403{
404 uint32_t device = s->device;
405 uint8_t *pci_conf = s->dev.config;
406 bool power_management = 1;
407
408 TRACE(OTHER, logout("%p\n", s));
409
410 /* PCI Vendor ID */
411 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
412 /* PCI Device ID depends on device and is set below. */
413 /* PCI Command */
414 /* TODO: this is the default, do not override. */
415 PCI_CONFIG_16(PCI_COMMAND, 0x0000);
416 /* PCI Status */
417 /* TODO: Value at RST# should be 0. */
418 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM | PCI_STATUS_FAST_BACK);
419 /* PCI Revision ID */
420 PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
421 /* TODO: this is the default, do not override. */
422 /* PCI Class Code */
423 PCI_CONFIG_8(PCI_CLASS_PROG, 0x00);
424 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
425 /* PCI Cache Line Size */
426 /* check cache line size!!! */
427 //~ PCI_CONFIG_8(0x0c, 0x00);
428 /* PCI Latency Timer */
429 PCI_CONFIG_8(PCI_LATENCY_TIMER, 0x20); // latency timer = 32 clocks
430 /* PCI Header Type */
431 /* BIST (built-in self test) */
432#if defined(TARGET_I386)
433// !!! workaround for buggy bios
434//~ #define PCI_BASE_ADDRESS_MEM_PREFETCH 0
435#endif
436#if 0
437 /* PCI Base Address Registers */
438 /* CSR Memory Mapped Base Address */
439 PCI_CONFIG_32(PCI_BASE_ADDRESS_0,
440 PCI_BASE_ADDRESS_SPACE_MEMORY |
441 PCI_BASE_ADDRESS_MEM_PREFETCH);
442 /* CSR I/O Mapped Base Address */
443 PCI_CONFIG_32(PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_SPACE_IO);
444#if 0
445 /* Flash Memory Mapped Base Address */
446 PCI_CONFIG_32(PCI_BASE_ADDRESS_2,
447 0xfffe0000 | PCI_BASE_ADDRESS_SPACE_MEMORY);
448#endif
449#endif
450 /* Expansion ROM Base Address (depends on boot disable!!!) */
451 /* TODO: not needed, set when BAR is registered */
452 PCI_CONFIG_32(PCI_ROM_ADDRESS, PCI_BASE_ADDRESS_SPACE_MEMORY);
453 /* Capability Pointer */
454 /* TODO: revisions with power_management 1 use this but
455 * do not set new capability list bit in status register. */
456 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0xdc);
457 /* Interrupt Line */
458 /* Interrupt Pin */
459 /* TODO: RST# value should be 0 */
460 PCI_CONFIG_8(PCI_INTERRUPT_PIN, 1); // interrupt pin 0
461 /* Minimum Grant */
462 PCI_CONFIG_8(PCI_MIN_GNT, 0x08);
463 /* Maximum Latency */
464 PCI_CONFIG_8(PCI_MAX_LAT, 0x18);
465
466 switch (device) {
467 case i82550:
468 // TODO: check device id.
469 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
470 /* Revision ID: 0x0c, 0x0d, 0x0e. */
471 PCI_CONFIG_8(PCI_REVISION_ID, 0x0e);
472 // TODO: check size of statistical counters.
473 s->stats_size = 80;
474 // TODO: check extended tcb support.
475 s->has_extended_tcb_support = 1;
476 break;
477 case i82551:
478 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
479 /* Revision ID: 0x0f, 0x10. */
480 PCI_CONFIG_8(PCI_REVISION_ID, 0x0f);
481 // TODO: check size of statistical counters.
482 s->stats_size = 80;
483 s->has_extended_tcb_support = 1;
484 break;
485 case i82557A:
486 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
487 PCI_CONFIG_8(PCI_REVISION_ID, 0x01);
488 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0x00);
489 power_management = 0;
490 break;
491 case i82557B:
492 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
493 PCI_CONFIG_8(PCI_REVISION_ID, 0x02);
494 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0x00);
495 power_management = 0;
496 break;
497 case i82557C:
498 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
499 PCI_CONFIG_8(PCI_REVISION_ID, 0x03);
500 PCI_CONFIG_8(PCI_CAPABILITY_LIST, 0x00);
501 power_management = 0;
502 break;
503 case i82558A:
504 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
505 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
506 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
507 PCI_CONFIG_8(PCI_REVISION_ID, 0x04);
508 s->stats_size = 76;
509 s->has_extended_tcb_support = 1;
510 break;
511 case i82558B:
512 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
513 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
514 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
515 PCI_CONFIG_8(PCI_REVISION_ID, 0x05);
516 s->stats_size = 76;
517 s->has_extended_tcb_support = 1;
518 break;
519 case i82559A:
520 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
521 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
522 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
523 PCI_CONFIG_8(PCI_REVISION_ID, 0x06);
524 s->stats_size = 80;
525 s->has_extended_tcb_support = 1;
526 break;
527 case i82559B:
528 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
529 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
530 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
531 PCI_CONFIG_8(PCI_REVISION_ID, 0x07);
532 s->stats_size = 80;
533 s->has_extended_tcb_support = 1;
534 break;
535 case i82559C:
536 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
537 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
538 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
539 PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
540 // TODO: Windows wants revision id 0x0c.
541 PCI_CONFIG_8(PCI_REVISION_ID, 0x0c);
542#if EEPROM_SIZE > 0
543 PCI_CONFIG_16(PCI_SUBSYSTEM_VENDOR_ID, 0x8086);
544 PCI_CONFIG_16(PCI_SUBSYSTEM_ID, 0x0040);
545#endif
546 s->stats_size = 80;
547 s->has_extended_tcb_support = 1;
548 break;
549 case i82559ER:
550 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
551 PCI_CONFIG_16(PCI_STATUS, PCI_STATUS_DEVSEL_MEDIUM |
552 PCI_STATUS_FAST_BACK | PCI_STATUS_CAP_LIST);
553 PCI_CONFIG_8(PCI_REVISION_ID, 0x09);
554 s->stats_size = 80;
555 s->has_extended_tcb_support = 1;
556 break;
557 case i82562:
558 // TODO: check device id.
559 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
560 /* TODO: wrong revision id. */
561 PCI_CONFIG_8(PCI_REVISION_ID, 0x0e);
562 s->stats_size = 80;
563 s->has_extended_tcb_support = 1;
564 break;
565 default:
566 logout("Device %X is undefined!\n", device);
567 }
568
569 s->configuration[6] |= BIT(5);
570
571 if (s->stats_size == 80) {
572 /* TODO: check TCO Statistical Counters bit. Documentation not clear. */
573 if (s->configuration[6] & BIT(2)) {
574 /* TCO statistical counters. */
575 assert(s->configuration[6] & BIT(5));
576 } else {
577 if (s->configuration[6] & BIT(5)) {
578 /* No extended statistical counters, i82557 compatible. */
579 s->stats_size = 64;
580 } else {
581 /* i82558 compatible. */
582 s->stats_size = 76;
583 }
584 }
585 } else {
586 if (s->configuration[6] & BIT(5)) {
587 /* No extended statistical counters. */
588 s->stats_size = 64;
589 }
590 }
591 assert(s->stats_size > 0 && s->stats_size <= sizeof(s->statistics));
592
593 if (power_management) {
594 /* Power Management Capabilities */
595 PCI_CONFIG_8(0xdc, 0x01);
596 /* Next Item Pointer */
597 /* Capability ID */
598 PCI_CONFIG_16(0xde, 0x7e21);
599 /* TODO: Power Management Control / Status. */
600 /* TODO: Ethernet Power Consumption Registers (i82559 and later). */
601 }
602
603#if EEPROM_SIZE > 0
604 if (device == i82557C || device == i82558B || device == i82559C) {
605 // TODO: get vendor id from EEPROM for i82557C or later.
606 // TODO: get device id from EEPROM for i82557C or later.
607 // TODO: status bit 4 can be disabled by EEPROM for i82558, i82559.
608 // TODO: header type is determined by EEPROM for i82559.
609 // TODO: get subsystem id from EEPROM for i82557C or later.
610 // TODO: get subsystem vendor id from EEPROM for i82557C or later.
611 // TODO: exp. rom baddr depends on a bit in EEPROM for i82558 or later.
612 // TODO: capability pointer depends on EEPROM for i82558.
613 logout("Get device id and revision from EEPROM!!!\n");
614 }
615#endif /* EEPROM_SIZE > 0 */
616}
617
618static void nic_selective_reset(EEPRO100State * s)
619{
620 size_t i;
621 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
622 //~ eeprom93xx_reset(s->eeprom);
623 memcpy(eeprom_contents, s->conf.macaddr.a, 6);
624 eeprom_contents[0xa] = 0x4000;
625 if (s->device == i82557B || s->device == i82557C)
626 eeprom_contents[5] = 0x0100;
627 uint16_t sum = 0;
628 for (i = 0; i < EEPROM_SIZE - 1; i++) {
629 sum += eeprom_contents[i];
630 }
631 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
632 TRACE(EEPROM, logout("checksum=0x%04x\n", eeprom_contents[EEPROM_SIZE - 1]));
633
634 memset(s->mem, 0, sizeof(s->mem));
635 uint32_t val = BIT(21);
636 memcpy(&s->mem[SCBCtrlMDI], &val, sizeof(val));
637
638 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
639 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
640}
641
642static void nic_reset(void *opaque)
643{
644 EEPRO100State *s = opaque;
645 TRACE(OTHER, logout("%p\n", s));
646 nic_selective_reset(s);
647}
648
649#if defined(DEBUG_EEPRO100)
650static const char * const e100_reg[PCI_IO_SIZE / 4] = {
651 "Command/Status",
652 "General Pointer",
653 "Port",
654 "EEPROM/Flash Control",
655 "MDI Control",
656 "Receive DMA Byte Count",
657 "Flow Control",
658 "General Status/Control"
659};
660
661static char *regname(uint32_t addr)
662{
663 static char buf[32];
664 if (addr < PCI_IO_SIZE) {
665 const char *r = e100_reg[addr / 4];
666 if (r != 0) {
667 snprintf(buf, sizeof(buf), "%s+%u", r, addr % 4);
668 } else {
669 snprintf(buf, sizeof(buf), "0x%02x", addr);
670 }
671 } else {
672 snprintf(buf, sizeof(buf), "??? 0x%08x", addr);
673 }
674 return buf;
675}
676#endif /* DEBUG_EEPRO100 */
677
678#if 0
679static uint16_t eepro100_read_status(EEPRO100State * s)
680{
681 uint16_t val = s->status;
682 TRACE(OTHER, logout("val=0x%04x\n", val));
683 return val;
684}
685
686static void eepro100_write_status(EEPRO100State * s, uint16_t val)
687{
688 TRACE(OTHER, logout("val=0x%04x\n", val));
689 s->status = val;
690}
691#endif
692
693/*****************************************************************************
694 *
695 * Command emulation.
696 *
697 ****************************************************************************/
698
699#if 0
700static uint16_t eepro100_read_command(EEPRO100State * s)
701{
702 uint16_t val = 0xffff;
703 //~ TRACE(OTHER, logout("val=0x%04x\n", val));
704 return val;
705}
706#endif
707
708/* Commands that can be put in a command list entry. */
709enum commands {
710 CmdNOp = 0,
711 CmdIASetup = 1,
712 CmdConfigure = 2,
713 CmdMulticastList = 3,
714 CmdTx = 4,
715 CmdTDR = 5, /* load microcode */
716 CmdDump = 6,
717 CmdDiagnose = 7,
718
719 /* And some extra flags: */
720 CmdSuspend = 0x4000, /* Suspend after completion. */
721 CmdIntr = 0x2000, /* Interrupt after completion. */
722 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
723};
724
725static cu_state_t get_cu_state(EEPRO100State * s)
726{
727 return ((s->mem[SCBStatus] >> 6) & 0x03);
728}
729
730static void set_cu_state(EEPRO100State * s, cu_state_t state)
731{
732 s->mem[SCBStatus] = (s->mem[SCBStatus] & 0x3f) + (state << 6);
733}
734
735static ru_state_t get_ru_state(EEPRO100State * s)
736{
737 return ((s->mem[SCBStatus] >> 2) & 0x0f);
738}
739
740static void set_ru_state(EEPRO100State * s, ru_state_t state)
741{
742 s->mem[SCBStatus] = (s->mem[SCBStatus] & 0xc3) + (state << 2);
743}
744
745static void dump_statistics(EEPRO100State * s)
746{
747 /* Dump statistical data. Most data is never changed by the emulation
748 * and always 0, so we first just copy the whole block and then those
749 * values which really matter.
750 * Number of data should check configuration!!!
751 */
752 cpu_physical_memory_write(s->statsaddr,
753 (uint8_t *) & s->statistics, s->stats_size);
754 stl_le_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
755 stl_le_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
756 stl_le_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
757 stl_le_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
758 //~ stw_le_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
759 //~ stw_le_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
760 //~ missing("CU dump statistical counters");
761}
762
763static void action_command(EEPRO100State *s)
764{
765 for (;;) {
766 uint32_t cb_address = s->cu_base + s->cu_offset;
767 eepro100_tx_t tx;
768 cpu_physical_memory_read(cb_address, (uint8_t *) & tx, sizeof(tx));
769 uint16_t status = le16_to_cpu(tx.status);
770 uint16_t command = le16_to_cpu(tx.command);
771 logout
772 ("val=0x%02x (cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
773 val, status, command, tx.link);
774 bool bit_el = ((command & 0x8000) != 0);
775 bool bit_s = ((command & 0x4000) != 0);
776 bool bit_i = ((command & 0x2000) != 0);
777 bool bit_nc = ((command & 0x0010) != 0);
778 bool success = true;
779 //~ bool bit_sf = ((command & 0x0008) != 0);
780 uint16_t cmd = command & 0x0007;
781 s->cu_offset = le32_to_cpu(tx.link);
782 switch (cmd) {
783 case CmdNOp:
784 /* Do nothing. */
785 break;
786 case CmdIASetup:
787 cpu_physical_memory_read(cb_address + 8, &s->conf.macaddr.a[0], 6);
788 TRACE(OTHER, logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6)));
789 break;
790 case CmdConfigure:
791 cpu_physical_memory_read(cb_address + 8, &s->configuration[0],
792 sizeof(s->configuration));
793 TRACE(OTHER, logout("configuration: %s\n", nic_dump(&s->configuration[0], 16)));
794 break;
795 case CmdMulticastList:
796 //~ missing("multicast list");
797 break;
798 case CmdTx:
799 (void)0;
800 uint32_t tbd_array = le32_to_cpu(tx.tx_desc_addr);
801 uint16_t tcb_bytes = (le16_to_cpu(tx.tcb_bytes) & 0x3fff);
802 TRACE(RXTX, logout
803 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
804 tbd_array, tcb_bytes, tx.tbd_count));
805
806 if (bit_nc) {
807 missing("CmdTx: NC = 0");
808 success = false;
809 break;
810 }
811 //~ assert(!bit_sf);
812 if (tcb_bytes > 2600) {
813 logout("TCB byte count too large, using 2600\n");
814 tcb_bytes = 2600;
815 }
816 /* Next assertion fails for local configuration. */
817 //~ assert((tcb_bytes > 0) || (tbd_array != 0xffffffff));
818 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
819 logout
820 ("illegal values of TBD array address and TCB byte count!\n");
821 }
822 // sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes
823 uint8_t buf[2600];
824 uint16_t size = 0;
825 uint32_t tbd_address = cb_address + 0x10;
826 assert(tcb_bytes <= sizeof(buf));
827 while (size < tcb_bytes) {
828 uint32_t tx_buffer_address = ldl_phys(tbd_address);
829 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
830 //~ uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
831 tbd_address += 8;
832 TRACE(RXTX, logout
833 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
834 tx_buffer_address, tx_buffer_size));
835 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
836 cpu_physical_memory_read(tx_buffer_address, &buf[size],
837 tx_buffer_size);
838 size += tx_buffer_size;
839 }
840 if (tbd_array == 0xffffffff) {
841 /* Simplified mode. Was already handled by code above. */
842 } else {
843 /* Flexible mode. */
844 uint8_t tbd_count = 0;
845 if (s->has_extended_tcb_support && !(s->configuration[6] & BIT(4))) {
846 /* Extended Flexible TCB. */
847 for (; tbd_count < 2; tbd_count++) {
848 uint32_t tx_buffer_address = ldl_phys(tbd_address);
849 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
850 uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
851 tbd_address += 8;
852 TRACE(RXTX, logout
853 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
854 tx_buffer_address, tx_buffer_size));
855 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
856 cpu_physical_memory_read(tx_buffer_address, &buf[size],
857 tx_buffer_size);
858 size += tx_buffer_size;
859 if (tx_buffer_el & 1) {
860 break;
861 }
862 }
863 }
864 tbd_address = tbd_array;
865 for (; tbd_count < tx.tbd_count; tbd_count++) {
866 uint32_t tx_buffer_address = ldl_phys(tbd_address);
867 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
868 uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
869 tbd_address += 8;
870 TRACE(RXTX, logout
871 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
872 tx_buffer_address, tx_buffer_size));
873 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
874 cpu_physical_memory_read(tx_buffer_address, &buf[size],
875 tx_buffer_size);
876 size += tx_buffer_size;
877 if (tx_buffer_el & 1) {
878 break;
879 }
880 }
881 }
882 TRACE(RXTX, logout("%p sending frame, len=%d,%s\n", s, size, nic_dump(buf, size)));
883 qemu_send_packet(&s->nic->nc, buf, size);
884 s->statistics.tx_good_frames++;
885 /* Transmit with bad status would raise an CX/TNO interrupt.
886 * (82557 only). Emulation never has bad status. */
887 //~ eepro100_cx_interrupt(s);
888 break;
889 case CmdTDR:
890 TRACE(OTHER, logout("load microcode\n"));
891 /* Starting with offset 8, the command contains
892 * 64 dwords microcode which we just ignore here. */
893 break;
894 default:
895 missing("undefined command");
896 success = false;
897 break;
898 }
899 /* Write new status. */
900 stw_phys(cb_address, status | 0x8000 | (success ? 0x2000 : 0));
901 if (bit_i) {
902 /* CU completed action. */
903 eepro100_cx_interrupt(s);
904 }
905 if (bit_el) {
906 /* CU becomes idle. Terminate command loop. */
907 set_cu_state(s, cu_idle);
908 eepro100_cna_interrupt(s);
909 break;
910 } else if (bit_s) {
911 /* CU becomes suspended. Terminate command loop. */
912 set_cu_state(s, cu_suspended);
913 eepro100_cna_interrupt(s);
914 break;
915 } else {
916 /* More entries in list. */
917 TRACE(OTHER, logout("CU list with at least one more entry\n"));
918 }
919 }
920 TRACE(OTHER, logout("CU list empty\n"));
921 /* List is empty. Now CU is idle or suspended. */
922}
923
924static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
925{
926 switch (val) {
927 case CU_NOP:
928 /* No operation. */
929 break;
930 case CU_START:
931 if (get_cu_state(s) != cu_idle) {
932 /* Intel documentation says that CU must be idle for the CU
933 * start command. Intel driver for Linux also starts the CU
934 * from suspended state. */
935 logout("CU state is %u, should be %u\n", get_cu_state(s), cu_idle);
936 //~ assert(!"wrong CU state");
937 }
938 set_cu_state(s, cu_active);
939 s->cu_offset = s->pointer;
940 action_command(s);
941 break;
942 case CU_RESUME:
943 if (get_cu_state(s) != cu_suspended) {
944 logout("bad CU resume from CU state %u\n", get_cu_state(s));
945 /* Workaround for bad Linux eepro100 driver which resumes
946 * from idle state. */
947 //~ missing("cu resume");
948 set_cu_state(s, cu_suspended);
949 }
950 if (get_cu_state(s) == cu_suspended) {
951 TRACE(OTHER, logout("CU resuming\n"));
952 set_cu_state(s, cu_active);
953 action_command(s);
954 }
955 break;
956 case CU_STATSADDR:
957 /* Load dump counters address. */
958 s->statsaddr = s->pointer;
959 TRACE(OTHER, logout("val=0x%02x (status address)\n", val));
960 break;
961 case CU_SHOWSTATS:
962 /* Dump statistical counters. */
963 TRACE(OTHER, logout("val=0x%02x (dump stats)\n", val));
964 dump_statistics(s);
965 stl_le_phys(s->statsaddr + s->stats_size, 0xa005);
966 break;
967 case CU_CMD_BASE:
968 /* Load CU base. */
969 TRACE(OTHER, logout("val=0x%02x (CU base address)\n", val));
970 s->cu_base = s->pointer;
971 break;
972 case CU_DUMPSTATS:
973 /* Dump and reset statistical counters. */
974 TRACE(OTHER, logout("val=0x%02x (dump stats and reset)\n", val));
975 dump_statistics(s);
976 stl_le_phys(s->statsaddr + s->stats_size, 0xa007);
977 memset(&s->statistics, 0, sizeof(s->statistics));
978 break;
979 case CU_SRESUME:
980 /* CU static resume. */
981 missing("CU static resume");
982 break;
983 default:
984 missing("Undefined CU command");
985 }
986}
987
988static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
989{
990 switch (val) {
991 case RU_NOP:
992 /* No operation. */
993 break;
994 case RX_START:
995 /* RU start. */
996 if (get_ru_state(s) != ru_idle) {
997 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
998 //~ assert(!"wrong RU state");
999 }
1000 set_ru_state(s, ru_ready);
1001 s->ru_offset = s->pointer;
1002 TRACE(OTHER, logout("val=0x%02x (rx start)\n", val));
1003 break;
1004 case RX_RESUME:
1005 /* Restart RU. */
1006 if (get_ru_state(s) != ru_suspended) {
1007 logout("RU state is %u, should be %u\n", get_ru_state(s),
1008 ru_suspended);
1009 //~ assert(!"wrong RU state");
1010 }
1011 set_ru_state(s, ru_ready);
1012 break;
1013 case RX_ADDR_LOAD:
1014 /* Load RU base. */
1015 TRACE(OTHER, logout("val=0x%02x (RU base address)\n", val));
1016 s->ru_base = s->pointer;
1017 break;
1018 default:
1019 logout("val=0x%02x (undefined RU command)\n", val);
1020 missing("Undefined SU command");
1021 }
1022}
1023
1024static void eepro100_write_command(EEPRO100State * s, uint8_t val)
1025{
1026 eepro100_ru_command(s, val & 0x0f);
1027 eepro100_cu_command(s, val & 0xf0);
1028 if ((val) == 0) {
1029 TRACE(OTHER, logout("val=0x%02x\n", val));
1030 }
1031 /* Clear command byte after command was accepted. */
1032 s->mem[SCBCmd] = 0;
1033}
1034
1035/*****************************************************************************
1036 *
1037 * EEPROM emulation.
1038 *
1039 ****************************************************************************/
1040
1041#define EEPROM_CS 0x02
1042#define EEPROM_SK 0x01
1043#define EEPROM_DI 0x04
1044#define EEPROM_DO 0x08
1045
1046static uint16_t eepro100_read_eeprom(EEPRO100State * s)
1047{
1048 uint16_t val;
1049 memcpy(&val, &s->mem[SCBeeprom], sizeof(val));
1050 if (eeprom93xx_read(s->eeprom)) {
1051 val |= EEPROM_DO;
1052 } else {
1053 val &= ~EEPROM_DO;
1054 }
1055 TRACE(EEPROM, logout("val=0x%04x\n", val));
1056 return val;
1057}
1058
1059static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
1060{
1061 TRACE(EEPROM, logout("val=0x%02x\n", val));
1062
1063 /* mask unwriteable bits */
1064 //~ val = SET_MASKED(val, 0x31, eeprom->value);
1065
1066 int eecs = ((val & EEPROM_CS) != 0);
1067 int eesk = ((val & EEPROM_SK) != 0);
1068 int eedi = ((val & EEPROM_DI) != 0);
1069 eeprom93xx_write(eeprom, eecs, eesk, eedi);
1070}
1071
1072static void eepro100_write_pointer(EEPRO100State * s, uint32_t val)
1073{
1074 s->pointer = le32_to_cpu(val);
1075 TRACE(OTHER, logout("val=0x%08x\n", val));
1076}
1077
1078/*****************************************************************************
1079 *
1080 * MDI emulation.
1081 *
1082 ****************************************************************************/
1083
1084#if defined(DEBUG_EEPRO100)
1085static const char * const mdi_op_name[] = {
1086 "opcode 0",
1087 "write",
1088 "read",
1089 "opcode 3"
1090};
1091
1092static const char * const mdi_reg_name[] = {
1093 "Control",
1094 "Status",
1095 "PHY Identification (Word 1)",
1096 "PHY Identification (Word 2)",
1097 "Auto-Negotiation Advertisement",
1098 "Auto-Negotiation Link Partner Ability",
1099 "Auto-Negotiation Expansion"
1100};
1101
1102static const char *reg2name(uint8_t reg)
1103{
1104 static char buffer[10];
1105 const char *p = buffer;
1106 if (reg < ARRAY_SIZE(mdi_reg_name)) {
1107 p = mdi_reg_name[reg];
1108 } else {
1109 snprintf(buffer, sizeof(buffer), "reg=0x%02x", reg);
1110 }
1111 return p;
1112}
1113#endif /* DEBUG_EEPRO100 */
1114
1115static uint32_t eepro100_read_mdi(EEPRO100State * s)
1116{
1117 uint32_t val;
1118 memcpy(&val, &s->mem[0x10], sizeof(val));
1119
1120#ifdef DEBUG_EEPRO100
1121 uint8_t raiseint = (val & BIT(29)) >> 29;
1122 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1123 uint8_t phy = (val & BITS(25, 21)) >> 21;
1124 uint8_t reg = (val & BITS(20, 16)) >> 16;
1125 uint16_t data = (val & BITS(15, 0));
1126#endif
1127 /* Emulation takes no time to finish MDI transaction. */
1128 val |= BIT(28);
1129 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1130 val, raiseint, mdi_op_name[opcode], phy,
1131 reg2name(reg), data));
1132 return val;
1133}
1134
1135static void eepro100_write_mdi(EEPRO100State * s, uint32_t val)
1136{
1137 uint8_t raiseint = (val & BIT(29)) >> 29;
1138 uint8_t opcode = (val & BITS(27, 26)) >> 26;
1139 uint8_t phy = (val & BITS(25, 21)) >> 21;
1140 uint8_t reg = (val & BITS(20, 16)) >> 16;
1141 uint16_t data = (val & BITS(15, 0));
1142 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1143 val, raiseint, mdi_op_name[opcode], phy, reg2name(reg), data));
1144 if (phy != 1) {
1145 /* Unsupported PHY address. */
1146 //~ logout("phy must be 1 but is %u\n", phy);
1147 data = 0;
1148 } else if (opcode != 1 && opcode != 2) {
1149 /* Unsupported opcode. */
1150 logout("opcode must be 1 or 2 but is %u\n", opcode);
1151 data = 0;
1152 } else if (reg > 6) {
1153 /* Unsupported register. */
1154 logout("register must be 0...6 but is %u\n", reg);
1155 data = 0;
1156 } else {
1157 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
1158 val, raiseint, mdi_op_name[opcode], phy,
1159 reg2name(reg), data));
1160 if (opcode == 1) {
1161 /* MDI write */
1162 switch (reg) {
1163 case 0: /* Control Register */
1164 if (data & 0x8000) {
1165 /* Reset status and control registers to default. */
1166 s->mdimem[0] = eepro100_mdi_default[0];
1167 s->mdimem[1] = eepro100_mdi_default[1];
1168 data = s->mdimem[reg];
1169 } else {
1170 /* Restart Auto Configuration = Normal Operation */
1171 data &= ~0x0200;
1172 }
1173 break;
1174 case 1: /* Status Register */
1175 missing("not writable");
1176 data = s->mdimem[reg];
1177 break;
1178 case 2: /* PHY Identification Register (Word 1) */
1179 case 3: /* PHY Identification Register (Word 2) */
1180 missing("not implemented");
1181 break;
1182 case 4: /* Auto-Negotiation Advertisement Register */
1183 case 5: /* Auto-Negotiation Link Partner Ability Register */
1184 break;
1185 case 6: /* Auto-Negotiation Expansion Register */
1186 default:
1187 missing("not implemented");
1188 }
1189 s->mdimem[reg] = data;
1190 } else if (opcode == 2) {
1191 /* MDI read */
1192 switch (reg) {
1193 case 0: /* Control Register */
1194 if (data & 0x8000) {
1195 /* Reset status and control registers to default. */
1196 s->mdimem[0] = eepro100_mdi_default[0];
1197 s->mdimem[1] = eepro100_mdi_default[1];
1198 }
1199 break;
1200 case 1: /* Status Register */
1201 s->mdimem[reg] |= 0x0020;
1202 break;
1203 case 2: /* PHY Identification Register (Word 1) */
1204 case 3: /* PHY Identification Register (Word 2) */
1205 case 4: /* Auto-Negotiation Advertisement Register */
1206 break;
1207 case 5: /* Auto-Negotiation Link Partner Ability Register */
1208 s->mdimem[reg] = 0x41fe;
1209 break;
1210 case 6: /* Auto-Negotiation Expansion Register */
1211 s->mdimem[reg] = 0x0001;
1212 break;
1213 }
1214 data = s->mdimem[reg];
1215 }
1216 /* Emulation takes no time to finish MDI transaction.
1217 * Set MDI bit in SCB status register. */
1218 s->mem[SCBAck] |= 0x08;
1219 val |= BIT(28);
1220 if (raiseint) {
1221 eepro100_mdi_interrupt(s);
1222 }
1223 }
1224 val = (val & 0xffff0000) + data;
1225 memcpy(&s->mem[0x10], &val, sizeof(val));
1226}
1227
1228/*****************************************************************************
1229 *
1230 * Port emulation.
1231 *
1232 ****************************************************************************/
1233
1234#define PORT_SOFTWARE_RESET 0
1235#define PORT_SELFTEST 1
1236#define PORT_SELECTIVE_RESET 2
1237#define PORT_DUMP 3
1238#define PORT_SELECTION_MASK 3
1239
1240typedef struct {
1241 uint32_t st_sign; /* Self Test Signature */
1242 uint32_t st_result; /* Self Test Results */
1243} eepro100_selftest_t;
1244
1245static uint32_t eepro100_read_port(EEPRO100State * s)
1246{
1247 return 0;
1248}
1249
1250static void eepro100_write_port(EEPRO100State * s, uint32_t val)
1251{
1252 val = le32_to_cpu(val);
1253 uint32_t address = (val & ~PORT_SELECTION_MASK);
1254 uint8_t selection = (val & PORT_SELECTION_MASK);
1255 switch (selection) {
1256 case PORT_SOFTWARE_RESET:
1257 nic_reset(s);
1258 break;
1259 case PORT_SELFTEST:
1260 TRACE(OTHER, logout("selftest address=0x%08x\n", address));
1261 eepro100_selftest_t data;
1262 cpu_physical_memory_read(address, (uint8_t *) & data, sizeof(data));
1263 data.st_sign = 0xffffffff;
1264 data.st_result = 0;
1265 cpu_physical_memory_write(address, (uint8_t *) & data, sizeof(data));
1266 break;
1267 case PORT_SELECTIVE_RESET:
1268 TRACE(OTHER, logout("selective reset, selftest address=0x%08x\n", address));
1269 nic_selective_reset(s);
1270 break;
1271 default:
1272 logout("val=0x%08x\n", val);
1273 missing("unknown port selection");
1274 }
1275}
1276
1277/*****************************************************************************
1278 *
1279 * General hardware emulation.
1280 *
1281 ****************************************************************************/
1282
1283static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1284{
1285 uint8_t val;
1286 if (addr <= sizeof(s->mem) - sizeof(val)) {
1287 memcpy(&val, &s->mem[addr], sizeof(val));
1288 }
1289
1290 switch (addr) {
1291 case SCBStatus:
1292 //~ val = eepro100_read_status(s);
1293 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1294 break;
1295 case SCBAck:
1296 //~ val = eepro100_read_status(s);
1297 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1298 break;
1299 case SCBCmd:
1300 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1301 //~ val = eepro100_read_command(s);
1302 break;
1303 case SCBIntmask:
1304 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1305 break;
1306 case SCBPort + 3:
1307 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1308 break;
1309 case SCBeeprom:
1310 val = eepro100_read_eeprom(s);
1311 break;
1312 case 0x1b: /* PMDR (power management driver register) */
1313 val = 0;
1314 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1315 break;
1316 case 0x1d: /* general status register */
1317 /* 100 Mbps full duplex, valid link */
1318 val = 0x07;
1319 TRACE(OTHER, logout("addr=General Status val=%02x\n", val));
1320 break;
1321 default:
1322 logout("addr=%s val=0x%02x\n", regname(addr), val);
1323 missing("unknown byte read");
1324 }
1325 return val;
1326}
1327
1328static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1329{
1330 uint16_t val;
1331 if (addr <= sizeof(s->mem) - sizeof(val)) {
1332 memcpy(&val, &s->mem[addr], sizeof(val));
1333 }
1334
1335 switch (addr) {
1336 case SCBStatus:
1337 //~ val = eepro100_read_status(s);
1338 case SCBCmd:
1339 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1340 break;
1341 case SCBeeprom:
1342 val = eepro100_read_eeprom(s);
1343 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1344 break;
1345 default:
1346 logout("addr=%s val=0x%04x\n", regname(addr), val);
1347 missing("unknown word read");
1348 }
1349 return val;
1350}
1351
1352static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1353{
1354 uint32_t val;
1355 if (addr <= sizeof(s->mem) - sizeof(val)) {
1356 memcpy(&val, &s->mem[addr], sizeof(val));
1357 }
1358
1359 switch (addr) {
1360 case SCBStatus:
1361 //~ val = eepro100_read_status(s);
1362 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1363 break;
1364 case SCBPointer:
1365 //~ val = eepro100_read_pointer(s);
1366 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1367 break;
1368 case SCBPort:
1369 val = eepro100_read_port(s);
1370 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1371 break;
1372 case SCBCtrlMDI:
1373 val = eepro100_read_mdi(s);
1374 break;
1375 default:
1376 logout("addr=%s val=0x%08x\n", regname(addr), val);
1377 missing("unknown longword read");
1378 }
1379 return val;
1380}
1381
1382static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1383{
1384 if (addr <= sizeof(s->mem) - sizeof(val)) {
1385 memcpy(&s->mem[addr], &val, sizeof(val));
1386 }
1387
1388 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1389
1390 switch (addr) {
1391 case SCBStatus:
1392 //~ eepro100_write_status(s, val);
1393 break;
1394 case SCBAck:
1395 eepro100_acknowledge(s);
1396 break;
1397 case SCBCmd:
1398 eepro100_write_command(s, val);
1399 break;
1400 case SCBIntmask:
1401 if (val & BIT(1)) {
1402 eepro100_swi_interrupt(s);
1403 }
1404 eepro100_interrupt(s, 0);
1405 break;
1406 case SCBPort + 3:
1407 case SCBFlow: /* does not exist on 82557 */
1408 case SCBFlow + 1:
1409 case SCBFlow + 2:
1410 case SCBFlow + 3:
1411 TRACE(OTHER, logout("addr=%s val=0x%02x\n", regname(addr), val));
1412 break;
1413 case SCBeeprom:
1414 eepro100_write_eeprom(s->eeprom, val);
1415 break;
1416 default:
1417 logout("addr=%s val=0x%02x\n", regname(addr), val);
1418 missing("unknown byte write");
1419 }
1420}
1421
1422static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1423{
1424 if (addr <= sizeof(s->mem) - sizeof(val)) {
1425 memcpy(&s->mem[addr], &val, sizeof(val));
1426 }
1427
1428 TRACE(OTHER, logout("addr=%s val=0x%04x\n", regname(addr), val));
1429
1430 switch (addr) {
1431 case SCBStatus:
1432 //~ eepro100_write_status(s, val);
1433 eepro100_acknowledge(s);
1434 break;
1435 case SCBCmd:
1436 eepro100_write_command(s, val);
1437 eepro100_write1(s, SCBIntmask, val >> 8);
1438 break;
1439 case SCBeeprom:
1440 eepro100_write_eeprom(s->eeprom, val);
1441 break;
1442 default:
1443 logout("addr=%s val=0x%04x\n", regname(addr), val);
1444 missing("unknown word write");
1445 }
1446}
1447
1448static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1449{
1450 if (addr <= sizeof(s->mem) - sizeof(val)) {
1451 memcpy(&s->mem[addr], &val, sizeof(val));
1452 }
1453
1454 switch (addr) {
1455 case SCBPointer:
1456 eepro100_write_pointer(s, val);
1457 break;
1458 case SCBPort:
1459 TRACE(OTHER, logout("addr=%s val=0x%08x\n", regname(addr), val));
1460 eepro100_write_port(s, val);
1461 break;
1462 case SCBCtrlMDI:
1463 eepro100_write_mdi(s, val);
1464 break;
1465 default:
1466 logout("addr=%s val=0x%08x\n", regname(addr), val);
1467 missing("unknown longword write");
1468 }
1469}
1470
1471/*****************************************************************************
1472 *
1473 * Port mapped I/O.
1474 *
1475 ****************************************************************************/
1476
1477static uint32_t ioport_read1(void *opaque, uint32_t addr)
1478{
1479 EEPRO100State *s = opaque;
1480 //~ logout("addr=%s\n", regname(addr));
1481 return eepro100_read1(s, addr - s->region[1]);
1482}
1483
1484static uint32_t ioport_read2(void *opaque, uint32_t addr)
1485{
1486 EEPRO100State *s = opaque;
1487 return eepro100_read2(s, addr - s->region[1]);
1488}
1489
1490static uint32_t ioport_read4(void *opaque, uint32_t addr)
1491{
1492 EEPRO100State *s = opaque;
1493 return eepro100_read4(s, addr - s->region[1]);
1494}
1495
1496static void ioport_write1(void *opaque, uint32_t addr, uint32_t val)
1497{
1498 EEPRO100State *s = opaque;
1499 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1500 eepro100_write1(s, addr - s->region[1], val);
1501}
1502
1503static void ioport_write2(void *opaque, uint32_t addr, uint32_t val)
1504{
1505 EEPRO100State *s = opaque;
1506 eepro100_write2(s, addr - s->region[1], val);
1507}
1508
1509static void ioport_write4(void *opaque, uint32_t addr, uint32_t val)
1510{
1511 EEPRO100State *s = opaque;
1512 eepro100_write4(s, addr - s->region[1], val);
1513}
1514
1515/***********************************************************/
1516/* PCI EEPRO100 definitions */
1517
1518static void pci_map(PCIDevice * pci_dev, int region_num,
1519 pcibus_t addr, pcibus_t size, int type)
1520{
1521 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1522
1523 TRACE(OTHER, logout("region %d, addr=0x%08"FMT_PCIBUS", "
1524 "size=0x%08"FMT_PCIBUS", type=%d\n",
1525 region_num, addr, size, type));
1526
1527 assert(region_num == 1);
1528 register_ioport_write(addr, size, 1, ioport_write1, s);
1529 register_ioport_read(addr, size, 1, ioport_read1, s);
1530 register_ioport_write(addr, size, 2, ioport_write2, s);
1531 register_ioport_read(addr, size, 2, ioport_read2, s);
1532 register_ioport_write(addr, size, 4, ioport_write4, s);
1533 register_ioport_read(addr, size, 4, ioport_read4, s);
1534
1535 s->region[region_num] = addr;
1536}
1537
1538/*****************************************************************************
1539 *
1540 * Memory mapped I/O.
1541 *
1542 ****************************************************************************/
1543
1544static void pci_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1545{
1546 EEPRO100State *s = opaque;
1547 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1548 eepro100_write1(s, addr, val);
1549}
1550
1551static void pci_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1552{
1553 EEPRO100State *s = opaque;
1554 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1555 eepro100_write2(s, addr, val);
1556}
1557
1558static void pci_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1559{
1560 EEPRO100State *s = opaque;
1561 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1562 eepro100_write4(s, addr, val);
1563}
1564
1565static uint32_t pci_mmio_readb(void *opaque, target_phys_addr_t addr)
1566{
1567 EEPRO100State *s = opaque;
1568 //~ logout("addr=%s\n", regname(addr));
1569 return eepro100_read1(s, addr);
1570}
1571
1572static uint32_t pci_mmio_readw(void *opaque, target_phys_addr_t addr)
1573{
1574 EEPRO100State *s = opaque;
1575 //~ logout("addr=%s\n", regname(addr));
1576 return eepro100_read2(s, addr);
1577}
1578
1579static uint32_t pci_mmio_readl(void *opaque, target_phys_addr_t addr)
1580{
1581 EEPRO100State *s = opaque;
1582 //~ logout("addr=%s\n", regname(addr));
1583 return eepro100_read4(s, addr);
1584}
1585
1586static CPUWriteMemoryFunc * const pci_mmio_write[] = {
1587 pci_mmio_writeb,
1588 pci_mmio_writew,
1589 pci_mmio_writel
1590};
1591
1592static CPUReadMemoryFunc * const pci_mmio_read[] = {
1593 pci_mmio_readb,
1594 pci_mmio_readw,
1595 pci_mmio_readl
1596};
1597
1598static void pci_mmio_map(PCIDevice * pci_dev, int region_num,
1599 pcibus_t addr, pcibus_t size, int type)
1600{
1601 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1602
1603 TRACE(OTHER, logout("region %d, addr=0x%08"FMT_PCIBUS", "
1604 "size=0x%08"FMT_PCIBUS", type=%d\n",
1605 region_num, addr, size, type));
1606
1607 if (region_num == 0) {
1608 /* Map control / status registers. */
1609 cpu_register_physical_memory(addr, size, s->mmio_index);
1610 s->region[region_num] = addr;
1611 }
1612}
1613
1614static int nic_can_receive(VLANClientState *nc)
1615{
1616 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1617 TRACE(RXTX, logout("%p\n", s));
1618 return get_ru_state(s) == ru_ready;
1619 //~ return !eepro100_buffer_full(s);
1620}
1621
1622static ssize_t nic_receive(VLANClientState *nc, const uint8_t * buf, size_t size)
1623{
1624 /* TODO:
1625 * - Magic packets should set bit 30 in power management driver register.
1626 * - Interesting packets should set bit 29 in power management driver register.
1627 */
1628 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1629 uint16_t rfd_status = 0xa000;
1630 static const uint8_t broadcast_macaddr[6] =
1631 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1632
1633 /* TODO: check multiple IA bit. */
1634 if (s->configuration[20] & BIT(6)) {
1635 missing("Multiple IA bit");
1636 return -1;
1637 }
1638
1639 if (s->configuration[8] & 0x80) {
1640 /* CSMA is disabled. */
1641 logout("%p received while CSMA is disabled\n", s);
1642 return -1;
1643 } else if (size < 64 && (s->configuration[7] & 1)) {
1644 /* Short frame and configuration byte 7/0 (discard short receive) set:
1645 * Short frame is discarded */
1646 logout("%p received short frame (%zu byte)\n", s, size);
1647 s->statistics.rx_short_frame_errors++;
1648 //~ return -1;
1649 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & 8)) {
1650 /* Long frame and configuration byte 18/3 (long receive ok) not set:
1651 * Long frames are discarded. */
1652 logout("%p received long frame (%zu byte), ignored\n", s, size);
1653 return -1;
1654 } else if (memcmp(buf, s->conf.macaddr.a, 6) == 0) { // !!!
1655 /* Frame matches individual address. */
1656 /* TODO: check configuration byte 15/4 (ignore U/L). */
1657 TRACE(RXTX, logout("%p received frame for me, len=%zu\n", s, size));
1658 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1659 /* Broadcast frame. */
1660 TRACE(RXTX, logout("%p received broadcast, len=%zu\n", s, size));
1661 rfd_status |= 0x0002;
1662 } else if (buf[0] & 0x01) { // !!!
1663 /* Multicast frame. */
1664 TRACE(RXTX, logout("%p received multicast, len=%zu\n", s, size));
1665 /* TODO: check multicast all bit. */
1666 if (s->configuration[21] & BIT(3)) {
1667 missing("Multicast All bit");
1668 }
1669 int mcast_idx = compute_mcast_idx(buf);
1670 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) {
1671 return size;
1672 }
1673 rfd_status |= 0x0002;
1674 } else if (s->configuration[15] & 1) {
1675 /* Promiscuous: receive all. */
1676 TRACE(RXTX, logout("%p received frame in promiscuous mode, len=%zu\n", s, size));
1677 rfd_status |= 0x0004;
1678 } else {
1679 TRACE(RXTX, logout("%p received frame, ignored, len=%zu,%s\n", s, size,
1680 nic_dump(buf, size)));
1681 return size;
1682 }
1683
1684 if (get_ru_state(s) != ru_ready) {
1685 /* No resources available. */
1686 logout("no resources, state=%u\n", get_ru_state(s));
1687 s->statistics.rx_resource_errors++;
1688 //~ assert(!"no resources");
1689 return -1;
1690 }
1691 //~ !!!
1692//~ $3 = {status = 0x0, command = 0xc000, link = 0x2d220, rx_buf_addr = 0x207dc, count = 0x0, size = 0x5f8, packet = {0x0 <repeats 1518 times>}}
1693 eepro100_rx_t rx;
1694 cpu_physical_memory_read(s->ru_base + s->ru_offset, (uint8_t *) & rx,
1695 offsetof(eepro100_rx_t, packet));
1696 uint16_t rfd_command = le16_to_cpu(rx.command);
1697 uint16_t rfd_size = le16_to_cpu(rx.size);
1698
1699 if (size > rfd_size) {
1700 logout("Receive buffer (%" PRId16 " bytes) too small for data "
1701 "(%zu bytes); data truncated\n", rfd_size, size);
1702 size = rfd_size;
1703 }
1704 if (size < 64) {
1705 rfd_status |= 0x0080;
1706 }
1707 TRACE(OTHER, logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n",
1708 rfd_command, rx.link, rx.rx_buf_addr, rfd_size));
1709 stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status),
1710 rfd_status);
1711 stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size);
1712 /* Early receive interrupt not supported. */
1713 //~ eepro100_er_interrupt(s);
1714 /* Receive CRC Transfer not supported. */
1715 if (s->configuration[18] & 4) {
1716 missing("Receive CRC Transfer");
1717 return -1;
1718 }
1719 /* TODO: check stripping enable bit. */
1720 //~ assert(!(s->configuration[17] & 1));
1721 cpu_physical_memory_write(s->ru_base + s->ru_offset +
1722 offsetof(eepro100_rx_t, packet), buf, size);
1723 s->statistics.rx_good_frames++;
1724 eepro100_fr_interrupt(s);
1725 s->ru_offset = le32_to_cpu(rx.link);
1726 if (rfd_command & 0x8000) {
1727 /* EL bit is set, so this was the last frame. */
1728 logout("receive: Running out of frames\n");
1729 set_ru_state(s, ru_suspended);
1730 }
1731 if (rfd_command & 0x4000) {
1732 /* S bit is set. */
1733 set_ru_state(s, ru_suspended);
1734 }
1735 return size;
1736}
1737
1738static const VMStateDescription vmstate_eepro100 = {
1739 .version_id = 3,
1740 .minimum_version_id = 2,
1741 .minimum_version_id_old = 2,
1742 .fields = (VMStateField []) {
1743 VMSTATE_PCI_DEVICE(dev, EEPRO100State),
1744 VMSTATE_UNUSED(32),
1745 VMSTATE_BUFFER(mult, EEPRO100State),
1746 VMSTATE_BUFFER(mem, EEPRO100State),
1747 /* Save all members of struct between scb_stat and mem. */
1748 VMSTATE_UINT8(scb_stat, EEPRO100State),
1749 VMSTATE_UINT8(int_stat, EEPRO100State),
1750 VMSTATE_UNUSED(3*4),
1751 VMSTATE_MACADDR(conf.macaddr, EEPRO100State),
1752 VMSTATE_UNUSED(19*4),
1753 VMSTATE_UINT16_ARRAY(mdimem, EEPRO100State, 32),
1754 /* The eeprom should be saved and restored by its own routines. */
1755 VMSTATE_UINT32(device, EEPRO100State),
1756 /* TODO check device. */
1757 VMSTATE_UINT32(pointer, EEPRO100State),
1758 VMSTATE_UINT32(cu_base, EEPRO100State),
1759 VMSTATE_UINT32(cu_offset, EEPRO100State),
1760 VMSTATE_UINT32(ru_base, EEPRO100State),
1761 VMSTATE_UINT32(ru_offset, EEPRO100State),
1762 VMSTATE_UINT32(statsaddr, EEPRO100State),
1763 /* Save eepro100_stats_t statistics. */
1764 VMSTATE_UINT32(statistics.tx_good_frames, EEPRO100State),
1765 VMSTATE_UINT32(statistics.tx_max_collisions, EEPRO100State),
1766 VMSTATE_UINT32(statistics.tx_late_collisions, EEPRO100State),
1767 VMSTATE_UINT32(statistics.tx_underruns, EEPRO100State),
1768 VMSTATE_UINT32(statistics.tx_lost_crs, EEPRO100State),
1769 VMSTATE_UINT32(statistics.tx_deferred, EEPRO100State),
1770 VMSTATE_UINT32(statistics.tx_single_collisions, EEPRO100State),
1771 VMSTATE_UINT32(statistics.tx_multiple_collisions, EEPRO100State),
1772 VMSTATE_UINT32(statistics.tx_total_collisions, EEPRO100State),
1773 VMSTATE_UINT32(statistics.rx_good_frames, EEPRO100State),
1774 VMSTATE_UINT32(statistics.rx_crc_errors, EEPRO100State),
1775 VMSTATE_UINT32(statistics.rx_alignment_errors, EEPRO100State),
1776 VMSTATE_UINT32(statistics.rx_resource_errors, EEPRO100State),
1777 VMSTATE_UINT32(statistics.rx_overrun_errors, EEPRO100State),
1778 VMSTATE_UINT32(statistics.rx_cdt_errors, EEPRO100State),
1779 VMSTATE_UINT32(statistics.rx_short_frame_errors, EEPRO100State),
1780 VMSTATE_UINT32(statistics.fc_xmt_pause, EEPRO100State),
1781 VMSTATE_UINT32(statistics.fc_rcv_pause, EEPRO100State),
1782 VMSTATE_UINT32(statistics.fc_rcv_unsupported, EEPRO100State),
1783 VMSTATE_UINT16(statistics.xmt_tco_frames, EEPRO100State),
1784 VMSTATE_UINT16(statistics.rcv_tco_frames, EEPRO100State),
1785#if 0
1786 VMSTATE_UINT16(status, EEPRO100State),
1787#endif
1788 /* Configuration bytes. */
1789 VMSTATE_BUFFER(configuration, EEPRO100State),
1790 VMSTATE_END_OF_LIST()
1791 }
1792};
1793
1794static void nic_cleanup(VLANClientState *nc)
1795{
1796 EEPRO100State *s = DO_UPCAST(NICState, nc, nc)->opaque;
1797
1798 s->nic = NULL;
1799}
1800
1801static int pci_nic_uninit(PCIDevice *pci_dev)
1802{
1803 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1804
1805 cpu_unregister_io_memory(s->mmio_index);
1806 vmstate_unregister(s->vmstate, s);
1807 eeprom93xx_free(s->eeprom);
1808 qemu_del_vlan_client(&s->nic->nc);
1809 return 0;
1810}
1811
1812static NetClientInfo net_eepro100_info = {
1813 .type = NET_CLIENT_TYPE_NIC,
1814 .size = sizeof(NICState),
1815 .can_receive = nic_can_receive,
1816 .receive = nic_receive,
1817 .cleanup = nic_cleanup,
1818};
1819
1820static int nic_init(PCIDevice *pci_dev, uint32_t device)
1821{
1822 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
1823
1824 TRACE(OTHER, logout("\n"));
1825
1826 s->device = device;
1827
1828 pci_reset(s);
1829
1830 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1831 * i82559 and later support 64 or 256 word EEPROM. */
1832 s->eeprom = eeprom93xx_new(EEPROM_SIZE);
1833
1834 /* Handler for memory-mapped I/O */
1835 s->mmio_index =
1836 cpu_register_io_memory(pci_mmio_read, pci_mmio_write, s);
1837
1838 pci_register_bar(&s->dev, 0, PCI_MEM_SIZE,
1839 PCI_BASE_ADDRESS_SPACE_MEMORY |
1840 PCI_BASE_ADDRESS_MEM_PREFETCH, pci_mmio_map);
1841 pci_register_bar(&s->dev, 1, PCI_IO_SIZE, PCI_BASE_ADDRESS_SPACE_IO,
1842 pci_map);
1843 pci_register_bar(&s->dev, 2, PCI_FLASH_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
1844 pci_mmio_map);
1845
1846 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1847 logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6));
1848 assert(s->region[1] == 0);
1849
1850 nic_reset(s);
1851
1852 s->nic = qemu_new_nic(&net_eepro100_info, &s->conf,
1853 pci_dev->qdev.info->name, pci_dev->qdev.id, s);
1854
1855 qemu_format_nic_info_str(&s->nic->nc, s->conf.macaddr.a);
1856 TRACE(OTHER, logout("%s\n", s->nic->nc.info_str));
1857
1858 qemu_register_reset(nic_reset, s);
1859
1860 s->vmstate = qemu_malloc(sizeof(vmstate_eepro100));
1861 memcpy(s->vmstate, &vmstate_eepro100, sizeof(vmstate_eepro100));
1862 s->vmstate->name = s->nic->nc.model;
1863 vmstate_register(-1, s->vmstate, s);
1864
1865 return 0;
1866}
1867
1868static int pci_i82550_init(PCIDevice *pci_dev)
1869{
1870 return nic_init(pci_dev, i82550);
1871}
1872
1873static int pci_i82551_init(PCIDevice *pci_dev)
1874{
1875 return nic_init(pci_dev, i82551);
1876}
1877
1878static int pci_i82557a_init(PCIDevice *pci_dev)
1879{
1880 return nic_init(pci_dev, i82557A);
1881}
1882
1883static int pci_i82557b_init(PCIDevice *pci_dev)
1884{
1885 return nic_init(pci_dev, i82557B);
1886}
1887
1888static int pci_i82557c_init(PCIDevice *pci_dev)
1889{
1890 return nic_init(pci_dev, i82557C);
1891}
1892
1893static int pci_i82558a_init(PCIDevice *pci_dev)
1894{
1895 return nic_init(pci_dev, i82558A);
1896}
1897
1898static int pci_i82558b_init(PCIDevice *pci_dev)
1899{
1900 return nic_init(pci_dev, i82558B);
1901}
1902
1903static int pci_i82559a_init(PCIDevice *pci_dev)
1904{
1905 return nic_init(pci_dev, i82559A);
1906}
1907
1908static int pci_i82559b_init(PCIDevice *pci_dev)
1909{
1910 return nic_init(pci_dev, i82559B);
1911}
1912
1913static int pci_i82559c_init(PCIDevice *pci_dev)
1914{
1915 return nic_init(pci_dev, i82559C);
1916}
1917
1918static int pci_i82559er_init(PCIDevice *pci_dev)
1919{
1920 return nic_init(pci_dev, i82559ER);
1921}
1922
1923static int pci_i82562_init(PCIDevice *pci_dev)
1924{
1925 return nic_init(pci_dev, i82562);
1926}
1927
1928static PCIDeviceInfo eepro100_info[] = {
1929 {
1930 .qdev.name = "i82550",
1931 .qdev.size = sizeof(EEPRO100State),
1932 .init = pci_i82550_init,
1933 .exit = pci_nic_uninit,
1934 .qdev.props = (Property[]) {
1935 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1936 DEFINE_PROP_END_OF_LIST(),
1937 },
1938 },{
1939 .qdev.name = "i82551",
1940 .qdev.size = sizeof(EEPRO100State),
1941 .init = pci_i82551_init,
1942 .exit = pci_nic_uninit,
1943 .qdev.props = (Property[]) {
1944 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1945 DEFINE_PROP_END_OF_LIST(),
1946 },
1947 },{
1948 .qdev.name = "i82557a",
1949 .qdev.size = sizeof(EEPRO100State),
1950 .init = pci_i82557a_init,
1951 .exit = pci_nic_uninit,
1952 .qdev.props = (Property[]) {
1953 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1954 DEFINE_PROP_END_OF_LIST(),
1955 },
1956 },{
1957 .qdev.name = "i82557b",
1958 .qdev.size = sizeof(EEPRO100State),
1959 .init = pci_i82557b_init,
1960 .exit = pci_nic_uninit,
1961 .qdev.props = (Property[]) {
1962 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1963 DEFINE_PROP_END_OF_LIST(),
1964 },
1965 },{
1966 .qdev.name = "i82557c",
1967 .qdev.size = sizeof(EEPRO100State),
1968 .init = pci_i82557c_init,
1969 .exit = pci_nic_uninit,
1970 .qdev.props = (Property[]) {
1971 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1972 DEFINE_PROP_END_OF_LIST(),
1973 },
1974 },{
1975 .qdev.name = "i82558a",
1976 .qdev.size = sizeof(EEPRO100State),
1977 .init = pci_i82558a_init,
1978 .exit = pci_nic_uninit,
1979 .qdev.props = (Property[]) {
1980 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1981 DEFINE_PROP_END_OF_LIST(),
1982 },
1983 },{
1984 .qdev.name = "i82558b",
1985 .qdev.size = sizeof(EEPRO100State),
1986 .init = pci_i82558b_init,
1987 .exit = pci_nic_uninit,
1988 .qdev.props = (Property[]) {
1989 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1990 DEFINE_PROP_END_OF_LIST(),
1991 },
1992 },{
1993 .qdev.name = "i82559a",
1994 .qdev.size = sizeof(EEPRO100State),
1995 .init = pci_i82559a_init,
1996 .exit = pci_nic_uninit,
1997 .qdev.props = (Property[]) {
1998 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
1999 DEFINE_PROP_END_OF_LIST(),
2000 },
2001 },{
2002 .qdev.name = "i82559b",
2003 .qdev.size = sizeof(EEPRO100State),
2004 .init = pci_i82559b_init,
2005 .exit = pci_nic_uninit,
2006 .qdev.props = (Property[]) {
2007 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2008 DEFINE_PROP_END_OF_LIST(),
2009 },
2010 },{
2011 .qdev.name = "i82559c",
2012 .qdev.size = sizeof(EEPRO100State),
2013 .init = pci_i82559c_init,
2014 .exit = pci_nic_uninit,
2015 .qdev.props = (Property[]) {
2016 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2017 DEFINE_PROP_END_OF_LIST(),
2018 },
2019 },{
2020 .qdev.name = "i82559er",
2021 .qdev.size = sizeof(EEPRO100State),
2022 .init = pci_i82559er_init,
2023 .exit = pci_nic_uninit,
2024 .romfile = "pxe-i82559er.bin",
2025 .qdev.props = (Property[]) {
2026 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2027 DEFINE_PROP_END_OF_LIST(),
2028 },
2029 },{
2030 .qdev.name = "i82562",
2031 .qdev.size = sizeof(EEPRO100State),
2032 .init = pci_i82562_init,
2033 .exit = pci_nic_uninit,
2034 .qdev.props = (Property[]) {
2035 DEFINE_NIC_PROPERTIES(EEPRO100State, conf),
2036 DEFINE_PROP_END_OF_LIST(),
2037 },
2038 },{
2039 /* end of list */
2040 }
2041};
2042
2043static void eepro100_register_devices(void)
2044{
2045 pci_qdev_register_many(eepro100_info);
2046}
2047
2048device_init(eepro100_register_devices)