]> git.proxmox.com Git - mirror_spl-debian.git/blame_incremental - module/spl/spl-taskq.c
taskq style, convert spaces to soft tabs
[mirror_spl-debian.git] / module / spl / spl-taskq.c
... / ...
CommitLineData
1/*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://github.com/behlendorf/spl/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Task Queue Implementation.
25\*****************************************************************************/
26
27#include <sys/taskq.h>
28#include <sys/kmem.h>
29#include <spl-debug.h>
30
31#ifdef SS_DEBUG_SUBSYS
32#undef SS_DEBUG_SUBSYS
33#endif
34
35#define SS_DEBUG_SUBSYS SS_TASKQ
36
37/* Global system-wide dynamic task queue available for all consumers */
38taskq_t *system_taskq;
39EXPORT_SYMBOL(system_taskq);
40
41static int
42task_km_flags(uint_t flags)
43{
44 if (flags & TQ_NOSLEEP)
45 return KM_NOSLEEP;
46
47 if (flags & TQ_PUSHPAGE)
48 return KM_PUSHPAGE;
49
50 return KM_SLEEP;
51}
52
53/*
54 * NOTE: Must be called with tq->tq_lock held, returns a list_t which
55 * is not attached to the free, work, or pending taskq lists.
56 */
57static taskq_ent_t *
58task_alloc(taskq_t *tq, uint_t flags)
59{
60 taskq_ent_t *t;
61 int count = 0;
62 SENTRY;
63
64 ASSERT(tq);
65 ASSERT(spin_is_locked(&tq->tq_lock));
66retry:
67 /* Acquire taskq_ent_t's from free list if available */
68 if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
69 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
70
71 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
72
73 list_del_init(&t->tqent_list);
74 SRETURN(t);
75 }
76
77 /* Free list is empty and memory allocations are prohibited */
78 if (flags & TQ_NOALLOC)
79 SRETURN(NULL);
80
81 /* Hit maximum taskq_ent_t pool size */
82 if (tq->tq_nalloc >= tq->tq_maxalloc) {
83 if (flags & TQ_NOSLEEP)
84 SRETURN(NULL);
85
86 /*
87 * Sleep periodically polling the free list for an available
88 * taskq_ent_t. Dispatching with TQ_SLEEP should always succeed
89 * but we cannot block forever waiting for an taskq_ent_t to
90 * show up in the free list, otherwise a deadlock can happen.
91 *
92 * Therefore, we need to allocate a new task even if the number
93 * of allocated tasks is above tq->tq_maxalloc, but we still
94 * end up delaying the task allocation by one second, thereby
95 * throttling the task dispatch rate.
96 */
97 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
98 schedule_timeout(HZ / 100);
99 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
100 if (count < 100)
101 SGOTO(retry, count++);
102 }
103
104 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
105 t = kmem_alloc(sizeof(taskq_ent_t), task_km_flags(flags));
106 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
107
108 if (t) {
109 taskq_init_ent(t);
110 tq->tq_nalloc++;
111 }
112
113 SRETURN(t);
114}
115
116/*
117 * NOTE: Must be called with tq->tq_lock held, expects the taskq_ent_t
118 * to already be removed from the free, work, or pending taskq lists.
119 */
120static void
121task_free(taskq_t *tq, taskq_ent_t *t)
122{
123 SENTRY;
124
125 ASSERT(tq);
126 ASSERT(t);
127 ASSERT(spin_is_locked(&tq->tq_lock));
128 ASSERT(list_empty(&t->tqent_list));
129
130 kmem_free(t, sizeof(taskq_ent_t));
131 tq->tq_nalloc--;
132
133 SEXIT;
134}
135
136/*
137 * NOTE: Must be called with tq->tq_lock held, either destroys the
138 * taskq_ent_t if too many exist or moves it to the free list for later use.
139 */
140static void
141task_done(taskq_t *tq, taskq_ent_t *t)
142{
143 SENTRY;
144 ASSERT(tq);
145 ASSERT(t);
146 ASSERT(spin_is_locked(&tq->tq_lock));
147
148 list_del_init(&t->tqent_list);
149
150 if (tq->tq_nalloc <= tq->tq_minalloc) {
151 t->tqent_id = 0;
152 t->tqent_func = NULL;
153 t->tqent_arg = NULL;
154 t->tqent_flags = 0;
155
156 list_add_tail(&t->tqent_list, &tq->tq_free_list);
157 } else {
158 task_free(tq, t);
159 }
160
161 SEXIT;
162}
163
164/*
165 * As tasks are submitted to the task queue they are assigned a
166 * monotonically increasing taskqid and added to the tail of the pending
167 * list. As worker threads become available the tasks are removed from
168 * the head of the pending or priority list, giving preference to the
169 * priority list. The tasks are then removed from their respective
170 * list, and the taskq_thread servicing the task is added to the active
171 * list, preserving the order using the serviced task's taskqid.
172 * Finally, as tasks complete the taskq_thread servicing the task is
173 * removed from the active list. This means that the pending task and
174 * active taskq_thread lists are always kept sorted by taskqid. Thus the
175 * lowest outstanding incomplete taskqid can be determined simply by
176 * checking the min taskqid for each head item on the pending, priority,
177 * and active taskq_thread list. This value is stored in
178 * tq->tq_lowest_id and only updated to the new lowest id when the
179 * previous lowest id completes. All taskqids lower than
180 * tq->tq_lowest_id must have completed. It is also possible larger
181 * taskqid's have completed because they may be processed in parallel by
182 * several worker threads. However, this is not a problem because the
183 * behavior of taskq_wait_id() is to block until all previously
184 * submitted taskqid's have completed.
185 *
186 * XXX: Taskqid_t wrapping is not handled. However, taskqid_t's are
187 * 64-bit values so even if a taskq is processing 2^24 (16,777,216)
188 * taskqid_ts per second it will still take 2^40 seconds, 34,865 years,
189 * before the wrap occurs. I can live with that for now.
190 */
191static int
192taskq_wait_check(taskq_t *tq, taskqid_t id)
193{
194 int rc;
195
196 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
197 rc = (id < tq->tq_lowest_id);
198 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
199
200 SRETURN(rc);
201}
202
203void
204__taskq_wait_id(taskq_t *tq, taskqid_t id)
205{
206 SENTRY;
207 ASSERT(tq);
208
209 wait_event(tq->tq_wait_waitq, taskq_wait_check(tq, id));
210
211 SEXIT;
212}
213EXPORT_SYMBOL(__taskq_wait_id);
214
215void
216__taskq_wait(taskq_t *tq)
217{
218 taskqid_t id;
219 SENTRY;
220 ASSERT(tq);
221
222 /* Wait for the largest outstanding taskqid */
223 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
224 id = tq->tq_next_id - 1;
225 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
226
227 __taskq_wait_id(tq, id);
228
229 SEXIT;
230
231}
232EXPORT_SYMBOL(__taskq_wait);
233
234int
235__taskq_member(taskq_t *tq, void *t)
236{
237 struct list_head *l;
238 taskq_thread_t *tqt;
239 SENTRY;
240
241 ASSERT(tq);
242 ASSERT(t);
243
244 list_for_each(l, &tq->tq_thread_list) {
245 tqt = list_entry(l, taskq_thread_t, tqt_thread_list);
246 if (tqt->tqt_thread == (struct task_struct *)t)
247 SRETURN(1);
248 }
249
250 SRETURN(0);
251}
252EXPORT_SYMBOL(__taskq_member);
253
254taskqid_t
255__taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
256{
257 taskq_ent_t *t;
258 taskqid_t rc = 0;
259 SENTRY;
260
261 ASSERT(tq);
262 ASSERT(func);
263
264 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
265
266 /* Taskq being destroyed and all tasks drained */
267 if (!(tq->tq_flags & TQ_ACTIVE))
268 SGOTO(out, rc = 0);
269
270 /* Do not queue the task unless there is idle thread for it */
271 ASSERT(tq->tq_nactive <= tq->tq_nthreads);
272 if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads))
273 SGOTO(out, rc = 0);
274
275 if ((t = task_alloc(tq, flags)) == NULL)
276 SGOTO(out, rc = 0);
277
278 spin_lock(&t->tqent_lock);
279
280 /* Queue to the priority list instead of the pending list */
281 if (flags & TQ_FRONT)
282 list_add_tail(&t->tqent_list, &tq->tq_prio_list);
283 else
284 list_add_tail(&t->tqent_list, &tq->tq_pend_list);
285
286 t->tqent_id = rc = tq->tq_next_id;
287 tq->tq_next_id++;
288 t->tqent_func = func;
289 t->tqent_arg = arg;
290
291 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
292
293 spin_unlock(&t->tqent_lock);
294
295 wake_up(&tq->tq_work_waitq);
296out:
297 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
298 SRETURN(rc);
299}
300EXPORT_SYMBOL(__taskq_dispatch);
301
302void
303__taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
304 taskq_ent_t *t)
305{
306 SENTRY;
307
308 ASSERT(tq);
309 ASSERT(func);
310 ASSERT(!(tq->tq_flags & TASKQ_DYNAMIC));
311
312 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
313
314 /* Taskq being destroyed and all tasks drained */
315 if (!(tq->tq_flags & TQ_ACTIVE)) {
316 t->tqent_id = 0;
317 goto out;
318 }
319
320 spin_lock(&t->tqent_lock);
321
322 /*
323 * Mark it as a prealloc'd task. This is important
324 * to ensure that we don't free it later.
325 */
326 t->tqent_flags |= TQENT_FLAG_PREALLOC;
327
328 /* Queue to the priority list instead of the pending list */
329 if (flags & TQ_FRONT)
330 list_add_tail(&t->tqent_list, &tq->tq_prio_list);
331 else
332 list_add_tail(&t->tqent_list, &tq->tq_pend_list);
333
334 t->tqent_id = tq->tq_next_id;
335 tq->tq_next_id++;
336 t->tqent_func = func;
337 t->tqent_arg = arg;
338
339 spin_unlock(&t->tqent_lock);
340
341 wake_up(&tq->tq_work_waitq);
342out:
343 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
344 SEXIT;
345}
346EXPORT_SYMBOL(__taskq_dispatch_ent);
347
348int
349__taskq_empty_ent(taskq_ent_t *t)
350{
351 return list_empty(&t->tqent_list);
352}
353EXPORT_SYMBOL(__taskq_empty_ent);
354
355void
356__taskq_init_ent(taskq_ent_t *t)
357{
358 spin_lock_init(&t->tqent_lock);
359 INIT_LIST_HEAD(&t->tqent_list);
360 t->tqent_id = 0;
361 t->tqent_func = NULL;
362 t->tqent_arg = NULL;
363 t->tqent_flags = 0;
364}
365EXPORT_SYMBOL(__taskq_init_ent);
366
367/*
368 * Returns the lowest incomplete taskqid_t. The taskqid_t may
369 * be queued on the pending list, on the priority list, or on
370 * the work list currently being handled, but it is not 100%
371 * complete yet.
372 */
373static taskqid_t
374taskq_lowest_id(taskq_t *tq)
375{
376 taskqid_t lowest_id = tq->tq_next_id;
377 taskq_ent_t *t;
378 taskq_thread_t *tqt;
379 SENTRY;
380
381 ASSERT(tq);
382 ASSERT(spin_is_locked(&tq->tq_lock));
383
384 if (!list_empty(&tq->tq_pend_list)) {
385 t = list_entry(tq->tq_pend_list.next, taskq_ent_t, tqent_list);
386 lowest_id = MIN(lowest_id, t->tqent_id);
387 }
388
389 if (!list_empty(&tq->tq_prio_list)) {
390 t = list_entry(tq->tq_prio_list.next, taskq_ent_t, tqent_list);
391 lowest_id = MIN(lowest_id, t->tqent_id);
392 }
393
394 if (!list_empty(&tq->tq_active_list)) {
395 tqt = list_entry(tq->tq_active_list.next, taskq_thread_t,
396 tqt_active_list);
397 ASSERT(tqt->tqt_id != 0);
398 lowest_id = MIN(lowest_id, tqt->tqt_id);
399 }
400
401 SRETURN(lowest_id);
402}
403
404/*
405 * Insert a task into a list keeping the list sorted by increasing taskqid.
406 */
407static void
408taskq_insert_in_order(taskq_t *tq, taskq_thread_t *tqt)
409{
410 taskq_thread_t *w;
411 struct list_head *l;
412
413 SENTRY;
414 ASSERT(tq);
415 ASSERT(tqt);
416 ASSERT(spin_is_locked(&tq->tq_lock));
417
418 list_for_each_prev(l, &tq->tq_active_list) {
419 w = list_entry(l, taskq_thread_t, tqt_active_list);
420 if (w->tqt_id < tqt->tqt_id) {
421 list_add(&tqt->tqt_active_list, l);
422 break;
423 }
424 }
425 if (l == &tq->tq_active_list)
426 list_add(&tqt->tqt_active_list, &tq->tq_active_list);
427
428 SEXIT;
429}
430
431static int
432taskq_thread(void *args)
433{
434 DECLARE_WAITQUEUE(wait, current);
435 sigset_t blocked;
436 taskq_thread_t *tqt = args;
437 taskq_t *tq;
438 taskq_ent_t *t;
439 struct list_head *pend_list;
440 SENTRY;
441
442 ASSERT(tqt);
443 tq = tqt->tqt_tq;
444 current->flags |= PF_NOFREEZE;
445
446 sigfillset(&blocked);
447 sigprocmask(SIG_BLOCK, &blocked, NULL);
448 flush_signals(current);
449
450 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
451 tq->tq_nthreads++;
452 wake_up(&tq->tq_wait_waitq);
453 set_current_state(TASK_INTERRUPTIBLE);
454
455 while (!kthread_should_stop()) {
456
457 if (list_empty(&tq->tq_pend_list) &&
458 list_empty(&tq->tq_prio_list)) {
459 add_wait_queue_exclusive(&tq->tq_work_waitq, &wait);
460 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
461 schedule();
462 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
463 remove_wait_queue(&tq->tq_work_waitq, &wait);
464 } else {
465 __set_current_state(TASK_RUNNING);
466 }
467
468
469 if (!list_empty(&tq->tq_prio_list))
470 pend_list = &tq->tq_prio_list;
471 else if (!list_empty(&tq->tq_pend_list))
472 pend_list = &tq->tq_pend_list;
473 else
474 pend_list = NULL;
475
476 if (pend_list) {
477 t = list_entry(pend_list->next,taskq_ent_t,tqent_list);
478 list_del_init(&t->tqent_list);
479
480 /* In order to support recursively dispatching a
481 * preallocated taskq_ent_t, tqent_id must be
482 * stored prior to executing tqent_func. */
483 tqt->tqt_id = t->tqent_id;
484
485 /* We must store a copy of the flags prior to
486 * servicing the task (servicing a prealloc'd task
487 * returns the ownership of the tqent back to
488 * the caller of taskq_dispatch). Thus,
489 * tqent_flags _may_ change within the call. */
490 tqt->tqt_flags = t->tqent_flags;
491
492 taskq_insert_in_order(tq, tqt);
493 tq->tq_nactive++;
494 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
495
496 /* Perform the requested task */
497 t->tqent_func(t->tqent_arg);
498
499 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
500 tq->tq_nactive--;
501 list_del_init(&tqt->tqt_active_list);
502
503 /* For prealloc'd tasks, we don't free anything. */
504 if ((tq->tq_flags & TASKQ_DYNAMIC) ||
505 !(tqt->tqt_flags & TQENT_FLAG_PREALLOC))
506 task_done(tq, t);
507
508 /* When the current lowest outstanding taskqid is
509 * done calculate the new lowest outstanding id */
510 if (tq->tq_lowest_id == tqt->tqt_id) {
511 tq->tq_lowest_id = taskq_lowest_id(tq);
512 ASSERT3S(tq->tq_lowest_id, >, tqt->tqt_id);
513 }
514
515 tqt->tqt_id = 0;
516 tqt->tqt_flags = 0;
517 wake_up_all(&tq->tq_wait_waitq);
518 }
519
520 set_current_state(TASK_INTERRUPTIBLE);
521
522 }
523
524 __set_current_state(TASK_RUNNING);
525 tq->tq_nthreads--;
526 list_del_init(&tqt->tqt_thread_list);
527 kmem_free(tqt, sizeof(taskq_thread_t));
528
529 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
530
531 SRETURN(0);
532}
533
534taskq_t *
535__taskq_create(const char *name, int nthreads, pri_t pri,
536 int minalloc, int maxalloc, uint_t flags)
537{
538 taskq_t *tq;
539 taskq_thread_t *tqt;
540 int rc = 0, i, j = 0;
541 SENTRY;
542
543 ASSERT(name != NULL);
544 ASSERT(pri <= maxclsyspri);
545 ASSERT(minalloc >= 0);
546 ASSERT(maxalloc <= INT_MAX);
547 ASSERT(!(flags & (TASKQ_CPR_SAFE | TASKQ_DYNAMIC))); /* Unsupported */
548
549 /* Scale the number of threads using nthreads as a percentage */
550 if (flags & TASKQ_THREADS_CPU_PCT) {
551 ASSERT(nthreads <= 100);
552 ASSERT(nthreads >= 0);
553 nthreads = MIN(nthreads, 100);
554 nthreads = MAX(nthreads, 0);
555 nthreads = MAX((num_online_cpus() * nthreads) / 100, 1);
556 }
557
558 tq = kmem_alloc(sizeof(*tq), KM_PUSHPAGE);
559 if (tq == NULL)
560 SRETURN(NULL);
561
562 spin_lock_init(&tq->tq_lock);
563 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
564 INIT_LIST_HEAD(&tq->tq_thread_list);
565 INIT_LIST_HEAD(&tq->tq_active_list);
566 tq->tq_name = name;
567 tq->tq_nactive = 0;
568 tq->tq_nthreads = 0;
569 tq->tq_pri = pri;
570 tq->tq_minalloc = minalloc;
571 tq->tq_maxalloc = maxalloc;
572 tq->tq_nalloc = 0;
573 tq->tq_flags = (flags | TQ_ACTIVE);
574 tq->tq_next_id = 1;
575 tq->tq_lowest_id = 1;
576 INIT_LIST_HEAD(&tq->tq_free_list);
577 INIT_LIST_HEAD(&tq->tq_pend_list);
578 INIT_LIST_HEAD(&tq->tq_prio_list);
579 init_waitqueue_head(&tq->tq_work_waitq);
580 init_waitqueue_head(&tq->tq_wait_waitq);
581
582 if (flags & TASKQ_PREPOPULATE)
583 for (i = 0; i < minalloc; i++)
584 task_done(tq, task_alloc(tq, TQ_PUSHPAGE | TQ_NEW));
585
586 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
587
588 for (i = 0; i < nthreads; i++) {
589 tqt = kmem_alloc(sizeof(*tqt), KM_PUSHPAGE);
590 INIT_LIST_HEAD(&tqt->tqt_thread_list);
591 INIT_LIST_HEAD(&tqt->tqt_active_list);
592 tqt->tqt_tq = tq;
593 tqt->tqt_id = 0;
594
595 tqt->tqt_thread = kthread_create(taskq_thread, tqt,
596 "%s/%d", name, i);
597 if (tqt->tqt_thread) {
598 list_add(&tqt->tqt_thread_list, &tq->tq_thread_list);
599 kthread_bind(tqt->tqt_thread, i % num_online_cpus());
600 set_user_nice(tqt->tqt_thread, PRIO_TO_NICE(pri));
601 wake_up_process(tqt->tqt_thread);
602 j++;
603 } else {
604 kmem_free(tqt, sizeof(taskq_thread_t));
605 rc = 1;
606 }
607 }
608
609 /* Wait for all threads to be started before potential destroy */
610 wait_event(tq->tq_wait_waitq, tq->tq_nthreads == j);
611
612 if (rc) {
613 __taskq_destroy(tq);
614 tq = NULL;
615 }
616
617 SRETURN(tq);
618}
619EXPORT_SYMBOL(__taskq_create);
620
621void
622__taskq_destroy(taskq_t *tq)
623{
624 struct task_struct *thread;
625 taskq_thread_t *tqt;
626 taskq_ent_t *t;
627 SENTRY;
628
629 ASSERT(tq);
630 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
631 tq->tq_flags &= ~TQ_ACTIVE;
632 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
633
634 /* TQ_ACTIVE cleared prevents new tasks being added to pending */
635 __taskq_wait(tq);
636
637 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
638
639 /*
640 * Signal each thread to exit and block until it does. Each thread
641 * is responsible for removing itself from the list and freeing its
642 * taskq_thread_t. This allows for idle threads to opt to remove
643 * themselves from the taskq. They can be recreated as needed.
644 */
645 while (!list_empty(&tq->tq_thread_list)) {
646 tqt = list_entry(tq->tq_thread_list.next,
647 taskq_thread_t, tqt_thread_list);
648 thread = tqt->tqt_thread;
649 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
650
651 kthread_stop(thread);
652
653 spin_lock_irqsave(&tq->tq_lock, tq->tq_lock_flags);
654 }
655
656 while (!list_empty(&tq->tq_free_list)) {
657 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
658
659 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
660
661 list_del_init(&t->tqent_list);
662 task_free(tq, t);
663 }
664
665 ASSERT(tq->tq_nthreads == 0);
666 ASSERT(tq->tq_nalloc == 0);
667 ASSERT(list_empty(&tq->tq_thread_list));
668 ASSERT(list_empty(&tq->tq_active_list));
669 ASSERT(list_empty(&tq->tq_free_list));
670 ASSERT(list_empty(&tq->tq_pend_list));
671 ASSERT(list_empty(&tq->tq_prio_list));
672
673 spin_unlock_irqrestore(&tq->tq_lock, tq->tq_lock_flags);
674
675 kmem_free(tq, sizeof(taskq_t));
676
677 SEXIT;
678}
679EXPORT_SYMBOL(__taskq_destroy);
680
681int
682spl_taskq_init(void)
683{
684 SENTRY;
685
686 /* Solaris creates a dynamic taskq of up to 64 threads, however in
687 * a Linux environment 1 thread per-core is usually about right */
688 system_taskq = taskq_create("spl_system_taskq", num_online_cpus(),
689 minclsyspri, 4, 512, TASKQ_PREPOPULATE);
690 if (system_taskq == NULL)
691 SRETURN(1);
692
693 SRETURN(0);
694}
695
696void
697spl_taskq_fini(void)
698{
699 SENTRY;
700 taskq_destroy(system_taskq);
701 SEXIT;
702}