]> git.proxmox.com Git - qemu.git/blame_incremental - qemu-doc.texi
target-mips: Add ASE DSP multiply instructions
[qemu.git] / qemu-doc.texi
... / ...
CommitLineData
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4
5@documentlanguage en
6@documentencoding UTF-8
7
8@settitle QEMU Emulator User Documentation
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
12
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
19@iftex
20@titlepage
21@sp 7
22@center @titlefont{QEMU Emulator}
23@sp 1
24@center @titlefont{User Documentation}
25@sp 3
26@end titlepage
27@end iftex
28
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
38* QEMU User space emulator::
39* compilation:: Compilation from the sources
40* License::
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
48@chapter Introduction
49
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
55@section Features
56
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
59
60QEMU has two operating modes:
61
62@itemize
63@cindex operating modes
64
65@item
66@cindex system emulation
67Full system emulation. In this mode, QEMU emulates a full system (for
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
71
72@item
73@cindex user mode emulation
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
78
79@end itemize
80
81QEMU can run without a host kernel driver and yet gives acceptable
82performance.
83
84For system emulation, the following hardware targets are supported:
85@itemize
86@cindex emulated target systems
87@cindex supported target systems
88@item PC (x86 or x86_64 processor)
89@item ISA PC (old style PC without PCI bus)
90@item PREP (PowerPC processor)
91@item G3 Beige PowerMac (PowerPC processor)
92@item Mac99 PowerMac (PowerPC processor, in progress)
93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95@item Malta board (32-bit and 64-bit MIPS processors)
96@item MIPS Magnum (64-bit MIPS processor)
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
99@item ARM RealView Emulation/Platform baseboard (ARM)
100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103@item Freescale MCF5208EVB (ColdFire V2).
104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105@item Palm Tungsten|E PDA (OMAP310 processor)
106@item N800 and N810 tablets (OMAP2420 processor)
107@item MusicPal (MV88W8618 ARM processor)
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112@item Avnet LX60/LX110/LX200 boards (Xtensa)
113@end itemize
114
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119
120@node Installation
121@chapter Installation
122
123If you want to compile QEMU yourself, see @ref{compilation}.
124
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
132@section Linux
133@cindex installation (Linux)
134
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
137
138@node install_windows
139@section Windows
140@cindex installation (Windows)
141
142Download the experimental binary installer at
143@url{http://www.free.oszoo.org/@/download.html}.
144TODO (no longer available)
145
146@node install_mac
147@section Mac OS X
148
149Download the experimental binary installer at
150@url{http://www.free.oszoo.org/@/download.html}.
151TODO (no longer available)
152
153@node QEMU PC System emulator
154@chapter QEMU PC System emulator
155@cindex system emulation (PC)
156
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
165* pcsys_other_devs:: Other Devices
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
168* vnc_security:: VNC security
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
174@section Introduction
175
176@c man begin DESCRIPTION
177
178The QEMU PC System emulator simulates the
179following peripherals:
180
181@itemize @minus
182@item
183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184@item
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
187@item
188PS/2 mouse and keyboard
189@item
1902 PCI IDE interfaces with hard disk and CD-ROM support
191@item
192Floppy disk
193@item
194PCI and ISA network adapters
195@item
196Serial ports
197@item
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
202Intel 82801AA AC97 Audio compatible sound card
203@item
204Intel HD Audio Controller and HDA codec
205@item
206Adlib (OPL2) - Yamaha YM3812 compatible chip
207@item
208Gravis Ultrasound GF1 sound card
209@item
210CS4231A compatible sound card
211@item
212PCI UHCI USB controller and a virtual USB hub.
213@end itemize
214
215SMP is supported with up to 255 CPUs.
216
217Note that adlib, gus and cs4231a are only available when QEMU was
218configured with --audio-card-list option containing the name(s) of
219required card(s).
220
221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222VGA BIOS.
223
224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227by Tibor "TS" Schütz.
228
229Note that, by default, GUS shares IRQ(7) with parallel ports and so
230QEMU must be told to not have parallel ports to have working GUS.
231
232@example
233qemu-system-i386 dos.img -soundhw gus -parallel none
234@end example
235
236Alternatively:
237@example
238qemu-system-i386 dos.img -device gus,irq=5
239@end example
240
241Or some other unclaimed IRQ.
242
243CS4231A is the chip used in Windows Sound System and GUSMAX products
244
245@c man end
246
247@node pcsys_quickstart
248@section Quick Start
249@cindex quick start
250
251Download and uncompress the linux image (@file{linux.img}) and type:
252
253@example
254qemu-system-i386 linux.img
255@end example
256
257Linux should boot and give you a prompt.
258
259@node sec_invocation
260@section Invocation
261
262@example
263@c man begin SYNOPSIS
264usage: qemu-system-i386 [options] [@var{disk_image}]
265@c man end
266@end example
267
268@c man begin OPTIONS
269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270targets do not need a disk image.
271
272@include qemu-options.texi
273
274@c man end
275
276@node pcsys_keys
277@section Keys
278
279@c man begin OPTIONS
280
281During the graphical emulation, you can use special key combinations to change
282modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
286@table @key
287@item Ctrl-Alt-f
288@kindex Ctrl-Alt-f
289Toggle full screen
290
291@item Ctrl-Alt-+
292@kindex Ctrl-Alt-+
293Enlarge the screen
294
295@item Ctrl-Alt--
296@kindex Ctrl-Alt--
297Shrink the screen
298
299@item Ctrl-Alt-u
300@kindex Ctrl-Alt-u
301Restore the screen's un-scaled dimensions
302
303@item Ctrl-Alt-n
304@kindex Ctrl-Alt-n
305Switch to virtual console 'n'. Standard console mappings are:
306@table @emph
307@item 1
308Target system display
309@item 2
310Monitor
311@item 3
312Serial port
313@end table
314
315@item Ctrl-Alt
316@kindex Ctrl-Alt
317Toggle mouse and keyboard grab.
318@end table
319
320@kindex Ctrl-Up
321@kindex Ctrl-Down
322@kindex Ctrl-PageUp
323@kindex Ctrl-PageDown
324In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
327@kindex Ctrl-a h
328During emulation, if you are using the @option{-nographic} option, use
329@key{Ctrl-a h} to get terminal commands:
330
331@table @key
332@item Ctrl-a h
333@kindex Ctrl-a h
334@item Ctrl-a ?
335@kindex Ctrl-a ?
336Print this help
337@item Ctrl-a x
338@kindex Ctrl-a x
339Exit emulator
340@item Ctrl-a s
341@kindex Ctrl-a s
342Save disk data back to file (if -snapshot)
343@item Ctrl-a t
344@kindex Ctrl-a t
345Toggle console timestamps
346@item Ctrl-a b
347@kindex Ctrl-a b
348Send break (magic sysrq in Linux)
349@item Ctrl-a c
350@kindex Ctrl-a c
351Switch between console and monitor
352@item Ctrl-a Ctrl-a
353@kindex Ctrl-a a
354Send Ctrl-a
355@end table
356@c man end
357
358@ignore
359
360@c man begin SEEALSO
361The HTML documentation of QEMU for more precise information and Linux
362user mode emulator invocation.
363@c man end
364
365@c man begin AUTHOR
366Fabrice Bellard
367@c man end
368
369@end ignore
370
371@node pcsys_monitor
372@section QEMU Monitor
373@cindex QEMU monitor
374
375The QEMU monitor is used to give complex commands to the QEMU
376emulator. You can use it to:
377
378@itemize @minus
379
380@item
381Remove or insert removable media images
382(such as CD-ROM or floppies).
383
384@item
385Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386from a disk file.
387
388@item Inspect the VM state without an external debugger.
389
390@end itemize
391
392@subsection Commands
393
394The following commands are available:
395
396@include qemu-monitor.texi
397
398@subsection Integer expressions
399
400The monitor understands integers expressions for every integer
401argument. You can use register names to get the value of specifics
402CPU registers by prefixing them with @emph{$}.
403
404@node disk_images
405@section Disk Images
406
407Since version 0.6.1, QEMU supports many disk image formats, including
408growable disk images (their size increase as non empty sectors are
409written), compressed and encrypted disk images. Version 0.8.3 added
410the new qcow2 disk image format which is essential to support VM
411snapshots.
412
413@menu
414* disk_images_quickstart:: Quick start for disk image creation
415* disk_images_snapshot_mode:: Snapshot mode
416* vm_snapshots:: VM snapshots
417* qemu_img_invocation:: qemu-img Invocation
418* qemu_nbd_invocation:: qemu-nbd Invocation
419* host_drives:: Using host drives
420* disk_images_fat_images:: Virtual FAT disk images
421* disk_images_nbd:: NBD access
422* disk_images_sheepdog:: Sheepdog disk images
423* disk_images_iscsi:: iSCSI LUNs
424@end menu
425
426@node disk_images_quickstart
427@subsection Quick start for disk image creation
428
429You can create a disk image with the command:
430@example
431qemu-img create myimage.img mysize
432@end example
433where @var{myimage.img} is the disk image filename and @var{mysize} is its
434size in kilobytes. You can add an @code{M} suffix to give the size in
435megabytes and a @code{G} suffix for gigabytes.
436
437See @ref{qemu_img_invocation} for more information.
438
439@node disk_images_snapshot_mode
440@subsection Snapshot mode
441
442If you use the option @option{-snapshot}, all disk images are
443considered as read only. When sectors in written, they are written in
444a temporary file created in @file{/tmp}. You can however force the
445write back to the raw disk images by using the @code{commit} monitor
446command (or @key{C-a s} in the serial console).
447
448@node vm_snapshots
449@subsection VM snapshots
450
451VM snapshots are snapshots of the complete virtual machine including
452CPU state, RAM, device state and the content of all the writable
453disks. In order to use VM snapshots, you must have at least one non
454removable and writable block device using the @code{qcow2} disk image
455format. Normally this device is the first virtual hard drive.
456
457Use the monitor command @code{savevm} to create a new VM snapshot or
458replace an existing one. A human readable name can be assigned to each
459snapshot in addition to its numerical ID.
460
461Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
462a VM snapshot. @code{info snapshots} lists the available snapshots
463with their associated information:
464
465@example
466(qemu) info snapshots
467Snapshot devices: hda
468Snapshot list (from hda):
469ID TAG VM SIZE DATE VM CLOCK
4701 start 41M 2006-08-06 12:38:02 00:00:14.954
4712 40M 2006-08-06 12:43:29 00:00:18.633
4723 msys 40M 2006-08-06 12:44:04 00:00:23.514
473@end example
474
475A VM snapshot is made of a VM state info (its size is shown in
476@code{info snapshots}) and a snapshot of every writable disk image.
477The VM state info is stored in the first @code{qcow2} non removable
478and writable block device. The disk image snapshots are stored in
479every disk image. The size of a snapshot in a disk image is difficult
480to evaluate and is not shown by @code{info snapshots} because the
481associated disk sectors are shared among all the snapshots to save
482disk space (otherwise each snapshot would need a full copy of all the
483disk images).
484
485When using the (unrelated) @code{-snapshot} option
486(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
487but they are deleted as soon as you exit QEMU.
488
489VM snapshots currently have the following known limitations:
490@itemize
491@item
492They cannot cope with removable devices if they are removed or
493inserted after a snapshot is done.
494@item
495A few device drivers still have incomplete snapshot support so their
496state is not saved or restored properly (in particular USB).
497@end itemize
498
499@node qemu_img_invocation
500@subsection @code{qemu-img} Invocation
501
502@include qemu-img.texi
503
504@node qemu_nbd_invocation
505@subsection @code{qemu-nbd} Invocation
506
507@include qemu-nbd.texi
508
509@node host_drives
510@subsection Using host drives
511
512In addition to disk image files, QEMU can directly access host
513devices. We describe here the usage for QEMU version >= 0.8.3.
514
515@subsubsection Linux
516
517On Linux, you can directly use the host device filename instead of a
518disk image filename provided you have enough privileges to access
519it. For example, use @file{/dev/cdrom} to access to the CDROM or
520@file{/dev/fd0} for the floppy.
521
522@table @code
523@item CD
524You can specify a CDROM device even if no CDROM is loaded. QEMU has
525specific code to detect CDROM insertion or removal. CDROM ejection by
526the guest OS is supported. Currently only data CDs are supported.
527@item Floppy
528You can specify a floppy device even if no floppy is loaded. Floppy
529removal is currently not detected accurately (if you change floppy
530without doing floppy access while the floppy is not loaded, the guest
531OS will think that the same floppy is loaded).
532@item Hard disks
533Hard disks can be used. Normally you must specify the whole disk
534(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
535see it as a partitioned disk. WARNING: unless you know what you do, it
536is better to only make READ-ONLY accesses to the hard disk otherwise
537you may corrupt your host data (use the @option{-snapshot} command
538line option or modify the device permissions accordingly).
539@end table
540
541@subsubsection Windows
542
543@table @code
544@item CD
545The preferred syntax is the drive letter (e.g. @file{d:}). The
546alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
547supported as an alias to the first CDROM drive.
548
549Currently there is no specific code to handle removable media, so it
550is better to use the @code{change} or @code{eject} monitor commands to
551change or eject media.
552@item Hard disks
553Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
554where @var{N} is the drive number (0 is the first hard disk).
555
556WARNING: unless you know what you do, it is better to only make
557READ-ONLY accesses to the hard disk otherwise you may corrupt your
558host data (use the @option{-snapshot} command line so that the
559modifications are written in a temporary file).
560@end table
561
562
563@subsubsection Mac OS X
564
565@file{/dev/cdrom} is an alias to the first CDROM.
566
567Currently there is no specific code to handle removable media, so it
568is better to use the @code{change} or @code{eject} monitor commands to
569change or eject media.
570
571@node disk_images_fat_images
572@subsection Virtual FAT disk images
573
574QEMU can automatically create a virtual FAT disk image from a
575directory tree. In order to use it, just type:
576
577@example
578qemu-system-i386 linux.img -hdb fat:/my_directory
579@end example
580
581Then you access access to all the files in the @file{/my_directory}
582directory without having to copy them in a disk image or to export
583them via SAMBA or NFS. The default access is @emph{read-only}.
584
585Floppies can be emulated with the @code{:floppy:} option:
586
587@example
588qemu-system-i386 linux.img -fda fat:floppy:/my_directory
589@end example
590
591A read/write support is available for testing (beta stage) with the
592@code{:rw:} option:
593
594@example
595qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
596@end example
597
598What you should @emph{never} do:
599@itemize
600@item use non-ASCII filenames ;
601@item use "-snapshot" together with ":rw:" ;
602@item expect it to work when loadvm'ing ;
603@item write to the FAT directory on the host system while accessing it with the guest system.
604@end itemize
605
606@node disk_images_nbd
607@subsection NBD access
608
609QEMU can access directly to block device exported using the Network Block Device
610protocol.
611
612@example
613qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
614@end example
615
616If the NBD server is located on the same host, you can use an unix socket instead
617of an inet socket:
618
619@example
620qemu-system-i386 linux.img -hdb nbd:unix:/tmp/my_socket
621@end example
622
623In this case, the block device must be exported using qemu-nbd:
624
625@example
626qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
627@end example
628
629The use of qemu-nbd allows to share a disk between several guests:
630@example
631qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
632@end example
633
634and then you can use it with two guests:
635@example
636qemu-system-i386 linux1.img -hdb nbd:unix:/tmp/my_socket
637qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
638@end example
639
640If the nbd-server uses named exports (since NBD 2.9.18), you must use the
641"exportname" option:
642@example
643qemu-system-i386 -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
644qemu-system-i386 -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
645@end example
646
647@node disk_images_sheepdog
648@subsection Sheepdog disk images
649
650Sheepdog is a distributed storage system for QEMU. It provides highly
651available block level storage volumes that can be attached to
652QEMU-based virtual machines.
653
654You can create a Sheepdog disk image with the command:
655@example
656qemu-img create sheepdog:@var{image} @var{size}
657@end example
658where @var{image} is the Sheepdog image name and @var{size} is its
659size.
660
661To import the existing @var{filename} to Sheepdog, you can use a
662convert command.
663@example
664qemu-img convert @var{filename} sheepdog:@var{image}
665@end example
666
667You can boot from the Sheepdog disk image with the command:
668@example
669qemu-system-i386 sheepdog:@var{image}
670@end example
671
672You can also create a snapshot of the Sheepdog image like qcow2.
673@example
674qemu-img snapshot -c @var{tag} sheepdog:@var{image}
675@end example
676where @var{tag} is a tag name of the newly created snapshot.
677
678To boot from the Sheepdog snapshot, specify the tag name of the
679snapshot.
680@example
681qemu-system-i386 sheepdog:@var{image}:@var{tag}
682@end example
683
684You can create a cloned image from the existing snapshot.
685@example
686qemu-img create -b sheepdog:@var{base}:@var{tag} sheepdog:@var{image}
687@end example
688where @var{base} is a image name of the source snapshot and @var{tag}
689is its tag name.
690
691If the Sheepdog daemon doesn't run on the local host, you need to
692specify one of the Sheepdog servers to connect to.
693@example
694qemu-img create sheepdog:@var{hostname}:@var{port}:@var{image} @var{size}
695qemu-system-i386 sheepdog:@var{hostname}:@var{port}:@var{image}
696@end example
697
698@node disk_images_iscsi
699@subsection iSCSI LUNs
700
701iSCSI is a popular protocol used to access SCSI devices across a computer
702network.
703
704There are two different ways iSCSI devices can be used by QEMU.
705
706The first method is to mount the iSCSI LUN on the host, and make it appear as
707any other ordinary SCSI device on the host and then to access this device as a
708/dev/sd device from QEMU. How to do this differs between host OSes.
709
710The second method involves using the iSCSI initiator that is built into
711QEMU. This provides a mechanism that works the same way regardless of which
712host OS you are running QEMU on. This section will describe this second method
713of using iSCSI together with QEMU.
714
715In QEMU, iSCSI devices are described using special iSCSI URLs
716
717@example
718URL syntax:
719iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
720@end example
721
722Username and password are optional and only used if your target is set up
723using CHAP authentication for access control.
724Alternatively the username and password can also be set via environment
725variables to have these not show up in the process list
726
727@example
728export LIBISCSI_CHAP_USERNAME=<username>
729export LIBISCSI_CHAP_PASSWORD=<password>
730iscsi://<host>/<target-iqn-name>/<lun>
731@end example
732
733Various session related parameters can be set via special options, either
734in a configuration file provided via '-readconfig' or directly on the
735command line.
736
737If the initiator-name is not specified qemu will use a default name
738of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
739virtual machine.
740
741
742@example
743Setting a specific initiator name to use when logging in to the target
744-iscsi initiator-name=iqn.qemu.test:my-initiator
745@end example
746
747@example
748Controlling which type of header digest to negotiate with the target
749-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
750@end example
751
752These can also be set via a configuration file
753@example
754[iscsi]
755 user = "CHAP username"
756 password = "CHAP password"
757 initiator-name = "iqn.qemu.test:my-initiator"
758 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
759 header-digest = "CRC32C"
760@end example
761
762
763Setting the target name allows different options for different targets
764@example
765[iscsi "iqn.target.name"]
766 user = "CHAP username"
767 password = "CHAP password"
768 initiator-name = "iqn.qemu.test:my-initiator"
769 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
770 header-digest = "CRC32C"
771@end example
772
773
774Howto use a configuration file to set iSCSI configuration options:
775@example
776cat >iscsi.conf <<EOF
777[iscsi]
778 user = "me"
779 password = "my password"
780 initiator-name = "iqn.qemu.test:my-initiator"
781 header-digest = "CRC32C"
782EOF
783
784qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
785 -readconfig iscsi.conf
786@end example
787
788
789Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
790@example
791This example shows how to set up an iSCSI target with one CDROM and one DISK
792using the Linux STGT software target. This target is available on Red Hat based
793systems as the package 'scsi-target-utils'.
794
795tgtd --iscsi portal=127.0.0.1:3260
796tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
797tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
798 -b /IMAGES/disk.img --device-type=disk
799tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
800 -b /IMAGES/cd.iso --device-type=cd
801tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
802
803qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
804 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
805 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
806@end example
807
808
809
810@node pcsys_network
811@section Network emulation
812
813QEMU can simulate several network cards (PCI or ISA cards on the PC
814target) and can connect them to an arbitrary number of Virtual Local
815Area Networks (VLANs). Host TAP devices can be connected to any QEMU
816VLAN. VLAN can be connected between separate instances of QEMU to
817simulate large networks. For simpler usage, a non privileged user mode
818network stack can replace the TAP device to have a basic network
819connection.
820
821@subsection VLANs
822
823QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
824connection between several network devices. These devices can be for
825example QEMU virtual Ethernet cards or virtual Host ethernet devices
826(TAP devices).
827
828@subsection Using TAP network interfaces
829
830This is the standard way to connect QEMU to a real network. QEMU adds
831a virtual network device on your host (called @code{tapN}), and you
832can then configure it as if it was a real ethernet card.
833
834@subsubsection Linux host
835
836As an example, you can download the @file{linux-test-xxx.tar.gz}
837archive and copy the script @file{qemu-ifup} in @file{/etc} and
838configure properly @code{sudo} so that the command @code{ifconfig}
839contained in @file{qemu-ifup} can be executed as root. You must verify
840that your host kernel supports the TAP network interfaces: the
841device @file{/dev/net/tun} must be present.
842
843See @ref{sec_invocation} to have examples of command lines using the
844TAP network interfaces.
845
846@subsubsection Windows host
847
848There is a virtual ethernet driver for Windows 2000/XP systems, called
849TAP-Win32. But it is not included in standard QEMU for Windows,
850so you will need to get it separately. It is part of OpenVPN package,
851so download OpenVPN from : @url{http://openvpn.net/}.
852
853@subsection Using the user mode network stack
854
855By using the option @option{-net user} (default configuration if no
856@option{-net} option is specified), QEMU uses a completely user mode
857network stack (you don't need root privilege to use the virtual
858network). The virtual network configuration is the following:
859
860@example
861
862 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
863 | (10.0.2.2)
864 |
865 ----> DNS server (10.0.2.3)
866 |
867 ----> SMB server (10.0.2.4)
868@end example
869
870The QEMU VM behaves as if it was behind a firewall which blocks all
871incoming connections. You can use a DHCP client to automatically
872configure the network in the QEMU VM. The DHCP server assign addresses
873to the hosts starting from 10.0.2.15.
874
875In order to check that the user mode network is working, you can ping
876the address 10.0.2.2 and verify that you got an address in the range
87710.0.2.x from the QEMU virtual DHCP server.
878
879Note that @code{ping} is not supported reliably to the internet as it
880would require root privileges. It means you can only ping the local
881router (10.0.2.2).
882
883When using the built-in TFTP server, the router is also the TFTP
884server.
885
886When using the @option{-redir} option, TCP or UDP connections can be
887redirected from the host to the guest. It allows for example to
888redirect X11, telnet or SSH connections.
889
890@subsection Connecting VLANs between QEMU instances
891
892Using the @option{-net socket} option, it is possible to make VLANs
893that span several QEMU instances. See @ref{sec_invocation} to have a
894basic example.
895
896@node pcsys_other_devs
897@section Other Devices
898
899@subsection Inter-VM Shared Memory device
900
901With KVM enabled on a Linux host, a shared memory device is available. Guests
902map a POSIX shared memory region into the guest as a PCI device that enables
903zero-copy communication to the application level of the guests. The basic
904syntax is:
905
906@example
907qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
908@end example
909
910If desired, interrupts can be sent between guest VMs accessing the same shared
911memory region. Interrupt support requires using a shared memory server and
912using a chardev socket to connect to it. The code for the shared memory server
913is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
914memory server is:
915
916@example
917qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
918 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
919qemu-system-i386 -chardev socket,path=<path>,id=<id>
920@end example
921
922When using the server, the guest will be assigned a VM ID (>=0) that allows guests
923using the same server to communicate via interrupts. Guests can read their
924VM ID from a device register (see example code). Since receiving the shared
925memory region from the server is asynchronous, there is a (small) chance the
926guest may boot before the shared memory is attached. To allow an application
927to ensure shared memory is attached, the VM ID register will return -1 (an
928invalid VM ID) until the memory is attached. Once the shared memory is
929attached, the VM ID will return the guest's valid VM ID. With these semantics,
930the guest application can check to ensure the shared memory is attached to the
931guest before proceeding.
932
933The @option{role} argument can be set to either master or peer and will affect
934how the shared memory is migrated. With @option{role=master}, the guest will
935copy the shared memory on migration to the destination host. With
936@option{role=peer}, the guest will not be able to migrate with the device attached.
937With the @option{peer} case, the device should be detached and then reattached
938after migration using the PCI hotplug support.
939
940@node direct_linux_boot
941@section Direct Linux Boot
942
943This section explains how to launch a Linux kernel inside QEMU without
944having to make a full bootable image. It is very useful for fast Linux
945kernel testing.
946
947The syntax is:
948@example
949qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
950@end example
951
952Use @option{-kernel} to provide the Linux kernel image and
953@option{-append} to give the kernel command line arguments. The
954@option{-initrd} option can be used to provide an INITRD image.
955
956When using the direct Linux boot, a disk image for the first hard disk
957@file{hda} is required because its boot sector is used to launch the
958Linux kernel.
959
960If you do not need graphical output, you can disable it and redirect
961the virtual serial port and the QEMU monitor to the console with the
962@option{-nographic} option. The typical command line is:
963@example
964qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
965 -append "root=/dev/hda console=ttyS0" -nographic
966@end example
967
968Use @key{Ctrl-a c} to switch between the serial console and the
969monitor (@pxref{pcsys_keys}).
970
971@node pcsys_usb
972@section USB emulation
973
974QEMU emulates a PCI UHCI USB controller. You can virtually plug
975virtual USB devices or real host USB devices (experimental, works only
976on Linux hosts). QEMU will automatically create and connect virtual USB hubs
977as necessary to connect multiple USB devices.
978
979@menu
980* usb_devices::
981* host_usb_devices::
982@end menu
983@node usb_devices
984@subsection Connecting USB devices
985
986USB devices can be connected with the @option{-usbdevice} commandline option
987or the @code{usb_add} monitor command. Available devices are:
988
989@table @code
990@item mouse
991Virtual Mouse. This will override the PS/2 mouse emulation when activated.
992@item tablet
993Pointer device that uses absolute coordinates (like a touchscreen).
994This means QEMU is able to report the mouse position without having
995to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
996@item disk:@var{file}
997Mass storage device based on @var{file} (@pxref{disk_images})
998@item host:@var{bus.addr}
999Pass through the host device identified by @var{bus.addr}
1000(Linux only)
1001@item host:@var{vendor_id:product_id}
1002Pass through the host device identified by @var{vendor_id:product_id}
1003(Linux only)
1004@item wacom-tablet
1005Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1006above but it can be used with the tslib library because in addition to touch
1007coordinates it reports touch pressure.
1008@item keyboard
1009Standard USB keyboard. Will override the PS/2 keyboard (if present).
1010@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1011Serial converter. This emulates an FTDI FT232BM chip connected to host character
1012device @var{dev}. The available character devices are the same as for the
1013@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1014used to override the default 0403:6001. For instance,
1015@example
1016usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1017@end example
1018will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1019serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1020@item braille
1021Braille device. This will use BrlAPI to display the braille output on a real
1022or fake device.
1023@item net:@var{options}
1024Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1025specifies NIC options as with @code{-net nic,}@var{options} (see description).
1026For instance, user-mode networking can be used with
1027@example
1028qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1029@end example
1030Currently this cannot be used in machines that support PCI NICs.
1031@item bt[:@var{hci-type}]
1032Bluetooth dongle whose type is specified in the same format as with
1033the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1034no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1035This USB device implements the USB Transport Layer of HCI. Example
1036usage:
1037@example
1038qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1039@end example
1040@end table
1041
1042@node host_usb_devices
1043@subsection Using host USB devices on a Linux host
1044
1045WARNING: this is an experimental feature. QEMU will slow down when
1046using it. USB devices requiring real time streaming (i.e. USB Video
1047Cameras) are not supported yet.
1048
1049@enumerate
1050@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1051is actually using the USB device. A simple way to do that is simply to
1052disable the corresponding kernel module by renaming it from @file{mydriver.o}
1053to @file{mydriver.o.disabled}.
1054
1055@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1056@example
1057ls /proc/bus/usb
1058001 devices drivers
1059@end example
1060
1061@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1062@example
1063chown -R myuid /proc/bus/usb
1064@end example
1065
1066@item Launch QEMU and do in the monitor:
1067@example
1068info usbhost
1069 Device 1.2, speed 480 Mb/s
1070 Class 00: USB device 1234:5678, USB DISK
1071@end example
1072You should see the list of the devices you can use (Never try to use
1073hubs, it won't work).
1074
1075@item Add the device in QEMU by using:
1076@example
1077usb_add host:1234:5678
1078@end example
1079
1080Normally the guest OS should report that a new USB device is
1081plugged. You can use the option @option{-usbdevice} to do the same.
1082
1083@item Now you can try to use the host USB device in QEMU.
1084
1085@end enumerate
1086
1087When relaunching QEMU, you may have to unplug and plug again the USB
1088device to make it work again (this is a bug).
1089
1090@node vnc_security
1091@section VNC security
1092
1093The VNC server capability provides access to the graphical console
1094of the guest VM across the network. This has a number of security
1095considerations depending on the deployment scenarios.
1096
1097@menu
1098* vnc_sec_none::
1099* vnc_sec_password::
1100* vnc_sec_certificate::
1101* vnc_sec_certificate_verify::
1102* vnc_sec_certificate_pw::
1103* vnc_sec_sasl::
1104* vnc_sec_certificate_sasl::
1105* vnc_generate_cert::
1106* vnc_setup_sasl::
1107@end menu
1108@node vnc_sec_none
1109@subsection Without passwords
1110
1111The simplest VNC server setup does not include any form of authentication.
1112For this setup it is recommended to restrict it to listen on a UNIX domain
1113socket only. For example
1114
1115@example
1116qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1117@end example
1118
1119This ensures that only users on local box with read/write access to that
1120path can access the VNC server. To securely access the VNC server from a
1121remote machine, a combination of netcat+ssh can be used to provide a secure
1122tunnel.
1123
1124@node vnc_sec_password
1125@subsection With passwords
1126
1127The VNC protocol has limited support for password based authentication. Since
1128the protocol limits passwords to 8 characters it should not be considered
1129to provide high security. The password can be fairly easily brute-forced by
1130a client making repeat connections. For this reason, a VNC server using password
1131authentication should be restricted to only listen on the loopback interface
1132or UNIX domain sockets. Password authentication is not supported when operating
1133in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1134authentication is requested with the @code{password} option, and then once QEMU
1135is running the password is set with the monitor. Until the monitor is used to
1136set the password all clients will be rejected.
1137
1138@example
1139qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1140(qemu) change vnc password
1141Password: ********
1142(qemu)
1143@end example
1144
1145@node vnc_sec_certificate
1146@subsection With x509 certificates
1147
1148The QEMU VNC server also implements the VeNCrypt extension allowing use of
1149TLS for encryption of the session, and x509 certificates for authentication.
1150The use of x509 certificates is strongly recommended, because TLS on its
1151own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1152support provides a secure session, but no authentication. This allows any
1153client to connect, and provides an encrypted session.
1154
1155@example
1156qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1157@end example
1158
1159In the above example @code{/etc/pki/qemu} should contain at least three files,
1160@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1161users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1162NB the @code{server-key.pem} file should be protected with file mode 0600 to
1163only be readable by the user owning it.
1164
1165@node vnc_sec_certificate_verify
1166@subsection With x509 certificates and client verification
1167
1168Certificates can also provide a means to authenticate the client connecting.
1169The server will request that the client provide a certificate, which it will
1170then validate against the CA certificate. This is a good choice if deploying
1171in an environment with a private internal certificate authority.
1172
1173@example
1174qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1175@end example
1176
1177
1178@node vnc_sec_certificate_pw
1179@subsection With x509 certificates, client verification and passwords
1180
1181Finally, the previous method can be combined with VNC password authentication
1182to provide two layers of authentication for clients.
1183
1184@example
1185qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1186(qemu) change vnc password
1187Password: ********
1188(qemu)
1189@end example
1190
1191
1192@node vnc_sec_sasl
1193@subsection With SASL authentication
1194
1195The SASL authentication method is a VNC extension, that provides an
1196easily extendable, pluggable authentication method. This allows for
1197integration with a wide range of authentication mechanisms, such as
1198PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1199The strength of the authentication depends on the exact mechanism
1200configured. If the chosen mechanism also provides a SSF layer, then
1201it will encrypt the datastream as well.
1202
1203Refer to the later docs on how to choose the exact SASL mechanism
1204used for authentication, but assuming use of one supporting SSF,
1205then QEMU can be launched with:
1206
1207@example
1208qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1209@end example
1210
1211@node vnc_sec_certificate_sasl
1212@subsection With x509 certificates and SASL authentication
1213
1214If the desired SASL authentication mechanism does not supported
1215SSF layers, then it is strongly advised to run it in combination
1216with TLS and x509 certificates. This provides securely encrypted
1217data stream, avoiding risk of compromising of the security
1218credentials. This can be enabled, by combining the 'sasl' option
1219with the aforementioned TLS + x509 options:
1220
1221@example
1222qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1223@end example
1224
1225
1226@node vnc_generate_cert
1227@subsection Generating certificates for VNC
1228
1229The GNU TLS packages provides a command called @code{certtool} which can
1230be used to generate certificates and keys in PEM format. At a minimum it
1231is necessary to setup a certificate authority, and issue certificates to
1232each server. If using certificates for authentication, then each client
1233will also need to be issued a certificate. The recommendation is for the
1234server to keep its certificates in either @code{/etc/pki/qemu} or for
1235unprivileged users in @code{$HOME/.pki/qemu}.
1236
1237@menu
1238* vnc_generate_ca::
1239* vnc_generate_server::
1240* vnc_generate_client::
1241@end menu
1242@node vnc_generate_ca
1243@subsubsection Setup the Certificate Authority
1244
1245This step only needs to be performed once per organization / organizational
1246unit. First the CA needs a private key. This key must be kept VERY secret
1247and secure. If this key is compromised the entire trust chain of the certificates
1248issued with it is lost.
1249
1250@example
1251# certtool --generate-privkey > ca-key.pem
1252@end example
1253
1254A CA needs to have a public certificate. For simplicity it can be a self-signed
1255certificate, or one issue by a commercial certificate issuing authority. To
1256generate a self-signed certificate requires one core piece of information, the
1257name of the organization.
1258
1259@example
1260# cat > ca.info <<EOF
1261cn = Name of your organization
1262ca
1263cert_signing_key
1264EOF
1265# certtool --generate-self-signed \
1266 --load-privkey ca-key.pem
1267 --template ca.info \
1268 --outfile ca-cert.pem
1269@end example
1270
1271The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1272TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1273
1274@node vnc_generate_server
1275@subsubsection Issuing server certificates
1276
1277Each server (or host) needs to be issued with a key and certificate. When connecting
1278the certificate is sent to the client which validates it against the CA certificate.
1279The core piece of information for a server certificate is the hostname. This should
1280be the fully qualified hostname that the client will connect with, since the client
1281will typically also verify the hostname in the certificate. On the host holding the
1282secure CA private key:
1283
1284@example
1285# cat > server.info <<EOF
1286organization = Name of your organization
1287cn = server.foo.example.com
1288tls_www_server
1289encryption_key
1290signing_key
1291EOF
1292# certtool --generate-privkey > server-key.pem
1293# certtool --generate-certificate \
1294 --load-ca-certificate ca-cert.pem \
1295 --load-ca-privkey ca-key.pem \
1296 --load-privkey server server-key.pem \
1297 --template server.info \
1298 --outfile server-cert.pem
1299@end example
1300
1301The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1302to the server for which they were generated. The @code{server-key.pem} is security
1303sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1304
1305@node vnc_generate_client
1306@subsubsection Issuing client certificates
1307
1308If the QEMU VNC server is to use the @code{x509verify} option to validate client
1309certificates as its authentication mechanism, each client also needs to be issued
1310a certificate. The client certificate contains enough metadata to uniquely identify
1311the client, typically organization, state, city, building, etc. On the host holding
1312the secure CA private key:
1313
1314@example
1315# cat > client.info <<EOF
1316country = GB
1317state = London
1318locality = London
1319organiazation = Name of your organization
1320cn = client.foo.example.com
1321tls_www_client
1322encryption_key
1323signing_key
1324EOF
1325# certtool --generate-privkey > client-key.pem
1326# certtool --generate-certificate \
1327 --load-ca-certificate ca-cert.pem \
1328 --load-ca-privkey ca-key.pem \
1329 --load-privkey client-key.pem \
1330 --template client.info \
1331 --outfile client-cert.pem
1332@end example
1333
1334The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1335copied to the client for which they were generated.
1336
1337
1338@node vnc_setup_sasl
1339
1340@subsection Configuring SASL mechanisms
1341
1342The following documentation assumes use of the Cyrus SASL implementation on a
1343Linux host, but the principals should apply to any other SASL impl. When SASL
1344is enabled, the mechanism configuration will be loaded from system default
1345SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1346unprivileged user, an environment variable SASL_CONF_PATH can be used
1347to make it search alternate locations for the service config.
1348
1349The default configuration might contain
1350
1351@example
1352mech_list: digest-md5
1353sasldb_path: /etc/qemu/passwd.db
1354@end example
1355
1356This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1357Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1358in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1359command. While this mechanism is easy to configure and use, it is not
1360considered secure by modern standards, so only suitable for developers /
1361ad-hoc testing.
1362
1363A more serious deployment might use Kerberos, which is done with the 'gssapi'
1364mechanism
1365
1366@example
1367mech_list: gssapi
1368keytab: /etc/qemu/krb5.tab
1369@end example
1370
1371For this to work the administrator of your KDC must generate a Kerberos
1372principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1373replacing 'somehost.example.com' with the fully qualified host name of the
1374machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1375
1376Other configurations will be left as an exercise for the reader. It should
1377be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1378encryption. For all other mechanisms, VNC should always be configured to
1379use TLS and x509 certificates to protect security credentials from snooping.
1380
1381@node gdb_usage
1382@section GDB usage
1383
1384QEMU has a primitive support to work with gdb, so that you can do
1385'Ctrl-C' while the virtual machine is running and inspect its state.
1386
1387In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1388gdb connection:
1389@example
1390qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1391 -append "root=/dev/hda"
1392Connected to host network interface: tun0
1393Waiting gdb connection on port 1234
1394@end example
1395
1396Then launch gdb on the 'vmlinux' executable:
1397@example
1398> gdb vmlinux
1399@end example
1400
1401In gdb, connect to QEMU:
1402@example
1403(gdb) target remote localhost:1234
1404@end example
1405
1406Then you can use gdb normally. For example, type 'c' to launch the kernel:
1407@example
1408(gdb) c
1409@end example
1410
1411Here are some useful tips in order to use gdb on system code:
1412
1413@enumerate
1414@item
1415Use @code{info reg} to display all the CPU registers.
1416@item
1417Use @code{x/10i $eip} to display the code at the PC position.
1418@item
1419Use @code{set architecture i8086} to dump 16 bit code. Then use
1420@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1421@end enumerate
1422
1423Advanced debugging options:
1424
1425The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1426@table @code
1427@item maintenance packet qqemu.sstepbits
1428
1429This will display the MASK bits used to control the single stepping IE:
1430@example
1431(gdb) maintenance packet qqemu.sstepbits
1432sending: "qqemu.sstepbits"
1433received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1434@end example
1435@item maintenance packet qqemu.sstep
1436
1437This will display the current value of the mask used when single stepping IE:
1438@example
1439(gdb) maintenance packet qqemu.sstep
1440sending: "qqemu.sstep"
1441received: "0x7"
1442@end example
1443@item maintenance packet Qqemu.sstep=HEX_VALUE
1444
1445This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1446@example
1447(gdb) maintenance packet Qqemu.sstep=0x5
1448sending: "qemu.sstep=0x5"
1449received: "OK"
1450@end example
1451@end table
1452
1453@node pcsys_os_specific
1454@section Target OS specific information
1455
1456@subsection Linux
1457
1458To have access to SVGA graphic modes under X11, use the @code{vesa} or
1459the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1460color depth in the guest and the host OS.
1461
1462When using a 2.6 guest Linux kernel, you should add the option
1463@code{clock=pit} on the kernel command line because the 2.6 Linux
1464kernels make very strict real time clock checks by default that QEMU
1465cannot simulate exactly.
1466
1467When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1468not activated because QEMU is slower with this patch. The QEMU
1469Accelerator Module is also much slower in this case. Earlier Fedora
1470Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1471patch by default. Newer kernels don't have it.
1472
1473@subsection Windows
1474
1475If you have a slow host, using Windows 95 is better as it gives the
1476best speed. Windows 2000 is also a good choice.
1477
1478@subsubsection SVGA graphic modes support
1479
1480QEMU emulates a Cirrus Logic GD5446 Video
1481card. All Windows versions starting from Windows 95 should recognize
1482and use this graphic card. For optimal performances, use 16 bit color
1483depth in the guest and the host OS.
1484
1485If you are using Windows XP as guest OS and if you want to use high
1486resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
14871280x1024x16), then you should use the VESA VBE virtual graphic card
1488(option @option{-std-vga}).
1489
1490@subsubsection CPU usage reduction
1491
1492Windows 9x does not correctly use the CPU HLT
1493instruction. The result is that it takes host CPU cycles even when
1494idle. You can install the utility from
1495@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1496problem. Note that no such tool is needed for NT, 2000 or XP.
1497
1498@subsubsection Windows 2000 disk full problem
1499
1500Windows 2000 has a bug which gives a disk full problem during its
1501installation. When installing it, use the @option{-win2k-hack} QEMU
1502option to enable a specific workaround. After Windows 2000 is
1503installed, you no longer need this option (this option slows down the
1504IDE transfers).
1505
1506@subsubsection Windows 2000 shutdown
1507
1508Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1509can. It comes from the fact that Windows 2000 does not automatically
1510use the APM driver provided by the BIOS.
1511
1512In order to correct that, do the following (thanks to Struan
1513Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1514Add/Troubleshoot a device => Add a new device & Next => No, select the
1515hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1516(again) a few times. Now the driver is installed and Windows 2000 now
1517correctly instructs QEMU to shutdown at the appropriate moment.
1518
1519@subsubsection Share a directory between Unix and Windows
1520
1521See @ref{sec_invocation} about the help of the option @option{-smb}.
1522
1523@subsubsection Windows XP security problem
1524
1525Some releases of Windows XP install correctly but give a security
1526error when booting:
1527@example
1528A problem is preventing Windows from accurately checking the
1529license for this computer. Error code: 0x800703e6.
1530@end example
1531
1532The workaround is to install a service pack for XP after a boot in safe
1533mode. Then reboot, and the problem should go away. Since there is no
1534network while in safe mode, its recommended to download the full
1535installation of SP1 or SP2 and transfer that via an ISO or using the
1536vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1537
1538@subsection MS-DOS and FreeDOS
1539
1540@subsubsection CPU usage reduction
1541
1542DOS does not correctly use the CPU HLT instruction. The result is that
1543it takes host CPU cycles even when idle. You can install the utility
1544from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1545problem.
1546
1547@node QEMU System emulator for non PC targets
1548@chapter QEMU System emulator for non PC targets
1549
1550QEMU is a generic emulator and it emulates many non PC
1551machines. Most of the options are similar to the PC emulator. The
1552differences are mentioned in the following sections.
1553
1554@menu
1555* PowerPC System emulator::
1556* Sparc32 System emulator::
1557* Sparc64 System emulator::
1558* MIPS System emulator::
1559* ARM System emulator::
1560* ColdFire System emulator::
1561* Cris System emulator::
1562* Microblaze System emulator::
1563* SH4 System emulator::
1564* Xtensa System emulator::
1565@end menu
1566
1567@node PowerPC System emulator
1568@section PowerPC System emulator
1569@cindex system emulation (PowerPC)
1570
1571Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1572or PowerMac PowerPC system.
1573
1574QEMU emulates the following PowerMac peripherals:
1575
1576@itemize @minus
1577@item
1578UniNorth or Grackle PCI Bridge
1579@item
1580PCI VGA compatible card with VESA Bochs Extensions
1581@item
15822 PMAC IDE interfaces with hard disk and CD-ROM support
1583@item
1584NE2000 PCI adapters
1585@item
1586Non Volatile RAM
1587@item
1588VIA-CUDA with ADB keyboard and mouse.
1589@end itemize
1590
1591QEMU emulates the following PREP peripherals:
1592
1593@itemize @minus
1594@item
1595PCI Bridge
1596@item
1597PCI VGA compatible card with VESA Bochs Extensions
1598@item
15992 IDE interfaces with hard disk and CD-ROM support
1600@item
1601Floppy disk
1602@item
1603NE2000 network adapters
1604@item
1605Serial port
1606@item
1607PREP Non Volatile RAM
1608@item
1609PC compatible keyboard and mouse.
1610@end itemize
1611
1612QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1613@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1614
1615Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1616for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1617v2) portable firmware implementation. The goal is to implement a 100%
1618IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1619
1620@c man begin OPTIONS
1621
1622The following options are specific to the PowerPC emulation:
1623
1624@table @option
1625
1626@item -g @var{W}x@var{H}[x@var{DEPTH}]
1627
1628Set the initial VGA graphic mode. The default is 800x600x15.
1629
1630@item -prom-env @var{string}
1631
1632Set OpenBIOS variables in NVRAM, for example:
1633
1634@example
1635qemu-system-ppc -prom-env 'auto-boot?=false' \
1636 -prom-env 'boot-device=hd:2,\yaboot' \
1637 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1638@end example
1639
1640These variables are not used by Open Hack'Ware.
1641
1642@end table
1643
1644@c man end
1645
1646
1647More information is available at
1648@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1649
1650@node Sparc32 System emulator
1651@section Sparc32 System emulator
1652@cindex system emulation (Sparc32)
1653
1654Use the executable @file{qemu-system-sparc} to simulate the following
1655Sun4m architecture machines:
1656@itemize @minus
1657@item
1658SPARCstation 4
1659@item
1660SPARCstation 5
1661@item
1662SPARCstation 10
1663@item
1664SPARCstation 20
1665@item
1666SPARCserver 600MP
1667@item
1668SPARCstation LX
1669@item
1670SPARCstation Voyager
1671@item
1672SPARCclassic
1673@item
1674SPARCbook
1675@end itemize
1676
1677The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1678but Linux limits the number of usable CPUs to 4.
1679
1680It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1681SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1682emulators are not usable yet.
1683
1684QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1685
1686@itemize @minus
1687@item
1688IOMMU or IO-UNITs
1689@item
1690TCX Frame buffer
1691@item
1692Lance (Am7990) Ethernet
1693@item
1694Non Volatile RAM M48T02/M48T08
1695@item
1696Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1697and power/reset logic
1698@item
1699ESP SCSI controller with hard disk and CD-ROM support
1700@item
1701Floppy drive (not on SS-600MP)
1702@item
1703CS4231 sound device (only on SS-5, not working yet)
1704@end itemize
1705
1706The number of peripherals is fixed in the architecture. Maximum
1707memory size depends on the machine type, for SS-5 it is 256MB and for
1708others 2047MB.
1709
1710Since version 0.8.2, QEMU uses OpenBIOS
1711@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1712firmware implementation. The goal is to implement a 100% IEEE
17131275-1994 (referred to as Open Firmware) compliant firmware.
1714
1715A sample Linux 2.6 series kernel and ram disk image are available on
1716the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1717some kernel versions work. Please note that currently Solaris kernels
1718don't work probably due to interface issues between OpenBIOS and
1719Solaris.
1720
1721@c man begin OPTIONS
1722
1723The following options are specific to the Sparc32 emulation:
1724
1725@table @option
1726
1727@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1728
1729Set the initial TCX graphic mode. The default is 1024x768x8, currently
1730the only other possible mode is 1024x768x24.
1731
1732@item -prom-env @var{string}
1733
1734Set OpenBIOS variables in NVRAM, for example:
1735
1736@example
1737qemu-system-sparc -prom-env 'auto-boot?=false' \
1738 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1739@end example
1740
1741@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1742
1743Set the emulated machine type. Default is SS-5.
1744
1745@end table
1746
1747@c man end
1748
1749@node Sparc64 System emulator
1750@section Sparc64 System emulator
1751@cindex system emulation (Sparc64)
1752
1753Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1754(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1755Niagara (T1) machine. The emulator is not usable for anything yet, but
1756it can launch some kernels.
1757
1758QEMU emulates the following peripherals:
1759
1760@itemize @minus
1761@item
1762UltraSparc IIi APB PCI Bridge
1763@item
1764PCI VGA compatible card with VESA Bochs Extensions
1765@item
1766PS/2 mouse and keyboard
1767@item
1768Non Volatile RAM M48T59
1769@item
1770PC-compatible serial ports
1771@item
17722 PCI IDE interfaces with hard disk and CD-ROM support
1773@item
1774Floppy disk
1775@end itemize
1776
1777@c man begin OPTIONS
1778
1779The following options are specific to the Sparc64 emulation:
1780
1781@table @option
1782
1783@item -prom-env @var{string}
1784
1785Set OpenBIOS variables in NVRAM, for example:
1786
1787@example
1788qemu-system-sparc64 -prom-env 'auto-boot?=false'
1789@end example
1790
1791@item -M [sun4u|sun4v|Niagara]
1792
1793Set the emulated machine type. The default is sun4u.
1794
1795@end table
1796
1797@c man end
1798
1799@node MIPS System emulator
1800@section MIPS System emulator
1801@cindex system emulation (MIPS)
1802
1803Four executables cover simulation of 32 and 64-bit MIPS systems in
1804both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1805@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1806Five different machine types are emulated:
1807
1808@itemize @minus
1809@item
1810A generic ISA PC-like machine "mips"
1811@item
1812The MIPS Malta prototype board "malta"
1813@item
1814An ACER Pica "pica61". This machine needs the 64-bit emulator.
1815@item
1816MIPS emulator pseudo board "mipssim"
1817@item
1818A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1819@end itemize
1820
1821The generic emulation is supported by Debian 'Etch' and is able to
1822install Debian into a virtual disk image. The following devices are
1823emulated:
1824
1825@itemize @minus
1826@item
1827A range of MIPS CPUs, default is the 24Kf
1828@item
1829PC style serial port
1830@item
1831PC style IDE disk
1832@item
1833NE2000 network card
1834@end itemize
1835
1836The Malta emulation supports the following devices:
1837
1838@itemize @minus
1839@item
1840Core board with MIPS 24Kf CPU and Galileo system controller
1841@item
1842PIIX4 PCI/USB/SMbus controller
1843@item
1844The Multi-I/O chip's serial device
1845@item
1846PCI network cards (PCnet32 and others)
1847@item
1848Malta FPGA serial device
1849@item
1850Cirrus (default) or any other PCI VGA graphics card
1851@end itemize
1852
1853The ACER Pica emulation supports:
1854
1855@itemize @minus
1856@item
1857MIPS R4000 CPU
1858@item
1859PC-style IRQ and DMA controllers
1860@item
1861PC Keyboard
1862@item
1863IDE controller
1864@end itemize
1865
1866The mipssim pseudo board emulation provides an environment similar
1867to what the proprietary MIPS emulator uses for running Linux.
1868It supports:
1869
1870@itemize @minus
1871@item
1872A range of MIPS CPUs, default is the 24Kf
1873@item
1874PC style serial port
1875@item
1876MIPSnet network emulation
1877@end itemize
1878
1879The MIPS Magnum R4000 emulation supports:
1880
1881@itemize @minus
1882@item
1883MIPS R4000 CPU
1884@item
1885PC-style IRQ controller
1886@item
1887PC Keyboard
1888@item
1889SCSI controller
1890@item
1891G364 framebuffer
1892@end itemize
1893
1894
1895@node ARM System emulator
1896@section ARM System emulator
1897@cindex system emulation (ARM)
1898
1899Use the executable @file{qemu-system-arm} to simulate a ARM
1900machine. The ARM Integrator/CP board is emulated with the following
1901devices:
1902
1903@itemize @minus
1904@item
1905ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1906@item
1907Two PL011 UARTs
1908@item
1909SMC 91c111 Ethernet adapter
1910@item
1911PL110 LCD controller
1912@item
1913PL050 KMI with PS/2 keyboard and mouse.
1914@item
1915PL181 MultiMedia Card Interface with SD card.
1916@end itemize
1917
1918The ARM Versatile baseboard is emulated with the following devices:
1919
1920@itemize @minus
1921@item
1922ARM926E, ARM1136 or Cortex-A8 CPU
1923@item
1924PL190 Vectored Interrupt Controller
1925@item
1926Four PL011 UARTs
1927@item
1928SMC 91c111 Ethernet adapter
1929@item
1930PL110 LCD controller
1931@item
1932PL050 KMI with PS/2 keyboard and mouse.
1933@item
1934PCI host bridge. Note the emulated PCI bridge only provides access to
1935PCI memory space. It does not provide access to PCI IO space.
1936This means some devices (eg. ne2k_pci NIC) are not usable, and others
1937(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1938mapped control registers.
1939@item
1940PCI OHCI USB controller.
1941@item
1942LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1943@item
1944PL181 MultiMedia Card Interface with SD card.
1945@end itemize
1946
1947Several variants of the ARM RealView baseboard are emulated,
1948including the EB, PB-A8 and PBX-A9. Due to interactions with the
1949bootloader, only certain Linux kernel configurations work out
1950of the box on these boards.
1951
1952Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1953enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1954should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1955disabled and expect 1024M RAM.
1956
1957The following devices are emulated:
1958
1959@itemize @minus
1960@item
1961ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1962@item
1963ARM AMBA Generic/Distributed Interrupt Controller
1964@item
1965Four PL011 UARTs
1966@item
1967SMC 91c111 or SMSC LAN9118 Ethernet adapter
1968@item
1969PL110 LCD controller
1970@item
1971PL050 KMI with PS/2 keyboard and mouse
1972@item
1973PCI host bridge
1974@item
1975PCI OHCI USB controller
1976@item
1977LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1978@item
1979PL181 MultiMedia Card Interface with SD card.
1980@end itemize
1981
1982The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1983and "Terrier") emulation includes the following peripherals:
1984
1985@itemize @minus
1986@item
1987Intel PXA270 System-on-chip (ARM V5TE core)
1988@item
1989NAND Flash memory
1990@item
1991IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1992@item
1993On-chip OHCI USB controller
1994@item
1995On-chip LCD controller
1996@item
1997On-chip Real Time Clock
1998@item
1999TI ADS7846 touchscreen controller on SSP bus
2000@item
2001Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2002@item
2003GPIO-connected keyboard controller and LEDs
2004@item
2005Secure Digital card connected to PXA MMC/SD host
2006@item
2007Three on-chip UARTs
2008@item
2009WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2010@end itemize
2011
2012The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2013following elements:
2014
2015@itemize @minus
2016@item
2017Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2018@item
2019ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2020@item
2021On-chip LCD controller
2022@item
2023On-chip Real Time Clock
2024@item
2025TI TSC2102i touchscreen controller / analog-digital converter / Audio
2026CODEC, connected through MicroWire and I@math{^2}S busses
2027@item
2028GPIO-connected matrix keypad
2029@item
2030Secure Digital card connected to OMAP MMC/SD host
2031@item
2032Three on-chip UARTs
2033@end itemize
2034
2035Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2036emulation supports the following elements:
2037
2038@itemize @minus
2039@item
2040Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2041@item
2042RAM and non-volatile OneNAND Flash memories
2043@item
2044Display connected to EPSON remote framebuffer chip and OMAP on-chip
2045display controller and a LS041y3 MIPI DBI-C controller
2046@item
2047TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2048driven through SPI bus
2049@item
2050National Semiconductor LM8323-controlled qwerty keyboard driven
2051through I@math{^2}C bus
2052@item
2053Secure Digital card connected to OMAP MMC/SD host
2054@item
2055Three OMAP on-chip UARTs and on-chip STI debugging console
2056@item
2057A Bluetooth(R) transceiver and HCI connected to an UART
2058@item
2059Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2060TUSB6010 chip - only USB host mode is supported
2061@item
2062TI TMP105 temperature sensor driven through I@math{^2}C bus
2063@item
2064TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2065@item
2066Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2067through CBUS
2068@end itemize
2069
2070The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2071devices:
2072
2073@itemize @minus
2074@item
2075Cortex-M3 CPU core.
2076@item
207764k Flash and 8k SRAM.
2078@item
2079Timers, UARTs, ADC and I@math{^2}C interface.
2080@item
2081OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2082@end itemize
2083
2084The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2085devices:
2086
2087@itemize @minus
2088@item
2089Cortex-M3 CPU core.
2090@item
2091256k Flash and 64k SRAM.
2092@item
2093Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2094@item
2095OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2096@end itemize
2097
2098The Freecom MusicPal internet radio emulation includes the following
2099elements:
2100
2101@itemize @minus
2102@item
2103Marvell MV88W8618 ARM core.
2104@item
210532 MB RAM, 256 KB SRAM, 8 MB flash.
2106@item
2107Up to 2 16550 UARTs
2108@item
2109MV88W8xx8 Ethernet controller
2110@item
2111MV88W8618 audio controller, WM8750 CODEC and mixer
2112@item
2113128×64 display with brightness control
2114@item
21152 buttons, 2 navigation wheels with button function
2116@end itemize
2117
2118The Siemens SX1 models v1 and v2 (default) basic emulation.
2119The emulation includes the following elements:
2120
2121@itemize @minus
2122@item
2123Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2124@item
2125ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2126V1
21271 Flash of 16MB and 1 Flash of 8MB
2128V2
21291 Flash of 32MB
2130@item
2131On-chip LCD controller
2132@item
2133On-chip Real Time Clock
2134@item
2135Secure Digital card connected to OMAP MMC/SD host
2136@item
2137Three on-chip UARTs
2138@end itemize
2139
2140A Linux 2.6 test image is available on the QEMU web site. More
2141information is available in the QEMU mailing-list archive.
2142
2143@c man begin OPTIONS
2144
2145The following options are specific to the ARM emulation:
2146
2147@table @option
2148
2149@item -semihosting
2150Enable semihosting syscall emulation.
2151
2152On ARM this implements the "Angel" interface.
2153
2154Note that this allows guest direct access to the host filesystem,
2155so should only be used with trusted guest OS.
2156
2157@end table
2158
2159@node ColdFire System emulator
2160@section ColdFire System emulator
2161@cindex system emulation (ColdFire)
2162@cindex system emulation (M68K)
2163
2164Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2165The emulator is able to boot a uClinux kernel.
2166
2167The M5208EVB emulation includes the following devices:
2168
2169@itemize @minus
2170@item
2171MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2172@item
2173Three Two on-chip UARTs.
2174@item
2175Fast Ethernet Controller (FEC)
2176@end itemize
2177
2178The AN5206 emulation includes the following devices:
2179
2180@itemize @minus
2181@item
2182MCF5206 ColdFire V2 Microprocessor.
2183@item
2184Two on-chip UARTs.
2185@end itemize
2186
2187@c man begin OPTIONS
2188
2189The following options are specific to the ColdFire emulation:
2190
2191@table @option
2192
2193@item -semihosting
2194Enable semihosting syscall emulation.
2195
2196On M68K this implements the "ColdFire GDB" interface used by libgloss.
2197
2198Note that this allows guest direct access to the host filesystem,
2199so should only be used with trusted guest OS.
2200
2201@end table
2202
2203@node Cris System emulator
2204@section Cris System emulator
2205@cindex system emulation (Cris)
2206
2207TODO
2208
2209@node Microblaze System emulator
2210@section Microblaze System emulator
2211@cindex system emulation (Microblaze)
2212
2213TODO
2214
2215@node SH4 System emulator
2216@section SH4 System emulator
2217@cindex system emulation (SH4)
2218
2219TODO
2220
2221@node Xtensa System emulator
2222@section Xtensa System emulator
2223@cindex system emulation (Xtensa)
2224
2225Two executables cover simulation of both Xtensa endian options,
2226@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2227Two different machine types are emulated:
2228
2229@itemize @minus
2230@item
2231Xtensa emulator pseudo board "sim"
2232@item
2233Avnet LX60/LX110/LX200 board
2234@end itemize
2235
2236The sim pseudo board emulation provides an environment similar
2237to one provided by the proprietary Tensilica ISS.
2238It supports:
2239
2240@itemize @minus
2241@item
2242A range of Xtensa CPUs, default is the DC232B
2243@item
2244Console and filesystem access via semihosting calls
2245@end itemize
2246
2247The Avnet LX60/LX110/LX200 emulation supports:
2248
2249@itemize @minus
2250@item
2251A range of Xtensa CPUs, default is the DC232B
2252@item
225316550 UART
2254@item
2255OpenCores 10/100 Mbps Ethernet MAC
2256@end itemize
2257
2258@c man begin OPTIONS
2259
2260The following options are specific to the Xtensa emulation:
2261
2262@table @option
2263
2264@item -semihosting
2265Enable semihosting syscall emulation.
2266
2267Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2268Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2269
2270Note that this allows guest direct access to the host filesystem,
2271so should only be used with trusted guest OS.
2272
2273@end table
2274@node QEMU User space emulator
2275@chapter QEMU User space emulator
2276
2277@menu
2278* Supported Operating Systems ::
2279* Linux User space emulator::
2280* BSD User space emulator ::
2281@end menu
2282
2283@node Supported Operating Systems
2284@section Supported Operating Systems
2285
2286The following OS are supported in user space emulation:
2287
2288@itemize @minus
2289@item
2290Linux (referred as qemu-linux-user)
2291@item
2292BSD (referred as qemu-bsd-user)
2293@end itemize
2294
2295@node Linux User space emulator
2296@section Linux User space emulator
2297
2298@menu
2299* Quick Start::
2300* Wine launch::
2301* Command line options::
2302* Other binaries::
2303@end menu
2304
2305@node Quick Start
2306@subsection Quick Start
2307
2308In order to launch a Linux process, QEMU needs the process executable
2309itself and all the target (x86) dynamic libraries used by it.
2310
2311@itemize
2312
2313@item On x86, you can just try to launch any process by using the native
2314libraries:
2315
2316@example
2317qemu-i386 -L / /bin/ls
2318@end example
2319
2320@code{-L /} tells that the x86 dynamic linker must be searched with a
2321@file{/} prefix.
2322
2323@item Since QEMU is also a linux process, you can launch QEMU with
2324QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2325
2326@example
2327qemu-i386 -L / qemu-i386 -L / /bin/ls
2328@end example
2329
2330@item On non x86 CPUs, you need first to download at least an x86 glibc
2331(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2332@code{LD_LIBRARY_PATH} is not set:
2333
2334@example
2335unset LD_LIBRARY_PATH
2336@end example
2337
2338Then you can launch the precompiled @file{ls} x86 executable:
2339
2340@example
2341qemu-i386 tests/i386/ls
2342@end example
2343You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2344QEMU is automatically launched by the Linux kernel when you try to
2345launch x86 executables. It requires the @code{binfmt_misc} module in the
2346Linux kernel.
2347
2348@item The x86 version of QEMU is also included. You can try weird things such as:
2349@example
2350qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2351 /usr/local/qemu-i386/bin/ls-i386
2352@end example
2353
2354@end itemize
2355
2356@node Wine launch
2357@subsection Wine launch
2358
2359@itemize
2360
2361@item Ensure that you have a working QEMU with the x86 glibc
2362distribution (see previous section). In order to verify it, you must be
2363able to do:
2364
2365@example
2366qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2367@end example
2368
2369@item Download the binary x86 Wine install
2370(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2371
2372@item Configure Wine on your account. Look at the provided script
2373@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2374@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2375
2376@item Then you can try the example @file{putty.exe}:
2377
2378@example
2379qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2380 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2381@end example
2382
2383@end itemize
2384
2385@node Command line options
2386@subsection Command line options
2387
2388@example
2389usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2390@end example
2391
2392@table @option
2393@item -h
2394Print the help
2395@item -L path
2396Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2397@item -s size
2398Set the x86 stack size in bytes (default=524288)
2399@item -cpu model
2400Select CPU model (-cpu help for list and additional feature selection)
2401@item -ignore-environment
2402Start with an empty environment. Without this option,
2403the initial environment is a copy of the caller's environment.
2404@item -E @var{var}=@var{value}
2405Set environment @var{var} to @var{value}.
2406@item -U @var{var}
2407Remove @var{var} from the environment.
2408@item -B offset
2409Offset guest address by the specified number of bytes. This is useful when
2410the address region required by guest applications is reserved on the host.
2411This option is currently only supported on some hosts.
2412@item -R size
2413Pre-allocate a guest virtual address space of the given size (in bytes).
2414"G", "M", and "k" suffixes may be used when specifying the size.
2415@end table
2416
2417Debug options:
2418
2419@table @option
2420@item -d
2421Activate log (logfile=/tmp/qemu.log)
2422@item -p pagesize
2423Act as if the host page size was 'pagesize' bytes
2424@item -g port
2425Wait gdb connection to port
2426@item -singlestep
2427Run the emulation in single step mode.
2428@end table
2429
2430Environment variables:
2431
2432@table @env
2433@item QEMU_STRACE
2434Print system calls and arguments similar to the 'strace' program
2435(NOTE: the actual 'strace' program will not work because the user
2436space emulator hasn't implemented ptrace). At the moment this is
2437incomplete. All system calls that don't have a specific argument
2438format are printed with information for six arguments. Many
2439flag-style arguments don't have decoders and will show up as numbers.
2440@end table
2441
2442@node Other binaries
2443@subsection Other binaries
2444
2445@cindex user mode (Alpha)
2446@command{qemu-alpha} TODO.
2447
2448@cindex user mode (ARM)
2449@command{qemu-armeb} TODO.
2450
2451@cindex user mode (ARM)
2452@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2453binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2454configurations), and arm-uclinux bFLT format binaries.
2455
2456@cindex user mode (ColdFire)
2457@cindex user mode (M68K)
2458@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2459(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2460coldfire uClinux bFLT format binaries.
2461
2462The binary format is detected automatically.
2463
2464@cindex user mode (Cris)
2465@command{qemu-cris} TODO.
2466
2467@cindex user mode (i386)
2468@command{qemu-i386} TODO.
2469@command{qemu-x86_64} TODO.
2470
2471@cindex user mode (Microblaze)
2472@command{qemu-microblaze} TODO.
2473
2474@cindex user mode (MIPS)
2475@command{qemu-mips} TODO.
2476@command{qemu-mipsel} TODO.
2477
2478@cindex user mode (PowerPC)
2479@command{qemu-ppc64abi32} TODO.
2480@command{qemu-ppc64} TODO.
2481@command{qemu-ppc} TODO.
2482
2483@cindex user mode (SH4)
2484@command{qemu-sh4eb} TODO.
2485@command{qemu-sh4} TODO.
2486
2487@cindex user mode (SPARC)
2488@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2489
2490@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2491(Sparc64 CPU, 32 bit ABI).
2492
2493@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2494SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2495
2496@node BSD User space emulator
2497@section BSD User space emulator
2498
2499@menu
2500* BSD Status::
2501* BSD Quick Start::
2502* BSD Command line options::
2503@end menu
2504
2505@node BSD Status
2506@subsection BSD Status
2507
2508@itemize @minus
2509@item
2510target Sparc64 on Sparc64: Some trivial programs work.
2511@end itemize
2512
2513@node BSD Quick Start
2514@subsection Quick Start
2515
2516In order to launch a BSD process, QEMU needs the process executable
2517itself and all the target dynamic libraries used by it.
2518
2519@itemize
2520
2521@item On Sparc64, you can just try to launch any process by using the native
2522libraries:
2523
2524@example
2525qemu-sparc64 /bin/ls
2526@end example
2527
2528@end itemize
2529
2530@node BSD Command line options
2531@subsection Command line options
2532
2533@example
2534usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2535@end example
2536
2537@table @option
2538@item -h
2539Print the help
2540@item -L path
2541Set the library root path (default=/)
2542@item -s size
2543Set the stack size in bytes (default=524288)
2544@item -ignore-environment
2545Start with an empty environment. Without this option,
2546the initial environment is a copy of the caller's environment.
2547@item -E @var{var}=@var{value}
2548Set environment @var{var} to @var{value}.
2549@item -U @var{var}
2550Remove @var{var} from the environment.
2551@item -bsd type
2552Set the type of the emulated BSD Operating system. Valid values are
2553FreeBSD, NetBSD and OpenBSD (default).
2554@end table
2555
2556Debug options:
2557
2558@table @option
2559@item -d
2560Activate log (logfile=/tmp/qemu.log)
2561@item -p pagesize
2562Act as if the host page size was 'pagesize' bytes
2563@item -singlestep
2564Run the emulation in single step mode.
2565@end table
2566
2567@node compilation
2568@chapter Compilation from the sources
2569
2570@menu
2571* Linux/Unix::
2572* Windows::
2573* Cross compilation for Windows with Linux::
2574* Mac OS X::
2575* Make targets::
2576@end menu
2577
2578@node Linux/Unix
2579@section Linux/Unix
2580
2581@subsection Compilation
2582
2583First you must decompress the sources:
2584@example
2585cd /tmp
2586tar zxvf qemu-x.y.z.tar.gz
2587cd qemu-x.y.z
2588@end example
2589
2590Then you configure QEMU and build it (usually no options are needed):
2591@example
2592./configure
2593make
2594@end example
2595
2596Then type as root user:
2597@example
2598make install
2599@end example
2600to install QEMU in @file{/usr/local}.
2601
2602@node Windows
2603@section Windows
2604
2605@itemize
2606@item Install the current versions of MSYS and MinGW from
2607@url{http://www.mingw.org/}. You can find detailed installation
2608instructions in the download section and the FAQ.
2609
2610@item Download
2611the MinGW development library of SDL 1.2.x
2612(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2613@url{http://www.libsdl.org}. Unpack it in a temporary place and
2614edit the @file{sdl-config} script so that it gives the
2615correct SDL directory when invoked.
2616
2617@item Install the MinGW version of zlib and make sure
2618@file{zlib.h} and @file{libz.dll.a} are in
2619MinGW's default header and linker search paths.
2620
2621@item Extract the current version of QEMU.
2622
2623@item Start the MSYS shell (file @file{msys.bat}).
2624
2625@item Change to the QEMU directory. Launch @file{./configure} and
2626@file{make}. If you have problems using SDL, verify that
2627@file{sdl-config} can be launched from the MSYS command line.
2628
2629@item You can install QEMU in @file{Program Files/QEMU} by typing
2630@file{make install}. Don't forget to copy @file{SDL.dll} in
2631@file{Program Files/QEMU}.
2632
2633@end itemize
2634
2635@node Cross compilation for Windows with Linux
2636@section Cross compilation for Windows with Linux
2637
2638@itemize
2639@item
2640Install the MinGW cross compilation tools available at
2641@url{http://www.mingw.org/}.
2642
2643@item Download
2644the MinGW development library of SDL 1.2.x
2645(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2646@url{http://www.libsdl.org}. Unpack it in a temporary place and
2647edit the @file{sdl-config} script so that it gives the
2648correct SDL directory when invoked. Set up the @code{PATH} environment
2649variable so that @file{sdl-config} can be launched by
2650the QEMU configuration script.
2651
2652@item Install the MinGW version of zlib and make sure
2653@file{zlib.h} and @file{libz.dll.a} are in
2654MinGW's default header and linker search paths.
2655
2656@item
2657Configure QEMU for Windows cross compilation:
2658@example
2659PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2660@end example
2661The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2662MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2663We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2664use --cross-prefix to specify the name of the cross compiler.
2665You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
2666
2667Under Fedora Linux, you can run:
2668@example
2669yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2670@end example
2671to get a suitable cross compilation environment.
2672
2673@item You can install QEMU in the installation directory by typing
2674@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2675installation directory.
2676
2677@end itemize
2678
2679Wine can be used to launch the resulting qemu-system-i386.exe
2680and all other qemu-system-@var{target}.exe compiled for Win32.
2681
2682@node Mac OS X
2683@section Mac OS X
2684
2685The Mac OS X patches are not fully merged in QEMU, so you should look
2686at the QEMU mailing list archive to have all the necessary
2687information.
2688
2689@node Make targets
2690@section Make targets
2691
2692@table @code
2693
2694@item make
2695@item make all
2696Make everything which is typically needed.
2697
2698@item install
2699TODO
2700
2701@item install-doc
2702TODO
2703
2704@item make clean
2705Remove most files which were built during make.
2706
2707@item make distclean
2708Remove everything which was built during make.
2709
2710@item make dvi
2711@item make html
2712@item make info
2713@item make pdf
2714Create documentation in dvi, html, info or pdf format.
2715
2716@item make cscope
2717TODO
2718
2719@item make defconfig
2720(Re-)create some build configuration files.
2721User made changes will be overwritten.
2722
2723@item tar
2724@item tarbin
2725TODO
2726
2727@end table
2728
2729@node License
2730@appendix License
2731
2732QEMU is a trademark of Fabrice Bellard.
2733
2734QEMU is released under the GNU General Public License (TODO: add link).
2735Parts of QEMU have specific licenses, see file LICENSE.
2736
2737TODO (refer to file LICENSE, include it, include the GPL?)
2738
2739@node Index
2740@appendix Index
2741@menu
2742* Concept Index::
2743* Function Index::
2744* Keystroke Index::
2745* Program Index::
2746* Data Type Index::
2747* Variable Index::
2748@end menu
2749
2750@node Concept Index
2751@section Concept Index
2752This is the main index. Should we combine all keywords in one index? TODO
2753@printindex cp
2754
2755@node Function Index
2756@section Function Index
2757This index could be used for command line options and monitor functions.
2758@printindex fn
2759
2760@node Keystroke Index
2761@section Keystroke Index
2762
2763This is a list of all keystrokes which have a special function
2764in system emulation.
2765
2766@printindex ky
2767
2768@node Program Index
2769@section Program Index
2770@printindex pg
2771
2772@node Data Type Index
2773@section Data Type Index
2774
2775This index could be used for qdev device names and options.
2776
2777@printindex tp
2778
2779@node Variable Index
2780@section Variable Index
2781@printindex vr
2782
2783@bye