]> git.proxmox.com Git - qemu.git/blame_incremental - qemu-doc.texi
Fix (at least one cause of) qcow2 corruption. (Nolan Leake)
[qemu.git] / qemu-doc.texi
... / ...
CommitLineData
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4@settitle QEMU Emulator User Documentation
5@exampleindent 0
6@paragraphindent 0
7@c %**end of header
8
9@iftex
10@titlepage
11@sp 7
12@center @titlefont{QEMU Emulator}
13@sp 1
14@center @titlefont{User Documentation}
15@sp 3
16@end titlepage
17@end iftex
18
19@ifnottex
20@node Top
21@top
22
23@menu
24* Introduction::
25* Installation::
26* QEMU PC System emulator::
27* QEMU System emulator for non PC targets::
28* QEMU User space emulator::
29* compilation:: Compilation from the sources
30* Index::
31@end menu
32@end ifnottex
33
34@contents
35
36@node Introduction
37@chapter Introduction
38
39@menu
40* intro_features:: Features
41@end menu
42
43@node intro_features
44@section Features
45
46QEMU is a FAST! processor emulator using dynamic translation to
47achieve good emulation speed.
48
49QEMU has two operating modes:
50
51@itemize @minus
52
53@item
54Full system emulation. In this mode, QEMU emulates a full system (for
55example a PC), including one or several processors and various
56peripherals. It can be used to launch different Operating Systems
57without rebooting the PC or to debug system code.
58
59@item
60User mode emulation. In this mode, QEMU can launch
61processes compiled for one CPU on another CPU. It can be used to
62launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63to ease cross-compilation and cross-debugging.
64
65@end itemize
66
67QEMU can run without an host kernel driver and yet gives acceptable
68performance.
69
70For system emulation, the following hardware targets are supported:
71@itemize
72@item PC (x86 or x86_64 processor)
73@item ISA PC (old style PC without PCI bus)
74@item PREP (PowerPC processor)
75@item G3 Beige PowerMac (PowerPC processor)
76@item Mac99 PowerMac (PowerPC processor, in progress)
77@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79@item Malta board (32-bit and 64-bit MIPS processors)
80@item MIPS Magnum (64-bit MIPS processor)
81@item ARM Integrator/CP (ARM)
82@item ARM Versatile baseboard (ARM)
83@item ARM RealView Emulation baseboard (ARM)
84@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87@item Freescale MCF5208EVB (ColdFire V2).
88@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89@item Palm Tungsten|E PDA (OMAP310 processor)
90@item N800 and N810 tablets (OMAP2420 processor)
91@item MusicPal (MV88W8618 ARM processor)
92@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93@item Siemens SX1 smartphone (OMAP310 processor)
94@end itemize
95
96For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
97
98@node Installation
99@chapter Installation
100
101If you want to compile QEMU yourself, see @ref{compilation}.
102
103@menu
104* install_linux:: Linux
105* install_windows:: Windows
106* install_mac:: Macintosh
107@end menu
108
109@node install_linux
110@section Linux
111
112If a precompiled package is available for your distribution - you just
113have to install it. Otherwise, see @ref{compilation}.
114
115@node install_windows
116@section Windows
117
118Download the experimental binary installer at
119@url{http://www.free.oszoo.org/@/download.html}.
120
121@node install_mac
122@section Mac OS X
123
124Download the experimental binary installer at
125@url{http://www.free.oszoo.org/@/download.html}.
126
127@node QEMU PC System emulator
128@chapter QEMU PC System emulator
129
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
134* pcsys_keys:: Keys
135* pcsys_monitor:: QEMU Monitor
136* disk_images:: Disk Images
137* pcsys_network:: Network emulation
138* direct_linux_boot:: Direct Linux Boot
139* pcsys_usb:: USB emulation
140* vnc_security:: VNC security
141* gdb_usage:: GDB usage
142* pcsys_os_specific:: Target OS specific information
143@end menu
144
145@node pcsys_introduction
146@section Introduction
147
148@c man begin DESCRIPTION
149
150The QEMU PC System emulator simulates the
151following peripherals:
152
153@itemize @minus
154@item
155i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156@item
157Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158extensions (hardware level, including all non standard modes).
159@item
160PS/2 mouse and keyboard
161@item
1622 PCI IDE interfaces with hard disk and CD-ROM support
163@item
164Floppy disk
165@item
166PCI/ISA PCI network adapters
167@item
168Serial ports
169@item
170Creative SoundBlaster 16 sound card
171@item
172ENSONIQ AudioPCI ES1370 sound card
173@item
174Intel 82801AA AC97 Audio compatible sound card
175@item
176Adlib(OPL2) - Yamaha YM3812 compatible chip
177@item
178Gravis Ultrasound GF1 sound card
179@item
180CS4231A compatible sound card
181@item
182PCI UHCI USB controller and a virtual USB hub.
183@end itemize
184
185SMP is supported with up to 255 CPUs.
186
187Note that adlib, gus and cs4231a are only available when QEMU was
188configured with --audio-card-list option containing the name(s) of
189required card(s).
190
191QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192VGA BIOS.
193
194QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195
196QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197by Tibor "TS" Schütz.
198
199CS4231A is the chip used in Windows Sound System and GUSMAX products
200
201@c man end
202
203@node pcsys_quickstart
204@section Quick Start
205
206Download and uncompress the linux image (@file{linux.img}) and type:
207
208@example
209qemu linux.img
210@end example
211
212Linux should boot and give you a prompt.
213
214@node sec_invocation
215@section Invocation
216
217@example
218@c man begin SYNOPSIS
219usage: qemu [options] [@var{disk_image}]
220@c man end
221@end example
222
223@c man begin OPTIONS
224@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225targets do not need a disk image.
226
227General options:
228@table @option
229@item -h
230Display help and exit
231
232@item -M @var{machine}
233Select the emulated @var{machine} (@code{-M ?} for list)
234
235@item -cpu @var{model}
236Select CPU model (-cpu ? for list and additional feature selection)
237
238@item -smp @var{n}
239Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
241to 4.
242
243@item -fda @var{file}
244@item -fdb @var{file}
245Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
246use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
247
248@item -hda @var{file}
249@item -hdb @var{file}
250@item -hdc @var{file}
251@item -hdd @var{file}
252Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
253
254@item -cdrom @var{file}
255Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
256@option{-cdrom} at the same time). You can use the host CD-ROM by
257using @file{/dev/cdrom} as filename (@pxref{host_drives}).
258
259@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
260
261Define a new drive. Valid options are:
262
263@table @code
264@item file=@var{file}
265This option defines which disk image (@pxref{disk_images}) to use with
266this drive. If the filename contains comma, you must double it
267(for instance, "file=my,,file" to use file "my,file").
268@item if=@var{interface}
269This option defines on which type on interface the drive is connected.
270Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
271@item bus=@var{bus},unit=@var{unit}
272These options define where is connected the drive by defining the bus number and
273the unit id.
274@item index=@var{index}
275This option defines where is connected the drive by using an index in the list
276of available connectors of a given interface type.
277@item media=@var{media}
278This option defines the type of the media: disk or cdrom.
279@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
280These options have the same definition as they have in @option{-hdachs}.
281@item snapshot=@var{snapshot}
282@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
283@item cache=@var{cache}
284@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
285@item format=@var{format}
286Specify which disk @var{format} will be used rather than detecting
287the format. Can be used to specifiy format=raw to avoid interpreting
288an untrusted format header.
289@item serial=@var{serial}
290This option specifies the serial number to assign to the device.
291@end table
292
293By default, writethrough caching is used for all block device. This means that
294the host page cache will be used to read and write data but write notification
295will be sent to the guest only when the data has been reported as written by
296the storage subsystem.
297
298Writeback caching will report data writes as completed as soon as the data is
299present in the host page cache. This is safe as long as you trust your host.
300If your host crashes or loses power, then the guest may experience data
301corruption. When using the @option{-snapshot} option, writeback caching is
302used by default.
303
304The host page can be avoided entirely with @option{cache=none}. This will
305attempt to do disk IO directly to the guests memory. QEMU may still perform
306an internal copy of the data.
307
308Some block drivers perform badly with @option{cache=writethrough}, most notably,
309qcow2. If performance is more important than correctness,
310@option{cache=writeback} should be used with qcow2. By default, if no explicit
311caching is specified for a qcow2 disk image, @option{cache=writeback} will be
312used. For all other disk types, @option{cache=writethrough} is the default.
313
314Instead of @option{-cdrom} you can use:
315@example
316qemu -drive file=file,index=2,media=cdrom
317@end example
318
319Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
320use:
321@example
322qemu -drive file=file,index=0,media=disk
323qemu -drive file=file,index=1,media=disk
324qemu -drive file=file,index=2,media=disk
325qemu -drive file=file,index=3,media=disk
326@end example
327
328You can connect a CDROM to the slave of ide0:
329@example
330qemu -drive file=file,if=ide,index=1,media=cdrom
331@end example
332
333If you don't specify the "file=" argument, you define an empty drive:
334@example
335qemu -drive if=ide,index=1,media=cdrom
336@end example
337
338You can connect a SCSI disk with unit ID 6 on the bus #0:
339@example
340qemu -drive file=file,if=scsi,bus=0,unit=6
341@end example
342
343Instead of @option{-fda}, @option{-fdb}, you can use:
344@example
345qemu -drive file=file,index=0,if=floppy
346qemu -drive file=file,index=1,if=floppy
347@end example
348
349By default, @var{interface} is "ide" and @var{index} is automatically
350incremented:
351@example
352qemu -drive file=a -drive file=b"
353@end example
354is interpreted like:
355@example
356qemu -hda a -hdb b
357@end example
358
359@item -mtdblock file
360Use 'file' as on-board Flash memory image.
361
362@item -sd file
363Use 'file' as SecureDigital card image.
364
365@item -pflash file
366Use 'file' as a parallel flash image.
367
368@item -boot [a|c|d|n]
369Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
370is the default.
371
372@item -snapshot
373Write to temporary files instead of disk image files. In this case,
374the raw disk image you use is not written back. You can however force
375the write back by pressing @key{C-a s} (@pxref{disk_images}).
376
377@item -m @var{megs}
378Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally,
379a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
380gigabytes respectively.
381
382@item -k @var{language}
383
384Use keyboard layout @var{language} (for example @code{fr} for
385French). This option is only needed where it is not easy to get raw PC
386keycodes (e.g. on Macs, with some X11 servers or with a VNC
387display). You don't normally need to use it on PC/Linux or PC/Windows
388hosts.
389
390The available layouts are:
391@example
392ar de-ch es fo fr-ca hu ja mk no pt-br sv
393da en-gb et fr fr-ch is lt nl pl ru th
394de en-us fi fr-be hr it lv nl-be pt sl tr
395@end example
396
397The default is @code{en-us}.
398
399@item -audio-help
400
401Will show the audio subsystem help: list of drivers, tunable
402parameters.
403
404@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
405
406Enable audio and selected sound hardware. Use ? to print all
407available sound hardware.
408
409@example
410qemu -soundhw sb16,adlib disk.img
411qemu -soundhw es1370 disk.img
412qemu -soundhw ac97 disk.img
413qemu -soundhw all disk.img
414qemu -soundhw ?
415@end example
416
417Note that Linux's i810_audio OSS kernel (for AC97) module might
418require manually specifying clocking.
419
420@example
421modprobe i810_audio clocking=48000
422@end example
423
424@end table
425
426USB options:
427@table @option
428
429@item -usb
430Enable the USB driver (will be the default soon)
431
432@item -usbdevice @var{devname}
433Add the USB device @var{devname}. @xref{usb_devices}.
434
435@table @code
436
437@item mouse
438Virtual Mouse. This will override the PS/2 mouse emulation when activated.
439
440@item tablet
441Pointer device that uses absolute coordinates (like a touchscreen). This
442means qemu is able to report the mouse position without having to grab the
443mouse. Also overrides the PS/2 mouse emulation when activated.
444
445@item disk:[format=@var{format}]:file
446Mass storage device based on file. The optional @var{format} argument
447will be used rather than detecting the format. Can be used to specifiy
448format=raw to avoid interpreting an untrusted format header.
449
450@item host:bus.addr
451Pass through the host device identified by bus.addr (Linux only).
452
453@item host:vendor_id:product_id
454Pass through the host device identified by vendor_id:product_id (Linux only).
455
456@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
457Serial converter to host character device @var{dev}, see @code{-serial} for the
458available devices.
459
460@item braille
461Braille device. This will use BrlAPI to display the braille output on a real
462or fake device.
463
464@item net:options
465Network adapter that supports CDC ethernet and RNDIS protocols.
466
467@end table
468
469@item -name @var{name}
470Sets the @var{name} of the guest.
471This name will be displayed in the SDL window caption.
472The @var{name} will also be used for the VNC server.
473
474@item -uuid @var{uuid}
475Set system UUID.
476
477@end table
478
479Display options:
480@table @option
481
482@item -nographic
483
484Normally, QEMU uses SDL to display the VGA output. With this option,
485you can totally disable graphical output so that QEMU is a simple
486command line application. The emulated serial port is redirected on
487the console. Therefore, you can still use QEMU to debug a Linux kernel
488with a serial console.
489
490@item -curses
491
492Normally, QEMU uses SDL to display the VGA output. With this option,
493QEMU can display the VGA output when in text mode using a
494curses/ncurses interface. Nothing is displayed in graphical mode.
495
496@item -no-frame
497
498Do not use decorations for SDL windows and start them using the whole
499available screen space. This makes the using QEMU in a dedicated desktop
500workspace more convenient.
501
502@item -alt-grab
503
504Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
505
506@item -no-quit
507
508Disable SDL window close capability.
509
510@item -sdl
511
512Enable SDL.
513
514@item -portrait
515
516Rotate graphical output 90 deg left (only PXA LCD).
517
518@item -vga @var{type}
519Select type of VGA card to emulate. Valid values for @var{type} are
520@table @code
521@item cirrus
522Cirrus Logic GD5446 Video card. All Windows versions starting from
523Windows 95 should recognize and use this graphic card. For optimal
524performances, use 16 bit color depth in the guest and the host OS.
525(This one is the default)
526@item std
527Standard VGA card with Bochs VBE extensions. If your guest OS
528supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
529to use high resolution modes (>= 1280x1024x16) then you should use
530this option.
531@item vmware
532VMWare SVGA-II compatible adapter. Use it if you have sufficiently
533recent XFree86/XOrg server or Windows guest with a driver for this
534card.
535@item none
536Disable VGA card.
537@end table
538
539@item -full-screen
540Start in full screen.
541
542@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
543
544Normally, QEMU uses SDL to display the VGA output. With this option,
545you can have QEMU listen on VNC display @var{display} and redirect the VGA
546display over the VNC session. It is very useful to enable the usb
547tablet device when using this option (option @option{-usbdevice
548tablet}). When using the VNC display, you must use the @option{-k}
549parameter to set the keyboard layout if you are not using en-us. Valid
550syntax for the @var{display} is
551
552@table @code
553
554@item @var{host}:@var{d}
555
556TCP connections will only be allowed from @var{host} on display @var{d}.
557By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
558be omitted in which case the server will accept connections from any host.
559
560@item @code{unix}:@var{path}
561
562Connections will be allowed over UNIX domain sockets where @var{path} is the
563location of a unix socket to listen for connections on.
564
565@item none
566
567VNC is initialized but not started. The monitor @code{change} command
568can be used to later start the VNC server.
569
570@end table
571
572Following the @var{display} value there may be one or more @var{option} flags
573separated by commas. Valid options are
574
575@table @code
576
577@item reverse
578
579Connect to a listening VNC client via a ``reverse'' connection. The
580client is specified by the @var{display}. For reverse network
581connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
582is a TCP port number, not a display number.
583
584@item password
585
586Require that password based authentication is used for client connections.
587The password must be set separately using the @code{change} command in the
588@ref{pcsys_monitor}
589
590@item tls
591
592Require that client use TLS when communicating with the VNC server. This
593uses anonymous TLS credentials so is susceptible to a man-in-the-middle
594attack. It is recommended that this option be combined with either the
595@var{x509} or @var{x509verify} options.
596
597@item x509=@var{/path/to/certificate/dir}
598
599Valid if @option{tls} is specified. Require that x509 credentials are used
600for negotiating the TLS session. The server will send its x509 certificate
601to the client. It is recommended that a password be set on the VNC server
602to provide authentication of the client when this is used. The path following
603this option specifies where the x509 certificates are to be loaded from.
604See the @ref{vnc_security} section for details on generating certificates.
605
606@item x509verify=@var{/path/to/certificate/dir}
607
608Valid if @option{tls} is specified. Require that x509 credentials are used
609for negotiating the TLS session. The server will send its x509 certificate
610to the client, and request that the client send its own x509 certificate.
611The server will validate the client's certificate against the CA certificate,
612and reject clients when validation fails. If the certificate authority is
613trusted, this is a sufficient authentication mechanism. You may still wish
614to set a password on the VNC server as a second authentication layer. The
615path following this option specifies where the x509 certificates are to
616be loaded from. See the @ref{vnc_security} section for details on generating
617certificates.
618
619@end table
620
621@end table
622
623Network options:
624
625@table @option
626
627@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
628Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
629= 0 is the default). The NIC is an ne2k_pci by default on the PC
630target. Optionally, the MAC address can be changed to @var{addr}
631and a @var{name} can be assigned for use in monitor commands. If no
632@option{-net} option is specified, a single NIC is created.
633Qemu can emulate several different models of network card.
634Valid values for @var{type} are
635@code{i82551}, @code{i82557b}, @code{i82559er},
636@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
637@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
638Not all devices are supported on all targets. Use -net nic,model=?
639for a list of available devices for your target.
640
641@item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
642Use the user mode network stack which requires no administrator
643privilege to run. @option{hostname=name} can be used to specify the client
644hostname reported by the builtin DHCP server.
645
646@item -net channel,@var{port}:@var{dev}
647Forward @option{user} TCP connection to port @var{port} to character device @var{dev}
648
649@item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
650Connect the host TAP network interface @var{name} to VLAN @var{n}, use
651the network script @var{file} to configure it and the network script
652@var{dfile} to deconfigure it. If @var{name} is not provided, the OS
653automatically provides one. @option{fd}=@var{h} can be used to specify
654the handle of an already opened host TAP interface. The default network
655configure script is @file{/etc/qemu-ifup} and the default network
656deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
657or @option{downscript=no} to disable script execution. Example:
658
659@example
660qemu linux.img -net nic -net tap
661@end example
662
663More complicated example (two NICs, each one connected to a TAP device)
664@example
665qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
666 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
667@end example
668
669
670@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
671
672Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
673machine using a TCP socket connection. If @option{listen} is
674specified, QEMU waits for incoming connections on @var{port}
675(@var{host} is optional). @option{connect} is used to connect to
676another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
677specifies an already opened TCP socket.
678
679Example:
680@example
681# launch a first QEMU instance
682qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
683 -net socket,listen=:1234
684# connect the VLAN 0 of this instance to the VLAN 0
685# of the first instance
686qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
687 -net socket,connect=127.0.0.1:1234
688@end example
689
690@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
691
692Create a VLAN @var{n} shared with another QEMU virtual
693machines using a UDP multicast socket, effectively making a bus for
694every QEMU with same multicast address @var{maddr} and @var{port}.
695NOTES:
696@enumerate
697@item
698Several QEMU can be running on different hosts and share same bus (assuming
699correct multicast setup for these hosts).
700@item
701mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
702@url{http://user-mode-linux.sf.net}.
703@item
704Use @option{fd=h} to specify an already opened UDP multicast socket.
705@end enumerate
706
707Example:
708@example
709# launch one QEMU instance
710qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
711 -net socket,mcast=230.0.0.1:1234
712# launch another QEMU instance on same "bus"
713qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
714 -net socket,mcast=230.0.0.1:1234
715# launch yet another QEMU instance on same "bus"
716qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
717 -net socket,mcast=230.0.0.1:1234
718@end example
719
720Example (User Mode Linux compat.):
721@example
722# launch QEMU instance (note mcast address selected
723# is UML's default)
724qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
725 -net socket,mcast=239.192.168.1:1102
726# launch UML
727/path/to/linux ubd0=/path/to/root_fs eth0=mcast
728@end example
729
730@item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
731Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
732listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
733and MODE @var{octalmode} to change default ownership and permissions for
734communication port. This option is available only if QEMU has been compiled
735with vde support enabled.
736
737Example:
738@example
739# launch vde switch
740vde_switch -F -sock /tmp/myswitch
741# launch QEMU instance
742qemu linux.img -net nic -net vde,sock=/tmp/myswitch
743@end example
744
745@item -net none
746Indicate that no network devices should be configured. It is used to
747override the default configuration (@option{-net nic -net user}) which
748is activated if no @option{-net} options are provided.
749
750@item -tftp @var{dir}
751When using the user mode network stack, activate a built-in TFTP
752server. The files in @var{dir} will be exposed as the root of a TFTP server.
753The TFTP client on the guest must be configured in binary mode (use the command
754@code{bin} of the Unix TFTP client). The host IP address on the guest is as
755usual 10.0.2.2.
756
757@item -bootp @var{file}
758When using the user mode network stack, broadcast @var{file} as the BOOTP
759filename. In conjunction with @option{-tftp}, this can be used to network boot
760a guest from a local directory.
761
762Example (using pxelinux):
763@example
764qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
765@end example
766
767@item -smb @var{dir}
768When using the user mode network stack, activate a built-in SMB
769server so that Windows OSes can access to the host files in @file{@var{dir}}
770transparently.
771
772In the guest Windows OS, the line:
773@example
77410.0.2.4 smbserver
775@end example
776must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
777or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
778
779Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
780
781Note that a SAMBA server must be installed on the host OS in
782@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
7832.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
784
785@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
786
787When using the user mode network stack, redirect incoming TCP or UDP
788connections to the host port @var{host-port} to the guest
789@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
790is not specified, its value is 10.0.2.15 (default address given by the
791built-in DHCP server).
792
793For example, to redirect host X11 connection from screen 1 to guest
794screen 0, use the following:
795
796@example
797# on the host
798qemu -redir tcp:6001::6000 [...]
799# this host xterm should open in the guest X11 server
800xterm -display :1
801@end example
802
803To redirect telnet connections from host port 5555 to telnet port on
804the guest, use the following:
805
806@example
807# on the host
808qemu -redir tcp:5555::23 [...]
809telnet localhost 5555
810@end example
811
812Then when you use on the host @code{telnet localhost 5555}, you
813connect to the guest telnet server.
814
815@end table
816
817Bluetooth(R) options:
818@table @option
819
820@item -bt hci[...]
821Defines the function of the corresponding Bluetooth HCI. -bt options
822are matched with the HCIs present in the chosen machine type. For
823example when emulating a machine with only one HCI built into it, only
824the first @code{-bt hci[...]} option is valid and defines the HCI's
825logic. The Transport Layer is decided by the machine type. Currently
826the machines @code{n800} and @code{n810} have one HCI and all other
827machines have none.
828
829@anchor{bt-hcis}
830The following three types are recognized:
831
832@table @code
833@item -bt hci,null
834(default) The corresponding Bluetooth HCI assumes no internal logic
835and will not respond to any HCI commands or emit events.
836
837@item -bt hci,host[:@var{id}]
838(@code{bluez} only) The corresponding HCI passes commands / events
839to / from the physical HCI identified by the name @var{id} (default:
840@code{hci0}) on the computer running QEMU. Only available on @code{bluez}
841capable systems like Linux.
842
843@item -bt hci[,vlan=@var{n}]
844Add a virtual, standard HCI that will participate in the Bluetooth
845scatternet @var{n} (default @code{0}). Similarly to @option{-net}
846VLANs, devices inside a bluetooth network @var{n} can only communicate
847with other devices in the same network (scatternet).
848@end table
849
850@item -bt vhci[,vlan=@var{n}]
851(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
852to the host bluetooth stack instead of to the emulated target. This
853allows the host and target machines to participate in a common scatternet
854and communicate. Requires the Linux @code{vhci} driver installed. Can
855be used as following:
856
857@example
858qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
859@end example
860
861@item -bt device:@var{dev}[,vlan=@var{n}]
862Emulate a bluetooth device @var{dev} and place it in network @var{n}
863(default @code{0}). QEMU can only emulate one type of bluetooth devices
864currently:
865
866@table @code
867@item keyboard
868Virtual wireless keyboard implementing the HIDP bluetooth profile.
869@end table
870
871@end table
872
873i386 target only:
874
875@table @option
876
877@item -win2k-hack
878Use it when installing Windows 2000 to avoid a disk full bug. After
879Windows 2000 is installed, you no longer need this option (this option
880slows down the IDE transfers).
881
882@item -rtc-td-hack
883Use it if you experience time drift problem in Windows with ACPI HAL.
884This option will try to figure out how many timer interrupts were not
885processed by the Windows guest and will re-inject them.
886
887@item -no-fd-bootchk
888Disable boot signature checking for floppy disks in Bochs BIOS. It may
889be needed to boot from old floppy disks.
890
891@item -no-acpi
892Disable ACPI (Advanced Configuration and Power Interface) support. Use
893it if your guest OS complains about ACPI problems (PC target machine
894only).
895
896@item -no-hpet
897Disable HPET support.
898
899@item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
900Add ACPI table with specified header fields and context from specified files.
901
902@end table
903
904Linux boot specific: When using these options, you can use a given
905Linux kernel without installing it in the disk image. It can be useful
906for easier testing of various kernels.
907
908@table @option
909
910@item -kernel @var{bzImage}
911Use @var{bzImage} as kernel image.
912
913@item -append @var{cmdline}
914Use @var{cmdline} as kernel command line
915
916@item -initrd @var{file}
917Use @var{file} as initial ram disk.
918
919@end table
920
921Debug/Expert options:
922@table @option
923
924@item -serial @var{dev}
925Redirect the virtual serial port to host character device
926@var{dev}. The default device is @code{vc} in graphical mode and
927@code{stdio} in non graphical mode.
928
929This option can be used several times to simulate up to 4 serial
930ports.
931
932Use @code{-serial none} to disable all serial ports.
933
934Available character devices are:
935@table @code
936@item vc[:WxH]
937Virtual console. Optionally, a width and height can be given in pixel with
938@example
939vc:800x600
940@end example
941It is also possible to specify width or height in characters:
942@example
943vc:80Cx24C
944@end example
945@item pty
946[Linux only] Pseudo TTY (a new PTY is automatically allocated)
947@item none
948No device is allocated.
949@item null
950void device
951@item /dev/XXX
952[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
953parameters are set according to the emulated ones.
954@item /dev/parport@var{N}
955[Linux only, parallel port only] Use host parallel port
956@var{N}. Currently SPP and EPP parallel port features can be used.
957@item file:@var{filename}
958Write output to @var{filename}. No character can be read.
959@item stdio
960[Unix only] standard input/output
961@item pipe:@var{filename}
962name pipe @var{filename}
963@item COM@var{n}
964[Windows only] Use host serial port @var{n}
965@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
966This implements UDP Net Console.
967When @var{remote_host} or @var{src_ip} are not specified
968they default to @code{0.0.0.0}.
969When not using a specified @var{src_port} a random port is automatically chosen.
970@item msmouse
971Three button serial mouse. Configure the guest to use Microsoft protocol.
972
973If you just want a simple readonly console you can use @code{netcat} or
974@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
975@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
976will appear in the netconsole session.
977
978If you plan to send characters back via netconsole or you want to stop
979and start qemu a lot of times, you should have qemu use the same
980source port each time by using something like @code{-serial
981udp::4555@@:4556} to qemu. Another approach is to use a patched
982version of netcat which can listen to a TCP port and send and receive
983characters via udp. If you have a patched version of netcat which
984activates telnet remote echo and single char transfer, then you can
985use the following options to step up a netcat redirector to allow
986telnet on port 5555 to access the qemu port.
987@table @code
988@item Qemu Options:
989-serial udp::4555@@:4556
990@item netcat options:
991-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
992@item telnet options:
993localhost 5555
994@end table
995
996
997@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
998The TCP Net Console has two modes of operation. It can send the serial
999I/O to a location or wait for a connection from a location. By default
1000the TCP Net Console is sent to @var{host} at the @var{port}. If you use
1001the @var{server} option QEMU will wait for a client socket application
1002to connect to the port before continuing, unless the @code{nowait}
1003option was specified. The @code{nodelay} option disables the Nagle buffering
1004algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only
1005one TCP connection at a time is accepted. You can use @code{telnet} to
1006connect to the corresponding character device.
1007@table @code
1008@item Example to send tcp console to 192.168.0.2 port 4444
1009-serial tcp:192.168.0.2:4444
1010@item Example to listen and wait on port 4444 for connection
1011-serial tcp::4444,server
1012@item Example to not wait and listen on ip 192.168.0.100 port 4444
1013-serial tcp:192.168.0.100:4444,server,nowait
1014@end table
1015
1016@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1017The telnet protocol is used instead of raw tcp sockets. The options
1018work the same as if you had specified @code{-serial tcp}. The
1019difference is that the port acts like a telnet server or client using
1020telnet option negotiation. This will also allow you to send the
1021MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1022sequence. Typically in unix telnet you do it with Control-] and then
1023type "send break" followed by pressing the enter key.
1024
1025@item unix:@var{path}[,server][,nowait]
1026A unix domain socket is used instead of a tcp socket. The option works the
1027same as if you had specified @code{-serial tcp} except the unix domain socket
1028@var{path} is used for connections.
1029
1030@item mon:@var{dev_string}
1031This is a special option to allow the monitor to be multiplexed onto
1032another serial port. The monitor is accessed with key sequence of
1033@key{Control-a} and then pressing @key{c}. See monitor access
1034@ref{pcsys_keys} in the -nographic section for more keys.
1035@var{dev_string} should be any one of the serial devices specified
1036above. An example to multiplex the monitor onto a telnet server
1037listening on port 4444 would be:
1038@table @code
1039@item -serial mon:telnet::4444,server,nowait
1040@end table
1041
1042@item braille
1043Braille device. This will use BrlAPI to display the braille output on a real
1044or fake device.
1045
1046@end table
1047
1048@item -parallel @var{dev}
1049Redirect the virtual parallel port to host device @var{dev} (same
1050devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1051be used to use hardware devices connected on the corresponding host
1052parallel port.
1053
1054This option can be used several times to simulate up to 3 parallel
1055ports.
1056
1057Use @code{-parallel none} to disable all parallel ports.
1058
1059@item -monitor @var{dev}
1060Redirect the monitor to host device @var{dev} (same devices as the
1061serial port).
1062The default device is @code{vc} in graphical mode and @code{stdio} in
1063non graphical mode.
1064
1065@item -pidfile @var{file}
1066Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1067from a script.
1068
1069@item -S
1070Do not start CPU at startup (you must type 'c' in the monitor).
1071
1072@item -s
1073Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1074
1075@item -p @var{port}
1076Change gdb connection port. @var{port} can be either a decimal number
1077to specify a TCP port, or a host device (same devices as the serial port).
1078
1079@item -d
1080Output log in /tmp/qemu.log
1081@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1082Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1083@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1084translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1085all those parameters. This option is useful for old MS-DOS disk
1086images.
1087
1088@item -L @var{path}
1089Set the directory for the BIOS, VGA BIOS and keymaps.
1090
1091@item -bios @var{file}
1092Set the filename for the BIOS.
1093
1094@item -kernel-kqemu
1095Enable KQEMU full virtualization (default is user mode only).
1096
1097@item -no-kqemu
1098Disable KQEMU kernel module usage. KQEMU options are only available if
1099KQEMU support is enabled when compiling.
1100
1101@item -enable-kvm
1102Enable KVM full virtualization support. This option is only available
1103if KVM support is enabled when compiling.
1104
1105@item -no-reboot
1106Exit instead of rebooting.
1107
1108@item -no-shutdown
1109Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1110This allows for instance switching to monitor to commit changes to the
1111disk image.
1112
1113@item -loadvm @var{file}
1114Start right away with a saved state (@code{loadvm} in monitor)
1115
1116@item -daemonize
1117Daemonize the QEMU process after initialization. QEMU will not detach from
1118standard IO until it is ready to receive connections on any of its devices.
1119This option is a useful way for external programs to launch QEMU without having
1120to cope with initialization race conditions.
1121
1122@item -option-rom @var{file}
1123Load the contents of @var{file} as an option ROM.
1124This option is useful to load things like EtherBoot.
1125
1126@item -clock @var{method}
1127Force the use of the given methods for timer alarm. To see what timers
1128are available use -clock ?.
1129
1130@item -localtime
1131Set the real time clock to local time (the default is to UTC
1132time). This option is needed to have correct date in MS-DOS or
1133Windows.
1134
1135@item -startdate @var{date}
1136Set the initial date of the real time clock. Valid formats for
1137@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1138@code{2006-06-17}. The default value is @code{now}.
1139
1140@item -icount [N|auto]
1141Enable virtual instruction counter. The virtual cpu will execute one
1142instruction every 2^N ns of virtual time. If @code{auto} is specified
1143then the virtual cpu speed will be automatically adjusted to keep virtual
1144time within a few seconds of real time.
1145
1146Note that while this option can give deterministic behavior, it does not
1147provide cycle accurate emulation. Modern CPUs contain superscalar out of
1148order cores with complex cache hierarchies. The number of instructions
1149executed often has little or no correlation with actual performance.
1150
1151@item -echr numeric_ascii_value
1152Change the escape character used for switching to the monitor when using
1153monitor and serial sharing. The default is @code{0x01} when using the
1154@code{-nographic} option. @code{0x01} is equal to pressing
1155@code{Control-a}. You can select a different character from the ascii
1156control keys where 1 through 26 map to Control-a through Control-z. For
1157instance you could use the either of the following to change the escape
1158character to Control-t.
1159@table @code
1160@item -echr 0x14
1161@item -echr 20
1162@end table
1163
1164@item -chroot dir
1165Immediately before starting guest execution, chroot to the specified
1166directory. Especially useful in combination with -runas.
1167
1168@item -runas user
1169Immediately before starting guest execution, drop root privileges, switching
1170to the specified user.
1171
1172@end table
1173
1174@c man end
1175
1176@node pcsys_keys
1177@section Keys
1178
1179@c man begin OPTIONS
1180
1181During the graphical emulation, you can use the following keys:
1182@table @key
1183@item Ctrl-Alt-f
1184Toggle full screen
1185
1186@item Ctrl-Alt-n
1187Switch to virtual console 'n'. Standard console mappings are:
1188@table @emph
1189@item 1
1190Target system display
1191@item 2
1192Monitor
1193@item 3
1194Serial port
1195@end table
1196
1197@item Ctrl-Alt
1198Toggle mouse and keyboard grab.
1199@end table
1200
1201In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1202@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1203
1204During emulation, if you are using the @option{-nographic} option, use
1205@key{Ctrl-a h} to get terminal commands:
1206
1207@table @key
1208@item Ctrl-a h
1209@item Ctrl-a ?
1210Print this help
1211@item Ctrl-a x
1212Exit emulator
1213@item Ctrl-a s
1214Save disk data back to file (if -snapshot)
1215@item Ctrl-a t
1216Toggle console timestamps
1217@item Ctrl-a b
1218Send break (magic sysrq in Linux)
1219@item Ctrl-a c
1220Switch between console and monitor
1221@item Ctrl-a Ctrl-a
1222Send Ctrl-a
1223@end table
1224@c man end
1225
1226@ignore
1227
1228@c man begin SEEALSO
1229The HTML documentation of QEMU for more precise information and Linux
1230user mode emulator invocation.
1231@c man end
1232
1233@c man begin AUTHOR
1234Fabrice Bellard
1235@c man end
1236
1237@end ignore
1238
1239@node pcsys_monitor
1240@section QEMU Monitor
1241
1242The QEMU monitor is used to give complex commands to the QEMU
1243emulator. You can use it to:
1244
1245@itemize @minus
1246
1247@item
1248Remove or insert removable media images
1249(such as CD-ROM or floppies).
1250
1251@item
1252Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1253from a disk file.
1254
1255@item Inspect the VM state without an external debugger.
1256
1257@end itemize
1258
1259@subsection Commands
1260
1261The following commands are available:
1262
1263@table @option
1264
1265@item help or ? [@var{cmd}]
1266Show the help for all commands or just for command @var{cmd}.
1267
1268@item commit
1269Commit changes to the disk images (if -snapshot is used).
1270
1271@item info @var{subcommand}
1272Show various information about the system state.
1273
1274@table @option
1275@item info version
1276show the version of QEMU
1277@item info network
1278show the various VLANs and the associated devices
1279@item info chardev
1280show the character devices
1281@item info block
1282show the block devices
1283@item info block
1284show block device statistics
1285@item info registers
1286show the cpu registers
1287@item info cpus
1288show infos for each CPU
1289@item info history
1290show the command line history
1291@item info irq
1292show the interrupts statistics (if available)
1293@item info pic
1294show i8259 (PIC) state
1295@item info pci
1296show emulated PCI device info
1297@item info tlb
1298show virtual to physical memory mappings (i386 only)
1299@item info mem
1300show the active virtual memory mappings (i386 only)
1301@item info hpet
1302show state of HPET (i386 only)
1303@item info kqemu
1304show KQEMU information
1305@item info kvm
1306show KVM information
1307@item info usb
1308show USB devices plugged on the virtual USB hub
1309@item info usbhost
1310show all USB host devices
1311@item info profile
1312show profiling information
1313@item info capture
1314show information about active capturing
1315@item info snapshots
1316show list of VM snapshots
1317@item info status
1318show the current VM status (running|paused)
1319@item info pcmcia
1320show guest PCMCIA status
1321@item info mice
1322show which guest mouse is receiving events
1323@item info vnc
1324show the vnc server status
1325@item info name
1326show the current VM name
1327@item info uuid
1328show the current VM UUID
1329@item info cpustats
1330show CPU statistics
1331@item info slirp
1332show SLIRP statistics (if available)
1333@item info migrate
1334show migration status
1335@item info balloon
1336show balloon information
1337@end table
1338
1339@item q or quit
1340Quit the emulator.
1341
1342@item eject [-f] @var{device}
1343Eject a removable medium (use -f to force it).
1344
1345@item change @var{device} @var{setting}
1346
1347Change the configuration of a device.
1348
1349@table @option
1350@item change @var{diskdevice} @var{filename} [@var{format}]
1351Change the medium for a removable disk device to point to @var{filename}. eg
1352
1353@example
1354(qemu) change ide1-cd0 /path/to/some.iso
1355@end example
1356
1357@var{format} is optional.
1358
1359@item change vnc @var{display},@var{options}
1360Change the configuration of the VNC server. The valid syntax for @var{display}
1361and @var{options} are described at @ref{sec_invocation}. eg
1362
1363@example
1364(qemu) change vnc localhost:1
1365@end example
1366
1367@item change vnc password [@var{password}]
1368
1369Change the password associated with the VNC server. If the new password is not
1370supplied, the monitor will prompt for it to be entered. VNC passwords are only
1371significant up to 8 letters. eg
1372
1373@example
1374(qemu) change vnc password
1375Password: ********
1376@end example
1377
1378@end table
1379
1380@item screendump @var{filename}
1381Save screen into PPM image @var{filename}.
1382
1383@item logfile @var{filename}
1384Output logs to @var{filename}.
1385
1386@item log @var{item1}[,...]
1387Activate logging of the specified items to @file{/tmp/qemu.log}.
1388
1389@item savevm [@var{tag}|@var{id}]
1390Create a snapshot of the whole virtual machine. If @var{tag} is
1391provided, it is used as human readable identifier. If there is already
1392a snapshot with the same tag or ID, it is replaced. More info at
1393@ref{vm_snapshots}.
1394
1395@item loadvm @var{tag}|@var{id}
1396Set the whole virtual machine to the snapshot identified by the tag
1397@var{tag} or the unique snapshot ID @var{id}.
1398
1399@item delvm @var{tag}|@var{id}
1400Delete the snapshot identified by @var{tag} or @var{id}.
1401
1402@item stop
1403Stop emulation.
1404
1405@item c or cont
1406Resume emulation.
1407
1408@item gdbserver [@var{port}]
1409Start gdbserver session (default @var{port}=1234)
1410
1411@item x/fmt @var{addr}
1412Virtual memory dump starting at @var{addr}.
1413
1414@item xp /@var{fmt} @var{addr}
1415Physical memory dump starting at @var{addr}.
1416
1417@var{fmt} is a format which tells the command how to format the
1418data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1419
1420@table @var
1421@item count
1422is the number of items to be dumped.
1423
1424@item format
1425can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1426c (char) or i (asm instruction).
1427
1428@item size
1429can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1430@code{h} or @code{w} can be specified with the @code{i} format to
1431respectively select 16 or 32 bit code instruction size.
1432
1433@end table
1434
1435Examples:
1436@itemize
1437@item
1438Dump 10 instructions at the current instruction pointer:
1439@example
1440(qemu) x/10i $eip
14410x90107063: ret
14420x90107064: sti
14430x90107065: lea 0x0(%esi,1),%esi
14440x90107069: lea 0x0(%edi,1),%edi
14450x90107070: ret
14460x90107071: jmp 0x90107080
14470x90107073: nop
14480x90107074: nop
14490x90107075: nop
14500x90107076: nop
1451@end example
1452
1453@item
1454Dump 80 16 bit values at the start of the video memory.
1455@smallexample
1456(qemu) xp/80hx 0xb8000
14570x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
14580x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
14590x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
14600x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
14610x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
14620x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
14630x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
14640x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
14650x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
14660x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1467@end smallexample
1468@end itemize
1469
1470@item p or print/@var{fmt} @var{expr}
1471
1472Print expression value. Only the @var{format} part of @var{fmt} is
1473used.
1474
1475@item sendkey @var{keys}
1476
1477Send @var{keys} to the emulator. @var{keys} could be the name of the
1478key or @code{#} followed by the raw value in either decimal or hexadecimal
1479format. Use @code{-} to press several keys simultaneously. Example:
1480@example
1481sendkey ctrl-alt-f1
1482@end example
1483
1484This command is useful to send keys that your graphical user interface
1485intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1486
1487@item system_reset
1488
1489Reset the system.
1490
1491@item system_powerdown
1492
1493Power down the system (if supported).
1494
1495@item sum @var{addr} @var{size}
1496
1497Compute the checksum of a memory region.
1498
1499@item usb_add @var{devname}
1500
1501Add the USB device @var{devname}. For details of available devices see
1502@ref{usb_devices}
1503
1504@item usb_del @var{devname}
1505
1506Remove the USB device @var{devname} from the QEMU virtual USB
1507hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1508command @code{info usb} to see the devices you can remove.
1509
1510@item mouse_move @var{dx} @var{dy} [@var{dz}]
1511Move the active mouse to the specified coordinates @var{dx} @var{dy}
1512with optional scroll axis @var{dz}.
1513
1514@item mouse_button @var{val}
1515Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1516
1517@item mouse_set @var{index}
1518Set which mouse device receives events at given @var{index}, index
1519can be obtained with
1520@example
1521info mice
1522@end example
1523
1524@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1525Capture audio into @var{filename}. Using sample rate @var{frequency}
1526bits per sample @var{bits} and number of channels @var{channels}.
1527
1528Defaults:
1529@itemize @minus
1530@item Sample rate = 44100 Hz - CD quality
1531@item Bits = 16
1532@item Number of channels = 2 - Stereo
1533@end itemize
1534
1535@item stopcapture @var{index}
1536Stop capture with a given @var{index}, index can be obtained with
1537@example
1538info capture
1539@end example
1540
1541@item memsave @var{addr} @var{size} @var{file}
1542save to disk virtual memory dump starting at @var{addr} of size @var{size}.
1543
1544@item pmemsave @var{addr} @var{size} @var{file}
1545save to disk physical memory dump starting at @var{addr} of size @var{size}.
1546
1547@item boot_set @var{bootdevicelist}
1548
1549Define new values for the boot device list. Those values will override
1550the values specified on the command line through the @code{-boot} option.
1551
1552The values that can be specified here depend on the machine type, but are
1553the same that can be specified in the @code{-boot} command line option.
1554
1555@item nmi @var{cpu}
1556Inject an NMI on the given CPU.
1557
1558@item migrate [-d] @var{uri}
1559Migrate to @var{uri} (using -d to not wait for completion).
1560
1561@item migrate_cancel
1562Cancel the current VM migration.
1563
1564@item migrate_set_speed @var{value}
1565Set maximum speed to @var{value} (in bytes) for migrations.
1566
1567@item balloon @var{value}
1568Request VM to change its memory allocation to @var{value} (in MB).
1569
1570@item set_link @var{name} [up|down]
1571Set link @var{name} up or down.
1572
1573@end table
1574
1575@subsection Integer expressions
1576
1577The monitor understands integers expressions for every integer
1578argument. You can use register names to get the value of specifics
1579CPU registers by prefixing them with @emph{$}.
1580
1581@node disk_images
1582@section Disk Images
1583
1584Since version 0.6.1, QEMU supports many disk image formats, including
1585growable disk images (their size increase as non empty sectors are
1586written), compressed and encrypted disk images. Version 0.8.3 added
1587the new qcow2 disk image format which is essential to support VM
1588snapshots.
1589
1590@menu
1591* disk_images_quickstart:: Quick start for disk image creation
1592* disk_images_snapshot_mode:: Snapshot mode
1593* vm_snapshots:: VM snapshots
1594* qemu_img_invocation:: qemu-img Invocation
1595* qemu_nbd_invocation:: qemu-nbd Invocation
1596* host_drives:: Using host drives
1597* disk_images_fat_images:: Virtual FAT disk images
1598* disk_images_nbd:: NBD access
1599@end menu
1600
1601@node disk_images_quickstart
1602@subsection Quick start for disk image creation
1603
1604You can create a disk image with the command:
1605@example
1606qemu-img create myimage.img mysize
1607@end example
1608where @var{myimage.img} is the disk image filename and @var{mysize} is its
1609size in kilobytes. You can add an @code{M} suffix to give the size in
1610megabytes and a @code{G} suffix for gigabytes.
1611
1612See @ref{qemu_img_invocation} for more information.
1613
1614@node disk_images_snapshot_mode
1615@subsection Snapshot mode
1616
1617If you use the option @option{-snapshot}, all disk images are
1618considered as read only. When sectors in written, they are written in
1619a temporary file created in @file{/tmp}. You can however force the
1620write back to the raw disk images by using the @code{commit} monitor
1621command (or @key{C-a s} in the serial console).
1622
1623@node vm_snapshots
1624@subsection VM snapshots
1625
1626VM snapshots are snapshots of the complete virtual machine including
1627CPU state, RAM, device state and the content of all the writable
1628disks. In order to use VM snapshots, you must have at least one non
1629removable and writable block device using the @code{qcow2} disk image
1630format. Normally this device is the first virtual hard drive.
1631
1632Use the monitor command @code{savevm} to create a new VM snapshot or
1633replace an existing one. A human readable name can be assigned to each
1634snapshot in addition to its numerical ID.
1635
1636Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1637a VM snapshot. @code{info snapshots} lists the available snapshots
1638with their associated information:
1639
1640@example
1641(qemu) info snapshots
1642Snapshot devices: hda
1643Snapshot list (from hda):
1644ID TAG VM SIZE DATE VM CLOCK
16451 start 41M 2006-08-06 12:38:02 00:00:14.954
16462 40M 2006-08-06 12:43:29 00:00:18.633
16473 msys 40M 2006-08-06 12:44:04 00:00:23.514
1648@end example
1649
1650A VM snapshot is made of a VM state info (its size is shown in
1651@code{info snapshots}) and a snapshot of every writable disk image.
1652The VM state info is stored in the first @code{qcow2} non removable
1653and writable block device. The disk image snapshots are stored in
1654every disk image. The size of a snapshot in a disk image is difficult
1655to evaluate and is not shown by @code{info snapshots} because the
1656associated disk sectors are shared among all the snapshots to save
1657disk space (otherwise each snapshot would need a full copy of all the
1658disk images).
1659
1660When using the (unrelated) @code{-snapshot} option
1661(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1662but they are deleted as soon as you exit QEMU.
1663
1664VM snapshots currently have the following known limitations:
1665@itemize
1666@item
1667They cannot cope with removable devices if they are removed or
1668inserted after a snapshot is done.
1669@item
1670A few device drivers still have incomplete snapshot support so their
1671state is not saved or restored properly (in particular USB).
1672@end itemize
1673
1674@node qemu_img_invocation
1675@subsection @code{qemu-img} Invocation
1676
1677@include qemu-img.texi
1678
1679@node qemu_nbd_invocation
1680@subsection @code{qemu-nbd} Invocation
1681
1682@include qemu-nbd.texi
1683
1684@node host_drives
1685@subsection Using host drives
1686
1687In addition to disk image files, QEMU can directly access host
1688devices. We describe here the usage for QEMU version >= 0.8.3.
1689
1690@subsubsection Linux
1691
1692On Linux, you can directly use the host device filename instead of a
1693disk image filename provided you have enough privileges to access
1694it. For example, use @file{/dev/cdrom} to access to the CDROM or
1695@file{/dev/fd0} for the floppy.
1696
1697@table @code
1698@item CD
1699You can specify a CDROM device even if no CDROM is loaded. QEMU has
1700specific code to detect CDROM insertion or removal. CDROM ejection by
1701the guest OS is supported. Currently only data CDs are supported.
1702@item Floppy
1703You can specify a floppy device even if no floppy is loaded. Floppy
1704removal is currently not detected accurately (if you change floppy
1705without doing floppy access while the floppy is not loaded, the guest
1706OS will think that the same floppy is loaded).
1707@item Hard disks
1708Hard disks can be used. Normally you must specify the whole disk
1709(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1710see it as a partitioned disk. WARNING: unless you know what you do, it
1711is better to only make READ-ONLY accesses to the hard disk otherwise
1712you may corrupt your host data (use the @option{-snapshot} command
1713line option or modify the device permissions accordingly).
1714@end table
1715
1716@subsubsection Windows
1717
1718@table @code
1719@item CD
1720The preferred syntax is the drive letter (e.g. @file{d:}). The
1721alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1722supported as an alias to the first CDROM drive.
1723
1724Currently there is no specific code to handle removable media, so it
1725is better to use the @code{change} or @code{eject} monitor commands to
1726change or eject media.
1727@item Hard disks
1728Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1729where @var{N} is the drive number (0 is the first hard disk).
1730
1731WARNING: unless you know what you do, it is better to only make
1732READ-ONLY accesses to the hard disk otherwise you may corrupt your
1733host data (use the @option{-snapshot} command line so that the
1734modifications are written in a temporary file).
1735@end table
1736
1737
1738@subsubsection Mac OS X
1739
1740@file{/dev/cdrom} is an alias to the first CDROM.
1741
1742Currently there is no specific code to handle removable media, so it
1743is better to use the @code{change} or @code{eject} monitor commands to
1744change or eject media.
1745
1746@node disk_images_fat_images
1747@subsection Virtual FAT disk images
1748
1749QEMU can automatically create a virtual FAT disk image from a
1750directory tree. In order to use it, just type:
1751
1752@example
1753qemu linux.img -hdb fat:/my_directory
1754@end example
1755
1756Then you access access to all the files in the @file{/my_directory}
1757directory without having to copy them in a disk image or to export
1758them via SAMBA or NFS. The default access is @emph{read-only}.
1759
1760Floppies can be emulated with the @code{:floppy:} option:
1761
1762@example
1763qemu linux.img -fda fat:floppy:/my_directory
1764@end example
1765
1766A read/write support is available for testing (beta stage) with the
1767@code{:rw:} option:
1768
1769@example
1770qemu linux.img -fda fat:floppy:rw:/my_directory
1771@end example
1772
1773What you should @emph{never} do:
1774@itemize
1775@item use non-ASCII filenames ;
1776@item use "-snapshot" together with ":rw:" ;
1777@item expect it to work when loadvm'ing ;
1778@item write to the FAT directory on the host system while accessing it with the guest system.
1779@end itemize
1780
1781@node disk_images_nbd
1782@subsection NBD access
1783
1784QEMU can access directly to block device exported using the Network Block Device
1785protocol.
1786
1787@example
1788qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1789@end example
1790
1791If the NBD server is located on the same host, you can use an unix socket instead
1792of an inet socket:
1793
1794@example
1795qemu linux.img -hdb nbd:unix:/tmp/my_socket
1796@end example
1797
1798In this case, the block device must be exported using qemu-nbd:
1799
1800@example
1801qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1802@end example
1803
1804The use of qemu-nbd allows to share a disk between several guests:
1805@example
1806qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1807@end example
1808
1809and then you can use it with two guests:
1810@example
1811qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1812qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1813@end example
1814
1815@node pcsys_network
1816@section Network emulation
1817
1818QEMU can simulate several network cards (PCI or ISA cards on the PC
1819target) and can connect them to an arbitrary number of Virtual Local
1820Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1821VLAN. VLAN can be connected between separate instances of QEMU to
1822simulate large networks. For simpler usage, a non privileged user mode
1823network stack can replace the TAP device to have a basic network
1824connection.
1825
1826@subsection VLANs
1827
1828QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1829connection between several network devices. These devices can be for
1830example QEMU virtual Ethernet cards or virtual Host ethernet devices
1831(TAP devices).
1832
1833@subsection Using TAP network interfaces
1834
1835This is the standard way to connect QEMU to a real network. QEMU adds
1836a virtual network device on your host (called @code{tapN}), and you
1837can then configure it as if it was a real ethernet card.
1838
1839@subsubsection Linux host
1840
1841As an example, you can download the @file{linux-test-xxx.tar.gz}
1842archive and copy the script @file{qemu-ifup} in @file{/etc} and
1843configure properly @code{sudo} so that the command @code{ifconfig}
1844contained in @file{qemu-ifup} can be executed as root. You must verify
1845that your host kernel supports the TAP network interfaces: the
1846device @file{/dev/net/tun} must be present.
1847
1848See @ref{sec_invocation} to have examples of command lines using the
1849TAP network interfaces.
1850
1851@subsubsection Windows host
1852
1853There is a virtual ethernet driver for Windows 2000/XP systems, called
1854TAP-Win32. But it is not included in standard QEMU for Windows,
1855so you will need to get it separately. It is part of OpenVPN package,
1856so download OpenVPN from : @url{http://openvpn.net/}.
1857
1858@subsection Using the user mode network stack
1859
1860By using the option @option{-net user} (default configuration if no
1861@option{-net} option is specified), QEMU uses a completely user mode
1862network stack (you don't need root privilege to use the virtual
1863network). The virtual network configuration is the following:
1864
1865@example
1866
1867 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1868 | (10.0.2.2)
1869 |
1870 ----> DNS server (10.0.2.3)
1871 |
1872 ----> SMB server (10.0.2.4)
1873@end example
1874
1875The QEMU VM behaves as if it was behind a firewall which blocks all
1876incoming connections. You can use a DHCP client to automatically
1877configure the network in the QEMU VM. The DHCP server assign addresses
1878to the hosts starting from 10.0.2.15.
1879
1880In order to check that the user mode network is working, you can ping
1881the address 10.0.2.2 and verify that you got an address in the range
188210.0.2.x from the QEMU virtual DHCP server.
1883
1884Note that @code{ping} is not supported reliably to the internet as it
1885would require root privileges. It means you can only ping the local
1886router (10.0.2.2).
1887
1888When using the built-in TFTP server, the router is also the TFTP
1889server.
1890
1891When using the @option{-redir} option, TCP or UDP connections can be
1892redirected from the host to the guest. It allows for example to
1893redirect X11, telnet or SSH connections.
1894
1895@subsection Connecting VLANs between QEMU instances
1896
1897Using the @option{-net socket} option, it is possible to make VLANs
1898that span several QEMU instances. See @ref{sec_invocation} to have a
1899basic example.
1900
1901@node direct_linux_boot
1902@section Direct Linux Boot
1903
1904This section explains how to launch a Linux kernel inside QEMU without
1905having to make a full bootable image. It is very useful for fast Linux
1906kernel testing.
1907
1908The syntax is:
1909@example
1910qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1911@end example
1912
1913Use @option{-kernel} to provide the Linux kernel image and
1914@option{-append} to give the kernel command line arguments. The
1915@option{-initrd} option can be used to provide an INITRD image.
1916
1917When using the direct Linux boot, a disk image for the first hard disk
1918@file{hda} is required because its boot sector is used to launch the
1919Linux kernel.
1920
1921If you do not need graphical output, you can disable it and redirect
1922the virtual serial port and the QEMU monitor to the console with the
1923@option{-nographic} option. The typical command line is:
1924@example
1925qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1926 -append "root=/dev/hda console=ttyS0" -nographic
1927@end example
1928
1929Use @key{Ctrl-a c} to switch between the serial console and the
1930monitor (@pxref{pcsys_keys}).
1931
1932@node pcsys_usb
1933@section USB emulation
1934
1935QEMU emulates a PCI UHCI USB controller. You can virtually plug
1936virtual USB devices or real host USB devices (experimental, works only
1937on Linux hosts). Qemu will automatically create and connect virtual USB hubs
1938as necessary to connect multiple USB devices.
1939
1940@menu
1941* usb_devices::
1942* host_usb_devices::
1943@end menu
1944@node usb_devices
1945@subsection Connecting USB devices
1946
1947USB devices can be connected with the @option{-usbdevice} commandline option
1948or the @code{usb_add} monitor command. Available devices are:
1949
1950@table @code
1951@item mouse
1952Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1953@item tablet
1954Pointer device that uses absolute coordinates (like a touchscreen).
1955This means qemu is able to report the mouse position without having
1956to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1957@item disk:@var{file}
1958Mass storage device based on @var{file} (@pxref{disk_images})
1959@item host:@var{bus.addr}
1960Pass through the host device identified by @var{bus.addr}
1961(Linux only)
1962@item host:@var{vendor_id:product_id}
1963Pass through the host device identified by @var{vendor_id:product_id}
1964(Linux only)
1965@item wacom-tablet
1966Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1967above but it can be used with the tslib library because in addition to touch
1968coordinates it reports touch pressure.
1969@item keyboard
1970Standard USB keyboard. Will override the PS/2 keyboard (if present).
1971@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1972Serial converter. This emulates an FTDI FT232BM chip connected to host character
1973device @var{dev}. The available character devices are the same as for the
1974@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1975used to override the default 0403:6001. For instance,
1976@example
1977usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1978@end example
1979will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1980serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1981@item braille
1982Braille device. This will use BrlAPI to display the braille output on a real
1983or fake device.
1984@item net:@var{options}
1985Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1986specifies NIC options as with @code{-net nic,}@var{options} (see description).
1987For instance, user-mode networking can be used with
1988@example
1989qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1990@end example
1991Currently this cannot be used in machines that support PCI NICs.
1992@item bt[:@var{hci-type}]
1993Bluetooth dongle whose type is specified in the same format as with
1994the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1995no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1996This USB device implements the USB Transport Layer of HCI. Example
1997usage:
1998@example
1999qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
2000@end example
2001@end table
2002
2003@node host_usb_devices
2004@subsection Using host USB devices on a Linux host
2005
2006WARNING: this is an experimental feature. QEMU will slow down when
2007using it. USB devices requiring real time streaming (i.e. USB Video
2008Cameras) are not supported yet.
2009
2010@enumerate
2011@item If you use an early Linux 2.4 kernel, verify that no Linux driver
2012is actually using the USB device. A simple way to do that is simply to
2013disable the corresponding kernel module by renaming it from @file{mydriver.o}
2014to @file{mydriver.o.disabled}.
2015
2016@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
2017@example
2018ls /proc/bus/usb
2019001 devices drivers
2020@end example
2021
2022@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
2023@example
2024chown -R myuid /proc/bus/usb
2025@end example
2026
2027@item Launch QEMU and do in the monitor:
2028@example
2029info usbhost
2030 Device 1.2, speed 480 Mb/s
2031 Class 00: USB device 1234:5678, USB DISK
2032@end example
2033You should see the list of the devices you can use (Never try to use
2034hubs, it won't work).
2035
2036@item Add the device in QEMU by using:
2037@example
2038usb_add host:1234:5678
2039@end example
2040
2041Normally the guest OS should report that a new USB device is
2042plugged. You can use the option @option{-usbdevice} to do the same.
2043
2044@item Now you can try to use the host USB device in QEMU.
2045
2046@end enumerate
2047
2048When relaunching QEMU, you may have to unplug and plug again the USB
2049device to make it work again (this is a bug).
2050
2051@node vnc_security
2052@section VNC security
2053
2054The VNC server capability provides access to the graphical console
2055of the guest VM across the network. This has a number of security
2056considerations depending on the deployment scenarios.
2057
2058@menu
2059* vnc_sec_none::
2060* vnc_sec_password::
2061* vnc_sec_certificate::
2062* vnc_sec_certificate_verify::
2063* vnc_sec_certificate_pw::
2064* vnc_generate_cert::
2065@end menu
2066@node vnc_sec_none
2067@subsection Without passwords
2068
2069The simplest VNC server setup does not include any form of authentication.
2070For this setup it is recommended to restrict it to listen on a UNIX domain
2071socket only. For example
2072
2073@example
2074qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
2075@end example
2076
2077This ensures that only users on local box with read/write access to that
2078path can access the VNC server. To securely access the VNC server from a
2079remote machine, a combination of netcat+ssh can be used to provide a secure
2080tunnel.
2081
2082@node vnc_sec_password
2083@subsection With passwords
2084
2085The VNC protocol has limited support for password based authentication. Since
2086the protocol limits passwords to 8 characters it should not be considered
2087to provide high security. The password can be fairly easily brute-forced by
2088a client making repeat connections. For this reason, a VNC server using password
2089authentication should be restricted to only listen on the loopback interface
2090or UNIX domain sockets. Password authentication is requested with the @code{password}
2091option, and then once QEMU is running the password is set with the monitor. Until
2092the monitor is used to set the password all clients will be rejected.
2093
2094@example
2095qemu [...OPTIONS...] -vnc :1,password -monitor stdio
2096(qemu) change vnc password
2097Password: ********
2098(qemu)
2099@end example
2100
2101@node vnc_sec_certificate
2102@subsection With x509 certificates
2103
2104The QEMU VNC server also implements the VeNCrypt extension allowing use of
2105TLS for encryption of the session, and x509 certificates for authentication.
2106The use of x509 certificates is strongly recommended, because TLS on its
2107own is susceptible to man-in-the-middle attacks. Basic x509 certificate
2108support provides a secure session, but no authentication. This allows any
2109client to connect, and provides an encrypted session.
2110
2111@example
2112qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
2113@end example
2114
2115In the above example @code{/etc/pki/qemu} should contain at least three files,
2116@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
2117users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
2118NB the @code{server-key.pem} file should be protected with file mode 0600 to
2119only be readable by the user owning it.
2120
2121@node vnc_sec_certificate_verify
2122@subsection With x509 certificates and client verification
2123
2124Certificates can also provide a means to authenticate the client connecting.
2125The server will request that the client provide a certificate, which it will
2126then validate against the CA certificate. This is a good choice if deploying
2127in an environment with a private internal certificate authority.
2128
2129@example
2130qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
2131@end example
2132
2133
2134@node vnc_sec_certificate_pw
2135@subsection With x509 certificates, client verification and passwords
2136
2137Finally, the previous method can be combined with VNC password authentication
2138to provide two layers of authentication for clients.
2139
2140@example
2141qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
2142(qemu) change vnc password
2143Password: ********
2144(qemu)
2145@end example
2146
2147@node vnc_generate_cert
2148@subsection Generating certificates for VNC
2149
2150The GNU TLS packages provides a command called @code{certtool} which can
2151be used to generate certificates and keys in PEM format. At a minimum it
2152is neccessary to setup a certificate authority, and issue certificates to
2153each server. If using certificates for authentication, then each client
2154will also need to be issued a certificate. The recommendation is for the
2155server to keep its certificates in either @code{/etc/pki/qemu} or for
2156unprivileged users in @code{$HOME/.pki/qemu}.
2157
2158@menu
2159* vnc_generate_ca::
2160* vnc_generate_server::
2161* vnc_generate_client::
2162@end menu
2163@node vnc_generate_ca
2164@subsubsection Setup the Certificate Authority
2165
2166This step only needs to be performed once per organization / organizational
2167unit. First the CA needs a private key. This key must be kept VERY secret
2168and secure. If this key is compromised the entire trust chain of the certificates
2169issued with it is lost.
2170
2171@example
2172# certtool --generate-privkey > ca-key.pem
2173@end example
2174
2175A CA needs to have a public certificate. For simplicity it can be a self-signed
2176certificate, or one issue by a commercial certificate issuing authority. To
2177generate a self-signed certificate requires one core piece of information, the
2178name of the organization.
2179
2180@example
2181# cat > ca.info <<EOF
2182cn = Name of your organization
2183ca
2184cert_signing_key
2185EOF
2186# certtool --generate-self-signed \
2187 --load-privkey ca-key.pem
2188 --template ca.info \
2189 --outfile ca-cert.pem
2190@end example
2191
2192The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2193TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2194
2195@node vnc_generate_server
2196@subsubsection Issuing server certificates
2197
2198Each server (or host) needs to be issued with a key and certificate. When connecting
2199the certificate is sent to the client which validates it against the CA certificate.
2200The core piece of information for a server certificate is the hostname. This should
2201be the fully qualified hostname that the client will connect with, since the client
2202will typically also verify the hostname in the certificate. On the host holding the
2203secure CA private key:
2204
2205@example
2206# cat > server.info <<EOF
2207organization = Name of your organization
2208cn = server.foo.example.com
2209tls_www_server
2210encryption_key
2211signing_key
2212EOF
2213# certtool --generate-privkey > server-key.pem
2214# certtool --generate-certificate \
2215 --load-ca-certificate ca-cert.pem \
2216 --load-ca-privkey ca-key.pem \
2217 --load-privkey server server-key.pem \
2218 --template server.info \
2219 --outfile server-cert.pem
2220@end example
2221
2222The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2223to the server for which they were generated. The @code{server-key.pem} is security
2224sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2225
2226@node vnc_generate_client
2227@subsubsection Issuing client certificates
2228
2229If the QEMU VNC server is to use the @code{x509verify} option to validate client
2230certificates as its authentication mechanism, each client also needs to be issued
2231a certificate. The client certificate contains enough metadata to uniquely identify
2232the client, typically organization, state, city, building, etc. On the host holding
2233the secure CA private key:
2234
2235@example
2236# cat > client.info <<EOF
2237country = GB
2238state = London
2239locality = London
2240organiazation = Name of your organization
2241cn = client.foo.example.com
2242tls_www_client
2243encryption_key
2244signing_key
2245EOF
2246# certtool --generate-privkey > client-key.pem
2247# certtool --generate-certificate \
2248 --load-ca-certificate ca-cert.pem \
2249 --load-ca-privkey ca-key.pem \
2250 --load-privkey client-key.pem \
2251 --template client.info \
2252 --outfile client-cert.pem
2253@end example
2254
2255The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2256copied to the client for which they were generated.
2257
2258@node gdb_usage
2259@section GDB usage
2260
2261QEMU has a primitive support to work with gdb, so that you can do
2262'Ctrl-C' while the virtual machine is running and inspect its state.
2263
2264In order to use gdb, launch qemu with the '-s' option. It will wait for a
2265gdb connection:
2266@example
2267> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2268 -append "root=/dev/hda"
2269Connected to host network interface: tun0
2270Waiting gdb connection on port 1234
2271@end example
2272
2273Then launch gdb on the 'vmlinux' executable:
2274@example
2275> gdb vmlinux
2276@end example
2277
2278In gdb, connect to QEMU:
2279@example
2280(gdb) target remote localhost:1234
2281@end example
2282
2283Then you can use gdb normally. For example, type 'c' to launch the kernel:
2284@example
2285(gdb) c
2286@end example
2287
2288Here are some useful tips in order to use gdb on system code:
2289
2290@enumerate
2291@item
2292Use @code{info reg} to display all the CPU registers.
2293@item
2294Use @code{x/10i $eip} to display the code at the PC position.
2295@item
2296Use @code{set architecture i8086} to dump 16 bit code. Then use
2297@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2298@end enumerate
2299
2300Advanced debugging options:
2301
2302The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
2303@table @code
2304@item maintenance packet qqemu.sstepbits
2305
2306This will display the MASK bits used to control the single stepping IE:
2307@example
2308(gdb) maintenance packet qqemu.sstepbits
2309sending: "qqemu.sstepbits"
2310received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2311@end example
2312@item maintenance packet qqemu.sstep
2313
2314This will display the current value of the mask used when single stepping IE:
2315@example
2316(gdb) maintenance packet qqemu.sstep
2317sending: "qqemu.sstep"
2318received: "0x7"
2319@end example
2320@item maintenance packet Qqemu.sstep=HEX_VALUE
2321
2322This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2323@example
2324(gdb) maintenance packet Qqemu.sstep=0x5
2325sending: "qemu.sstep=0x5"
2326received: "OK"
2327@end example
2328@end table
2329
2330@node pcsys_os_specific
2331@section Target OS specific information
2332
2333@subsection Linux
2334
2335To have access to SVGA graphic modes under X11, use the @code{vesa} or
2336the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2337color depth in the guest and the host OS.
2338
2339When using a 2.6 guest Linux kernel, you should add the option
2340@code{clock=pit} on the kernel command line because the 2.6 Linux
2341kernels make very strict real time clock checks by default that QEMU
2342cannot simulate exactly.
2343
2344When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2345not activated because QEMU is slower with this patch. The QEMU
2346Accelerator Module is also much slower in this case. Earlier Fedora
2347Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2348patch by default. Newer kernels don't have it.
2349
2350@subsection Windows
2351
2352If you have a slow host, using Windows 95 is better as it gives the
2353best speed. Windows 2000 is also a good choice.
2354
2355@subsubsection SVGA graphic modes support
2356
2357QEMU emulates a Cirrus Logic GD5446 Video
2358card. All Windows versions starting from Windows 95 should recognize
2359and use this graphic card. For optimal performances, use 16 bit color
2360depth in the guest and the host OS.
2361
2362If you are using Windows XP as guest OS and if you want to use high
2363resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
23641280x1024x16), then you should use the VESA VBE virtual graphic card
2365(option @option{-std-vga}).
2366
2367@subsubsection CPU usage reduction
2368
2369Windows 9x does not correctly use the CPU HLT
2370instruction. The result is that it takes host CPU cycles even when
2371idle. You can install the utility from
2372@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2373problem. Note that no such tool is needed for NT, 2000 or XP.
2374
2375@subsubsection Windows 2000 disk full problem
2376
2377Windows 2000 has a bug which gives a disk full problem during its
2378installation. When installing it, use the @option{-win2k-hack} QEMU
2379option to enable a specific workaround. After Windows 2000 is
2380installed, you no longer need this option (this option slows down the
2381IDE transfers).
2382
2383@subsubsection Windows 2000 shutdown
2384
2385Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2386can. It comes from the fact that Windows 2000 does not automatically
2387use the APM driver provided by the BIOS.
2388
2389In order to correct that, do the following (thanks to Struan
2390Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2391Add/Troubleshoot a device => Add a new device & Next => No, select the
2392hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2393(again) a few times. Now the driver is installed and Windows 2000 now
2394correctly instructs QEMU to shutdown at the appropriate moment.
2395
2396@subsubsection Share a directory between Unix and Windows
2397
2398See @ref{sec_invocation} about the help of the option @option{-smb}.
2399
2400@subsubsection Windows XP security problem
2401
2402Some releases of Windows XP install correctly but give a security
2403error when booting:
2404@example
2405A problem is preventing Windows from accurately checking the
2406license for this computer. Error code: 0x800703e6.
2407@end example
2408
2409The workaround is to install a service pack for XP after a boot in safe
2410mode. Then reboot, and the problem should go away. Since there is no
2411network while in safe mode, its recommended to download the full
2412installation of SP1 or SP2 and transfer that via an ISO or using the
2413vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2414
2415@subsection MS-DOS and FreeDOS
2416
2417@subsubsection CPU usage reduction
2418
2419DOS does not correctly use the CPU HLT instruction. The result is that
2420it takes host CPU cycles even when idle. You can install the utility
2421from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2422problem.
2423
2424@node QEMU System emulator for non PC targets
2425@chapter QEMU System emulator for non PC targets
2426
2427QEMU is a generic emulator and it emulates many non PC
2428machines. Most of the options are similar to the PC emulator. The
2429differences are mentioned in the following sections.
2430
2431@menu
2432* QEMU PowerPC System emulator::
2433* Sparc32 System emulator::
2434* Sparc64 System emulator::
2435* MIPS System emulator::
2436* ARM System emulator::
2437* ColdFire System emulator::
2438@end menu
2439
2440@node QEMU PowerPC System emulator
2441@section QEMU PowerPC System emulator
2442
2443Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2444or PowerMac PowerPC system.
2445
2446QEMU emulates the following PowerMac peripherals:
2447
2448@itemize @minus
2449@item
2450UniNorth or Grackle PCI Bridge
2451@item
2452PCI VGA compatible card with VESA Bochs Extensions
2453@item
24542 PMAC IDE interfaces with hard disk and CD-ROM support
2455@item
2456NE2000 PCI adapters
2457@item
2458Non Volatile RAM
2459@item
2460VIA-CUDA with ADB keyboard and mouse.
2461@end itemize
2462
2463QEMU emulates the following PREP peripherals:
2464
2465@itemize @minus
2466@item
2467PCI Bridge
2468@item
2469PCI VGA compatible card with VESA Bochs Extensions
2470@item
24712 IDE interfaces with hard disk and CD-ROM support
2472@item
2473Floppy disk
2474@item
2475NE2000 network adapters
2476@item
2477Serial port
2478@item
2479PREP Non Volatile RAM
2480@item
2481PC compatible keyboard and mouse.
2482@end itemize
2483
2484QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2485@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2486
2487Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2488for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2489v2) portable firmware implementation. The goal is to implement a 100%
2490IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
2491
2492@c man begin OPTIONS
2493
2494The following options are specific to the PowerPC emulation:
2495
2496@table @option
2497
2498@item -g WxH[xDEPTH]
2499
2500Set the initial VGA graphic mode. The default is 800x600x15.
2501
2502@item -prom-env string
2503
2504Set OpenBIOS variables in NVRAM, for example:
2505
2506@example
2507qemu-system-ppc -prom-env 'auto-boot?=false' \
2508 -prom-env 'boot-device=hd:2,\yaboot' \
2509 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2510@end example
2511
2512These variables are not used by Open Hack'Ware.
2513
2514@end table
2515
2516@c man end
2517
2518
2519More information is available at
2520@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2521
2522@node Sparc32 System emulator
2523@section Sparc32 System emulator
2524
2525Use the executable @file{qemu-system-sparc} to simulate the following
2526Sun4m architecture machines:
2527@itemize @minus
2528@item
2529SPARCstation 4
2530@item
2531SPARCstation 5
2532@item
2533SPARCstation 10
2534@item
2535SPARCstation 20
2536@item
2537SPARCserver 600MP
2538@item
2539SPARCstation LX
2540@item
2541SPARCstation Voyager
2542@item
2543SPARCclassic
2544@item
2545SPARCbook
2546@end itemize
2547
2548The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2549but Linux limits the number of usable CPUs to 4.
2550
2551It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2552SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2553emulators are not usable yet.
2554
2555QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2556
2557@itemize @minus
2558@item
2559IOMMU or IO-UNITs
2560@item
2561TCX Frame buffer
2562@item
2563Lance (Am7990) Ethernet
2564@item
2565Non Volatile RAM M48T02/M48T08
2566@item
2567Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2568and power/reset logic
2569@item
2570ESP SCSI controller with hard disk and CD-ROM support
2571@item
2572Floppy drive (not on SS-600MP)
2573@item
2574CS4231 sound device (only on SS-5, not working yet)
2575@end itemize
2576
2577The number of peripherals is fixed in the architecture. Maximum
2578memory size depends on the machine type, for SS-5 it is 256MB and for
2579others 2047MB.
2580
2581Since version 0.8.2, QEMU uses OpenBIOS
2582@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2583firmware implementation. The goal is to implement a 100% IEEE
25841275-1994 (referred to as Open Firmware) compliant firmware.
2585
2586A sample Linux 2.6 series kernel and ram disk image are available on
2587the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2588some kernel versions work. Please note that currently Solaris kernels
2589don't work probably due to interface issues between OpenBIOS and
2590Solaris.
2591
2592@c man begin OPTIONS
2593
2594The following options are specific to the Sparc32 emulation:
2595
2596@table @option
2597
2598@item -g WxHx[xDEPTH]
2599
2600Set the initial TCX graphic mode. The default is 1024x768x8, currently
2601the only other possible mode is 1024x768x24.
2602
2603@item -prom-env string
2604
2605Set OpenBIOS variables in NVRAM, for example:
2606
2607@example
2608qemu-system-sparc -prom-env 'auto-boot?=false' \
2609 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2610@end example
2611
2612@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2613
2614Set the emulated machine type. Default is SS-5.
2615
2616@end table
2617
2618@c man end
2619
2620@node Sparc64 System emulator
2621@section Sparc64 System emulator
2622
2623Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2624(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2625Niagara (T1) machine. The emulator is not usable for anything yet, but
2626it can launch some kernels.
2627
2628QEMU emulates the following peripherals:
2629
2630@itemize @minus
2631@item
2632UltraSparc IIi APB PCI Bridge
2633@item
2634PCI VGA compatible card with VESA Bochs Extensions
2635@item
2636PS/2 mouse and keyboard
2637@item
2638Non Volatile RAM M48T59
2639@item
2640PC-compatible serial ports
2641@item
26422 PCI IDE interfaces with hard disk and CD-ROM support
2643@item
2644Floppy disk
2645@end itemize
2646
2647@c man begin OPTIONS
2648
2649The following options are specific to the Sparc64 emulation:
2650
2651@table @option
2652
2653@item -prom-env string
2654
2655Set OpenBIOS variables in NVRAM, for example:
2656
2657@example
2658qemu-system-sparc64 -prom-env 'auto-boot?=false'
2659@end example
2660
2661@item -M [sun4u|sun4v|Niagara]
2662
2663Set the emulated machine type. The default is sun4u.
2664
2665@end table
2666
2667@c man end
2668
2669@node MIPS System emulator
2670@section MIPS System emulator
2671
2672Four executables cover simulation of 32 and 64-bit MIPS systems in
2673both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2674@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2675Five different machine types are emulated:
2676
2677@itemize @minus
2678@item
2679A generic ISA PC-like machine "mips"
2680@item
2681The MIPS Malta prototype board "malta"
2682@item
2683An ACER Pica "pica61". This machine needs the 64-bit emulator.
2684@item
2685MIPS emulator pseudo board "mipssim"
2686@item
2687A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2688@end itemize
2689
2690The generic emulation is supported by Debian 'Etch' and is able to
2691install Debian into a virtual disk image. The following devices are
2692emulated:
2693
2694@itemize @minus
2695@item
2696A range of MIPS CPUs, default is the 24Kf
2697@item
2698PC style serial port
2699@item
2700PC style IDE disk
2701@item
2702NE2000 network card
2703@end itemize
2704
2705The Malta emulation supports the following devices:
2706
2707@itemize @minus
2708@item
2709Core board with MIPS 24Kf CPU and Galileo system controller
2710@item
2711PIIX4 PCI/USB/SMbus controller
2712@item
2713The Multi-I/O chip's serial device
2714@item
2715PCnet32 PCI network card
2716@item
2717Malta FPGA serial device
2718@item
2719Cirrus (default) or any other PCI VGA graphics card
2720@end itemize
2721
2722The ACER Pica emulation supports:
2723
2724@itemize @minus
2725@item
2726MIPS R4000 CPU
2727@item
2728PC-style IRQ and DMA controllers
2729@item
2730PC Keyboard
2731@item
2732IDE controller
2733@end itemize
2734
2735The mipssim pseudo board emulation provides an environment similiar
2736to what the proprietary MIPS emulator uses for running Linux.
2737It supports:
2738
2739@itemize @minus
2740@item
2741A range of MIPS CPUs, default is the 24Kf
2742@item
2743PC style serial port
2744@item
2745MIPSnet network emulation
2746@end itemize
2747
2748The MIPS Magnum R4000 emulation supports:
2749
2750@itemize @minus
2751@item
2752MIPS R4000 CPU
2753@item
2754PC-style IRQ controller
2755@item
2756PC Keyboard
2757@item
2758SCSI controller
2759@item
2760G364 framebuffer
2761@end itemize
2762
2763
2764@node ARM System emulator
2765@section ARM System emulator
2766
2767Use the executable @file{qemu-system-arm} to simulate a ARM
2768machine. The ARM Integrator/CP board is emulated with the following
2769devices:
2770
2771@itemize @minus
2772@item
2773ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2774@item
2775Two PL011 UARTs
2776@item
2777SMC 91c111 Ethernet adapter
2778@item
2779PL110 LCD controller
2780@item
2781PL050 KMI with PS/2 keyboard and mouse.
2782@item
2783PL181 MultiMedia Card Interface with SD card.
2784@end itemize
2785
2786The ARM Versatile baseboard is emulated with the following devices:
2787
2788@itemize @minus
2789@item
2790ARM926E, ARM1136 or Cortex-A8 CPU
2791@item
2792PL190 Vectored Interrupt Controller
2793@item
2794Four PL011 UARTs
2795@item
2796SMC 91c111 Ethernet adapter
2797@item
2798PL110 LCD controller
2799@item
2800PL050 KMI with PS/2 keyboard and mouse.
2801@item
2802PCI host bridge. Note the emulated PCI bridge only provides access to
2803PCI memory space. It does not provide access to PCI IO space.
2804This means some devices (eg. ne2k_pci NIC) are not usable, and others
2805(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2806mapped control registers.
2807@item
2808PCI OHCI USB controller.
2809@item
2810LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2811@item
2812PL181 MultiMedia Card Interface with SD card.
2813@end itemize
2814
2815The ARM RealView Emulation baseboard is emulated with the following devices:
2816
2817@itemize @minus
2818@item
2819ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2820@item
2821ARM AMBA Generic/Distributed Interrupt Controller
2822@item
2823Four PL011 UARTs
2824@item
2825SMC 91c111 Ethernet adapter
2826@item
2827PL110 LCD controller
2828@item
2829PL050 KMI with PS/2 keyboard and mouse
2830@item
2831PCI host bridge
2832@item
2833PCI OHCI USB controller
2834@item
2835LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2836@item
2837PL181 MultiMedia Card Interface with SD card.
2838@end itemize
2839
2840The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2841and "Terrier") emulation includes the following peripherals:
2842
2843@itemize @minus
2844@item
2845Intel PXA270 System-on-chip (ARM V5TE core)
2846@item
2847NAND Flash memory
2848@item
2849IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2850@item
2851On-chip OHCI USB controller
2852@item
2853On-chip LCD controller
2854@item
2855On-chip Real Time Clock
2856@item
2857TI ADS7846 touchscreen controller on SSP bus
2858@item
2859Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2860@item
2861GPIO-connected keyboard controller and LEDs
2862@item
2863Secure Digital card connected to PXA MMC/SD host
2864@item
2865Three on-chip UARTs
2866@item
2867WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2868@end itemize
2869
2870The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2871following elements:
2872
2873@itemize @minus
2874@item
2875Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2876@item
2877ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2878@item
2879On-chip LCD controller
2880@item
2881On-chip Real Time Clock
2882@item
2883TI TSC2102i touchscreen controller / analog-digital converter / Audio
2884CODEC, connected through MicroWire and I@math{^2}S busses
2885@item
2886GPIO-connected matrix keypad
2887@item
2888Secure Digital card connected to OMAP MMC/SD host
2889@item
2890Three on-chip UARTs
2891@end itemize
2892
2893Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2894emulation supports the following elements:
2895
2896@itemize @minus
2897@item
2898Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2899@item
2900RAM and non-volatile OneNAND Flash memories
2901@item
2902Display connected to EPSON remote framebuffer chip and OMAP on-chip
2903display controller and a LS041y3 MIPI DBI-C controller
2904@item
2905TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2906driven through SPI bus
2907@item
2908National Semiconductor LM8323-controlled qwerty keyboard driven
2909through I@math{^2}C bus
2910@item
2911Secure Digital card connected to OMAP MMC/SD host
2912@item
2913Three OMAP on-chip UARTs and on-chip STI debugging console
2914@item
2915A Bluetooth(R) transciever and HCI connected to an UART
2916@item
2917Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2918TUSB6010 chip - only USB host mode is supported
2919@item
2920TI TMP105 temperature sensor driven through I@math{^2}C bus
2921@item
2922TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2923@item
2924Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2925through CBUS
2926@end itemize
2927
2928The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2929devices:
2930
2931@itemize @minus
2932@item
2933Cortex-M3 CPU core.
2934@item
293564k Flash and 8k SRAM.
2936@item
2937Timers, UARTs, ADC and I@math{^2}C interface.
2938@item
2939OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2940@end itemize
2941
2942The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2943devices:
2944
2945@itemize @minus
2946@item
2947Cortex-M3 CPU core.
2948@item
2949256k Flash and 64k SRAM.
2950@item
2951Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2952@item
2953OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2954@end itemize
2955
2956The Freecom MusicPal internet radio emulation includes the following
2957elements:
2958
2959@itemize @minus
2960@item
2961Marvell MV88W8618 ARM core.
2962@item
296332 MB RAM, 256 KB SRAM, 8 MB flash.
2964@item
2965Up to 2 16550 UARTs
2966@item
2967MV88W8xx8 Ethernet controller
2968@item
2969MV88W8618 audio controller, WM8750 CODEC and mixer
2970@item
2971