]> git.proxmox.com Git - qemu.git/blame_incremental - qemu-doc.texi
ahci: Don't allow creating slave drives
[qemu.git] / qemu-doc.texi
... / ...
CommitLineData
1\input texinfo @c -*- texinfo -*-
2@c %**start of header
3@setfilename qemu-doc.info
4
5@documentlanguage en
6@documentencoding UTF-8
7
8@settitle QEMU Emulator User Documentation
9@exampleindent 0
10@paragraphindent 0
11@c %**end of header
12
13@ifinfo
14@direntry
15* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
16@end direntry
17@end ifinfo
18
19@iftex
20@titlepage
21@sp 7
22@center @titlefont{QEMU Emulator}
23@sp 1
24@center @titlefont{User Documentation}
25@sp 3
26@end titlepage
27@end iftex
28
29@ifnottex
30@node Top
31@top
32
33@menu
34* Introduction::
35* Installation::
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
38* QEMU User space emulator::
39* compilation:: Compilation from the sources
40* License::
41* Index::
42@end menu
43@end ifnottex
44
45@contents
46
47@node Introduction
48@chapter Introduction
49
50@menu
51* intro_features:: Features
52@end menu
53
54@node intro_features
55@section Features
56
57QEMU is a FAST! processor emulator using dynamic translation to
58achieve good emulation speed.
59
60QEMU has two operating modes:
61
62@itemize
63@cindex operating modes
64
65@item
66@cindex system emulation
67Full system emulation. In this mode, QEMU emulates a full system (for
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
71
72@item
73@cindex user mode emulation
74User mode emulation. In this mode, QEMU can launch
75processes compiled for one CPU on another CPU. It can be used to
76launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77to ease cross-compilation and cross-debugging.
78
79@end itemize
80
81QEMU can run without a host kernel driver and yet gives acceptable
82performance.
83
84For system emulation, the following hardware targets are supported:
85@itemize
86@cindex emulated target systems
87@cindex supported target systems
88@item PC (x86 or x86_64 processor)
89@item ISA PC (old style PC without PCI bus)
90@item PREP (PowerPC processor)
91@item G3 Beige PowerMac (PowerPC processor)
92@item Mac99 PowerMac (PowerPC processor, in progress)
93@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95@item Malta board (32-bit and 64-bit MIPS processors)
96@item MIPS Magnum (64-bit MIPS processor)
97@item ARM Integrator/CP (ARM)
98@item ARM Versatile baseboard (ARM)
99@item ARM RealView Emulation/Platform baseboard (ARM)
100@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103@item Freescale MCF5208EVB (ColdFire V2).
104@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105@item Palm Tungsten|E PDA (OMAP310 processor)
106@item N800 and N810 tablets (OMAP2420 processor)
107@item MusicPal (MV88W8618 ARM processor)
108@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109@item Siemens SX1 smartphone (OMAP310 processor)
110@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
111@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
112@item Avnet LX60/LX110/LX200 boards (Xtensa)
113@end itemize
114
115@cindex supported user mode targets
116For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119
120@node Installation
121@chapter Installation
122
123If you want to compile QEMU yourself, see @ref{compilation}.
124
125@menu
126* install_linux:: Linux
127* install_windows:: Windows
128* install_mac:: Macintosh
129@end menu
130
131@node install_linux
132@section Linux
133@cindex installation (Linux)
134
135If a precompiled package is available for your distribution - you just
136have to install it. Otherwise, see @ref{compilation}.
137
138@node install_windows
139@section Windows
140@cindex installation (Windows)
141
142Download the experimental binary installer at
143@url{http://www.free.oszoo.org/@/download.html}.
144TODO (no longer available)
145
146@node install_mac
147@section Mac OS X
148
149Download the experimental binary installer at
150@url{http://www.free.oszoo.org/@/download.html}.
151TODO (no longer available)
152
153@node QEMU PC System emulator
154@chapter QEMU PC System emulator
155@cindex system emulation (PC)
156
157@menu
158* pcsys_introduction:: Introduction
159* pcsys_quickstart:: Quick Start
160* sec_invocation:: Invocation
161* pcsys_keys:: Keys
162* pcsys_monitor:: QEMU Monitor
163* disk_images:: Disk Images
164* pcsys_network:: Network emulation
165* pcsys_other_devs:: Other Devices
166* direct_linux_boot:: Direct Linux Boot
167* pcsys_usb:: USB emulation
168* vnc_security:: VNC security
169* gdb_usage:: GDB usage
170* pcsys_os_specific:: Target OS specific information
171@end menu
172
173@node pcsys_introduction
174@section Introduction
175
176@c man begin DESCRIPTION
177
178The QEMU PC System emulator simulates the
179following peripherals:
180
181@itemize @minus
182@item
183i440FX host PCI bridge and PIIX3 PCI to ISA bridge
184@item
185Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
186extensions (hardware level, including all non standard modes).
187@item
188PS/2 mouse and keyboard
189@item
1902 PCI IDE interfaces with hard disk and CD-ROM support
191@item
192Floppy disk
193@item
194PCI and ISA network adapters
195@item
196Serial ports
197@item
198Creative SoundBlaster 16 sound card
199@item
200ENSONIQ AudioPCI ES1370 sound card
201@item
202Intel 82801AA AC97 Audio compatible sound card
203@item
204Intel HD Audio Controller and HDA codec
205@item
206Adlib (OPL2) - Yamaha YM3812 compatible chip
207@item
208Gravis Ultrasound GF1 sound card
209@item
210CS4231A compatible sound card
211@item
212PCI UHCI USB controller and a virtual USB hub.
213@end itemize
214
215SMP is supported with up to 255 CPUs.
216
217Note that adlib, gus and cs4231a are only available when QEMU was
218configured with --audio-card-list option containing the name(s) of
219required card(s).
220
221QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
222VGA BIOS.
223
224QEMU uses YM3812 emulation by Tatsuyuki Satoh.
225
226QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
227by Tibor "TS" Schütz.
228
229Note that, by default, GUS shares IRQ(7) with parallel ports and so
230QEMU must be told to not have parallel ports to have working GUS.
231
232@example
233qemu-system-i386 dos.img -soundhw gus -parallel none
234@end example
235
236Alternatively:
237@example
238qemu-system-i386 dos.img -device gus,irq=5
239@end example
240
241Or some other unclaimed IRQ.
242
243CS4231A is the chip used in Windows Sound System and GUSMAX products
244
245@c man end
246
247@node pcsys_quickstart
248@section Quick Start
249@cindex quick start
250
251Download and uncompress the linux image (@file{linux.img}) and type:
252
253@example
254qemu-system-i386 linux.img
255@end example
256
257Linux should boot and give you a prompt.
258
259@node sec_invocation
260@section Invocation
261
262@example
263@c man begin SYNOPSIS
264usage: qemu-system-i386 [options] [@var{disk_image}]
265@c man end
266@end example
267
268@c man begin OPTIONS
269@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
270targets do not need a disk image.
271
272@include qemu-options.texi
273
274@c man end
275
276@node pcsys_keys
277@section Keys
278
279@c man begin OPTIONS
280
281During the graphical emulation, you can use special key combinations to change
282modes. The default key mappings are shown below, but if you use @code{-alt-grab}
283then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
284@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
285
286@table @key
287@item Ctrl-Alt-f
288@kindex Ctrl-Alt-f
289Toggle full screen
290
291@item Ctrl-Alt-+
292@kindex Ctrl-Alt-+
293Enlarge the screen
294
295@item Ctrl-Alt--
296@kindex Ctrl-Alt--
297Shrink the screen
298
299@item Ctrl-Alt-u
300@kindex Ctrl-Alt-u
301Restore the screen's un-scaled dimensions
302
303@item Ctrl-Alt-n
304@kindex Ctrl-Alt-n
305Switch to virtual console 'n'. Standard console mappings are:
306@table @emph
307@item 1
308Target system display
309@item 2
310Monitor
311@item 3
312Serial port
313@end table
314
315@item Ctrl-Alt
316@kindex Ctrl-Alt
317Toggle mouse and keyboard grab.
318@end table
319
320@kindex Ctrl-Up
321@kindex Ctrl-Down
322@kindex Ctrl-PageUp
323@kindex Ctrl-PageDown
324In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
325@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
326
327@kindex Ctrl-a h
328During emulation, if you are using the @option{-nographic} option, use
329@key{Ctrl-a h} to get terminal commands:
330
331@table @key
332@item Ctrl-a h
333@kindex Ctrl-a h
334@item Ctrl-a ?
335@kindex Ctrl-a ?
336Print this help
337@item Ctrl-a x
338@kindex Ctrl-a x
339Exit emulator
340@item Ctrl-a s
341@kindex Ctrl-a s
342Save disk data back to file (if -snapshot)
343@item Ctrl-a t
344@kindex Ctrl-a t
345Toggle console timestamps
346@item Ctrl-a b
347@kindex Ctrl-a b
348Send break (magic sysrq in Linux)
349@item Ctrl-a c
350@kindex Ctrl-a c
351Switch between console and monitor
352@item Ctrl-a Ctrl-a
353@kindex Ctrl-a a
354Send Ctrl-a
355@end table
356@c man end
357
358@ignore
359
360@c man begin SEEALSO
361The HTML documentation of QEMU for more precise information and Linux
362user mode emulator invocation.
363@c man end
364
365@c man begin AUTHOR
366Fabrice Bellard
367@c man end
368
369@end ignore
370
371@node pcsys_monitor
372@section QEMU Monitor
373@cindex QEMU monitor
374
375The QEMU monitor is used to give complex commands to the QEMU
376emulator. You can use it to:
377
378@itemize @minus
379
380@item
381Remove or insert removable media images
382(such as CD-ROM or floppies).
383
384@item
385Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
386from a disk file.
387
388@item Inspect the VM state without an external debugger.
389
390@end itemize
391
392@subsection Commands
393
394The following commands are available:
395
396@include qemu-monitor.texi
397
398@subsection Integer expressions
399
400The monitor understands integers expressions for every integer
401argument. You can use register names to get the value of specifics
402CPU registers by prefixing them with @emph{$}.
403
404@node disk_images
405@section Disk Images
406
407Since version 0.6.1, QEMU supports many disk image formats, including
408growable disk images (their size increase as non empty sectors are
409written), compressed and encrypted disk images. Version 0.8.3 added
410the new qcow2 disk image format which is essential to support VM
411snapshots.
412
413@menu
414* disk_images_quickstart:: Quick start for disk image creation
415* disk_images_snapshot_mode:: Snapshot mode
416* vm_snapshots:: VM snapshots
417* qemu_img_invocation:: qemu-img Invocation
418* qemu_nbd_invocation:: qemu-nbd Invocation
419* disk_images_formats:: Disk image file formats
420* host_drives:: Using host drives
421* disk_images_fat_images:: Virtual FAT disk images
422* disk_images_nbd:: NBD access
423* disk_images_sheepdog:: Sheepdog disk images
424* disk_images_iscsi:: iSCSI LUNs
425* disk_images_gluster:: GlusterFS disk images
426* disk_images_ssh:: Secure Shell (ssh) disk images
427@end menu
428
429@node disk_images_quickstart
430@subsection Quick start for disk image creation
431
432You can create a disk image with the command:
433@example
434qemu-img create myimage.img mysize
435@end example
436where @var{myimage.img} is the disk image filename and @var{mysize} is its
437size in kilobytes. You can add an @code{M} suffix to give the size in
438megabytes and a @code{G} suffix for gigabytes.
439
440See @ref{qemu_img_invocation} for more information.
441
442@node disk_images_snapshot_mode
443@subsection Snapshot mode
444
445If you use the option @option{-snapshot}, all disk images are
446considered as read only. When sectors in written, they are written in
447a temporary file created in @file{/tmp}. You can however force the
448write back to the raw disk images by using the @code{commit} monitor
449command (or @key{C-a s} in the serial console).
450
451@node vm_snapshots
452@subsection VM snapshots
453
454VM snapshots are snapshots of the complete virtual machine including
455CPU state, RAM, device state and the content of all the writable
456disks. In order to use VM snapshots, you must have at least one non
457removable and writable block device using the @code{qcow2} disk image
458format. Normally this device is the first virtual hard drive.
459
460Use the monitor command @code{savevm} to create a new VM snapshot or
461replace an existing one. A human readable name can be assigned to each
462snapshot in addition to its numerical ID.
463
464Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
465a VM snapshot. @code{info snapshots} lists the available snapshots
466with their associated information:
467
468@example
469(qemu) info snapshots
470Snapshot devices: hda
471Snapshot list (from hda):
472ID TAG VM SIZE DATE VM CLOCK
4731 start 41M 2006-08-06 12:38:02 00:00:14.954
4742 40M 2006-08-06 12:43:29 00:00:18.633
4753 msys 40M 2006-08-06 12:44:04 00:00:23.514
476@end example
477
478A VM snapshot is made of a VM state info (its size is shown in
479@code{info snapshots}) and a snapshot of every writable disk image.
480The VM state info is stored in the first @code{qcow2} non removable
481and writable block device. The disk image snapshots are stored in
482every disk image. The size of a snapshot in a disk image is difficult
483to evaluate and is not shown by @code{info snapshots} because the
484associated disk sectors are shared among all the snapshots to save
485disk space (otherwise each snapshot would need a full copy of all the
486disk images).
487
488When using the (unrelated) @code{-snapshot} option
489(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
490but they are deleted as soon as you exit QEMU.
491
492VM snapshots currently have the following known limitations:
493@itemize
494@item
495They cannot cope with removable devices if they are removed or
496inserted after a snapshot is done.
497@item
498A few device drivers still have incomplete snapshot support so their
499state is not saved or restored properly (in particular USB).
500@end itemize
501
502@node qemu_img_invocation
503@subsection @code{qemu-img} Invocation
504
505@include qemu-img.texi
506
507@node qemu_nbd_invocation
508@subsection @code{qemu-nbd} Invocation
509
510@include qemu-nbd.texi
511
512@node disk_images_formats
513@subsection Disk image file formats
514
515QEMU supports many image file formats that can be used with VMs as well as with
516any of the tools (like @code{qemu-img}). This includes the preferred formats
517raw and qcow2 as well as formats that are supported for compatibility with
518older QEMU versions or other hypervisors.
519
520Depending on the image format, different options can be passed to
521@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option.
522This section describes each format and the options that are supported for it.
523
524@table @option
525@item raw
526
527Raw disk image format. This format has the advantage of
528being simple and easily exportable to all other emulators. If your
529file system supports @emph{holes} (for example in ext2 or ext3 on
530Linux or NTFS on Windows), then only the written sectors will reserve
531space. Use @code{qemu-img info} to know the real size used by the
532image or @code{ls -ls} on Unix/Linux.
533
534@item qcow2
535QEMU image format, the most versatile format. Use it to have smaller
536images (useful if your filesystem does not supports holes, for example
537on Windows), optional AES encryption, zlib based compression and
538support of multiple VM snapshots.
539
540Supported options:
541@table @code
542@item compat
543Determines the qcow2 version to use. @code{compat=0.10} uses the traditional
544image format that can be read by any QEMU since 0.10 (this is the default).
545@code{compat=1.1} enables image format extensions that only QEMU 1.1 and
546newer understand. Amongst others, this includes zero clusters, which allow
547efficient copy-on-read for sparse images.
548
549@item backing_file
550File name of a base image (see @option{create} subcommand)
551@item backing_fmt
552Image format of the base image
553@item encryption
554If this option is set to @code{on}, the image is encrypted.
555
556Encryption uses the AES format which is very secure (128 bit keys). Use
557a long password (16 characters) to get maximum protection.
558
559@item cluster_size
560Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
561sizes can improve the image file size whereas larger cluster sizes generally
562provide better performance.
563
564@item preallocation
565Preallocation mode (allowed values: off, metadata). An image with preallocated
566metadata is initially larger but can improve performance when the image needs
567to grow.
568
569@item lazy_refcounts
570If this option is set to @code{on}, reference count updates are postponed with
571the goal of avoiding metadata I/O and improving performance. This is
572particularly interesting with @option{cache=writethrough} which doesn't batch
573metadata updates. The tradeoff is that after a host crash, the reference count
574tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
575check -r all} is required, which may take some time.
576
577This option can only be enabled if @code{compat=1.1} is specified.
578
579@end table
580
581@item qed
582Old QEMU image format with support for backing files and compact image files
583(when your filesystem or transport medium does not support holes).
584
585When converting QED images to qcow2, you might want to consider using the
586@code{lazy_refcounts=on} option to get a more QED-like behaviour.
587
588Supported options:
589@table @code
590@item backing_file
591File name of a base image (see @option{create} subcommand).
592@item backing_fmt
593Image file format of backing file (optional). Useful if the format cannot be
594autodetected because it has no header, like some vhd/vpc files.
595@item cluster_size
596Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller
597cluster sizes can improve the image file size whereas larger cluster sizes
598generally provide better performance.
599@item table_size
600Changes the number of clusters per L1/L2 table (must be power-of-2 between 1
601and 16). There is normally no need to change this value but this option can be
602used for performance benchmarking.
603@end table
604
605@item qcow
606Old QEMU image format with support for backing files, compact image files,
607encryption and compression.
608
609Supported options:
610@table @code
611@item backing_file
612File name of a base image (see @option{create} subcommand)
613@item encryption
614If this option is set to @code{on}, the image is encrypted.
615@end table
616
617@item cow
618User Mode Linux Copy On Write image format. It is supported only for
619compatibility with previous versions.
620Supported options:
621@table @code
622@item backing_file
623File name of a base image (see @option{create} subcommand)
624@end table
625
626@item vdi
627VirtualBox 1.1 compatible image format.
628Supported options:
629@table @code
630@item static
631If this option is set to @code{on}, the image is created with metadata
632preallocation.
633@end table
634
635@item vmdk
636VMware 3 and 4 compatible image format.
637
638Supported options:
639@table @code
640@item backing_file
641File name of a base image (see @option{create} subcommand).
642@item compat6
643Create a VMDK version 6 image (instead of version 4)
644@item subformat
645Specifies which VMDK subformat to use. Valid options are
646@code{monolithicSparse} (default),
647@code{monolithicFlat},
648@code{twoGbMaxExtentSparse},
649@code{twoGbMaxExtentFlat} and
650@code{streamOptimized}.
651@end table
652
653@item vpc
654VirtualPC compatible image format (VHD).
655Supported options:
656@table @code
657@item subformat
658Specifies which VHD subformat to use. Valid options are
659@code{dynamic} (default) and @code{fixed}.
660@end table
661@end table
662
663@subsubsection Read-only formats
664More disk image file formats are supported in a read-only mode.
665@table @option
666@item bochs
667Bochs images of @code{growing} type.
668@item cloop
669Linux Compressed Loop image, useful only to reuse directly compressed
670CD-ROM images present for example in the Knoppix CD-ROMs.
671@item dmg
672Apple disk image.
673@item parallels
674Parallels disk image format.
675@end table
676
677
678@node host_drives
679@subsection Using host drives
680
681In addition to disk image files, QEMU can directly access host
682devices. We describe here the usage for QEMU version >= 0.8.3.
683
684@subsubsection Linux
685
686On Linux, you can directly use the host device filename instead of a
687disk image filename provided you have enough privileges to access
688it. For example, use @file{/dev/cdrom} to access to the CDROM or
689@file{/dev/fd0} for the floppy.
690
691@table @code
692@item CD
693You can specify a CDROM device even if no CDROM is loaded. QEMU has
694specific code to detect CDROM insertion or removal. CDROM ejection by
695the guest OS is supported. Currently only data CDs are supported.
696@item Floppy
697You can specify a floppy device even if no floppy is loaded. Floppy
698removal is currently not detected accurately (if you change floppy
699without doing floppy access while the floppy is not loaded, the guest
700OS will think that the same floppy is loaded).
701@item Hard disks
702Hard disks can be used. Normally you must specify the whole disk
703(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
704see it as a partitioned disk. WARNING: unless you know what you do, it
705is better to only make READ-ONLY accesses to the hard disk otherwise
706you may corrupt your host data (use the @option{-snapshot} command
707line option or modify the device permissions accordingly).
708@end table
709
710@subsubsection Windows
711
712@table @code
713@item CD
714The preferred syntax is the drive letter (e.g. @file{d:}). The
715alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
716supported as an alias to the first CDROM drive.
717
718Currently there is no specific code to handle removable media, so it
719is better to use the @code{change} or @code{eject} monitor commands to
720change or eject media.
721@item Hard disks
722Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
723where @var{N} is the drive number (0 is the first hard disk).
724
725WARNING: unless you know what you do, it is better to only make
726READ-ONLY accesses to the hard disk otherwise you may corrupt your
727host data (use the @option{-snapshot} command line so that the
728modifications are written in a temporary file).
729@end table
730
731
732@subsubsection Mac OS X
733
734@file{/dev/cdrom} is an alias to the first CDROM.
735
736Currently there is no specific code to handle removable media, so it
737is better to use the @code{change} or @code{eject} monitor commands to
738change or eject media.
739
740@node disk_images_fat_images
741@subsection Virtual FAT disk images
742
743QEMU can automatically create a virtual FAT disk image from a
744directory tree. In order to use it, just type:
745
746@example
747qemu-system-i386 linux.img -hdb fat:/my_directory
748@end example
749
750Then you access access to all the files in the @file{/my_directory}
751directory without having to copy them in a disk image or to export
752them via SAMBA or NFS. The default access is @emph{read-only}.
753
754Floppies can be emulated with the @code{:floppy:} option:
755
756@example
757qemu-system-i386 linux.img -fda fat:floppy:/my_directory
758@end example
759
760A read/write support is available for testing (beta stage) with the
761@code{:rw:} option:
762
763@example
764qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
765@end example
766
767What you should @emph{never} do:
768@itemize
769@item use non-ASCII filenames ;
770@item use "-snapshot" together with ":rw:" ;
771@item expect it to work when loadvm'ing ;
772@item write to the FAT directory on the host system while accessing it with the guest system.
773@end itemize
774
775@node disk_images_nbd
776@subsection NBD access
777
778QEMU can access directly to block device exported using the Network Block Device
779protocol.
780
781@example
782qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
783@end example
784
785If the NBD server is located on the same host, you can use an unix socket instead
786of an inet socket:
787
788@example
789qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
790@end example
791
792In this case, the block device must be exported using qemu-nbd:
793
794@example
795qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
796@end example
797
798The use of qemu-nbd allows to share a disk between several guests:
799@example
800qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
801@end example
802
803@noindent
804and then you can use it with two guests:
805@example
806qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
807qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
808@end example
809
810If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
811own embedded NBD server), you must specify an export name in the URI:
812@example
813qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
814qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
815@end example
816
817The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
818also available. Here are some example of the older syntax:
819@example
820qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
821qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
822qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
823@end example
824
825@node disk_images_sheepdog
826@subsection Sheepdog disk images
827
828Sheepdog is a distributed storage system for QEMU. It provides highly
829available block level storage volumes that can be attached to
830QEMU-based virtual machines.
831
832You can create a Sheepdog disk image with the command:
833@example
834qemu-img create sheepdog:///@var{image} @var{size}
835@end example
836where @var{image} is the Sheepdog image name and @var{size} is its
837size.
838
839To import the existing @var{filename} to Sheepdog, you can use a
840convert command.
841@example
842qemu-img convert @var{filename} sheepdog:///@var{image}
843@end example
844
845You can boot from the Sheepdog disk image with the command:
846@example
847qemu-system-i386 sheepdog:///@var{image}
848@end example
849
850You can also create a snapshot of the Sheepdog image like qcow2.
851@example
852qemu-img snapshot -c @var{tag} sheepdog:///@var{image}
853@end example
854where @var{tag} is a tag name of the newly created snapshot.
855
856To boot from the Sheepdog snapshot, specify the tag name of the
857snapshot.
858@example
859qemu-system-i386 sheepdog:///@var{image}#@var{tag}
860@end example
861
862You can create a cloned image from the existing snapshot.
863@example
864qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image}
865@end example
866where @var{base} is a image name of the source snapshot and @var{tag}
867is its tag name.
868
869You can use an unix socket instead of an inet socket:
870
871@example
872qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
873@end example
874
875If the Sheepdog daemon doesn't run on the local host, you need to
876specify one of the Sheepdog servers to connect to.
877@example
878qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
879qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
880@end example
881
882@node disk_images_iscsi
883@subsection iSCSI LUNs
884
885iSCSI is a popular protocol used to access SCSI devices across a computer
886network.
887
888There are two different ways iSCSI devices can be used by QEMU.
889
890The first method is to mount the iSCSI LUN on the host, and make it appear as
891any other ordinary SCSI device on the host and then to access this device as a
892/dev/sd device from QEMU. How to do this differs between host OSes.
893
894The second method involves using the iSCSI initiator that is built into
895QEMU. This provides a mechanism that works the same way regardless of which
896host OS you are running QEMU on. This section will describe this second method
897of using iSCSI together with QEMU.
898
899In QEMU, iSCSI devices are described using special iSCSI URLs
900
901@example
902URL syntax:
903iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun>
904@end example
905
906Username and password are optional and only used if your target is set up
907using CHAP authentication for access control.
908Alternatively the username and password can also be set via environment
909variables to have these not show up in the process list
910
911@example
912export LIBISCSI_CHAP_USERNAME=<username>
913export LIBISCSI_CHAP_PASSWORD=<password>
914iscsi://<host>/<target-iqn-name>/<lun>
915@end example
916
917Various session related parameters can be set via special options, either
918in a configuration file provided via '-readconfig' or directly on the
919command line.
920
921If the initiator-name is not specified qemu will use a default name
922of 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the
923virtual machine.
924
925
926@example
927Setting a specific initiator name to use when logging in to the target
928-iscsi initiator-name=iqn.qemu.test:my-initiator
929@end example
930
931@example
932Controlling which type of header digest to negotiate with the target
933-iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
934@end example
935
936These can also be set via a configuration file
937@example
938[iscsi]
939 user = "CHAP username"
940 password = "CHAP password"
941 initiator-name = "iqn.qemu.test:my-initiator"
942 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
943 header-digest = "CRC32C"
944@end example
945
946
947Setting the target name allows different options for different targets
948@example
949[iscsi "iqn.target.name"]
950 user = "CHAP username"
951 password = "CHAP password"
952 initiator-name = "iqn.qemu.test:my-initiator"
953 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE
954 header-digest = "CRC32C"
955@end example
956
957
958Howto use a configuration file to set iSCSI configuration options:
959@example
960cat >iscsi.conf <<EOF
961[iscsi]
962 user = "me"
963 password = "my password"
964 initiator-name = "iqn.qemu.test:my-initiator"
965 header-digest = "CRC32C"
966EOF
967
968qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
969 -readconfig iscsi.conf
970@end example
971
972
973Howto set up a simple iSCSI target on loopback and accessing it via QEMU:
974@example
975This example shows how to set up an iSCSI target with one CDROM and one DISK
976using the Linux STGT software target. This target is available on Red Hat based
977systems as the package 'scsi-target-utils'.
978
979tgtd --iscsi portal=127.0.0.1:3260
980tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test
981tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \
982 -b /IMAGES/disk.img --device-type=disk
983tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
984 -b /IMAGES/cd.iso --device-type=cd
985tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
986
987qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
988 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
989 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2
990@end example
991
992@node disk_images_gluster
993@subsection GlusterFS disk images
994
995GlusterFS is an user space distributed file system.
996
997You can boot from the GlusterFS disk image with the command:
998@example
999qemu-system-x86_64 -drive file=gluster[+@var{transport}]://[@var{server}[:@var{port}]]/@var{volname}/@var{image}[?socket=...]
1000@end example
1001
1002@var{gluster} is the protocol.
1003
1004@var{transport} specifies the transport type used to connect to gluster
1005management daemon (glusterd). Valid transport types are
1006tcp, unix and rdma. If a transport type isn't specified, then tcp
1007type is assumed.
1008
1009@var{server} specifies the server where the volume file specification for
1010the given volume resides. This can be either hostname, ipv4 address
1011or ipv6 address. ipv6 address needs to be within square brackets [ ].
1012If transport type is unix, then @var{server} field should not be specifed.
1013Instead @var{socket} field needs to be populated with the path to unix domain
1014socket.
1015
1016@var{port} is the port number on which glusterd is listening. This is optional
1017and if not specified, QEMU will send 0 which will make gluster to use the
1018default port. If the transport type is unix, then @var{port} should not be
1019specified.
1020
1021@var{volname} is the name of the gluster volume which contains the disk image.
1022
1023@var{image} is the path to the actual disk image that resides on gluster volume.
1024
1025You can create a GlusterFS disk image with the command:
1026@example
1027qemu-img create gluster://@var{server}/@var{volname}/@var{image} @var{size}
1028@end example
1029
1030Examples
1031@example
1032qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
1033qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
1034qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
1035qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
1036qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
1037qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
1038qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
1039qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
1040@end example
1041
1042@node disk_images_ssh
1043@subsection Secure Shell (ssh) disk images
1044
1045You can access disk images located on a remote ssh server
1046by using the ssh protocol:
1047
1048@example
1049qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
1050@end example
1051
1052Alternative syntax using properties:
1053
1054@example
1055qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
1056@end example
1057
1058@var{ssh} is the protocol.
1059
1060@var{user} is the remote user. If not specified, then the local
1061username is tried.
1062
1063@var{server} specifies the remote ssh server. Any ssh server can be
1064used, but it must implement the sftp-server protocol. Most Unix/Linux
1065systems should work without requiring any extra configuration.
1066
1067@var{port} is the port number on which sshd is listening. By default
1068the standard ssh port (22) is used.
1069
1070@var{path} is the path to the disk image.
1071
1072The optional @var{host_key_check} parameter controls how the remote
1073host's key is checked. The default is @code{yes} which means to use
1074the local @file{.ssh/known_hosts} file. Setting this to @code{no}
1075turns off known-hosts checking. Or you can check that the host key
1076matches a specific fingerprint:
1077@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8}
1078(@code{sha1:} can also be used as a prefix, but note that OpenSSH
1079tools only use MD5 to print fingerprints).
1080
1081Currently authentication must be done using ssh-agent. Other
1082authentication methods may be supported in future.
1083
1084Note: Many ssh servers do not support an @code{fsync}-style operation.
1085The ssh driver cannot guarantee that disk flush requests are
1086obeyed, and this causes a risk of disk corruption if the remote
1087server or network goes down during writes. The driver will
1088print a warning when @code{fsync} is not supported:
1089
1090warning: ssh server @code{ssh.example.com:22} does not support fsync
1091
1092With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is
1093supported.
1094
1095@node pcsys_network
1096@section Network emulation
1097
1098QEMU can simulate several network cards (PCI or ISA cards on the PC
1099target) and can connect them to an arbitrary number of Virtual Local
1100Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1101VLAN. VLAN can be connected between separate instances of QEMU to
1102simulate large networks. For simpler usage, a non privileged user mode
1103network stack can replace the TAP device to have a basic network
1104connection.
1105
1106@subsection VLANs
1107
1108QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1109connection between several network devices. These devices can be for
1110example QEMU virtual Ethernet cards or virtual Host ethernet devices
1111(TAP devices).
1112
1113@subsection Using TAP network interfaces
1114
1115This is the standard way to connect QEMU to a real network. QEMU adds
1116a virtual network device on your host (called @code{tapN}), and you
1117can then configure it as if it was a real ethernet card.
1118
1119@subsubsection Linux host
1120
1121As an example, you can download the @file{linux-test-xxx.tar.gz}
1122archive and copy the script @file{qemu-ifup} in @file{/etc} and
1123configure properly @code{sudo} so that the command @code{ifconfig}
1124contained in @file{qemu-ifup} can be executed as root. You must verify
1125that your host kernel supports the TAP network interfaces: the
1126device @file{/dev/net/tun} must be present.
1127
1128See @ref{sec_invocation} to have examples of command lines using the
1129TAP network interfaces.
1130
1131@subsubsection Windows host
1132
1133There is a virtual ethernet driver for Windows 2000/XP systems, called
1134TAP-Win32. But it is not included in standard QEMU for Windows,
1135so you will need to get it separately. It is part of OpenVPN package,
1136so download OpenVPN from : @url{http://openvpn.net/}.
1137
1138@subsection Using the user mode network stack
1139
1140By using the option @option{-net user} (default configuration if no
1141@option{-net} option is specified), QEMU uses a completely user mode
1142network stack (you don't need root privilege to use the virtual
1143network). The virtual network configuration is the following:
1144
1145@example
1146
1147 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
1148 | (10.0.2.2)
1149 |
1150 ----> DNS server (10.0.2.3)
1151 |
1152 ----> SMB server (10.0.2.4)
1153@end example
1154
1155The QEMU VM behaves as if it was behind a firewall which blocks all
1156incoming connections. You can use a DHCP client to automatically
1157configure the network in the QEMU VM. The DHCP server assign addresses
1158to the hosts starting from 10.0.2.15.
1159
1160In order to check that the user mode network is working, you can ping
1161the address 10.0.2.2 and verify that you got an address in the range
116210.0.2.x from the QEMU virtual DHCP server.
1163
1164Note that @code{ping} is not supported reliably to the internet as it
1165would require root privileges. It means you can only ping the local
1166router (10.0.2.2).
1167
1168When using the built-in TFTP server, the router is also the TFTP
1169server.
1170
1171When using the @option{-redir} option, TCP or UDP connections can be
1172redirected from the host to the guest. It allows for example to
1173redirect X11, telnet or SSH connections.
1174
1175@subsection Connecting VLANs between QEMU instances
1176
1177Using the @option{-net socket} option, it is possible to make VLANs
1178that span several QEMU instances. See @ref{sec_invocation} to have a
1179basic example.
1180
1181@node pcsys_other_devs
1182@section Other Devices
1183
1184@subsection Inter-VM Shared Memory device
1185
1186With KVM enabled on a Linux host, a shared memory device is available. Guests
1187map a POSIX shared memory region into the guest as a PCI device that enables
1188zero-copy communication to the application level of the guests. The basic
1189syntax is:
1190
1191@example
1192qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
1193@end example
1194
1195If desired, interrupts can be sent between guest VMs accessing the same shared
1196memory region. Interrupt support requires using a shared memory server and
1197using a chardev socket to connect to it. The code for the shared memory server
1198is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
1199memory server is:
1200
1201@example
1202qemu-system-i386 -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
1203 [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
1204qemu-system-i386 -chardev socket,path=<path>,id=<id>
1205@end example
1206
1207When using the server, the guest will be assigned a VM ID (>=0) that allows guests
1208using the same server to communicate via interrupts. Guests can read their
1209VM ID from a device register (see example code). Since receiving the shared
1210memory region from the server is asynchronous, there is a (small) chance the
1211guest may boot before the shared memory is attached. To allow an application
1212to ensure shared memory is attached, the VM ID register will return -1 (an
1213invalid VM ID) until the memory is attached. Once the shared memory is
1214attached, the VM ID will return the guest's valid VM ID. With these semantics,
1215the guest application can check to ensure the shared memory is attached to the
1216guest before proceeding.
1217
1218The @option{role} argument can be set to either master or peer and will affect
1219how the shared memory is migrated. With @option{role=master}, the guest will
1220copy the shared memory on migration to the destination host. With
1221@option{role=peer}, the guest will not be able to migrate with the device attached.
1222With the @option{peer} case, the device should be detached and then reattached
1223after migration using the PCI hotplug support.
1224
1225@node direct_linux_boot
1226@section Direct Linux Boot
1227
1228This section explains how to launch a Linux kernel inside QEMU without
1229having to make a full bootable image. It is very useful for fast Linux
1230kernel testing.
1231
1232The syntax is:
1233@example
1234qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1235@end example
1236
1237Use @option{-kernel} to provide the Linux kernel image and
1238@option{-append} to give the kernel command line arguments. The
1239@option{-initrd} option can be used to provide an INITRD image.
1240
1241When using the direct Linux boot, a disk image for the first hard disk
1242@file{hda} is required because its boot sector is used to launch the
1243Linux kernel.
1244
1245If you do not need graphical output, you can disable it and redirect
1246the virtual serial port and the QEMU monitor to the console with the
1247@option{-nographic} option. The typical command line is:
1248@example
1249qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1250 -append "root=/dev/hda console=ttyS0" -nographic
1251@end example
1252
1253Use @key{Ctrl-a c} to switch between the serial console and the
1254monitor (@pxref{pcsys_keys}).
1255
1256@node pcsys_usb
1257@section USB emulation
1258
1259QEMU emulates a PCI UHCI USB controller. You can virtually plug
1260virtual USB devices or real host USB devices (experimental, works only
1261on Linux hosts). QEMU will automatically create and connect virtual USB hubs
1262as necessary to connect multiple USB devices.
1263
1264@menu
1265* usb_devices::
1266* host_usb_devices::
1267@end menu
1268@node usb_devices
1269@subsection Connecting USB devices
1270
1271USB devices can be connected with the @option{-usbdevice} commandline option
1272or the @code{usb_add} monitor command. Available devices are:
1273
1274@table @code
1275@item mouse
1276Virtual Mouse. This will override the PS/2 mouse emulation when activated.
1277@item tablet
1278Pointer device that uses absolute coordinates (like a touchscreen).
1279This means QEMU is able to report the mouse position without having
1280to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
1281@item disk:@var{file}
1282Mass storage device based on @var{file} (@pxref{disk_images})
1283@item host:@var{bus.addr}
1284Pass through the host device identified by @var{bus.addr}
1285(Linux only)
1286@item host:@var{vendor_id:product_id}
1287Pass through the host device identified by @var{vendor_id:product_id}
1288(Linux only)
1289@item wacom-tablet
1290Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
1291above but it can be used with the tslib library because in addition to touch
1292coordinates it reports touch pressure.
1293@item keyboard
1294Standard USB keyboard. Will override the PS/2 keyboard (if present).
1295@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1296Serial converter. This emulates an FTDI FT232BM chip connected to host character
1297device @var{dev}. The available character devices are the same as for the
1298@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1299used to override the default 0403:6001. For instance,
1300@example
1301usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1302@end example
1303will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1304serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1305@item braille
1306Braille device. This will use BrlAPI to display the braille output on a real
1307or fake device.
1308@item net:@var{options}
1309Network adapter that supports CDC ethernet and RNDIS protocols. @var{options}
1310specifies NIC options as with @code{-net nic,}@var{options} (see description).
1311For instance, user-mode networking can be used with
1312@example
1313qemu-system-i386 [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1314@end example
1315Currently this cannot be used in machines that support PCI NICs.
1316@item bt[:@var{hci-type}]
1317Bluetooth dongle whose type is specified in the same format as with
1318the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
1319no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1320This USB device implements the USB Transport Layer of HCI. Example
1321usage:
1322@example
1323qemu-system-i386 [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1324@end example
1325@end table
1326
1327@node host_usb_devices
1328@subsection Using host USB devices on a Linux host
1329
1330WARNING: this is an experimental feature. QEMU will slow down when
1331using it. USB devices requiring real time streaming (i.e. USB Video
1332Cameras) are not supported yet.
1333
1334@enumerate
1335@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1336is actually using the USB device. A simple way to do that is simply to
1337disable the corresponding kernel module by renaming it from @file{mydriver.o}
1338to @file{mydriver.o.disabled}.
1339
1340@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1341@example
1342ls /proc/bus/usb
1343001 devices drivers
1344@end example
1345
1346@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1347@example
1348chown -R myuid /proc/bus/usb
1349@end example
1350
1351@item Launch QEMU and do in the monitor:
1352@example
1353info usbhost
1354 Device 1.2, speed 480 Mb/s
1355 Class 00: USB device 1234:5678, USB DISK
1356@end example
1357You should see the list of the devices you can use (Never try to use
1358hubs, it won't work).
1359
1360@item Add the device in QEMU by using:
1361@example
1362usb_add host:1234:5678
1363@end example
1364
1365Normally the guest OS should report that a new USB device is
1366plugged. You can use the option @option{-usbdevice} to do the same.
1367
1368@item Now you can try to use the host USB device in QEMU.
1369
1370@end enumerate
1371
1372When relaunching QEMU, you may have to unplug and plug again the USB
1373device to make it work again (this is a bug).
1374
1375@node vnc_security
1376@section VNC security
1377
1378The VNC server capability provides access to the graphical console
1379of the guest VM across the network. This has a number of security
1380considerations depending on the deployment scenarios.
1381
1382@menu
1383* vnc_sec_none::
1384* vnc_sec_password::
1385* vnc_sec_certificate::
1386* vnc_sec_certificate_verify::
1387* vnc_sec_certificate_pw::
1388* vnc_sec_sasl::
1389* vnc_sec_certificate_sasl::
1390* vnc_generate_cert::
1391* vnc_setup_sasl::
1392@end menu
1393@node vnc_sec_none
1394@subsection Without passwords
1395
1396The simplest VNC server setup does not include any form of authentication.
1397For this setup it is recommended to restrict it to listen on a UNIX domain
1398socket only. For example
1399
1400@example
1401qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1402@end example
1403
1404This ensures that only users on local box with read/write access to that
1405path can access the VNC server. To securely access the VNC server from a
1406remote machine, a combination of netcat+ssh can be used to provide a secure
1407tunnel.
1408
1409@node vnc_sec_password
1410@subsection With passwords
1411
1412The VNC protocol has limited support for password based authentication. Since
1413the protocol limits passwords to 8 characters it should not be considered
1414to provide high security. The password can be fairly easily brute-forced by
1415a client making repeat connections. For this reason, a VNC server using password
1416authentication should be restricted to only listen on the loopback interface
1417or UNIX domain sockets. Password authentication is not supported when operating
1418in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1419authentication is requested with the @code{password} option, and then once QEMU
1420is running the password is set with the monitor. Until the monitor is used to
1421set the password all clients will be rejected.
1422
1423@example
1424qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1425(qemu) change vnc password
1426Password: ********
1427(qemu)
1428@end example
1429
1430@node vnc_sec_certificate
1431@subsection With x509 certificates
1432
1433The QEMU VNC server also implements the VeNCrypt extension allowing use of
1434TLS for encryption of the session, and x509 certificates for authentication.
1435The use of x509 certificates is strongly recommended, because TLS on its
1436own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1437support provides a secure session, but no authentication. This allows any
1438client to connect, and provides an encrypted session.
1439
1440@example
1441qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1442@end example
1443
1444In the above example @code{/etc/pki/qemu} should contain at least three files,
1445@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1446users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1447NB the @code{server-key.pem} file should be protected with file mode 0600 to
1448only be readable by the user owning it.
1449
1450@node vnc_sec_certificate_verify
1451@subsection With x509 certificates and client verification
1452
1453Certificates can also provide a means to authenticate the client connecting.
1454The server will request that the client provide a certificate, which it will
1455then validate against the CA certificate. This is a good choice if deploying
1456in an environment with a private internal certificate authority.
1457
1458@example
1459qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1460@end example
1461
1462
1463@node vnc_sec_certificate_pw
1464@subsection With x509 certificates, client verification and passwords
1465
1466Finally, the previous method can be combined with VNC password authentication
1467to provide two layers of authentication for clients.
1468
1469@example
1470qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1471(qemu) change vnc password
1472Password: ********
1473(qemu)
1474@end example
1475
1476
1477@node vnc_sec_sasl
1478@subsection With SASL authentication
1479
1480The SASL authentication method is a VNC extension, that provides an
1481easily extendable, pluggable authentication method. This allows for
1482integration with a wide range of authentication mechanisms, such as
1483PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1484The strength of the authentication depends on the exact mechanism
1485configured. If the chosen mechanism also provides a SSF layer, then
1486it will encrypt the datastream as well.
1487
1488Refer to the later docs on how to choose the exact SASL mechanism
1489used for authentication, but assuming use of one supporting SSF,
1490then QEMU can be launched with:
1491
1492@example
1493qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1494@end example
1495
1496@node vnc_sec_certificate_sasl
1497@subsection With x509 certificates and SASL authentication
1498
1499If the desired SASL authentication mechanism does not supported
1500SSF layers, then it is strongly advised to run it in combination
1501with TLS and x509 certificates. This provides securely encrypted
1502data stream, avoiding risk of compromising of the security
1503credentials. This can be enabled, by combining the 'sasl' option
1504with the aforementioned TLS + x509 options:
1505
1506@example
1507qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1508@end example
1509
1510
1511@node vnc_generate_cert
1512@subsection Generating certificates for VNC
1513
1514The GNU TLS packages provides a command called @code{certtool} which can
1515be used to generate certificates and keys in PEM format. At a minimum it
1516is necessary to setup a certificate authority, and issue certificates to
1517each server. If using certificates for authentication, then each client
1518will also need to be issued a certificate. The recommendation is for the
1519server to keep its certificates in either @code{/etc/pki/qemu} or for
1520unprivileged users in @code{$HOME/.pki/qemu}.
1521
1522@menu
1523* vnc_generate_ca::
1524* vnc_generate_server::
1525* vnc_generate_client::
1526@end menu
1527@node vnc_generate_ca
1528@subsubsection Setup the Certificate Authority
1529
1530This step only needs to be performed once per organization / organizational
1531unit. First the CA needs a private key. This key must be kept VERY secret
1532and secure. If this key is compromised the entire trust chain of the certificates
1533issued with it is lost.
1534
1535@example
1536# certtool --generate-privkey > ca-key.pem
1537@end example
1538
1539A CA needs to have a public certificate. For simplicity it can be a self-signed
1540certificate, or one issue by a commercial certificate issuing authority. To
1541generate a self-signed certificate requires one core piece of information, the
1542name of the organization.
1543
1544@example
1545# cat > ca.info <<EOF
1546cn = Name of your organization
1547ca
1548cert_signing_key
1549EOF
1550# certtool --generate-self-signed \
1551 --load-privkey ca-key.pem
1552 --template ca.info \
1553 --outfile ca-cert.pem
1554@end example
1555
1556The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1557TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1558
1559@node vnc_generate_server
1560@subsubsection Issuing server certificates
1561
1562Each server (or host) needs to be issued with a key and certificate. When connecting
1563the certificate is sent to the client which validates it against the CA certificate.
1564The core piece of information for a server certificate is the hostname. This should
1565be the fully qualified hostname that the client will connect with, since the client
1566will typically also verify the hostname in the certificate. On the host holding the
1567secure CA private key:
1568
1569@example
1570# cat > server.info <<EOF
1571organization = Name of your organization
1572cn = server.foo.example.com
1573tls_www_server
1574encryption_key
1575signing_key
1576EOF
1577# certtool --generate-privkey > server-key.pem
1578# certtool --generate-certificate \
1579 --load-ca-certificate ca-cert.pem \
1580 --load-ca-privkey ca-key.pem \
1581 --load-privkey server server-key.pem \
1582 --template server.info \
1583 --outfile server-cert.pem
1584@end example
1585
1586The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1587to the server for which they were generated. The @code{server-key.pem} is security
1588sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1589
1590@node vnc_generate_client
1591@subsubsection Issuing client certificates
1592
1593If the QEMU VNC server is to use the @code{x509verify} option to validate client
1594certificates as its authentication mechanism, each client also needs to be issued
1595a certificate. The client certificate contains enough metadata to uniquely identify
1596the client, typically organization, state, city, building, etc. On the host holding
1597the secure CA private key:
1598
1599@example
1600# cat > client.info <<EOF
1601country = GB
1602state = London
1603locality = London
1604organiazation = Name of your organization
1605cn = client.foo.example.com
1606tls_www_client
1607encryption_key
1608signing_key
1609EOF
1610# certtool --generate-privkey > client-key.pem
1611# certtool --generate-certificate \
1612 --load-ca-certificate ca-cert.pem \
1613 --load-ca-privkey ca-key.pem \
1614 --load-privkey client-key.pem \
1615 --template client.info \
1616 --outfile client-cert.pem
1617@end example
1618
1619The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1620copied to the client for which they were generated.
1621
1622
1623@node vnc_setup_sasl
1624
1625@subsection Configuring SASL mechanisms
1626
1627The following documentation assumes use of the Cyrus SASL implementation on a
1628Linux host, but the principals should apply to any other SASL impl. When SASL
1629is enabled, the mechanism configuration will be loaded from system default
1630SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1631unprivileged user, an environment variable SASL_CONF_PATH can be used
1632to make it search alternate locations for the service config.
1633
1634The default configuration might contain
1635
1636@example
1637mech_list: digest-md5
1638sasldb_path: /etc/qemu/passwd.db
1639@end example
1640
1641This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1642Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1643in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1644command. While this mechanism is easy to configure and use, it is not
1645considered secure by modern standards, so only suitable for developers /
1646ad-hoc testing.
1647
1648A more serious deployment might use Kerberos, which is done with the 'gssapi'
1649mechanism
1650
1651@example
1652mech_list: gssapi
1653keytab: /etc/qemu/krb5.tab
1654@end example
1655
1656For this to work the administrator of your KDC must generate a Kerberos
1657principal for the server, with a name of 'qemu/somehost.example.com@@EXAMPLE.COM'
1658replacing 'somehost.example.com' with the fully qualified host name of the
1659machine running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1660
1661Other configurations will be left as an exercise for the reader. It should
1662be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1663encryption. For all other mechanisms, VNC should always be configured to
1664use TLS and x509 certificates to protect security credentials from snooping.
1665
1666@node gdb_usage
1667@section GDB usage
1668
1669QEMU has a primitive support to work with gdb, so that you can do
1670'Ctrl-C' while the virtual machine is running and inspect its state.
1671
1672In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1673gdb connection:
1674@example
1675qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1676 -append "root=/dev/hda"
1677Connected to host network interface: tun0
1678Waiting gdb connection on port 1234
1679@end example
1680
1681Then launch gdb on the 'vmlinux' executable:
1682@example
1683> gdb vmlinux
1684@end example
1685
1686In gdb, connect to QEMU:
1687@example
1688(gdb) target remote localhost:1234
1689@end example
1690
1691Then you can use gdb normally. For example, type 'c' to launch the kernel:
1692@example
1693(gdb) c
1694@end example
1695
1696Here are some useful tips in order to use gdb on system code:
1697
1698@enumerate
1699@item
1700Use @code{info reg} to display all the CPU registers.
1701@item
1702Use @code{x/10i $eip} to display the code at the PC position.
1703@item
1704Use @code{set architecture i8086} to dump 16 bit code. Then use
1705@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1706@end enumerate
1707
1708Advanced debugging options:
1709
1710The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
1711@table @code
1712@item maintenance packet qqemu.sstepbits
1713
1714This will display the MASK bits used to control the single stepping IE:
1715@example
1716(gdb) maintenance packet qqemu.sstepbits
1717sending: "qqemu.sstepbits"
1718received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1719@end example
1720@item maintenance packet qqemu.sstep
1721
1722This will display the current value of the mask used when single stepping IE:
1723@example
1724(gdb) maintenance packet qqemu.sstep
1725sending: "qqemu.sstep"
1726received: "0x7"
1727@end example
1728@item maintenance packet Qqemu.sstep=HEX_VALUE
1729
1730This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1731@example
1732(gdb) maintenance packet Qqemu.sstep=0x5
1733sending: "qemu.sstep=0x5"
1734received: "OK"
1735@end example
1736@end table
1737
1738@node pcsys_os_specific
1739@section Target OS specific information
1740
1741@subsection Linux
1742
1743To have access to SVGA graphic modes under X11, use the @code{vesa} or
1744the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1745color depth in the guest and the host OS.
1746
1747When using a 2.6 guest Linux kernel, you should add the option
1748@code{clock=pit} on the kernel command line because the 2.6 Linux
1749kernels make very strict real time clock checks by default that QEMU
1750cannot simulate exactly.
1751
1752When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1753not activated because QEMU is slower with this patch. The QEMU
1754Accelerator Module is also much slower in this case. Earlier Fedora
1755Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1756patch by default. Newer kernels don't have it.
1757
1758@subsection Windows
1759
1760If you have a slow host, using Windows 95 is better as it gives the
1761best speed. Windows 2000 is also a good choice.
1762
1763@subsubsection SVGA graphic modes support
1764
1765QEMU emulates a Cirrus Logic GD5446 Video
1766card. All Windows versions starting from Windows 95 should recognize
1767and use this graphic card. For optimal performances, use 16 bit color
1768depth in the guest and the host OS.
1769
1770If you are using Windows XP as guest OS and if you want to use high
1771resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
17721280x1024x16), then you should use the VESA VBE virtual graphic card
1773(option @option{-std-vga}).
1774
1775@subsubsection CPU usage reduction
1776
1777Windows 9x does not correctly use the CPU HLT
1778instruction. The result is that it takes host CPU cycles even when
1779idle. You can install the utility from
1780@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1781problem. Note that no such tool is needed for NT, 2000 or XP.
1782
1783@subsubsection Windows 2000 disk full problem
1784
1785Windows 2000 has a bug which gives a disk full problem during its
1786installation. When installing it, use the @option{-win2k-hack} QEMU
1787option to enable a specific workaround. After Windows 2000 is
1788installed, you no longer need this option (this option slows down the
1789IDE transfers).
1790
1791@subsubsection Windows 2000 shutdown
1792
1793Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1794can. It comes from the fact that Windows 2000 does not automatically
1795use the APM driver provided by the BIOS.
1796
1797In order to correct that, do the following (thanks to Struan
1798Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1799Add/Troubleshoot a device => Add a new device & Next => No, select the
1800hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1801(again) a few times. Now the driver is installed and Windows 2000 now
1802correctly instructs QEMU to shutdown at the appropriate moment.
1803
1804@subsubsection Share a directory between Unix and Windows
1805
1806See @ref{sec_invocation} about the help of the option @option{-smb}.
1807
1808@subsubsection Windows XP security problem
1809
1810Some releases of Windows XP install correctly but give a security
1811error when booting:
1812@example
1813A problem is preventing Windows from accurately checking the
1814license for this computer. Error code: 0x800703e6.
1815@end example
1816
1817The workaround is to install a service pack for XP after a boot in safe
1818mode. Then reboot, and the problem should go away. Since there is no
1819network while in safe mode, its recommended to download the full
1820installation of SP1 or SP2 and transfer that via an ISO or using the
1821vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1822
1823@subsection MS-DOS and FreeDOS
1824
1825@subsubsection CPU usage reduction
1826
1827DOS does not correctly use the CPU HLT instruction. The result is that
1828it takes host CPU cycles even when idle. You can install the utility
1829from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1830problem.
1831
1832@node QEMU System emulator for non PC targets
1833@chapter QEMU System emulator for non PC targets
1834
1835QEMU is a generic emulator and it emulates many non PC
1836machines. Most of the options are similar to the PC emulator. The
1837differences are mentioned in the following sections.
1838
1839@menu
1840* PowerPC System emulator::
1841* Sparc32 System emulator::
1842* Sparc64 System emulator::
1843* MIPS System emulator::
1844* ARM System emulator::
1845* ColdFire System emulator::
1846* Cris System emulator::
1847* Microblaze System emulator::
1848* SH4 System emulator::
1849* Xtensa System emulator::
1850@end menu
1851
1852@node PowerPC System emulator
1853@section PowerPC System emulator
1854@cindex system emulation (PowerPC)
1855
1856Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1857or PowerMac PowerPC system.
1858
1859QEMU emulates the following PowerMac peripherals:
1860
1861@itemize @minus
1862@item
1863UniNorth or Grackle PCI Bridge
1864@item
1865PCI VGA compatible card with VESA Bochs Extensions
1866@item
18672 PMAC IDE interfaces with hard disk and CD-ROM support
1868@item
1869NE2000 PCI adapters
1870@item
1871Non Volatile RAM
1872@item
1873VIA-CUDA with ADB keyboard and mouse.
1874@end itemize
1875
1876QEMU emulates the following PREP peripherals:
1877
1878@itemize @minus
1879@item
1880PCI Bridge
1881@item
1882PCI VGA compatible card with VESA Bochs Extensions
1883@item
18842 IDE interfaces with hard disk and CD-ROM support
1885@item
1886Floppy disk
1887@item
1888NE2000 network adapters
1889@item
1890Serial port
1891@item
1892PREP Non Volatile RAM
1893@item
1894PC compatible keyboard and mouse.
1895@end itemize
1896
1897QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1898@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1899
1900Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1901for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1902v2) portable firmware implementation. The goal is to implement a 100%
1903IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1904
1905@c man begin OPTIONS
1906
1907The following options are specific to the PowerPC emulation:
1908
1909@table @option
1910
1911@item -g @var{W}x@var{H}[x@var{DEPTH}]
1912
1913Set the initial VGA graphic mode. The default is 800x600x15.
1914
1915@item -prom-env @var{string}
1916
1917Set OpenBIOS variables in NVRAM, for example:
1918
1919@example
1920qemu-system-ppc -prom-env 'auto-boot?=false' \
1921 -prom-env 'boot-device=hd:2,\yaboot' \
1922 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1923@end example
1924
1925These variables are not used by Open Hack'Ware.
1926
1927@end table
1928
1929@c man end
1930
1931
1932More information is available at
1933@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1934
1935@node Sparc32 System emulator
1936@section Sparc32 System emulator
1937@cindex system emulation (Sparc32)
1938
1939Use the executable @file{qemu-system-sparc} to simulate the following
1940Sun4m architecture machines:
1941@itemize @minus
1942@item
1943SPARCstation 4
1944@item
1945SPARCstation 5
1946@item
1947SPARCstation 10
1948@item
1949SPARCstation 20
1950@item
1951SPARCserver 600MP
1952@item
1953SPARCstation LX
1954@item
1955SPARCstation Voyager
1956@item
1957SPARCclassic
1958@item
1959SPARCbook
1960@end itemize
1961
1962The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1963but Linux limits the number of usable CPUs to 4.
1964
1965It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1966SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1967emulators are not usable yet.
1968
1969QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1970
1971@itemize @minus
1972@item
1973IOMMU or IO-UNITs
1974@item
1975TCX Frame buffer
1976@item
1977Lance (Am7990) Ethernet
1978@item
1979Non Volatile RAM M48T02/M48T08
1980@item
1981Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1982and power/reset logic
1983@item
1984ESP SCSI controller with hard disk and CD-ROM support
1985@item
1986Floppy drive (not on SS-600MP)
1987@item
1988CS4231 sound device (only on SS-5, not working yet)
1989@end itemize
1990
1991The number of peripherals is fixed in the architecture. Maximum
1992memory size depends on the machine type, for SS-5 it is 256MB and for
1993others 2047MB.
1994
1995Since version 0.8.2, QEMU uses OpenBIOS
1996@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1997firmware implementation. The goal is to implement a 100% IEEE
19981275-1994 (referred to as Open Firmware) compliant firmware.
1999
2000A sample Linux 2.6 series kernel and ram disk image are available on
2001the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2002some kernel versions work. Please note that currently Solaris kernels
2003don't work probably due to interface issues between OpenBIOS and
2004Solaris.
2005
2006@c man begin OPTIONS
2007
2008The following options are specific to the Sparc32 emulation:
2009
2010@table @option
2011
2012@item -g @var{W}x@var{H}x[x@var{DEPTH}]
2013
2014Set the initial TCX graphic mode. The default is 1024x768x8, currently
2015the only other possible mode is 1024x768x24.
2016
2017@item -prom-env @var{string}
2018
2019Set OpenBIOS variables in NVRAM, for example:
2020
2021@example
2022qemu-system-sparc -prom-env 'auto-boot?=false' \
2023 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2024@end example
2025
2026@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
2027
2028Set the emulated machine type. Default is SS-5.
2029
2030@end table
2031
2032@c man end
2033
2034@node Sparc64 System emulator
2035@section Sparc64 System emulator
2036@cindex system emulation (Sparc64)
2037
2038Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2039(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2040Niagara (T1) machine. The emulator is not usable for anything yet, but
2041it can launch some kernels.
2042
2043QEMU emulates the following peripherals:
2044
2045@itemize @minus
2046@item
2047UltraSparc IIi APB PCI Bridge
2048@item
2049PCI VGA compatible card with VESA Bochs Extensions
2050@item
2051PS/2 mouse and keyboard
2052@item
2053Non Volatile RAM M48T59
2054@item
2055PC-compatible serial ports
2056@item
20572 PCI IDE interfaces with hard disk and CD-ROM support
2058@item
2059Floppy disk
2060@end itemize
2061
2062@c man begin OPTIONS
2063
2064The following options are specific to the Sparc64 emulation:
2065
2066@table @option
2067
2068@item -prom-env @var{string}
2069
2070Set OpenBIOS variables in NVRAM, for example:
2071
2072@example
2073qemu-system-sparc64 -prom-env 'auto-boot?=false'
2074@end example
2075
2076@item -M [sun4u|sun4v|Niagara]
2077
2078Set the emulated machine type. The default is sun4u.
2079
2080@end table
2081
2082@c man end
2083
2084@node MIPS System emulator
2085@section MIPS System emulator
2086@cindex system emulation (MIPS)
2087
2088Four executables cover simulation of 32 and 64-bit MIPS systems in
2089both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2090@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2091Five different machine types are emulated:
2092
2093@itemize @minus
2094@item
2095A generic ISA PC-like machine "mips"
2096@item
2097The MIPS Malta prototype board "malta"
2098@item
2099An ACER Pica "pica61". This machine needs the 64-bit emulator.
2100@item
2101MIPS emulator pseudo board "mipssim"
2102@item
2103A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2104@end itemize
2105
2106The generic emulation is supported by Debian 'Etch' and is able to
2107install Debian into a virtual disk image. The following devices are
2108emulated:
2109
2110@itemize @minus
2111@item
2112A range of MIPS CPUs, default is the 24Kf
2113@item
2114PC style serial port
2115@item
2116PC style IDE disk
2117@item
2118NE2000 network card
2119@end itemize
2120
2121The Malta emulation supports the following devices:
2122
2123@itemize @minus
2124@item
2125Core board with MIPS 24Kf CPU and Galileo system controller
2126@item
2127PIIX4 PCI/USB/SMbus controller
2128@item
2129The Multi-I/O chip's serial device
2130@item
2131PCI network cards (PCnet32 and others)
2132@item
2133Malta FPGA serial device
2134@item
2135Cirrus (default) or any other PCI VGA graphics card
2136@end itemize
2137
2138The ACER Pica emulation supports:
2139
2140@itemize @minus
2141@item
2142MIPS R4000 CPU
2143@item
2144PC-style IRQ and DMA controllers
2145@item
2146PC Keyboard
2147@item
2148IDE controller
2149@end itemize
2150
2151The mipssim pseudo board emulation provides an environment similar
2152to what the proprietary MIPS emulator uses for running Linux.
2153It supports:
2154
2155@itemize @minus
2156@item
2157A range of MIPS CPUs, default is the 24Kf
2158@item
2159PC style serial port
2160@item
2161MIPSnet network emulation
2162@end itemize
2163
2164The MIPS Magnum R4000 emulation supports:
2165
2166@itemize @minus
2167@item
2168MIPS R4000 CPU
2169@item
2170PC-style IRQ controller
2171@item
2172PC Keyboard
2173@item
2174SCSI controller
2175@item
2176G364 framebuffer
2177@end itemize
2178
2179
2180@node ARM System emulator
2181@section ARM System emulator
2182@cindex system emulation (ARM)
2183
2184Use the executable @file{qemu-system-arm} to simulate a ARM
2185machine. The ARM Integrator/CP board is emulated with the following
2186devices:
2187
2188@itemize @minus
2189@item
2190ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2191@item
2192Two PL011 UARTs
2193@item
2194SMC 91c111 Ethernet adapter
2195@item
2196PL110 LCD controller
2197@item
2198PL050 KMI with PS/2 keyboard and mouse.
2199@item
2200PL181 MultiMedia Card Interface with SD card.
2201@end itemize
2202
2203The ARM Versatile baseboard is emulated with the following devices:
2204
2205@itemize @minus
2206@item
2207ARM926E, ARM1136 or Cortex-A8 CPU
2208@item
2209PL190 Vectored Interrupt Controller
2210@item
2211Four PL011 UARTs
2212@item
2213SMC 91c111 Ethernet adapter
2214@item
2215PL110 LCD controller
2216@item
2217PL050 KMI with PS/2 keyboard and mouse.
2218@item
2219PCI host bridge. Note the emulated PCI bridge only provides access to
2220PCI memory space. It does not provide access to PCI IO space.
2221This means some devices (eg. ne2k_pci NIC) are not usable, and others
2222(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2223mapped control registers.
2224@item
2225PCI OHCI USB controller.
2226@item
2227LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2228@item
2229PL181 MultiMedia Card Interface with SD card.
2230@end itemize
2231
2232Several variants of the ARM RealView baseboard are emulated,
2233including the EB, PB-A8 and PBX-A9. Due to interactions with the
2234bootloader, only certain Linux kernel configurations work out
2235of the box on these boards.
2236
2237Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2238enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2239should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2240disabled and expect 1024M RAM.
2241
2242The following devices are emulated:
2243
2244@itemize @minus
2245@item
2246ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2247@item
2248ARM AMBA Generic/Distributed Interrupt Controller
2249@item
2250Four PL011 UARTs
2251@item
2252SMC 91c111 or SMSC LAN9118 Ethernet adapter
2253@item
2254PL110 LCD controller
2255@item
2256PL050 KMI with PS/2 keyboard and mouse
2257@item
2258PCI host bridge
2259@item
2260PCI OHCI USB controller
2261@item
2262LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2263@item
2264PL181 MultiMedia Card Interface with SD card.
2265@end itemize
2266
2267The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2268and "Terrier") emulation includes the following peripherals:
2269
2270@itemize @minus
2271@item
2272Intel PXA270 System-on-chip (ARM V5TE core)
2273@item
2274NAND Flash memory
2275@item
2276IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2277@item
2278On-chip OHCI USB controller
2279@item
2280On-chip LCD controller
2281@item
2282On-chip Real Time Clock
2283@item
2284TI ADS7846 touchscreen controller on SSP bus
2285@item
2286Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2287@item
2288GPIO-connected keyboard controller and LEDs
2289@item
2290Secure Digital card connected to PXA MMC/SD host
2291@item
2292Three on-chip UARTs
2293@item
2294WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2295@end itemize
2296
2297The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2298following elements:
2299
2300@itemize @minus
2301@item
2302Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2303@item
2304ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2305@item
2306On-chip LCD controller
2307@item
2308On-chip Real Time Clock
2309@item
2310TI TSC2102i touchscreen controller / analog-digital converter / Audio
2311CODEC, connected through MicroWire and I@math{^2}S busses
2312@item
2313GPIO-connected matrix keypad
2314@item
2315Secure Digital card connected to OMAP MMC/SD host
2316@item
2317Three on-chip UARTs
2318@end itemize
2319
2320Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2321emulation supports the following elements:
2322
2323@itemize @minus
2324@item
2325Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2326@item
2327RAM and non-volatile OneNAND Flash memories
2328@item
2329Display connected to EPSON remote framebuffer chip and OMAP on-chip
2330display controller and a LS041y3 MIPI DBI-C controller
2331@item
2332TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2333driven through SPI bus
2334@item
2335National Semiconductor LM8323-controlled qwerty keyboard driven
2336through I@math{^2}C bus
2337@item
2338Secure Digital card connected to OMAP MMC/SD host
2339@item
2340Three OMAP on-chip UARTs and on-chip STI debugging console
2341@item
2342A Bluetooth(R) transceiver and HCI connected to an UART
2343@item
2344Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2345TUSB6010 chip - only USB host mode is supported
2346@item
2347TI TMP105 temperature sensor driven through I@math{^2}C bus
2348@item
2349TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2350@item
2351Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2352through CBUS
2353@end itemize
2354
2355The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2356devices:
2357
2358@itemize @minus
2359@item
2360Cortex-M3 CPU core.
2361@item
236264k Flash and 8k SRAM.
2363@item
2364Timers, UARTs, ADC and I@math{^2}C interface.
2365@item
2366OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2367@end itemize
2368
2369The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2370devices:
2371
2372@itemize @minus
2373@item
2374Cortex-M3 CPU core.
2375@item
2376256k Flash and 64k SRAM.
2377@item
2378Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2379@item
2380OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2381@end itemize
2382
2383The Freecom MusicPal internet radio emulation includes the following
2384elements:
2385
2386@itemize @minus
2387@item
2388Marvell MV88W8618 ARM core.
2389@item
239032 MB RAM, 256 KB SRAM, 8 MB flash.
2391@item
2392Up to 2 16550 UARTs
2393@item
2394MV88W8xx8 Ethernet controller
2395@item
2396MV88W8618 audio controller, WM8750 CODEC and mixer
2397@item
2398128×64 display with brightness control
2399@item
24002 buttons, 2 navigation wheels with button function
2401@end itemize
2402
2403The Siemens SX1 models v1 and v2 (default) basic emulation.
2404The emulation includes the following elements:
2405
2406@itemize @minus
2407@item
2408Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2409@item
2410ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2411V1
24121 Flash of 16MB and 1 Flash of 8MB
2413V2
24141 Flash of 32MB
2415@item
2416On-chip LCD controller
2417@item
2418On-chip Real Time Clock
2419@item
2420Secure Digital card connected to OMAP MMC/SD host
2421@item
2422Three on-chip UARTs
2423@end itemize
2424
2425A Linux 2.6 test image is available on the QEMU web site. More
2426information is available in the QEMU mailing-list archive.
2427
2428@c man begin OPTIONS
2429
2430The following options are specific to the ARM emulation:
2431
2432@table @option
2433
2434@item -semihosting
2435Enable semihosting syscall emulation.
2436
2437On ARM this implements the "Angel" interface.
2438
2439Note that this allows guest direct access to the host filesystem,
2440so should only be used with trusted guest OS.
2441
2442@end table
2443
2444@node ColdFire System emulator
2445@section ColdFire System emulator
2446@cindex system emulation (ColdFire)
2447@cindex system emulation (M68K)
2448
2449Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2450The emulator is able to boot a uClinux kernel.
2451
2452The M5208EVB emulation includes the following devices:
2453
2454@itemize @minus
2455@item
2456MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2457@item
2458Three Two on-chip UARTs.
2459@item
2460Fast Ethernet Controller (FEC)
2461@end itemize
2462
2463The AN5206 emulation includes the following devices:
2464
2465@itemize @minus
2466@item
2467MCF5206 ColdFire V2 Microprocessor.
2468@item
2469Two on-chip UARTs.
2470@end itemize
2471
2472@c man begin OPTIONS
2473
2474The following options are specific to the ColdFire emulation:
2475
2476@table @option
2477
2478@item -semihosting
2479Enable semihosting syscall emulation.
2480
2481On M68K this implements the "ColdFire GDB" interface used by libgloss.
2482
2483Note that this allows guest direct access to the host filesystem,
2484so should only be used with trusted guest OS.
2485
2486@end table
2487
2488@node Cris System emulator
2489@section Cris System emulator
2490@cindex system emulation (Cris)
2491
2492TODO
2493
2494@node Microblaze System emulator
2495@section Microblaze System emulator
2496@cindex system emulation (Microblaze)
2497
2498TODO
2499
2500@node SH4 System emulator
2501@section SH4 System emulator
2502@cindex system emulation (SH4)
2503
2504TODO
2505
2506@node Xtensa System emulator
2507@section Xtensa System emulator
2508@cindex system emulation (Xtensa)
2509
2510Two executables cover simulation of both Xtensa endian options,
2511@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2512Two different machine types are emulated:
2513
2514@itemize @minus
2515@item
2516Xtensa emulator pseudo board "sim"
2517@item
2518Avnet LX60/LX110/LX200 board
2519@end itemize
2520
2521The sim pseudo board emulation provides an environment similar
2522to one provided by the proprietary Tensilica ISS.
2523It supports:
2524
2525@itemize @minus
2526@item
2527A range of Xtensa CPUs, default is the DC232B
2528@item
2529Console and filesystem access via semihosting calls
2530@end itemize
2531
2532The Avnet LX60/LX110/LX200 emulation supports:
2533
2534@itemize @minus
2535@item
2536A range of Xtensa CPUs, default is the DC232B
2537@item
253816550 UART
2539@item
2540OpenCores 10/100 Mbps Ethernet MAC
2541@end itemize
2542
2543@c man begin OPTIONS
2544
2545The following options are specific to the Xtensa emulation:
2546
2547@table @option
2548
2549@item -semihosting
2550Enable semihosting syscall emulation.
2551
2552Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2553Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2554
2555Note that this allows guest direct access to the host filesystem,
2556so should only be used with trusted guest OS.
2557
2558@end table
2559@node QEMU User space emulator
2560@chapter QEMU User space emulator
2561
2562@menu
2563* Supported Operating Systems ::
2564* Linux User space emulator::
2565* BSD User space emulator ::
2566@end menu
2567
2568@node Supported Operating Systems
2569@section Supported Operating Systems
2570
2571The following OS are supported in user space emulation:
2572
2573@itemize @minus
2574@item
2575Linux (referred as qemu-linux-user)
2576@item
2577BSD (referred as qemu-bsd-user)
2578@end itemize
2579
2580@node Linux User space emulator
2581@section Linux User space emulator
2582
2583@menu
2584* Quick Start::
2585* Wine launch::
2586* Command line options::
2587* Other binaries::
2588@end menu
2589
2590@node Quick Start
2591@subsection Quick Start
2592
2593In order to launch a Linux process, QEMU needs the process executable
2594itself and all the target (x86) dynamic libraries used by it.
2595
2596@itemize
2597
2598@item On x86, you can just try to launch any process by using the native
2599libraries:
2600
2601@example
2602qemu-i386 -L / /bin/ls
2603@end example
2604
2605@code{-L /} tells that the x86 dynamic linker must be searched with a
2606@file{/} prefix.
2607
2608@item Since QEMU is also a linux process, you can launch QEMU with
2609QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2610
2611@example
2612qemu-i386 -L / qemu-i386 -L / /bin/ls
2613@end example
2614
2615@item On non x86 CPUs, you need first to download at least an x86 glibc
2616(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2617@code{LD_LIBRARY_PATH} is not set:
2618
2619@example
2620unset LD_LIBRARY_PATH
2621@end example
2622
2623Then you can launch the precompiled @file{ls} x86 executable:
2624
2625@example
2626qemu-i386 tests/i386/ls
2627@end example
2628You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2629QEMU is automatically launched by the Linux kernel when you try to
2630launch x86 executables. It requires the @code{binfmt_misc} module in the
2631Linux kernel.
2632
2633@item The x86 version of QEMU is also included. You can try weird things such as:
2634@example
2635qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2636 /usr/local/qemu-i386/bin/ls-i386
2637@end example
2638
2639@end itemize
2640
2641@node Wine launch
2642@subsection Wine launch
2643
2644@itemize
2645
2646@item Ensure that you have a working QEMU with the x86 glibc
2647distribution (see previous section). In order to verify it, you must be
2648able to do:
2649
2650@example
2651qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2652@end example
2653
2654@item Download the binary x86 Wine install
2655(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2656
2657@item Configure Wine on your account. Look at the provided script
2658@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2659@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2660
2661@item Then you can try the example @file{putty.exe}:
2662
2663@example
2664qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2665 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2666@end example
2667
2668@end itemize
2669
2670@node Command line options
2671@subsection Command line options
2672
2673@example
2674usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2675@end example
2676
2677@table @option
2678@item -h
2679Print the help
2680@item -L path
2681Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2682@item -s size
2683Set the x86 stack size in bytes (default=524288)
2684@item -cpu model
2685Select CPU model (-cpu help for list and additional feature selection)
2686@item -E @var{var}=@var{value}
2687Set environment @var{var} to @var{value}.
2688@item -U @var{var}
2689Remove @var{var} from the environment.
2690@item -B offset
2691Offset guest address by the specified number of bytes. This is useful when
2692the address region required by guest applications is reserved on the host.
2693This option is currently only supported on some hosts.
2694@item -R size
2695Pre-allocate a guest virtual address space of the given size (in bytes).
2696"G", "M", and "k" suffixes may be used when specifying the size.
2697@end table
2698
2699Debug options:
2700
2701@table @option
2702@item -d item1,...
2703Activate logging of the specified items (use '-d help' for a list of log items)
2704@item -p pagesize
2705Act as if the host page size was 'pagesize' bytes
2706@item -g port
2707Wait gdb connection to port
2708@item -singlestep
2709Run the emulation in single step mode.
2710@end table
2711
2712Environment variables:
2713
2714@table @env
2715@item QEMU_STRACE
2716Print system calls and arguments similar to the 'strace' program
2717(NOTE: the actual 'strace' program will not work because the user
2718space emulator hasn't implemented ptrace). At the moment this is
2719incomplete. All system calls that don't have a specific argument
2720format are printed with information for six arguments. Many
2721flag-style arguments don't have decoders and will show up as numbers.
2722@end table
2723
2724@node Other binaries
2725@subsection Other binaries
2726
2727@cindex user mode (Alpha)
2728@command{qemu-alpha} TODO.
2729
2730@cindex user mode (ARM)
2731@command{qemu-armeb} TODO.
2732
2733@cindex user mode (ARM)
2734@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2735binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2736configurations), and arm-uclinux bFLT format binaries.
2737
2738@cindex user mode (ColdFire)
2739@cindex user mode (M68K)
2740@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2741(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2742coldfire uClinux bFLT format binaries.
2743
2744The binary format is detected automatically.
2745
2746@cindex user mode (Cris)
2747@command{qemu-cris} TODO.
2748
2749@cindex user mode (i386)
2750@command{qemu-i386} TODO.
2751@command{qemu-x86_64} TODO.
2752
2753@cindex user mode (Microblaze)
2754@command{qemu-microblaze} TODO.
2755
2756@cindex user mode (MIPS)
2757@command{qemu-mips} TODO.
2758@command{qemu-mipsel} TODO.
2759
2760@cindex user mode (PowerPC)
2761@command{qemu-ppc64abi32} TODO.
2762@command{qemu-ppc64} TODO.
2763@command{qemu-ppc} TODO.
2764
2765@cindex user mode (SH4)
2766@command{qemu-sh4eb} TODO.
2767@command{qemu-sh4} TODO.
2768
2769@cindex user mode (SPARC)
2770@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2771
2772@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2773(Sparc64 CPU, 32 bit ABI).
2774
2775@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2776SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2777
2778@node BSD User space emulator
2779@section BSD User space emulator
2780
2781@menu
2782* BSD Status::
2783* BSD Quick Start::
2784* BSD Command line options::
2785@end menu
2786
2787@node BSD Status
2788@subsection BSD Status
2789
2790@itemize @minus
2791@item
2792target Sparc64 on Sparc64: Some trivial programs work.
2793@end itemize
2794
2795@node BSD Quick Start
2796@subsection Quick Start
2797
2798In order to launch a BSD process, QEMU needs the process executable
2799itself and all the target dynamic libraries used by it.
2800
2801@itemize
2802
2803@item On Sparc64, you can just try to launch any process by using the native
2804libraries:
2805
2806@example
2807qemu-sparc64 /bin/ls
2808@end example
2809
2810@end itemize
2811
2812@node BSD Command line options
2813@subsection Command line options
2814
2815@example
2816usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2817@end example
2818
2819@table @option
2820@item -h
2821Print the help
2822@item -L path
2823Set the library root path (default=/)
2824@item -s size
2825Set the stack size in bytes (default=524288)
2826@item -ignore-environment
2827Start with an empty environment. Without this option,
2828the initial environment is a copy of the caller's environment.
2829@item -E @var{var}=@var{value}
2830Set environment @var{var} to @var{value}.
2831@item -U @var{var}
2832Remove @var{var} from the environment.
2833@item -bsd type
2834Set the type of the emulated BSD Operating system. Valid values are
2835FreeBSD, NetBSD and OpenBSD (default).
2836@end table
2837
2838Debug options:
2839
2840@table @option
2841@item -d item1,...
2842Activate logging of the specified items (use '-d help' for a list of log items)
2843@item -p pagesize
2844Act as if the host page size was 'pagesize' bytes
2845@item -singlestep
2846Run the emulation in single step mode.
2847@end table
2848
2849@node compilation
2850@chapter Compilation from the sources
2851
2852@menu
2853* Linux/Unix::
2854* Windows::
2855* Cross compilation for Windows with Linux::
2856* Mac OS X::
2857* Make targets::
2858@end menu
2859
2860@node Linux/Unix
2861@section Linux/Unix
2862
2863@subsection Compilation
2864
2865First you must decompress the sources:
2866@example
2867cd /tmp
2868tar zxvf qemu-x.y.z.tar.gz
2869cd qemu-x.y.z
2870@end example
2871
2872Then you configure QEMU and build it (usually no options are needed):
2873@example
2874./configure
2875make
2876@end example
2877
2878Then type as root user:
2879@example
2880make install
2881@end example
2882to install QEMU in @file{/usr/local}.
2883
2884@node Windows
2885@section Windows
2886
2887@itemize
2888@item Install the current versions of MSYS and MinGW from
2889@url{http://www.mingw.org/}. You can find detailed installation
2890instructions in the download section and the FAQ.
2891
2892@item Download
2893the MinGW development library of SDL 1.2.x
2894(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2895@url{http://www.libsdl.org}. Unpack it in a temporary place and
2896edit the @file{sdl-config} script so that it gives the
2897correct SDL directory when invoked.
2898
2899@item Install the MinGW version of zlib and make sure
2900@file{zlib.h} and @file{libz.dll.a} are in
2901MinGW's default header and linker search paths.
2902
2903@item Extract the current version of QEMU.
2904
2905@item Start the MSYS shell (file @file{msys.bat}).
2906
2907@item Change to the QEMU directory. Launch @file{./configure} and
2908@file{make}. If you have problems using SDL, verify that
2909@file{sdl-config} can be launched from the MSYS command line.
2910
2911@item You can install QEMU in @file{Program Files/QEMU} by typing
2912@file{make install}. Don't forget to copy @file{SDL.dll} in
2913@file{Program Files/QEMU}.
2914
2915@end itemize
2916
2917@node Cross compilation for Windows with Linux
2918@section Cross compilation for Windows with Linux
2919
2920@itemize
2921@item
2922Install the MinGW cross compilation tools available at
2923@url{http://www.mingw.org/}.
2924
2925@item Download
2926the MinGW development library of SDL 1.2.x
2927(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2928@url{http://www.libsdl.org}. Unpack it in a temporary place and
2929edit the @file{sdl-config} script so that it gives the
2930correct SDL directory when invoked. Set up the @code{PATH} environment
2931variable so that @file{sdl-config} can be launched by
2932the QEMU configuration script.
2933
2934@item Install the MinGW version of zlib and make sure
2935@file{zlib.h} and @file{libz.dll.a} are in
2936MinGW's default header and linker search paths.
2937
2938@item
2939Configure QEMU for Windows cross compilation:
2940@example
2941PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2942@end example
2943The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2944MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2945We set the @code{PATH} environment variable to ensure the MinGW version of @file{sdl-config} is used and
2946use --cross-prefix to specify the name of the cross compiler.
2947You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/QEMU}.
2948
2949Under Fedora Linux, you can run:
2950@example
2951yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2952@end example
2953to get a suitable cross compilation environment.
2954
2955@item You can install QEMU in the installation directory by typing
2956@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2957installation directory.
2958
2959@end itemize
2960
2961Wine can be used to launch the resulting qemu-system-i386.exe
2962and all other qemu-system-@var{target}.exe compiled for Win32.
2963
2964@node Mac OS X
2965@section Mac OS X
2966
2967The Mac OS X patches are not fully merged in QEMU, so you should look
2968at the QEMU mailing list archive to have all the necessary
2969information.
2970
2971@node Make targets
2972@section Make targets
2973
2974@table @code
2975
2976@item make
2977@item make all
2978Make everything which is typically needed.
2979
2980@item install
2981TODO
2982
2983@item install-doc
2984TODO
2985
2986@item make clean
2987Remove most files which were built during make.
2988
2989@item make distclean
2990Remove everything which was built during make.
2991
2992@item make dvi
2993@item make html
2994@item make info
2995@item make pdf
2996Create documentation in dvi, html, info or pdf format.
2997
2998@item make cscope
2999TODO
3000
3001@item make defconfig
3002(Re-)create some build configuration files.
3003User made changes will be overwritten.
3004
3005@item tar
3006@item tarbin
3007TODO
3008
3009@end table
3010
3011@node License
3012@appendix License
3013
3014QEMU is a trademark of Fabrice Bellard.
3015
3016QEMU is released under the GNU General Public License (TODO: add link).
3017Parts of QEMU have specific licenses, see file LICENSE.
3018
3019TODO (refer to file LICENSE, include it, include the GPL?)
3020
3021@node Index
3022@appendix Index
3023@menu
3024* Concept Index::
3025* Function Index::
3026* Keystroke Index::
3027* Program Index::
3028* Data Type Index::
3029* Variable Index::
3030@end menu
3031
3032@node Concept Index
3033@section Concept Index
3034This is the main index. Should we combine all keywords in one index? TODO
3035@printindex cp
3036
3037@node Function Index
3038@section Function Index
3039This index could be used for command line options and monitor functions.
3040@printindex fn
3041
3042@node Keystroke Index
3043@section Keystroke Index
3044
3045This is a list of all keystrokes which have a special function
3046in system emulation.
3047
3048@printindex ky
3049
3050@node Program Index
3051@section Program Index
3052@printindex pg
3053
3054@node Data Type Index
3055@section Data Type Index
3056
3057This index could be used for qdev device names and options.
3058
3059@printindex tp
3060
3061@node Variable Index
3062@section Variable Index
3063@printindex vr
3064
3065@bye